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Simultaneous localization and mapping (SLAM) has been shown to be feasible in many small, two-dimensional,
structured domains. The next challenge is to develop real-time SLAM methods that enable robots to explore
large, three-dimensional, unstructured environments and allow subsequent operation in these environments
over long periods of time. To circumvent the scale limitations inherent in SLAM, the world can be divided
up into more manageable pieces. SLAM can be formulated on these pieces by using a combination of metric
submaps and a topological map of the relationships between submaps. The contribution of this paper is a real-
time, three-dimensional SLAM approach that combines an evidence grid–based volumetric submap represen-
tation, a robust Rao–Blackwellized particle filter, and a topologically flexible submap segmentation framework
and map representation. We present heuristic methods for deciding how to segment the world and for recon-
structing large-scale metric maps for the purpose of closing loops. We demonstrate our method on a mobile
robotic platform operating in large, three-dimensional environments. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

The tasks of mapping and localization lie at the core of
mobile robotics. The interdependence between mapping
(which uses the localization estimate) and localization
(which uses the map) is clear and is commonly called the
simultaneous localization and mapping (SLAM) problem.
To a large degree, the SLAM problem has been solved
for small, two-dimensional (2D), structured environments
(Eliazar & Parr, 2006; Grisetti, Stachniss, & Burgard, 2005;
Montemerlo, 2003). To make robots useful in the broader
world, they need to move beyond such simple environ-
ments into large, three-dimensional (3D), unstructured
environments. Accordingly, they need general algorithms
for mapping and localizing that work just about anywhere:
indoors and outdoors; subterranean, aerial, and underwa-
ter; natural and urban; flat and highly 3D. Such algorithms
must fit within the computational constraints of real mobile
robots: constant time in computation and linear in storage
space. Map representations must be fully 3D and capable of
representing arbitrary 3D geometry at a level of resolution
that is appropriate for the robot and its task. On the other
hand, whereas maps need to be locally accurate for path
planning and obstacle avoidance, global accuracy can often
be relaxed, again depending on the robot and its task.

Many online SLAM methods work well on a limited
scale. In particular, they build useful maps on the scale of
tens or perhaps hundreds of meters. To succeed even at that
scale, most SLAM methods exploit spatial independence,
or sparsity. There is a group of SLAM methods that explic-
itly exploit spatial sparsity by segmenting the world into
independent submaps. Most of these methods use a com-
bination of metric and topological maps (Bosse, Newman,
Leonard, & Teller, 2004; Estrada, Neira, & Tardós, 2005;

Jefferies, Cosgrove, Baker, & Yeap, 2004; Lisien et al., 2003;
Newman, Leonard, & Rikoski, 2003; Schultz & Adams,
1998; Tardós, Neira, Newman, & Leonard, 2002; Yamauchi
& Langley, 1996) in which the nodes of the graph are metric
submaps and the relationships between submaps are rep-
resented by the edges of a graph. The submap segmenta-
tion is usually designed such that their scale is well within
the capabilities of a particular SLAM approach. Thus the
scaling problem is avoided, but the trade-off is that the
submap algorithm must manage the graph of submaps,
deciding when to create a new submap, when to reenter
an old submap, and how to represent different hypotheses
about the topological relationships between submaps.

We present a robust, real-time, submap-based ap-
proach called SegSLAM that uses an extension to the par-
ticle filter prediction step to determine when a particular
particle should transition to a new submap or reenter an
old submap: weighting, resampling, and updating are still
applied.

At the core of our approach is a sparse map repre-
sentation that is based on 3D evidence grids and octrees
(Fairfield, Kantor, & Wettergreen, 2007). This representation
does not rely on features, which may be available only in
certain environments, but instead uses active range mea-
surements from LIDAR and sonar to build accurate metric
representations of large 3D environments. Our approach
builds a Rao–Blackwellized particle filter (RBPF) SLAM
(Doucet, de Freitas, Murphy, & Russell, 2000) method on
this metric map representation (Fairfield, Kantor, Jonak, &
Wettergreen, 2008). Owing to its RBPF foundations, our
method has real-time performance and is able to cope with
initial uncertainty as well as uncertainty that arises from
ambiguity in the environment by tracking multiple hy-
potheses about the robot location and map. Owing to its
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Figure 1. The process of segmentation, map sample generation, and matching. The SegMap stores the particle submaps (shown
as different arrows) for each color-coded segment. The SegMap also stores the relationships between segments, loosely illustrated
here by the segment placements relative to each other. Note that after matching, the breadth-first map sampling algorithm does
not enforce global consistency between the red and turquoise (lower right) segments.

basis in evidence grids and particle filters, our method
is robust to poor sensor data. Our SLAM algorithm has
been used in several challenging environments, including
flooded sinkholes (Fairfield et al, 2007) and the ocean floor
(Fairfield & Wettergreen, 2008).

SegSLAM extends our RBPF SLAM method to yet
larger scales by using a heuristic to find good segmenta-
tions between submaps, based on the ability of the current
submap to predict future measurements. Mapping and lo-
calization within these submaps is performed using a par-
ticle filter similar to our basic RBPF SLAM method but gen-
eralized to allow particles to transition between submaps.
Whereas the particles of a regular RBPF are samples from
the distribution over poses and the metric maps, the par-
ticles of SegSLAM are samples from the distribution over
poses and submaps, in which the poses are in the local co-
ordinate frame of the submaps. Because each particle has
its own copy of each submap, we use the noun segment to
refer to the collection of particle submaps that are tempo-
rally compatible: unlike RBPF particles, SegSLAM particles
do not encode a complete trajectory hypothesis; instead the
trajectory must be reconstructed by stitching together com-
patible segments, which are stored in a data structure called
the segmented map, or SegMap.

The SegMap is a probabilistic graph in which the par-
ticle pose transformations from one segment to another are
the edges of the graph, but there may be many different
metric submaps for each segment, one for each particle.
A transformation between two segments can be used to
stitch together any two particular submaps from the corre-
sponding segments. Reconstructing a trajectory can be seen
as drawing a sample from the SegMap probabilistic graph
by stochastically picking edges and nodes in a breadth-first
fashion to create a (partial or complete) metric map, which
can then be used for loop detection and planning. It is im-
portant to note that the particles do not have to segment or
reenter at the same time, but the resulting segments will
not be temporally compatible and cannot form part of a

reconstructed trajectory. In particular, the ability of differ-
ent particles to independently segment and reenter is how
SegSLAM can represent different topologies. Figure 1 pro-
vides an illustration of the SegSLAM algorithm.

Another way of interpreting sampling from the
SegMap is in the context of particle depletion, which is
the limiting factor on the scalability of RBPF SLAM ap-
proaches (Stachniss, 2006). Particle depletion occurs when
the filter is not able to maintain an adequate representa-
tion of the underlying distribution over trajectories (poses
and maps). For any resampling particle filter with a finite
number of particles, all the particles will eventually come
to share a common ancestor as an inevitable result of the
resampling step. When this occurs, the particle filter effec-
tively has only one hypothesis about what happened be-
fore the oldest common ancestor, and any errors in this hy-
pothesis are unrecoverable. The particle depletion problem
often arises in the context of closing a loop: the particle
filter needs to maintain many viable trajectories hypothe-
ses around a loop in order to have a selection to choose
from when it closes the loop. The difficulty in doing this
with an RBPF comes from the fact that the particle trajec-
tories are encoded in the maps, so the filter must maintain
a map for each of these hypotheses. Maps are usually ex-
pensive to maintain, so computational capacity limits the
number of trajectories that the filter can support, which
in turn limits the loop length that the filter can reliably
close.

SegSLAM addresses this situation in two ways. First,
the SegMap represents an exponential number of tra-
jectories (submap combinations), which can be sam-
pled as needed. Second, topological relationships between
submaps (including loop closures) are discovered and re-
fined by using the map matching techniques described in
Fairfield and Wettergreen (2009) to directly match the evi-
dence grid submaps, meaning that loop closures can be de-
tected even when there is significant error in the sampled
trajectory.
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Taken together, the components of our approach form
a broadly applicable method that enables practical robotic
operation in large, 3D environments. This approach con-
tributes to the field of robotics by developing a compact and
efficient map representation for 3D environments; develop-
ing algorithms for building, copying, and matching these
maps, effectively treating maps themselves as macro fea-
tures; and developing SegSLAM, a robust, real-time, multi-
hypothesis, segmented SLAM approach that addresses the
problems of segmentation, particle depletion, loop closure,
and scalability in 3D environments.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes our relevant prior work, particularly our
map representation and RBPF SLAM approach for large
unstructured 3D environments. Section 3 then describes
related work in the area of segmented SLAM. Section 4
introduces our SegSLAM method. Section 5 presents exper-
imental results from using SegSLAM to map several 3D en-
vironments. Finally, Section 6 presents our conclusions and
thoughts for future work.

2. SUMMARY OF PRIOR WORK

2.1. 3D Maps

We previously introduced the deferred reference count oc-
tree (DRCO) evidence grid data structure, an efficient 3D
volumetric representation that exploits the spatial sparsity
of many environments (Fairfield et al., 2007). In addition,
the DRCO implicitly exploits the common map structure
of resampled RBPF particles, meaning that only the differ-
ences between particle maps have to be stored.

An octree is a tree structure composed of a node, or
octnode, which has eight children that equally subdivide
the node’s volume into octants. The children are octnodes
in turn, which recursively divide the volume as far as
necessary to represent the finest resolution required. The
depth of the octree determines the resolution of the leaf
nodes. The main advantage of an octree is that the tree does
not need to be fully instantiated if pointers are used for the
links between octnodes and their children. Large contigu-
ous portions of an evidence grid are either empty, occupied,
or unknown and can be efficiently represented by a single
octnode—truncating all the children that would have the
same value. As evidence accumulates, the octree can com-
pact homogeneous regions that emerge, such as the large
empty volume inside a cavern. Note that even with com-
paction, the octree is a drop-in replacement for uniform
voxel arrays in memory: it is possible to convert losslessly
between the two representations. Ray insertion and query
can be done with a tree-traversing ray-tracing algorithm
(see Havran, 1999, for an overview).

2.2. Rao–Blackwellized Particle Filter

In Fairfield et al. (2007), we described our approach to ro-
bust real-time 3D SLAM with a Rao–Blackwellized parti-

cle filter and DRCO map representation. Our approach ef-
ficiently exploits spatial sparsity because the DRCO com-
pactly represents large unobservable regions and/or large
homogeneous regions. Our approach also exploits spatial
locality because many RBPF particle maps have identical re-
gions, which are automatically exploited as a result of par-
ticle filter resampling and the copy-on-write capability of
the DRCO.

To summarize the position of our approach within the
large SLAM field, it is a constant-time algorithm based on
the robust statistical properties of the RBPF. It uses range
data rather than features: the map representation is the
DRCO, which exploits the spatial sparsity of many envi-
ronments as well as the fact that particle maps are usually
very similar. This SLAM approach works in large 3D en-
vironments with arbitrary (though static) geometry, using
sparse and noisy range sensors. As with all RBPF SLAM al-
gorithms, this method is susceptible to particle depletion,
which ultimately limits the scale of the algorithm to a few
hundred meters, although we have shown that opportunis-
tically using more particles ameliorates the problem (Fair-
field et al., 2007).

In Section 4, we will show how to use our RBPF SLAM
as a building block for a segmented SLAM approach that
attempts to address particle depletion and large-scale loop
closure, but we first discuss related work in submap SLAM.

3. RELATED WORK IN SUBMAPS AND LARGE-SCALE
SLAM

Passing over the large body of work on SLAM and the
many different approaches (see Thrun, Burgard, & Fox,
2005, for a survey), we focus here on related work in
submap SLAM. Submap decomposition methods attempt
to exploit the locality of large environments: only a small
subset of landmarks are visible at any time. This limita-
tion can actually be turned to an advantage by updating
only one submap at any given time. The difficulty with a
submap approach is then deciding when to build a new
submap, how to reenter old submaps, and how to estimate
the transforms between submaps.

Submap representation. Submap methods usually
combine both metric and topological representations, in
which the nodes of the topological graph point to a metric
submap and the edges of the graph represent the connec-
tions between submaps, although some methods are pri-
marily topological (Choset & Nagatani, 2001; Kortenkamp
& Weymouth, 1994; Remolina & Kuipers, 2004). This met-
ric information is usually represented as feature-based
maps, for example, Bosse et al. (2004), Estrada et al. (2005),
Lisien et al. (2003), Newman et al. (2003), and Tardós et al.
(2002), but evidence grid–based submaps are not uncom-
mon (Jefferies, Cosgrove, Baker, & Yeap, 2004; Schultz &
Adams, 1998; Yamauchi & Langley, 1996).

Segmentation. The broad goals of segmentation are
to limit the metric map size and accumulated error and
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to make the submaps as independent as possible. Statisti-
cal independence is often asserted by giving each submap
its own reference frame; in an early approach, each land-
mark had its own frame (Bulata & Devy, 1996). Decoupled
stochastic mapping (Leonard & Feder, 2001) is somewhat
unique in that it divides the environment into overlapping
submaps, but these maps share a global reference frame: as
a result, this approach is fast but overconfident about trans-
forms between submaps.

The best segmentations can be found only in retro-
spect, in postprocessing, although we (and others) use a
limited amount of look ahead to pick the best segmenta-
tion points. This can be done on anthropomorphic or logi-
cal grounds using doors and intersections (Kuipers & Byun,
1991), based on estimates of accumulated localization error
(Bosse et al., 2004; Chong & Kleeman, 1999), the maximum
desired number of features in each submap (Estrada et al.,
2005; Tardós et al., 2002), the detection of special feature-
rich regions (Simhon & Dudek, 1998), or even in postpro-
cessing for offline approaches (Friedman, Pasula, & Fox,
2007; Thrun, 1998). Frese (2006) describes the Treemap al-
gorithm, an O(log n) approach that uses a hierarchically
subdivided map. Lisien et al. (2003) use the generalized
Voronoi graph as motive behind segmentation (and as the
topological map), a simple distance criterion for creating
new landmarks, and then combine local maps by aligning
the landmarks along the edges between the maps. Blanco,
González, and Fernández-Madrigal (2009) provide a proba-
bilistically grounded method for segmenting based on nor-
malized cuts.

We use limited look ahead and a predictive score met-
ric that estimates how well the current map predicts future
measurements, combined with a localization error metric,
as our segmentation criterion.

Matching. Matching can be thought of as evaluat-
ing hypotheses about the metric relationship between two
submaps. Many feature-based approaches use specially se-
lected subsets of features near the edges of the submaps to
match (Bosse et al., 2004; Estrada et al., 2005; Frese, 2006).
The constant-time SLAM algorithm (Newman et al., 2003)
opportunistically fuses the feature estimates from multi-
ple submaps to improve the global feature estimate (and
the relations between submaps). Grisettio, Tipaldi, Stach-
niss, Burgard, and Nardi (2007) use the implicit similar-
ity between globally referenced submaps, called patches,
to improve their proposal distribution, reducing the com-
putational and memory requirements for an RBPF. Evi-
dence grid–based matching methods use overlap (Jefferies
et al., 2004) or evidence grid matching (Yamauchi & Lang-
ley, 1996) to detect matchings. In our approach to match-
ing, we apply novel evidence grid matching techniques
(Fairfield & Wettergreen, 2009) to register the submaps.

Topological hypotheses. If matching tests pairwise hy-
potheses about submap connections, topological hypothe-

ses encompass all the submaps and how they fit together.
Modayil, Beeson, and Kuipers (2004) discuss a framework
for dealing with uncertainty and error between the local
metric, global topological, and global metric levels, but
multihypothesis topological methods usually do not im-
pose loop consistency (global optimality) in the interests of
speed.

Some submap methods support only a single topo-
logical hypothesis. For example, Estrada et al. (2005) use
nonlinear optimization to find loop closures between lo-
cal maps, but the optimization is brittle in that it yields
only a single topological hypothesis. The closely related
compressed filter (Guivant & Nebot, 2001), local map
sequencing (Tardós et al., 2002), and constrained local
submap filter (Williams, Dissanayake, & Durrant-Whyte,
2002) methods build local submaps and then periodically
fuse them into a global map. Recent results for this method
show improved O(n) performance using a divide-and-
conquer strategy (Paz, Jensfelt, Tardós, & Neira, 2007).

At the opposite end of the spectrum, some methods
track all possible topological hypotheses: Remolina and
Kuipers (2004) and Savelli and Kuipers (2004) maintain
trees of all possible topologies, sometimes with only weak
sensing assumptions (Dudek, Freedman, & Hadjres, 1993),
but these complete approaches fail in unstructured or “de-
generate” environments.

As a middle ground, the ATLAS framework (Bosse
et al., 2004) uses heuristics to select some topological hy-
potheses and uses a variety of criteria for promoting or
discarding hypotheses. The ATLAS criteria for selecting
topologies are somewhat ad hoc, and Ranganathan and
Dellaert (2004) apply more rigorous Bayesian inference to
what they call probabilistic topological maps. They use
a Markov-chain Monte Carlo (MCMC) approach to esti-
mate the distribution over possible topologies by sampling
from the space of partitions of landmark measurements.
Similarly, the hybrid metric-topological SLAM of Blanco,
Fernández-Madrigal, and González (2008) uses the parti-
cles of an RBPF to sample topology between evidence-grid
metric submaps while using Kalman filters to estimate the
transformations between maps.

Our approach is closely related to these methods,
in that the SegMap data structure that underlies our
SegSLAM approach is an MCMC-based estimate of the dis-
tribution over both metric maps and topologies. SegSLAM
particles do not represent a complete history from the en-
tire vehicle trajectory; instead map reconstruction is used to
grow large-scale metric map samples from the current par-
ticles as needed, for example while searching for loop clo-
sures. Thus SegSLAM can consider an exponentially larger
set of topologies than standard RBPF SLAM in an any-time
fashion (see Figures 2 and 3). SegSLAM is thus a constant-
time/any-time algorithm based on the RBPF but integrated
with a probabilistic topological map.
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Figure 2. Trajectory depletion: Results from running our RBPF with 10 particles around a loop in Bruceton Mine. Left: The re-
sampling ancestry of the particles shows that all the particles share a fairly recent common ancestor (particle 5). Right: The particle
trajectories tell the same story, showing two competing hypotheses emerging near the lower right-hand corner. With only a single
hypothesis about the vehicle position at the beginning of the loop, the particle filter fails to close the loop—no surprise with only
10 particles.

Figure 3. Maintaining trajectory variety: Results from running SegSLAM with 10 particles around a loop in Bruceton Mine. Left:
The resampling ancestry of the particles shows how segmentation, illustrated by vertical black lines, maintains particle diversity,
while still discarding unlikely hypotheses. In addition, the red dots indicate that four of the particles have found a map match,
closing the loop. Right: This subset of reconstructed trajectories is split between the two main topological hypotheses: that the loop
closed and that it did not. In this plot, different colors indicate different segments as well as different particles.

4. SEGMENTED SLAM

4.1. Algorithm

SegSLAM extends the standard RBPF SLAM formulation
(for example, see Montemerlo, Thrun, Koller, & Wegbreit,

2002) by extending the prediction step to include the selec-
tion of the current particle submap, in addition to the par-
ticle position within the submap. To create new submaps,
SegSLAM applies a segmentation heuristic that uses an es-
timate of the gradual accumulation of motion error and an
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estimate of how well the current map predicts the next few
seconds of range data. These segmentation heuristics re-
flect the idea that a submap should be small enough not to
have significant position error and that a submap should be
able to predict measurements as long as the robot remains
within the submap.

Finding a good moment to segment is always easier in
retrospect, so the segmentation heuristic looks ahead a few
seconds in time, meaning that in implementation SegSLAM
runs a few seconds behind the current time. The precise
time window depends on the speed, sensors, and dead-
reckoning capabilities of the robot because the SegSLAM
position estimate is brought up to the current time by ap-
pending the dead-reckoned trajectory. The resulting algo-
rithm can be summarized as follows:

Initialize The SegSLAM particles s
(m)
0 , m = 1 : #s compo-

nent poses x
(m)
0 and submaps θi , i = 1 : #s are initialized

according to a desired initial distribution. In the tabula
rasa SLAM case, all the particle poses start at the origin
and all the particle submaps are empty, and the particle
weights are set to 1/#s .

Predict
Predict motion The dead-reckoned position innovation

ut is computed using the navigation sensors (odometry,
heading, etc). A new position xt is predicted for each
particle by sampling from

p(xt |xt−1, ut ). (1)

If we assume that ut has zero mean Gaussian noise with
standard deviation σu, then we can compute xt by sam-
pling from the navigation noise model rt ∼ N (0, σu):

xt = xt−1 + ut + rt . (2)

Under motion prediction alone, the particles will grad-
ually disperse according to the navigation sensor error
model, representing the gradual accumulation of dead-
reckoning error.

Predict submap In addition to predicting the particle
poses, SegSLAM also predicts their submaps by sam-
pling from

p
(
θ = {θsame, θnew, θmatch}

∣∣∣s(m)
t−1,#

)
. (3)

There are three possibilities for each particle’s pre-
dicted submap: first, that the vehicle is still in the same
submap region and should keep the current submap;
second, that the vehicle has entered a completely new
region and should start a new submap; and third, that
the vehicle has reentered a previously mapped region
and should switch to a copy of an old submap that has
been stored in the SegMap #. These last two cases are
called segmentation (new submap) and matching (old
submap), respectively, and they also involve a transfor-
mation of the vehicle pose into the coordinate system of
the target submap.

Weight The weight w for each particle is computed using
the measurement model and the range measurement:

w
(m)
t = η p

(
z
∣∣∣s(m)

t

)
w

(m)
t−1, (4)

where η is a constant normalizing factor that can be ig-
nored because the weights are always normalized be-
fore being used to resample (next step). In our imple-
mentation, the range measurement zt is compared to a
ray-traced range ẑt using the particle pose and submap.
If we assume that the measurements have a Gaussian
noise model with standard deviation σz, then

p(z|x,#) = 1
√

2πσ 2
z

e
−(ẑ−z)2

2σ2
z . (5)

If the vehicle collects many measurements simultane-
ously, its weight is the product of many such probabili-
ties and can be computed using logarithms for numeri-
cal stability.

Resample The O(#s ) algorithm described in Arulam-
palam, Maskell, Gordon, and Clapp (2002) is used to
resample the set of particles according to the weights
w

(m)
t according to

p
(
s

(m)
t

)
= w

(m)
t

∑#s
n w

(n)
t

, (6)

such that particles with low weights are likely to be dis-
carded and particles with high weights are likely to be
duplicated. Resampling may not be performed at every
timestep: a rule of thumb introduced by Doucet et al.
(2000) based on a metric by Liu (1996) is used to decide
whether to resample based on the effective number of
particles:

#eff = 1
∑#s

i=1(w(i))2
, (7)

so that resampling is performed only when the effec-
tive number of particles #eff falls below half the number
of particles, N/2. When resampling is performed, the
weights are reset to 1/#s .

Update The measurement z is inserted into the current
submaps according to the sensor model and the particle
position. This is when submaps must be copied and up-
dated; owing to our DRCO map data structure, copies
are fast but updates are linear in the ray-casting op-
erations. We avoid duplicate updates by updating the
maps before copying successfully resampled particles.

Estimate A position estimate (for example, the mean)
is computed from the particles, and then the estimate
is brought up-to-date by appending the recent dead-
reckoned trajectory. In cases in which there are multiple
topological hypotheses, it may be impossible to come

Journal of Field Robotics DOI 10.1002/rob



Fairfield et al.: Segmented SLAM in 3D Environments • 91

Table I. SegSLAM notation.

Symbol Description

x
(m)
t Vehicle pose of the mth particle at time t

θi Submap i, which includes an evidence grid map as
well as ts , te, the start and end times for the submap;
Ts, Te, the start and end transforms; j a reference to
the submap’s parent (may be none)

s
(m)
t SegSLAM particle, s

(m)
t = {x(m)

t , θi}
# The segmented map contains all the submaps, # =

{θ0, θ1, . . .}
w

(m)
t Weight of mth particle at time t

#s Number of particles
ut Vehicle dead-reckoned innovation at time t

zt Range measurement at time t

up with a meaningful point estimate: the robot must
still be able to plan and act in the face of this ambiguity.

Repeat from Predict

We now provide a derivation for this algorithm.

4.2. Derivation

A SLAM algorithm estimates the SLAM posterior, the prob-
ability distribution at time t over vehicle poses xt and
world maps #t using all the sensor measurements zt =
{z1, z2, . . . , zt } and navigation updates ut = {u1, u2, . . . , ut }
(for a complete notation, see Table I):

p(xt ,#t |ut , zt ). (8)

Bayesian filtering provides a probabilistic framework for
recursively estimating the state of such a dynamical sys-
tem. The recursive Bayesian filter formulation of the SLAM
problem is straightforward to derive (Montemerlo et al.,
2002) but is usually computationally intractable to solve in
closed form. Particle filters are a sequential Monte Carlo
approximation to the recursive Bayesian filter that main-
tain a discrete approximation of the SLAM posterior using a
(large) set of samples from the state space, or particles. With
a large number of particles, the filter can represent arbitrary
distributions, and so particle filters provide an implemen-
tation of Bayesian filtering for systems whose belief state,
process noise, and sensor noise are modeled by nonpara-
metric probability density functions (Arulampalam et al.,
2002).

The difficulty in applying particle filters to SLAM is
that the state space is very large because it includes both
pose x and map #. The key insight of Murphy (1999) is
that the SLAM posterior can be factored into two parts, or
marginals: the trajectory distribution and the map distribu-
tion

p(xt ,#t |ut , zt ) = p(xt |ut , zt )p(#t |xt , ut , zt ). (9)

Furthermore, knowing the vehicle’s trajectory xt =
{x1, x2, . . . , xt } makes the observations zt = {z1, z2,
. . . , zt } conditionally independent (Montemerlo et al.,
2002), so that the map distribution p(#t |xt , ut , zt ) can be
computed in a computationally efficient closed form (often
a Kalman filter or an evidence grid) from the poses and
measurements, dramatically reducing the dimensionality
of the space that the particles must be sampled from.
The process of factoring a distribution such that one part
can be computed analytically is known as Rao–Blackwell
factorization (Doucet et al., 2000).

We can express the Rao–Blackwellized SLAM posterior
over trajectories as

p(xt ,#t |ut , zt ) = p(xt |ut , zt )p(#t |xt , ut , zt ). (10)

Instead of storing the entire particle trajectory xt and re-
constructing the particle map at each time step, a Rao–
Blackwellized particle s

(m)
t = {x(m)

t ,#
(m)
t } consists of two

parts: the current particle pose x
(m)
t and a recursively up-

datable particle map #
(m)
t that is kept up-to-date at each

time step, effectively encoding the particle’s trajectory over
time.

The SLAM problem can be formulated as a Bayesian
graphical model that exploits the conditional independence
of measurements given the vehicle poses. As shown in
Figure 4, the world can be spatially segmented into poten-
tially overlapping regions that are conditionally indepen-
dent given the relative transform and the map match, or
overlap, between the regions. SegSLAM makes the assump-
tion (aided by its choice of segmentation points) that this
overlap can be ignored.

SegSLAM divides each particle trajectory x(m)
t into

temporal intervals: {x(m)
[1] , x(m)

[2] , x(m)
[3] }. These intervals may be

created when the segmentation heuristic decides to create
a new submap, or when the matching heuristic finds the

Figure 4. SegSLAM graphical model: Segments are related
only by the relative transform T between their coordinate
frames and the match M, or overlap, between them. For
speed, SegSLAM ignores M, assuming independence between
submaps.
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1
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Segment A = {1, 3} Segment B = {2} Segment C = {4,5} Map samples: reconstructed trajectories

2

4

5
1,4

1,5
3,4
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3,5

Figure 5. In this example, the particle trajectories are shown rather than the submaps that would be constructed from the tra-
jectories. The particle filter has only three particles, and the left-hand figure shows that the particles segment halfway along the
trajectory (in reality the two new trajectories start in a new coordinate frame). Because these two particles have the same start and
end times, they are grouped together in Segment A, and likewise they are both in Segment C. SegSLAM can recover all of the
trajectories shown on the right by map sampling.

particle has reentered a previous submap. Segmentation is
like repeatedly restarting tabula rasa SLAM, except that all
the particles do not necessarily have to restart at once (al-
though the resampling process tends to narrow down the
number of segmentation points that are represented by the
set of particles). Each trajectory segment is in its own co-
ordinate frame, so SegSLAM also maintains the transforms
T

[j ] (m)
[i] between segments so that complete trajectories can

be reconstructed.
SegSLAM decomposes the transform T

[j ] (m)
[i] into two

pieces, T (m)
[i]→, the exit from submap θi , and T →[j ] (m), the en-

trance into submap θj . The exit T
(m)
[i]→ encodes the particle’s

last position in submap θi and so depends only on inter-
val i. In the case when submap j is a new submap (due
to segmentation), then the entrance T →[j ] (m) is the identity
matrix, because the particle starts at the origin of the ref-
erence frame of the new map. In the case of loop closures,
however, a particle may reenter a previously constructed
submap, in which case T →[j ] (m) arises from finding the reg-
istration, or match, into submap θj and transforming the
particle pose accordingly. As will be described in more de-
tail, SegSLAM finds this match using a short look-ahead
time window that is not yet incorporated into submap θi .
This means that T →[j ] (m) does not depend on interval i (or
submap θi ) but only on the previously constructed submap
θj and the measurements in the look-ahead window.

Given the trajectory segments {x(m)
[1] , x(m)

[2] , . . .} and the

corresponding transforms {T (m)
[i]→, T →[j ] (m), . . .}, SegSLAM

can reconstruct particle trajectories that are equivalent to
the RBPF trajectories:

x(m)
t = concatenate

(
x(m)

[1] , T
(m)
[1]→T →[2] (m)x(m)

[2] , . . .
)
. (11)

Thus, in the same way that the set of RBPF particles are
used as a discrete approximation to the SLAM posterior,
the SegSLAM particles, after reconstruction, represent the
same distribution. But in addition, there may be (and usu-
ally are) several particles, each with a slightly different
trajectory, that share the exact same interval, starting and
ending at the same time. We say that these particle trajec-

tories share the same segmentation interval and are thus
part of the same segment and are temporally compati-
ble with other segments that do not temporally overlap
with their interval. Submaps from compatible segments
can be combined interchangeably to produce new trajec-
tories. For example, if particle trajectories x(k)

[1] and x(m)
[1]

are in segment 1 and particle trajectory x(n)
[2] is in the com-

patible segment 2, then we can join x(k)
[1] and x(n)

[2] :

x(∗)
t = concatenate

(
x(k)

[1], T
(k)
[1]→T →[2] (n)x(n)

[2], . . .
)
. (12)

See Figure 5 for an illustration of this example.
After several segmentations, there is a very large num-

ber of possible reconstructed trajectories. Rather than ex-
haustively enumerating these trajectories, SegSLAM gener-
ates samples by growing random combinations of submaps
and segment-to-segment transforms. SegSLAM can quickly
generate a large number of these map samples so that its
discrete estimate of the SLAM posterior is much better than
that of an RBPF.

In the next two subsections, we describe our methods
for segmentation and matching submaps.

4.3. Segmentation

Intuitively, segmentation should divide the world into
small submaps that have the property that when the robot
is within a submap, it can see most of the contents of the
submap. Similarly, when the robot is within one submap,
it should not see much of any other submaps. Coinciden-
tally, the submaps should be metrically accurate and cer-
tain: most of the metric uncertainty should be contained
in the links between submaps. This intuitive description
might be plausible for a structured environment, such as
a series of rooms connected by narrow doorways, but will
obviously unravel in unstructured environments.

We can use the concept of contiguous regions to de-
termine submap segmentation. While the robot is within
a contiguous region, its range sensors are likely to collect
measurements that lie within the contiguous region and
unlikely to collect measurements in different regions. This
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property is also called simultaneous visibility or overlap
(Blanco, González, & Fernández-Madrigal, 2006) and ties
together two important characteristics. First, the contigu-
ous region is highly observable (the robot will be able to
sense most of the region at the same time), which means
that standard SLAM will work well and there will be neg-
ligible mapping and position errors. Second, because rel-
atively few measurements span different regions, most of
the global trajectory uncertainty will arise in the transi-
tions between regions. This bottom-up criteria for submaps
arises from the structure of the environment and the inher-
ent properties of the sensors and only coincidentally will
align with an anthropomorphic classification such as door-
ways, rooms, or hallways.

To broaden the intuition, Estrada et al. (2005), Paz and
Neira (2006), and Roman (2005) discuss the important fac-
tors in determining when to start a new map. The goal is to
balance the amount of noise inherent in the sensors against
the gradually accumulating error in the dead-reckoned tra-
jectory. So long as the dead-reckoning error is lower than
the sensor noise, adding more information to the map will
increase the accuracy with which it can be matched with
other maps: the map must contain enough variation to be
matched strongly.

Our situation is somewhat complicated because we do
not simply use dead reckoning while building submaps
but actually run the RBPF, from which we get multiple
likely submaps for each segment. However, we can still
use similar heuristics for deciding when to segment. One
of the simplest is to periodically segment, under the as-
sumption that the dominant source of error is from dead
reckoning and that the dead reckoning error rate is roughly
constant. This is a bad assumption for vehicles that have
maneuver-dependent error rates, such as turning versus
driving straight.

We experimented with several different segmentation
metrics based on either estimation motion error or the pre-
dictive score. We discuss these two methods next.

4.3.1. Motion Error Segmentation

A segment should have minimal internal position error.
This is a straightforward proposition if we consider only
the dead-reckoning error: a position error model that ac-
counts for the uncertainty incurred by different maneuvers
can be used to segment when the estimated position error
reaches a threshold.

For a simple 2D kinematic vehicle model, dead-
reckoned position error is a factor of velocity error verr and
heading rate error uerr integrated over time:

positionerr ∝ (α1verr + α2uerr)t (13)

for some scaling coefficients α. When we incorporate vehi-
cle dynamics, the error terms are functions of the vehicle
state x: for example, the velocity error will frequently be

worse for a wheeled vehicle at high accelerations due to
wheel slippage:

positionerr ∝ [α1verr(x) + α2uerr(x)]t. (14)

Accurately estimating these functions for different environ-
ments is a considerable task, especially when there are un-
known biases such as wind, ocean currents, or wheel slip-
page. We simply use a pessimistic model that generally
overestimates the position error.

Directly applying the dead-reckoning error model
would result in near-periodic segmentation, which ignores
the SLAM corrections to short-term dead-reckoning error.
Although it is possible to use the distribution of the parti-
cle cloud as an estimate of the position uncertainty when
doing localization, it is a questionable technique when do-
ing SLAM and completely inapplicable when using seg-
mented SLAM, in which the particle positions may be in
different coordinate frames. Position error estimation in the
segmented SLAM formulation necessarily entails entropy
estimation. Conceptually, segmenting before the entropy
grows too high makes sense, but even rough approxima-
tions for SegSLAM entropy are computationally expensive
(Fairfield, 2009). As a result, we fall back on a slightly less
pessimistic dead-reckoning error model that takes into ac-
count the expected amount of improvement yielded by the
SLAM system. For many vehicles, position error is domi-
nated by the heading error uerr and as a result, the motion
model–based segmentation metric will tend to favor seg-
mentation after hard turns.

4.3.2. Predictive Score Segmentation

One definition of a good segmentation is that when the
vehicle is in area a, submap θa accurately predicts the
sensor measurements, and when the vehicle is in area b,
another submap θb predicts the measurements:

p(za |xa, θa) ' p(za |xa, θb) (15)

and

p(zb|xb, θb) ' p(zb|xb, θa). (16)

To turn this insight into a segmentation metric, we use
an estimate of the probability of future measurements z′

given the current map:

p(z′|x′, θ) ∝ predictiveScore(z′, x′, θ) =
#z′∏

n=1

p(z
′n|x′, θ).

(17)
To use the “future” measurements z′, SegSLAM must be
run a few seconds in the past, so that its current maps are
a few seconds old. The future pose data x′ are computed
by running dead reckoning on the future motion measure-
ments u′.

The assumption is that when the predictive score de-
creases suddenly, the robot has left the current submap and
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Figure 6. A portion of the Bruceton Mine, showing the predictive score as a plot and a scatter plot (left) and the resulting predictive
score and segmentation points after a minimum segment size criterion has been enforced.

SegSLAM should segment. The predictive score heuristic
depends on two parameters: the length of the predictive
window and the segmentation threshold. See Figure 6.

Blanco et al. (2008) has a more exact segmentation
method using graph cuts but then needs to reconstruct
the maps, a slow procedure in two dimensions and an in-
tractable one in three dimensions. We take the penalty of
suboptimal segmentation in exchange for real-time speed.

From our experience with the predictive score met-
ric, we find that when the robot is traveling around a
well-compartmentalized environment, the predictive score
clearly indicates advantageous segmentation points. But in
large, open environments, the predictive score degrades to
periodic segmentation—there are no particularly advanta-
geous places to segment.

4.4. Generating Local Metric Map Samples

Different combinations of temporally compatible segments
from the SegMap can be stitched together to form a
complete trajectory—this is like sampling from the dis-
tribution of all metric maps that are encoded in the
SegMap (Figure 5). As with RBPF SLAM, it is compu-
tationally intensive to use the entire particle trajectories
(or reconstructed trajectories) to assemble the maps at ev-
ery timestep. So, like RBPF particles, SegSLAM particles
s

(m)
t = {x(m)

t , θ
(m)
i } instead store a pose and a reference to

a submap. Submaps, in turn, store the interval (ts , te), en-
try and exit transforms Ts , Te, an octree-based evidence
grid map, and a reference a parent submap (Figure 7). New
submaps, created by segmentations, do not have parents
and have empty evidence grids. But when a particle closes
a loop and reenters a previous submap, the particle copies
the previous submap evidence grid (a free operation for the

DRCO map structure), sets the submap parent to the previ-
ous submap, updates the interval and transforms, and be-
gins to update the evidence grid. This is efficient in storage
because the DRCO copy-on-write map structure also has
the concept of inheritance: a child map stores only modifi-
cations to the parent map. The parent map stores its own
interval, transforms, and parent, so that by traversing up
the parent links all the time intervals that were used to con-
struct the map can be reconstructed, as well as the par-
ticle entrance and exit points for each of those intervals
(Figure 7).

SegSLAM relies on the assumption that submaps do
not significantly overlap each other: if they do, then the as-
sumption of independence fails. The two operations of map
segmentation and map matching are intended to minimize
the degree to which the independence assumption is vio-
lated. Segmentation attempts to minimize overlap between
sequential submaps. Matching overlapping maps together
can recover most of the joint information and is essential
for finding loops.

If there are loops (due to matches), then ties are broken
by randomly selecting the order in which we expand seg-
ments with the same search depth, because choosing a seg-
ment excludes other segments that are temporally incom-
patible, and we want to generate a random sample from all
such reconstructions. If many map samples are generated,
they will break these ties differently. This is the root reason
that SegSLAM is locally consistent but not globally con-
sistent: the map sampling algorithm uses consistent trans-
forms to expand segments, but when the breadth-first ex-
pansion must break a tie, SegSLAM does not attempt to
globally optimize the transforms around loops. However,
the breadth-first search does push global inconsistencies
away from the current position, meaning that the local area
is still consistent (Figure 7).
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Figure 7. In this example, we consider the case of generating map samples by breadth-first expansion from the current submap.
For simplicity, consider SegSLAM with a single particle. On the left is the segmented path of the vehicle around a figure-eight
loop. Dashed arrows indicate a number of segments that have been omitted. The middle column shows the evolution of the
central submap, as the particle reenters the submap multiple times. The right-hand column shows the first step of the breadth-first
map sample generation starting from each illustrated submap. The top right-hand corner shows the full breadth-first expanded
map sample at time step 5, just before SegSLAM closes the loop.

Segments may be discarded if they become nonviable:
a segment is viable if it is temporally compatible with at
least one of the current segments. A segment can fit into a
reconstructed trajectory only if there is a set of temporally
sequential segments from the present to the segment (in-
cluding the possibility of temporal jumps from matches).
Owing to the resampling process of the particle filter it is
possible for a segment, or an entire ancestry of segments, to
become nonviable, in which case they should be discarded
because they can never be part of a reconstructed map that
includes the currently active particle submaps.

4.5. Matching

Matching can be thought of as loop closure, overlap detec-
tion, or map reentry. Fundamentally, it is the realization that
the current environment matches a place that has been seen
before. In Fairfield and Wettergreen (2009), we discussed
methods for matching octree evidence maps together. In
the preceding section, we described how to sample local
metric maps from the SegMap. Our approach for finding
matches is then to periodically generate local metric maps,
search them for likely match candidates, and then attempt
to match to the candidates. Matches are weighted accord-
ing to the quality of the fit, and these weights are used to
stochastically select from among the set of matches (which
always includes the current segment, a null match).

4.5.1. Winnowing Match Candidates

We use a cascade of criteria to try to discard as many candi-
dates as possible as quickly as possible. The first criterion,
temporal separation, is intended to reduce hysteresis. This

implies the assumption that the robot will not actually jump
back and forth between segments very quickly. The second
criterion, spatial proximity, queries several voxels near the
current robot position in the candidate map (using the can-
didate transform) to see whether they have any occupancy
information, a quick check that the two maps overlap or
are close to overlapping. After these two simple tests, there
are rarely more than one or two candidates remaining in a
particular local metric map sample.

4.5.2. Matching to Candidates

After winnowing the set of candidates, the robot’s recent
perceptions are matched to the candidates using one of
the map matching methods from Fairfield and Wettergreen
(2009). Specifically, a map is built from the most recent few
seconds of data (recall that SegSLAM runs a few seconds in
the past), and then this small map is matched with the can-
didate maps. The maps are matched using iterative closest
point (ICP) on the octree-binned point clouds, which is a
very fast method that reduces the influence of point den-
sity. The weight for a particular match transform Tm can
be estimated using the match score metric. Another, faster,
method is to use the mean ICP nearest neighbor error. We
also weight transforms with a smaller translational compo-
nent τm to be more likely than large transforms:

w(Tm) ≈ p(errICP|Tm) p
(
τ 2
m

)
. (18)

To verify our map-based matching methods, we tested
finding matches with particle filter localization. Because
each transformation in the local map sampling process
adds some uncertainty, we can estimate the uncertainty in
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Figure 8. We investigate the application of different metrics to characterize SLAM performance in three broad topological classes:
a single loop, multiple intersecting loops, and a star with multiple legs.

the candidate map positions: nearby candidate positions
will be fairly certain, but candidate positions at the end of
long loops will be uncertain (this is also reflected in the vari-
ation between local metric map samples). This uncertainty
estimate is used to initialize the variance in a particle cloud,
centered around the vehicle’s position in the candidate map
coordinate frame. Recall that SegSLAM runs a few seconds
in the past in order to effectively look ahead to find good
segmentation points: this same time window of robot per-
ceptions (motion and range measurements) is used to lo-
calize the robot within the candidate submaps. The weight
of a match transform derived in this way is a combination
of the final variance of the particle cloud and the particle
measurement errors, yielding a strong indicator when the
particle filter converges to a good solution:

wloc(Tm) ≈ p(errX) p(|(X|) p
(
τ 2
m

)
, (19)

where errX = (z − ẑ)2 is the particle measurement error and
|(X| is the determinant of the covariance of the particle po-
sitions.

In this case, the matching particle filter is completely
separate from the SegSLAM particle filter: it is created for
the purpose of evaluating a single match and discarded af-
terward.

5. EXPERIMENTS

Characterizing SLAM performance is challenging, espe-
cially in situations without accurate ground truth. We
present three different methods for evaluating and compar-
ing SLAM and SegSLAM and illustrate each method with
an experiment with the Cave Crawler robot from different
sites. The first method is to simply see whether the algo-
rithm properly detects a loop closure, which is illustrated
by a multilevel loop from a parking garage. The second
method is to subjectively examine a large map with many
loops, to see whether there are inconsistencies or obvious
flaws; this is illustrated with a data set from a coal mine.
The third method is to search for the minimum entropy
map, and we illustrate this method with a data set from a
building collected during its construction. These three data

sets also correspond to different topological classes: a sin-
gle loop, multiple intersecting loops, and a star of out and
back legs (Figure 8).

5.1. Cave Crawler

Cave Crawler is an autonomous mobile robot that was de-
signed to explore and map abandoned mines (Morris et al.,
2006) (Figure 9). Cave Crawler uses a Crossbow 400 iner-
tial measurement unit (IMU) and wheel odometry as posi-
tion measurements, and the mapping sensors are forward-
and backward-looking SICK LMS 200 laser range finders
mounted on spinning jigs that rotate around the vehicle’s
forward–backward axis (roll). In many cases, only the front
laser is used because the robot is followed by attendants
who corrupt the rear-looking data. An important distinc-
tion is that unlike many SLAM data sets, in which the ve-
hicle comes to a complete stop to collect its 3D data, all
the data sets presented here involve (almost) continuous
movement. This significantly complicates the sensor cal-
ibration problem and makes it more difficult to estimate
the yaw bias, the most significant source of error in dead
reckoning.

5.2. Loop Closing Error: Parking Garage

In this experiment, we examined the position error af-
ter the vehicle returned to (near) its start position—the
loop closure error. The Collaborative Innovation Center
parking garage on the Carnegie Mellon University cam-
pus is a convenient, multilevel structure with three exits
on different levels, which allows Cave Crawler to traverse
3D loops. In the data set used for this experiment, Cave
Crawler drove up a ramp from the first level to the second
level, went around a tight loop at one end of the second
level, and then drove out the second level exit and back
into the first level entrance, for a total distance of 303 m
(Figures 10 and 11).

The metric used in this experiment for evaluating
SLAM and SegSLAM performance is the loop closure error.
In our regular RBPF, we can generate a position estimate
from the particle cloud by taking a weighted average of the
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Figure 9. The autonomous mine mapping robot Cave Crawler.

Figure 10. Photo of the two parking garage entrances used: The vehicle exited the upper entrance and entered via the lower
entrance.

particle positions. This approach usually will not work with
SegSLAM because the particles in different segments are in
different coordinate frames. However, in simple cases, such
as the short loop used here, all the particles do successfully
and accurately match, meaning that they all return to the
same coordinate frame.

To compare the performances of RBPF SLAM and
SegSLAM, we ran each approach 20 times on the data
set, each time computing the weighted average position
from the final particle cloud. We then computed the mean
and standard deviation of the final position error over the
20 runs and repeated this process for a variety of parti-
cle counts. As shown in Table II, the dead-reckoning er-

ror of the original data is significant due to yaw bias
(Figure 12), and the RBPF manages to close the loop
with about 40 particles. But SegSLAM is able to reliably
match very accurately even with just one particle. Whereas
the matching does come at some computational cost for
low numbers of particles, as shown by the run times in
Table III, surprisingly for higher numbers of particles,
SegSLAM is actually faster! Because SegSLAM adds the
segmentation and matching steps to the RBPF, this may
be explained by the fact that manipulating the segmented
octree maps is faster than manipulating the full maps (al-
though there is no difference in the octree depths, voxel di-
mensions, etc., between the maps).
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Figure 11. Left: A top isometric view of the parking garage data set, showing the vehicle path, which includes two loops on two
different levels. The prominent structure on the left is a bridge outside the parking garage. Right: A perspective view of the parking
garage entrances on two levels, showing the vehicle path.

5.3. Map Goodness: Coal Mine

Bruceton Mine is a research mine near Pittsburgh, Penn-
sylvania, and a common location for Cave Crawler tests.
The data set used here was collected by the subterranean
robotics team on May 14, 2007, and comprises a 1,300-m tra-
verse through the mine, including several loops (Figure 13).
This site has also been described by Thrun et al. (2003),
but it is important to note that although most prior data
sets consisted of stationary laser scans, the data used here
were collected while the robotic vehicle was continuously
moving.

A simple method for evaluating SLAM and SegSLAM
performance is to look at the maps and judge their subjec-
tive “goodness.” For a traditional RBPF, this is fairly simple,
because even though there are many maps (one per parti-
cle), it is rare that the maps differ significantly except in the
last few hundred meters, and so if one succeeds in build-
ing a “good” map, they all will succeed. For SegSLAM, the

Table II. Mean and standard deviation of final particle filter
pose (calculated as the weighted mean of the particle cloud)
over 20 runs for different numbers of particles.

µ/σ

Particles RBPF SLAM SegSLAM

1 9.3/– 0.7/–
5 3.0/6.9 0.9/0.6
10 0.9/4.5 0.7/0.5
20 0.4/3.8 0.6/0.2
40 0.9/1.5 0.5/0.2
100 0.8/1.1

case is different because we can draw samples only from
the SegMap. If only one sample of a thousand is a good
map (even if it is very good), can SegSLAM be considered
to have succeeded? After all, the statistical likelihood of
SegSLAM sampling that particular map is only one of a
thousand! At the same time, SegSLAM deliberately forgoes
global metric accuracy in favor of speed and relative metric
accuracy: it may be that although there is no map sample
that looks “good,” SegSLAM will properly match between
segments and not diverge.

RBPF SLAM never successfully closed all the loops;
even with 1,000 particles (taking 2.8 h of computation) it
simply could not deal with the high yaw error and the
many interlocking loops, and even the best outcomes mis-
takenly merged two parallel tunnels (Figure 14). SegSLAM
reliably yielded a good map with as few as 20 particles,
largely because it could treat the tunnel segments as unique
features (Figure 13) and was effectively doing feature detec-
tion in a sparse environment.

Table III. Run time in seconds for the parking garage loop
data set.

Run time (s)

Particles RBPF SLAM SegSLAM

1 2.6 4.2
5 11 13
10 22 26
20 47 41
40 98 83
100 280
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Figure 12. Left: Dead reckoning for the parking garage data set, showing the significant position error. Note that due to auto-
mobile traffic, the vehicle did not return exactly to its start position. Right: A reconstructed SegSLAM trajectory, showing how
SegSLAM segmented the data set and correctly detected matches (indicated by Xs) and reentered previously mapped segments
(as indicated by the segment coloring).

5.4. Minimum Entropy Map: Construction Site

Cave Crawler mapped out a portion of the Gates Building,
traveling 892 m over three different levels. This data set was
collected during the construction of the building, and al-
though it is clearly a man-made environment, there was a
large amount of construction-related clutter, missing walls,
etc., which gave it less structure than might be expected.

We have discussed why standard metrics, such as av-
erage particle position and map “goodness,” are difficult to
apply to SegSLAM, at least in complex environments. The
final method that we use for evaluating SLAM performance
is to look at the minimum entropy global map.

Each voxel θi [x, y, z] in the evidence grid map θi is a
Bernoulli random variable that estimates whether the voxel

Figure 13. Comparison of the dead-reckoned path (left) with a sample SegSLAM path (right). Segments are color coded such that
nearby lines with the same color indicate that a particle reentered a prior segment (a limited palette means that distant lines may
share the same color as well). Xs mark matches/reentries.
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Figure 14. Example maps showing RBPF SLAM’s failure on the Bruceton data set, with 200, 500, and 1,000 particles.

is empty or occupied. Thus the entropy of a voxel is

H (θ [x, y, z]) = −ρ log(ρ) − (1 − ρ) log(1 − ρ), (20)

where ρ = p(θi [x, y, z]). Under the independence assump-
tions of an evidence grid, the information-theory entropy
of θi is the sum of the entropy of each voxel:

H (θ ) =
∑

∀x,y,z

H (θ [x, y, z]). (21)

The problem with a direct application of this metric
is that the entropy of a map will vary depending on
the map resolution and size because unobserved cells
with p(θi [x, y, z]) = 0.5 contribute maximum entropy, and
changing resolution or size will change the number of cells,
even though the observations (and the entropy) remain un-
changed. This problem can be addressed by ignoring un-
observed cells and adding a scaling factor γ based on the
volume of the voxel:

H (θ ) =
∑

x,y,z∈Obs

γH (θ [x, y, z]). (22)

In searching for the minimum entropy map, SegSLAM
is at a distinct advantage over RBPF SLAM, because its
segments encode an exponential number of possible maps,
whereas RBPF SLAM can offer only one map per parti-
cle. In a sense, we are searching to see whether “good”
maps have any support in the distribution over maps rep-
resented by the SegMap. But because generating and eval-
uating hundreds or thousands of map samples is computa-
tionally expensive, minimum entropy search is necessarily
an offline operation.

We ran RBPF SLAM on the Gates data set with 20–800
particles and found that 200 particles, which ran in just un-
der 3 h or about twice real time, was sufficient to gener-
ate consistent maps in which each leg of the star topology
was aligned with itself and the SLAM position estimate ac-
curately returned to the start position. However, because
there were no real loops in the data set, each of the legs of
the star had some error relative to the other legs, yielding
a gradual misalignment between the levels of the building
(Figures 15 and 16).

SegSLAM with 40 particles ran in 693 s and after an
offline search for the minimum entropy map yielded the
map shown in Figure 16. The SegSLAM map entropy was
10,755, compared with the minimum RBPF SLAM map en-
tropy of 13,561. Without ground truth these entropy val-
ues can be considered only relatively, but they demonstrate
that SegSLAM can produce significantly better global maps
than RBPF SLAM while running 15 times faster, although
the search for the best global map encoded in the SegMap
must be performed offline.

6. CONCLUSION

We have presented a robust, real-time, submap-based 3D
SLAM approach called SegSLAM that uses an extension to
the particle filter prediction step to determine the particle
submap: weighting, resampling, and updating are still ap-
plied as in standard RBPF SLAM.

We demonstrated SegSLAM with the Cave Crawler
robot in several environments, including a mine, a park-
ing garage, and a multilevel partially constructed building.
We showed that it is faster and more accurate and han-
dles larger scales than our previous RBPF SLAM. In par-
ticular, SegSLAM’s topological flexibility allows it to excel
precisely in the sparse, loopy 3D environments where RBPF
SLAM fails.

SegSLAM also supports a gradual transition from ex-
ploration and mapping to long-term localization in two
ways. First, well-known segments can be locked to pre-
vent updates, such that particles that reenter those seg-
ments perform localization. This avoids the evidence ero-
sion problem that degrades the long-term operation of
RBPF SLAM with evidence grids. Second, as with most
segmented SLAM approaches, submaps can be quickly
merged by adding the evidence grids when their relative
positions become certain or when they are discovered to
share significant overlap. In the limit, this would ideally
yield a single global metric map.

One difficulty in working with SegSLAM is that it does
not lend itself well to global error metrics: it emphasizes
local consistency and speed over global optimality. This
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Figure 15. Raw dead reckoning (left) and calibrated dead reckoning using offline estimate of the heading bias (right) trajectories
and point cloud for the Gates data set. Even with the optimal constant-heading bias, there is still obvious misalignment between
the three levels of the building.

Figure 16. Left: The map from 200p RBPF SLAM, run time 3 h. Right: The best map from an offline entropy minimizing search
of the SegMap after running SegSLAM with 40 particles, run time less than 12 min. Both maps show some misalignment between
the levels of the building, but the SegSLAM map is distinctly better aligned, which is reflected in their respective map entropies.
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was a deliberate trade-off that is suitable for applications
that do not require a globally accurate metric map, because
SegSLAM provides a locally consistent metric map that is
sufficient for short-term planning, together with a global
topological map that is useful for long-term planning. We
are currently investigating offline methods for using the
SegMap as a starting point for constructing a globally con-
sistent metric map.

In future work, we would like to more clearly in-
vestigate the consistency and long-term performance of
SegSLAM, particularly with regard to low-probability re-
gions of the SegMap. There are several possible methods
for pruning submaps or entire segments out of the SegMap,
including finding and discarding nonviable segments and
merging well-registered segments.

We would like to evaluate our general 3D methods on
2D data. We believe that SegSLAM’s advantages, includ-
ing the efficient octree-based map representation, real-time
performance, support for multiple metric and topological
hypotheses, and ability to close large loops, will apply to
2D data sets as well.
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