
Augmented State–Extended Kalman Filter Combined
Framework for Topology Estimation in Large-Area
Underwater Mapping

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Armagan Elibol, Nuno Gracias, and Rafael Garcia
Computer Vision and Robotics Group, University of Girona, 17071 Girona, Spain
e-mail: aelibol@eia.udg.edu, ngracias@eia.udg.edu, rafa@eia.udg.edu

Received 1 October 2009; accepted 10 June 2010

Over the past few years, underwater vehicles have greatly improved as a tool for undersea exploration and nav-
igation. In particular, autonomous navigation, localization, and mapping through optical imaging have become
topics of interest for researchers in both underwater robotics and marine science. Underwater imagery can be
used to construct image composites (photomosaics) used in many different application areas such as underwa-
ter surveying and navigation. For surveying operations with a low-cost robot limited to a down-looking camera
and a sonar altimeter, it is common practice to ensure that there is enough overlap between time-consecutive
images as this is the only data source of navigation. When the robot revisits a previously surveyed area, it is
essential to detect and match the non-time-consecutive images to close a loop and, thus, improve trajectory
estimation. While creating the mosaic, most of the existing algorithms try to match all image pairs to detect the
non-time-consecutive overlapping images when there is no additional navigation information. We present a
framework to obtain a two-dimensional mosaic with minimum image matching attempts and simultaneously
get the best possible trajectory estimation by exploring the contribution of the image pairs matching to the
whole system. Different strategies for choosing match candidates have been tested, and the results are given in
different challenging underwater image sequences. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION
When underwater vehicles (UVs) perform missions near
the seafloor, optical sensors can be used for navigation, mo-
tion planning, localization, and mapping. These sensors are
especially useful in the case of low-cost robots, which incor-
porate a very limited sensor suite. The pose (position and
orientation) of a low-cost underwater robot can be calcu-
lated by integrating the apparent motion between consec-
utive images acquired by a down-looking camera carried
by the vehicle. Knowledge of the pose at image acquisition
instances can also be used to align consecutive frames to
form a mosaic, i.e., a composite image that covers the en-
tire scene imaged by the submersible. Several strategies in
the literature have attempted to recover the vehicle motion
using visual mosaics (Andersen & Taylor, 2007; Gracias &
Santos-Victor, 2000; Unnikrishnan & Kelly, 2002). These vi-
sual positioning systems allow the vehicle to localize itself
on the mosaic map as it is being built (known as simultane-
ous localization and mapping, SLAM). Once the map has
been constructed, the mosaic serves several purposes, such
as the following:
1. To carry out map-based navigation, planning the path

of the vehicle during the execution of the mission.
2. To use as a high-resolution image to perform some

further processing such as localizing interest areas,

enabling the detection of temporal changes in the ma-
rine habitats.

Underwater images are also crucial for studying the
ocean, especially in understanding biological and geolog-
ical processes happening on the seafloor. The characteris-
tics of the underwater environment are very challenging
for optical imaging, mainly due to the significant attenua-
tion and scattering of visible light (Loisel & Stramski, 2000;
Pegau, Gray, & Zaneveld, 1997). Commonly, underwater
images suffer from lack of contrast, blurring, and variable
illumination due to refracted sunlight or artificial illumina-
tion. Moreover, light attenuation does not allow images to
be taken from a long distance. Therefore, mosaicking tech-
niques are needed to create high-resolution maps of the sur-
veyed area using a large number of acquired images and to
get a global perspective of the underwater terrain (Gracias
& Santos-Victor, 2000; Leone, Distante, Mastrolia, &
Indiverr, 2006; Pizarro & Singh, 2003; Richmond & Rock,
2006; Rzhanov, Mayer, Beaulieu, Shank, Soule, et al., 2006;
Vincent, Pessel, Borgetto, Jouffroy, Opderbecke, et al., 2003).
Thus, robotic exploration to construct photomosaics is be-
coming a common requirement in geological surveys, map-
ping, and temporal change detection (Delaunoy, Gracias,
& Garcia, 2008; Escartin, Garcia, Delaunoy, Ferrer, Gracias,
et al., 2008; Eustice, Singh, Leonard, & Walter, 2006).
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Consider a scenario in which a low-cost underwater
robot surveys an area of interest. Commonly, such a vehi-
cle is equipped with only a video camera, to provide feed-
back to the pilot while being teleoperated from a mother
vessel. Although autonomous underwater vehicles (AUVs)
are normally equipped with different sensors such as DVL
(Doppler velocity log), INS (inertial navigation system),
USBL (ultra short base line) and ring laser gyroscopes, most
commercially available low-cost remotely operated vehi-
cles (ROVs) are limited to a video camera, lights, a pressure
sensor (AC-ROV, 2009; GNOM Standard ROV, 2009) and
in some cases a compass (Proteus 500 ROV, 2009; SeaBotix
LBV150BE MiniROV, 2009; SM 1000 Low Cost ROV
System, 2009). Generally, when lacking other sensor data
(e.g., USBL, DVL, gyrocompass), time-consecutive images
are assumed to have an overlapping area. This overlap al-
lows the images to be registered and an initial estimate of
the camera trajectory over time to be obtained. This ini-
tial dead-reckoning estimation suffers from rapid accumu-
lation of registration errors, leading to drifts from the real
trajectory. The initial estimate, however, provides useful in-
formation for the detection of non-time-consecutive over-
lapping images. Matching non-time-consecutive images is
a key step to refine the trajectory followed by the robot us-
ing global alignment methods (Capel, 2004; Elibol, Garcia,
Delaunoy, & Gracias, 2008; Ferrer, Elibol, Delaunoy,
Gracias, & Garcia, 2007; Gracias, Costeira, & Victor, 2004;
Sawhney, Hsu, & Kumar, 1998; Szeliski & Shum, 1997).
With the refined trajectory, new non-time-consecutive over-
lapping images can be predicted and attempted to match.
The iterative matching and optimization process continues
until no new overlapping images are detected. This pro-
cess is known as a topology estimation. In the context of this
paper, we refer to the topology estimation as the problem
of finding overlapping image pairs among different tran-
sect(s) of the surveyed area.

Finding matches among non-time-consecutive image
pairs is usually referred to as loop closing, i.e., detect-
ing that the area being explored has been visited before.
Closing loops is essential to reduce the uncertainty of the
trajectory estimation (Beevers & Huang, 2005; Cheng &
Han, 2006; Clemente, Davison, Reid, Neira, & Tardós, 2007;
Fengda, Lingfu, & Li, 2007; Ho & Newman, 2007; Ila,
Andrade-Cetto, Valencia, & Sanfeliu, 2007; Jungho & In-So,
2007). Impressive progress has recently been achieved in
the field of SLAM for underwater platforms equipped with
cameras (Eustice et al., 2006; Mahon, Williams, Pizarro,
& Johnson-Roberson, 2008; Singh, Roman, Pizarro, Eu-
stice, & Can, 2007) and sonar (Newman, Leonard, &
Rikoski, 2003; Ribas, Neira, Ridao, & Tardos, 2006; Ruiz,
de Raucourt, Petillot, & Lane, 2004). SLAM approaches are
well suited for navigation applications, namely in real-time
control and localization of vehicles, and have been suc-
cessfully used for online image mosaicking in medium-size
data sets (Garcia, Puig, Ridao, & Cufı́, 2002; Richmond &

Rock, 2006). This contrasts with offline batch approaches
in which the data are processed a posteriori. By avoiding
real-time constraints, large-scale optimization methods can
be used on considerably larger data sets, with significantly
higher accuracy in the final results (Escartin et al., 2008).

Recent advances in image matching techniques (Bay,
Tuytelaars, & Van Gool, 2006; Lowe, 2004; Mikolajczyk &
Schmid, 2005; Zitová & Flusser, 2003), such as scale invari-
ant feature transform (SIFT), allow pairs of images to be
registered in the absence of prior information on orienta-
tion, scale, or motion between images. Such techniques are
behind the recent widespread availability of photo stitch-
ing softwares in the computer vision community, because
they allow panoramas to be created with minimal user in-
put (Brown & Lowe, 2007; Yao & Chamb, 2007). In most
cases, these approaches attempt to match all images against
all others. Although this is feasible for small data sets, it be-
comes impractical for the creation of large-area mosaics in
which useful surveys may comprise several hundred im-
ages (Ferrer et al., 2007). The number of possible image
pairs is a quadratic function of the total number of images
in the sequence, and the processing becomes impractical for
large image sets (e.g., for surveys containing 100, 250, and
500 images, the total numbers of all possible image pairs are
4,950, 31,125, and 124,750, respectively). The image match-
ing process requires the execution of several steps: feature
detection, feature description, feature matching, and out-
lier rejection. Therefore, its computational cost is inherently
high. Hence, it is very important to reduce the number of
image matching attempts.

Although extensive research has been carried out on
control and estimation problems,1 almost none of the ex-
isting methods have been studied in a batch mosaick-
ing framework, to decide which image pairs should be
matched and in which order. This paper proposes a solu-
tion to the problem of topology estimation in large-scale
batch mosaicking using a combined framework of aug-
mented state Kalman filter (ASKF) and extended Kalman
filter (EKF). We aim to minimize the number of image
matching attempts and simultaneously obtain an accurate
trajectory estimation. Our method explores the contribu-
tions of image matchings and chooses which images should
be matched first. In this study, we have extended our pre-
vious work (Elibol, Gracias, & Garcia, 2009) by removing
the assumption that all time-consecutive images have an
overlapping area. As input, we assume a set of images
without any additional information about their alignment.
We initialize our framework by using ASKF with the time-
consecutive images as if they had an overlapping area. At
the end, we also add a step; once all the overlapping im-
ages have been found and matched, all of them can be in-
corporated into an iterated extended Kalman filter (IEKF)

1Especially in localization, navigation, SLAM, and target tracking.

Journal of Field Robotics DOI 10.1002/rob



Elibol et al.: Improving Navigation of Low-Cost Underwater Robots • 3

(Bar-Shalom, Li, & Kirubarajan, 2001), reducing the un-
certainty and improving the trajectory estimation. We also
present a new derivation that allows the observation mu-
tual information (OMI) (Grocholsky, 2002) to be computed
in an efficient way. OMI is used to measure the amount
of information one observation can provide to the whole
topology within a Kalman filter estimator.

The paper is organized as follows. In the next section,
relevant related work is provided on image mosaicking, es-
timation, and control problems. Section 2.1 is dedicated to
some basic definitions of information and Kalman filters. A
computationally efficient formula for calculating the OMI is
derived in Section 3. The ASKF–EKF combined framework
for topology estimation is introduced in Section 4, and a de-
tailed explanation of the framework is given in Sections 4.1
and 4.2. Experimental results are illustrated and discussed
in Section 5. Finally, the last section is dedicated to
conclusions.

2. RELATED WORK

Several image mosaicking methods have been proposed
over the past decade. One of the first mosaicking systems
for an underwater robot was proposed by Marks, Rock, and
Lee (1995). This system achieved real-time performance
due to the use of special-purpose hardware for image fil-
tering and correlation, allowing the creation of “single col-
umn” mosaics in real time. Because the robot could con-
trol its heading, a very restrictive (translation-only) motion
model was assumed, without taking into account rotation,
scaling, or perspective distortion. For the system to work,
the robot was programmed to keep constant altitude. This
work was extended by Fleischer, Rock, and Burton (1997) to
deal with loop trajectories, by detecting crossovers in pre-
vious mosaicked areas. The same translation-only motion
model was used, which would degrade the mosaic qual-
ity whenever the robot performed changes in altitude, roll,
or pitch. Sawhney et al. (1998) proposed an end-to-end so-
lution for image mosaicking in which the image topology
(i.e., the spatial relations between overlapping frames) was
iteratively estimated. Spatial consistency was improved by
identifying and registering images with large superposi-
tion. A simpler approach was followed by Davis (1998) to
register images captured by a rotating camera. With small
rotations and some assumptions about the camera intrinsic
parameters, phase-correlation methods were used for pair-
wise registration. A system of linear equations was defined
for the elements of all the homographies, relating each im-
age with a reference image for which a least-squares solu-
tion is obtained. However, no adequate parameterization
was used on these elements to take advantage of the spe-
cial structure of the rotation-induced homography. Duffin
and Barrett (1998) used a homography parameterization
for global registration that imposed constant camera skew
and aspect ratio. Other constraints on the camera and scene

geometry were not taken into account. Unnikrishnan and
Kelly (2002) addressed the problem of efficiently distorting
strip mosaics to close loops in a smooth way. The proposed
solution had low computational complexity and was best
suited for cases in which the number of temporally dis-
tant overlaps was small compared to the adjacent overlaps.
The problem of finding correspondences at the extremi-
ties of mosaic segments, required for imposing endpose
constraints, was not addressed. Capel (2004) presented a
complete mosaicking system with topology estimation and
global registration by extending a maximum likelihood es-
timation for the two-view homographies to the case of mul-
tiple N views. However, the total number of unknowns
increased drastically. For long sequences, this issue might
cause some convergency problems during minimization.
Also, this method has not been tested with low overlapping
images.

Kalman filter–based image mosaicking has been stud-
ied, especially for mosaic-based navigation purposes
(Caballero, Merino, Ferruz, & Ollero, 2007; Garcia et al.,
2002; Richmond & Rock, 2006). Garcia et al. (2002) pre-
sented an ASKF for position estimation of AUVs. It uses
image matching to provide incremental one-dimensional
(1D) rotation and two-dimensional (2D) translation infor-
mation (in X and Y ) and an altimeter for translation in Z.
Results were presented for a simulation using a constant
velocity model of an AUV to generate the observation data.
In Richmond and Rock (2006), a system combining vision
and DVL sensors was proposed to estimate the vehicle po-
sition in real time along the mosaic of the visited area. This
system combined vision and DVL odometry to get the cur-
rent state of the vehicle, and image registration is used to
bound the odometry drift. Richmond and Rock (2006) ac-
knowledged that mosaics from this real-time system were
not as accurate as those generated by offline methods.
Caballero et al. (2007) proposed EKF-based image mosaick-
ing to estimate unmanned aerial vehicle (UAV) position. In
their model, the state vector was composed of absolute ho-
mographies and the state was updated when a loop clo-
sure was detected and images were processed sequentially.
Eustice, Pizarro, and Singh (2004) proposed a system based
on the ASKF with measurements provided by inertial sen-
sors and monocular video. Mahon et al. (2008) presented
mapping results of large areas; however, they used an ex-
tensive and expensive sensor suite, including DVL to com-
pute the dead reckoning as well as a compass and a tilt
sensor to obtain the vehicle’s orientation and a pressure
sensor to measure depth. Moreover, a stereovision rig is
used to provide loop-closure observations. Because of the
accuracy of the DVL over short distances, the vision sys-
tem is not used to provide odometry information. All these
sensors allow navigating over large areas. Ila et al. (2007)
proposed loop-closure detection through a test composed
of two passes. First, the Mahalanobis distance was used
to detect the closure, and then the Bhattacharyya distance
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was employed to choose the most informative pose pairs.
Recently, Ila, Porta, and Andrade-Cetto (2010) proposed a
method to keep the most informative links between robot
poses using mutual information within a SLAM context,
which relates to our paper. However, we consider all poten-
tially possible matching pairs among all images, which is
a problem different from that of performing matches from
the most recent image to all previous images as the robot
moves. Because we are considering all possible matching
pairs, it is necessary to have a reasonable ranking criterion
in terms of their contribution while obtaining the real topol-
ogy and the trajectory. All these methods have been de-
veloped in the context of position estimation and SLAM;
they have not been addressed for fast topology estimation
in batch mosaicking.

Exploiting the data provided by more than one sen-
sor has been extensively researched as multisensor data fu-
sion (Gan & Harris, 2001; Jin & Sun, 2003; Yukun, Xicai, &
Zhigang, 2007), sensor selection (Mattikalli, Fresnedo,
Frank, Locke, & Thunemann, 2007; Oshman, 1994;
Pahalawatta, Pappas, & Katsaggelos, 2004; Sun, 2004), sen-
sor management, and scheduling (Kangsheng & Guangxi,
2006; Karan & Krishnamurthy, 2003; Krishnamurthy, 2002;
Logothetis & Isaksson, 1999; Ng & Ng, 2000). Information
theory, operational research, and optimization theory have
been the most important fields to help select data from sen-
sors, fuse the data, and make decisions (Hall & McMullen,
2004). Several researchers have studied methods for im-
proving estimation accuracy using information provided
by several sensors (Denzler & Brown, 2002; Grocholsky,
2002; Manyika & Durrant-Whyte, 1994; Whaite & Ferrie,
1997; Xiong & Svensson, 2002).

We formulate our problem as a sensor fusion and
management problem within the Kalman filter estimation
framework. In our work, image matching between over-
lapping image pairs is treated as an observation or mea-
surement that comes from a sensor. Then, a predicted gain
is calculated as the amount of information the observation
provides to the information matrix of the whole system.
This is obtained by computing the OMI. If sensor noises are
independent, there are basically two sensor fusion meth-
ods. The first method consists of stacking (augmenting) the
observation vector. Thus, the observation vector increases
in size as new observations are available. Stacked covari-
ance and observation transition matrices are used. The
second method combines the observations based on the
minimum mean-square-error estimation and keeps the ob-
servation vector dimension unchanged. Each observation
is weighted by the covariance of its noise. If observation
noises are dependent, the stacking method is employed,
but this time the stacked noise covariance matrix is no
longer diagonal. However, the dependent sensor noises can
be formulated in such a way that they can be treated as in-
dependent noise (Duan, Han, & Tao, 2004; Jin & Sun, 2003).

Sensor management consists of selecting the subset of
sensors that will be used to obtain a measurement at time

epoch k and is formulated as a combinatorial optimization
and/or search problem (Ng & Ng, 2000; Xiong & Svensson,
2002). The aim is to find the best subset to fulfill the sensor
constraints (such as energy, computational cost, and band-
width) and maximize or minimize the selected cost func-
tion (i.e., information gain, uncertainty).

We now summarize the concepts of the Kalman fil-
ter, the information filter, and some information measures
(Mutambura, 1998) used in this paper.

Given a state vector x and its covariance P, the Kalman
filter update equations are as follows (Anderson & Moore,
1979):

S(k) = H(k)P(k | k − 1)H(k)T + R(k),

K(k) = P(k | k − 1)H(k)T S(k)−1,

P(k | k) = [I − K(k)H(k)]P(k | k − 1),

x(k | k) = x(k | k − 1) + K(k)[z(k) − H(k)x(k | k − 1)], (1)

where S(k) is an innovation covariance matrix and K(k) is
the Kalman gain. z(k) is the observation value provided
by a sensor. The observation noise is a zero-mean Gaus-
sian noise with covariance R(k). The observation predic-
tion, which can be computed from the state vector, is de-
noted as h(x(k | k − 1)), where h is the function that maps
the state vector to the observations. As this function is usu-
ally nonlinear, the transition matrix from state to observa-
tion H(k), is calculated as follows:

H(k) = ∂h

∂x

∣∣∣∣∣
x=x(k|k−1)

. (2)

The notation (·)(k | t) refers to a value at epoch k given t .
An information filter is the dual form of a Kalman filter and
can be found by changing the state vector x and covariance
P with the information state y and Fisher information matrix
Y (Anderson & Moore, 1979):

y(k | t) = P−1(k | t) · x(k | t), (3)

Y(k | t) = P−1(k | t). (4)

An observation z(k) at time epoch k contributes i(k) to the
information state and I(k) to the Fisher information matrix
by means of sufficient statistics as given in Manyika and
Durrant-Whyte (1994):

i(k) = H(k)T R(k)−1[z(k) − h(x(k | k − 1))

+ H(k)x(k | k − 1)], (5)

I(k) = H(k)T R(k)−1H(k). (6)

The update equations of the information filter have the fol-
lowing compact form:

y(k | k) = y(k | k − 1) + i(k), (7)

Y(k | k) = Y(k | k − 1) + I(k). (8)
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For N independent sensors, Eqs. (7) and (8) become

y(k | k) = y(k | k − 1) +
N∑

j=1

i(k)j , (9)

Y(k | k) = Y(k | k − 1) +
N∑

j=1

I(k)j . (10)

The entropic information about the system can be modeled
before and after making an observation, respectively, given
in the following equations:

ι(k | k − 1) = 1
2

ln[(2πe)−n|Y(k | k − 1)|], (11)

ι(k | k) = 1
2

ln[(2πe)−n|Y(k | k)|]. (12)

The mutual information between the discrete random vari-
ables A and B provides an answer for the question “How
much information does the random variable B give about
the random variable A?” Following the definition of the
mutual information, OMI provides an answer for the ques-
tion “How much information does the observation provide
to the system?” In other words, OMI tells how much the
uncertainty of the state will reduce when the observation is
realized. Therefore, OMI (Grocholsky, 2002) is an important
measure, which can be easily calculated from the informa-
tion matrices as the change in information, yielding

I (k, z(k)) = 1
2

ln

[ ∣∣Y(k | k)
∣∣

|Y(k | k − 1)|

]
. (13)

3. EFFICIENT CLOSED-FORM SOLUTION FOR
CALCULATING OBSERVATION MUTUAL
INFORMATION

The calculation of OMI has a high computational cost
whether a Kalman or an information filter is used. It con-
sists of calculating the determinant of either the covariance
or the information matrices. For an n × n matrix, the time
complexity of computing the determinant from its naive
definition is of the order O(n!). Using LU decomposition,2

the computational complexity is O(n3). Therefore, the com-
putational cost of the OMI is O(n3), where n is the size of the
state vector. However, rearranging the equations for OMI
and using the structure of the Kalman filter, the compu-
tational cost can be further reduced to O(m3), where m is
the size of the observation vector. We now introduce a new
derivation that allows this significant reduction. First, we
convert the OMI formulation given in Eq. (13) from infor-
mation form to covariance form:

I (k, z(k)) = 1
2

ln

[
|P(k | k)−1|

|P(k | k − 1)−1|

]
,

2Used by the det() function of MATLABTM.

= 1
2

ln
[ |P(k | (k − 1)|

|P(k | k)|
]

. (14)

Equation (14) can be reformulated as follows by using the
Kalman filter equations from Eq. (1):

I [k, z(k)] = 1
2

ln
[

1
|I − K(k)H(k)|

]

= 1
2

ln[|[I − K(k)H(k)]−1|]. (15)

However, the formula in Eq. (15) is still the same size as
the covariance matrix of the system. From the determinant
properties (Golub & van Loan, 1996), given two p × q ma-
trices, A and B, it holds that

|(Ip + ABT )| = |(Iq + BT A)|. (16)

Therefore, |[I − K(k)H(k)]| can be rewritten, and Eq. (15) be-
comes

I [k, z(k)] = 1
2 ln[|[I − H(k)K(k)]−1|]. (17)

If we premultiply Eq. (1) with H(k), we obtain

H(k)K(k) = H(k)P(k | k − 1)H(k)T︸ ︷︷ ︸ S(k)−1

= [S(k) − R(k)]S(k)−1

= I − R(k)S(k)−1. (18)

We can now replace H(k)K(k) in Eq. (17) with its equivalent
in Eq. (18):

I − H(k)K(k) = R(k)S(k)−1,

[I − H(k)K(k)]−1 = S(k)R(k)−1,

|[I − H(k)K(k)]−1| = |S(k)||R(k)−1|. (19)

Finally, we rewrite Eq. (17) by using the last line in Eq. (19):

I [k, z(k)] = 1
2 ln[|S(k)||R(k)−1|] (20)

The OMI calculation in Eq. (20) consists of calculating two
determinants of matrices sized m × m, instead of calculat-
ing n × n determinants where usually m � n. Using a dif-
ferent reasoning, we have reached the same solution as
those presented in Ertin, Fisher, and Potter (2003) and Ila
et al. (2010), which used a Bayesian formulation. Our novel
derivation is simpler and easier to follow.

4. ASKF–EKF COMBINED FRAMEWORK FOR
TOPOLOGY ESTIMATION

This section discusses how some tools from control and
estimation theory can be applied to our problem. Our
model is inspired by Kalman filter–based image mosaick-
ing strategies (Caballero et al., 2007; Garcia et al., 2002;
Richmond & Rock, 2006). As our interest is batch mosaick-
ing, we do not need any control input and, therefore, our
model does not have any state prediction equations. Only
update equations are used.

Journal of Field Robotics DOI 10.1002/rob
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As matching non-time-consecutive image pairs pro-
vides additional information about the topology and im-
proves the trajectory estimation, it is indispensable to de-
tect them to get better trajectory estimation. In this context,
it is important to measure the impact of matching one im-
age pair in terms of how much information it will provide
about the topology. Uncertainty of observations arises from
the detected feature points in images. To keep observations
uncorrelated, the same feature point should not be used in
calculations of the uncertainty of two or more different ob-
servations. While computing the uncertainty of the obser-
vations, we have used a small subset of detected feature
points. This ensures the independence among the observa-
tion elements. Moreover, as a design option, each image is
used once (at most) in each iteration of the algorithm. Mod-
eling the problem in this way allows us to use the standard
for sensor fusion, selection, and management.

4.1. Definitions

1. The state vector is created in the initialization step using
the ASKF algorithm in Table I and is composed of the
homography values that relate every image with the
mosaic frame:

xi = vec(mHi ), i = 1, 2, 3, . . . , N, (21)

where N is the total number of images and vec(·) is
the function that converts the homography matrix in-
put into a vector. P denotes the covariance matrix of
the state vector x = [x1, x2, x3, . . . , xN ]T . We have used
similarity homographies that have four degrees of free-
dom (DOF) (scaling, rotation, and translation in both x

and y axes):

mHi =
⎡
⎣ai −bi ci

bi ai di

0 0 1

⎤
⎦ ,

xi = [ai bi ci di ]T .

Similarity-type homographies represent an adequate
trade-off between (1) encoding the trajectory of a
down-looking camera facing an approximately flat
surface from a typical surveying altitude above the
seafloor and (2) resilience to fast error accumulation,
which results from cascading these transformations,
in the absence of other sensors (Negahdaripour &
Firoozfam, 2001).

2. A new observation (measurement) is obtained when
two images, i and j , are successfully matched.
The observation is represented by the homography

between corresponding images at time epoch k:

z(k) = vec
(i

Hj

)
+ v(k)

= iHm ·m Hj + v(k)

= mat(xi )−1 · mat(xj ) + v(k), (22)

where mat(·) is the function that converts the state vec-
tor into homography matrices and v(k) is the obser-
vation noise vector. It is assumed that the observation
noise is Gaussian and is not correlated with state noise
and its covariance matrix is R(k).

3. A potential observation is an image pair that has a po-
tential overlapping area as predicted by the state and
its uncertainty.

4. One time epoch is defined as a full cycle of the fol-
lowing steps, which are detailed in the next section:
generation of possible observation list, selection, image
matching, and filter update (see Figure 1).

We have tested five different ranking strategies to select the
observations we attempted to match. All these strategies
are used while selecting which observations to carry out.

Expected Overlap The expected overlap criterion ranks
the pairs according to their overlap probability and thus
a greater chance of being successfully matched. The robot
trajectory and its uncertainty are used to compute the
overlap probability. Computational details are explained in
Section 4.2.

OMI The OMI score is calculated for each observation
in the potential observation list. To compute this score, a
generic observation noise covariance matrix R(k) is used.
This calculated OMI is the predicted information gain of the
observation.

Expected Overlap Weighted OMI The expected overlap
weighted OMI combines the first two ranking criteria us-
ing the OMI score as a weight to overlap probability.

Combined Because a loop-closure event can considerably
reduce the uncertainty and trajectory drift, it is important
to be able to detect such an event as soon as possible. Pre-
liminary results (Elibol et al., 2009) have shown that af-
ter a certain number of iterations, the matching of previ-
ously unmatched image pairs does not provide significant
information. In other words, when we order the potential
image pairs according to their OMI score, there is no signifi-
cant difference between the highest OMI score and the low-
est one. At this step, instead of using OMI-based ordering,
one could consider using one of the other strategies with
less computational cost than OMI. Therefore, a combined
strategy is devised: the expected overlap weighted OMI
strategy for a small number of initial iterations (manually
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Figure 1. Pipeline of the proposed framework for topology estimation.

chosen between two and five) and then using the expected
overlap strategy to rank the potential observations.

Random The random criterion orders image pairs ran-
domly. It is included as a baseline to compare the perfor-
mances of the other criteria.

4.2. Implementation

Our framework is composed of three main steps: initial-
ization, filtering, and iterated update. The filtering step is
divided into four subparts: potential observation list gen-
eration, selection, image matching, and filter update. The
pipeline is illustrated in Figure 1.

Initialization This step instantiates the state vector and its
covariance matrix using an ASKF formulation.3 The algo-
rithm is outlined in Table I. The first image frame is cho-
sen as the global (mosaic) frame. Time-consecutive images
are added to the system one by one as if they had an
overlapping area with the previous image. For each new
image in the sequence, the state is augmented by adding
xg = [1, 0, 0, 0]T to the state vector and a 4 × 4 diagonal ma-

3The initialization step is also referred to the ASKF step in the
rest of the paper because it is the only step at which the ASKF is
employed.

trix Pg to the state covariance. Then an observation between
the new image and the previous image is added in the form
of an identity mapping zg = [1, 0, 0, 0]T with very high
covariance matrix Rg . The purpose of including this obser-
vation is to impose the soft prior that time-consecutive im-
ages have a greater chance of overlapping than non-time-
consecutive images. The filter is then updated by using the
Kalman filter update equations (1). Once the state augmen-
tation is finalized, the resulting state vector is composed of
identity mappings, and the covariance matrix grows from
first image to the last image. The resulting state and covari-
ance are the inputs for the later steps.

Once the state augmentation is finalized, the resulting
state vector is composed of identity mappings, and the co-
variance matrix grows from the first image to the last im-
age. The resulting state and covariance are the inputs for
the later steps. The purpose of the initialization is to impose
the soft prior that time-consecutive images have a greater
chance of overlapping than non-time-consecutive ones.

Potential Overlapping Image List Once the initial state
and covariance matrix are computed, a potential observa-
tion list is generated. This step requires computing an ap-
proximation of the probability that the two given images
have an overlap. To compute this, we propose a method
related to that of Mahon et al. (2008). In Mahon et al.
(2008), the loop-closure hypotheses were computed by first

Table I. ASKF step.

Input Number of images, generic state vector xg , generic covariance matrix Pg , generic observation zg ,
and observation noise covariance Rg

Output State vector and its covariance matrix

Step 1 Expand the state vector with xg . x(k | k − 1) = [xg, x(k − 1 | k − 1)]T

Step 2 Expand the covariance matrix with Pg . P(k | k − 1) =
[

Pg 0
0 P(k − 1 | k − 1)

]
Step 3 Filter update by using x(k | k − 1), Rg , P(k | k − 1), and zg

Step 4 Check whether all images in the sequence are added to the system.
If not, go to Step 1

Step 5 END.
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Figure 2. Images are assumed as circles with radius of half of
their diagonal.

finding the overlapping pairs with a distance criterion be-
tween image centers. This criterion was based on the in-
tersection between two circles, i.e., if the distance between
the centers of the circles was smaller than the sum of their
radii. Then it computes the likelihood of this overlap by
using a displacement distribution sampled on a grid. Cells
within the overlap bounds were integrated to estimate the
likelihood of overlapping images. A 20 × 20 grid was
used, requiring the calculation of 400 samples. Conversely,
our method operates on the discretized distance between
image centers including their uncertainties. We also assume
that images are circular with a radius of half of the image
diagonal (see Figure 2). The covariances of the image cen-
ters are propagated from the covariance matrix of the state

vector. The distance between image centers is discretized.
In this discrete area, image vectors are generated. These
vectors have value 1 where the point lies inside the im-
age and 0 where the point lies outside the image. Because
of the uncertainty of the image position, image vectors are
convolved with Gaussian filters by taking into account the
uncertainty of their centers. Convolution of the resulting
vectors gives an approximation of the probabilities of the
points to decide whether they belong to the images (see
Figure 3). By counting the total number of nonzero ele-
ments in the convolution vector, the percentage of overlap-
ping area can be approximated. If the percentage is bigger
than a chosen threshold, the image pair is considered to be
overlapping and is added to the potential observation list.

Selection After generating the list, different scores (e.g.,
information gain, expected overlap as described in
Section 4.1) for each observation can be calculated for each
strategy being tested. However, it is not possible to attempt
to match all the observations in the list as it might include
several nonoverlapping pairs due to the uncertainty and
the trajectory estimation. Therefore, it is necessary to select
a subset of the list.

The selection step aims to choose the subset of poten-
tial observations in such a way that maximizes the chosen
score. This problem can be formulated as a variation of the
linear assignment problem and can be solved with binary
integer programming (Nemhauser & Wolsey, 1988). Each
potential observation is composed of two images, i and
j . Let Ck be a subset of all possibilities Ak = {(i, j )|i >

j, i = j + 1, . . . , N j = 1, 2, . . . , N − 1}, denoting the

Figure 3. Image vectors convolved with Gaussians in the discretized distance between image centers. The red line denotes the
vector for image i, and the blue line is for image j .
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potential observation list at epoch k. The selection proce-
dure finds the image indices, i, j that solve the following
optimization problem:

max
∑

(i,j )∈Ck

dij · Score(i, j ) s.t.

∑
j

dij = 1,

∑
i

dij = 1,

dij ∈ {0, 1},

(23)

where Score(i, j ) is a function that returns the score of
matching images i and j and dij is a decision variable of the
observation that is composed of images i and j . The solu-
tion of this optimization problem provides the observations
that will later be used as an input for the image matching
step.

Image Matching After generating and choosing the list of
potential observations, image matching starts. The image
matching procedure is composed of two substeps: (1) SIFT
(Lowe, 2004) is used to detect the features in images and
(2) the random sample consensus (RANSAC) (Fischler &
Bolles, 1981) algorithm is used to reject outliers and esti-
mate the homography. Only one attempt is made to match
each image pair. If the matching is not successful, the pair
is marked as a nonmatch and abandoned. If it is successful,
the noise covariance of the registration parameters is calcu-
lated from the correspondences using covariance propaga-
tion (Haralick, 1998), assuming additive Gaussian noise on
the point correspondences and performing first-order noise
propagation (details are given in the Appendix).

Filter Update The final procedure of the filtering step is to
update the state and covariance using EKF formulations in
Eq. (1). The filtering step is executed until there are no im-
age pairs left in the potential observation list.

Iterated Filter Update As a final step, an IEKF is applied
until the change in the reprojection error is smaller than a
chosen threshold.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed framework for
ranking the observations using different strategies. Testing
is performed on four real data sets, collected from under-
water robots on seafloor survey missions. Data sets corre-
spond to planar areas, although the contributions of the
paper on reducing image matching attempts are also valid
if we use a less generic framework to extend to three di-
mensions. Possible ways to perform this extension are by
modeling the trajectory in three dimensions and assuming
planar scenes (Ferrer et al., 2007) or by using the funda-
mental matrix (Pizarro, Eustice, & Singh, 2009). In the ab-
sence of ground truth, we have computed the trajectory

parameters using a bundle adjustment (BA) approach
(Ferrer et al., 2007), which uses not only image registration
but also navigation sensors (e.g., USBL), if available. This
serves as a baseline to compare the results of the different
strategies. As time-consecutive image pairs do not neces-
sarily have an overlapping area, we performed all-against-
all exhaustive image matching and then we employed BA,
which minimizes the reprojection error4 given in Eq. (24)
over homographies. The cost function was minimized, and
the parameters were estimated using large-scale methods
for nonlinear least squares (Coleman & Li, 1996) as im-
plemented in MATLABTM. The optimization algorithm re-
quires the computation of the Jacobian matrix containing
the derivatives of all residuals with respect to all trajectory
parameters. Fortunately, this Jacobian matrix is very sparse;
each residual depends on only a very small number of pa-
rameters (Triggs, McLauchlan, Hartley, & Fitzgibbon, 2000).
The result of applying BA is provided in the last row of the
tables. The resulting homography set is used as a reference
to compare the results of the proposed topology estimation
framework. Our comparison criterion is the average repro-
jection error over all correspondences that were found by
all-against-all image matching, defined as

min
1H2,1H3,...,1HN

∑
k

∑
m

n∑
j=1

‖ kpj − 1H−1
k · 1Hm · mpj ‖2

+ ‖ mpj − 1H−1
m · 1Hk · kpj ‖2, (24)

where k and m are the indices of the successfully matched
pair of images kpj and mpj are the coordinates of the j th
correspondence in images k and m, respectively; n is the
total number of correspondences between the overlapping
image pairs. N is the total number of images, and 1Hk and
1Hm are the homographies.

The first data set covers a challenging, large area of
the seafloor that was acquired by the ICTINEU underwa-
ter robot (Ribas, Palomeras, Ridao, Carreras, & Hernandez,
2007) during experiments in Colera on the Mediterranean
coast of Spain (see Figure 4). The trajectory was composed
of seven vertical and two horizontal transects that pro-
vide several non-time-consecutive image pairs. It consisted
of 430 images of 384 × 288 pixels, and it covered approxi-
mately 400 m2. Table II summarizes the results for this data
set. The first column lists the tested strategies. The second
column shows the total number of successfully matched
image pairs. The third column contains the total number of
image pairs that were not successfully matched due to lack
of overlapping areas or failure of the registration algorithm.
They are called unsuccessful observations. The percentage of
the total number of image matching attempts with respect
to all-against-all image matching attempts is given in the

4Additional navigation information, when available, is included in
the error term. For details refer to Ferrer et al. (2007).
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Figure 4. Snapshot of the unmanned underwater robot ICTINEU operating in the Mediterranean Sea during acquisition of the
first data set. The robot carries a down-looking camera mounted on a bar.

fourth column. The fifth column denotes how many time
epochs were achieved in the filtering step. The last column
corresponds to the average reprojection error calculated
using all the correspondences with the resulting set of ho-
mographies for each tested strategy. Figure 5 shows the fi-
nal trajectory, and the overlapping image pairs are given in
Figure 6. The final mosaic is illustrated in Figure 7.

It can be seen from Table II that, among all strategies,
the overlap weighted OMI strategy produces a minimum
reprojection error and is also closest to BA. For random
ordering strategy, we have executed the proposal frame-
work several times, and the values provided here are av-
erage values of the executions. One could conclude that the
random strategy has performed well compared to the other

strategies. However, the performance of the random strat-
egy is influenced by the particular trajectory. The trajectory
is composed of several overlapping transects, for which the
possibility of having overlap between any random image
pair is higher than for other cases.

The order of successful observations makes a differ-
ence and has a large impact on the resulting trajectory. The
OMI selection strategy required the largest total number of
image matching attempts. Because of the high uncertainty
of the state and the identity state vectors, especially after
the initialization step, the generated potential observation
list in the first time epoch had the same number of entries as
the all-against-all list. Actually, several entries of the list did
not have any overlapping areas. Therefore, during the first

Table II. Summary of results for the first data set.

Successful Unsuccessful % of attempts with Iterations Final avg. error
Strategy obs. obs. respect to all-against-all until stop in pixels

1. Expected overlap 5,319.00 1,182.00 7.05 65.00 6.07
2. Highest OMI 5,346.00 16,279.00 23.45 245.00 9.14
3. Overlap weighted OMI 5,337.00 3,341.00 9.41 70.00 5.85
4. Random order 5,337.87 2,550.47 8.55 73.26 5.89
5. Combined (1–3) 5,333.00 1,557.00 7.47 67.00 5.91
Bundle adjustment 5,412.00 86,823.00 100.00 — 5.38
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Figure 5. Final trajectory of the first data set. Total number of images was 430. Numbers denote the image centers. For clarity, the
links between non-time-consecutive images are not represented.

Figure 6. Overlapping image pairs for the first data set. The
total number of overlapping pairs was 5,412, and the percent-
age with respect to all-against-all is 5.87.

iterations, the total number of successful observations in
the OMI-based selection strategy was low because OMI se-
lects the observations that provide the most information to
the system. After the initialization step, uncertainty grows
from the first image to the last image in time order. As all
the images are mapped to the same position (identity state
vector) in the first iteration, OMI chooses the observations
that are composed of images closer to the first and last im-
ages. If the trajectory does not have a loop closing around
those images, more image matching attempts are required
by OMI. For these reasons, OMI attempts to match more
image pairs than the other strategies. On the other hand,
once the loop-closing image pairs have been detected, there
is no need to continue choosing image pairs according to
their OMI scores. If the trajectory provides an overlapping
area between the first and last images, then one could ex-
pect the combined ranking criteria to achieve better image
matching results. To illustrate this, we tested our frame-
work on a trajectory including only one loop (see Figure 8).
This second data set was composed of 30 images extracted
from an underwater image sequence acquired by a Phan-
tom 500 ROV during a survey in Andros, the Bahamas
(Lirman, Gracias, Gintert, Gleason, Reid, et al., 2007). The
results for the second data set are summarized in Table III.
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Figure 7. Final mosaic of the first data set, approximately 100 pixels per meter. After global alignment, the final mosaic was
blended using a composition of gradient domain imaging and graph cut algorithms (Gracias, Mahoor, Negahdaripour, & Gleason,
2009; Prados, Neumann, Cufı́, & Garcia, 2007).
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Figure 8. Final topology of the second data set. Numbers denote the image centers, and lines denote the overlapping image pairs.
The total number of all overlapping pairs was 75, and the percentage with respect to all-against-all was 17.24.

As expected, the combined strategy performed better than
the expected overlap strategy. It was able to obtain more
successful image pairs with fewer attempts than the ex-
pected overlap strategy. In terms of trajectory accuracy, it
also provided better results than the expected overlap.

When OMI-based selection criteria are used, Eq. (20)
needs to be computed for each observation in the potential
observation list. Therefore, its computational cost is higher
than the expected overlap and random selection strategies.
However, taking into account that the computational cost
of the Kalman filter is much lower than minimizing the
reprojection error using nonlinear optimization methods,
the overall computational cost is lower than that of BA,
which is commonly used in offline batch processing. More-
over, comparing to all-against-all image matching, the to-
tal number of image pairs that were attempted to match is
much smaller, because our proposal takes into account the
uncertainties in the image positions while generating the
potential observation list. This also reduces the total time
required for the complete topology estimation. To decide
whether a pair of images is considered as a potential obser-
vation, it is necessary to use a threshold when generating
the potential overlapping list. We tested expected overlap
and combined ranking strategies with different threshold
values to compare their performances and to evaluate the

Table III. Summary of results for the second data set.

Successful Unsuccessful % of attempts with Iterations Final avg. error
Strategy obs. obs. respect to all-against-all until stop in pixels

1. Expected overlap 73.0 50.0 28.28 12.0 8.19
2. Highest OMI 75.0 158.0 53.56 20.0 6.90
3. Overlap weighted OMI 74.0 67.0 32.41 14.0 6.99
4. Random order 74.7 110.9 42.67 18.9 7.36
5. Combined (1–3) 74.0 48.0 28.05 12.0 7.13
Bundle adjustment 75.0 360.0 100.00 N.A. 6.78

effect of the threshold. We chose these two strategies as they
performed better than all other strategies, according to the
previous experiments.

For the third experiment, we extracted a set of images
captured by an ROV surveying at approximately 2 m over
a coral reef. Images were 512 × 384 pixels and acquired at
15 frames per second. The subset consisted of 80 images
and covers approximately 53 m2. The three-dimensional
(3D) relief of the scene was negligible compared to the
altitude of the robot. The trajectory had the shape of an
eight with plenty of non-time-consecutive overlapping im-
age pairs. Figure 9 shows the final topology for the third
data set, and the results are summarized in Table IV.

For the higher threshold values, the combined strat-
egy was able to find more overlapping pairs than the ex-
pected overlap. After initialization, time-consecutive pairs
had high probabilities of having an overlap and the ex-
pected overlap ranking criterion selected them first. How-
ever, due to the nature of the Kalman filter, matching those
images reduced the uncertainty but did not provide a good
trajectory estimation. Therefore, if the threshold was high,
overlapping image pairs between transects of the trajectory
(i.e., loop-closing image pairs) were not detected or con-
sidered as a potential observation during the process of
generating the potential observation list. Furthermore, as
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Figure 9. Final topology of the third data set. Numbers denote the image centers, and lines denote the overlapping image pairs.
The total number of all overlapping pairs was 262, and the percentage with respect to all-against-all was 8.29.

Table IV. Comparison of expected overlap and combined strategy for different threshold values.

Avg. error
Strategy Threshold Successful obs. Unsuccessful obs. Iterations in pixels

Expected overlap 0.5 81 0 3 507.97
Combined 119 109 8 12.13
Expected overlap 0.4 97 2 5 532.72
Combined 170 129 13 8.48
Expected overlap 0.3 132 15 6 517.37
Combined 243 118 15 7.97
Expected overlap 0.2 138 44 7 520.81
Combined 261 244 20 7.88
Expected overlap 0.1 172 194 17 288.99
Combined 262 411 23 7.89
Expected overlap 0.01 262 569 31 8.43
Combined 262 676 31 7.89

the combined strategy uses the expected overlap weighted
OMI criterion for the first couple of iterations, it was able
to detect some loop-closing image pairs. This resulted in
a better trajectory estimation than matching only the time-
consecutive ones. The combined strategy was able to get
almost the whole topology (only one image pair was miss-
ing) for a threshold value of 0.2, and the total number of
matching attempts was 505 of 3,160 possibilities. The ex-
pected overlap was able to obtain the whole topology suc-
cessfully for a threshold of 0.01, and the total number of
matching attempts was 831.

For the first data set, ranking observations with the ex-
pected overlap resulted in a accurate estimate of the topol-
ogy with a minimum number of image matching attempts.
However, the time-consecutive images have overlapping
areas (Figure 5). Therefore, applying ASKF at the initializa-

tion step based on the prior of overlapping areas among
time-consecutive images yielded a realistic modeling of the
uncertainty of the trajectory. We have also tested this ap-
proach using a small data set in which there are nonover-
lapping time-consecutive images. The data set had 29 im-
ages and consisted of two approximately parallel transects,
with a few overlapping image pairs between transects (see
Figure 10). It covered an area of 20 m2. Results are summa-
rized in Table V.

The expected overlap criterion failed to find the com-
plete topology for any threshold value apart from zero.5

This criterion chooses the highest expected overlap. Ex-
ploiting the information provided by the time-consecutive

5A threshold of 0 results in all-against-all matching.
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Figure 10. Final topology of the fourth data set. Numbers denote the image centers, and lines denote the overlapping image pairs.
The total number of all overlapping pairs is 64, and the percentage with respect to all-against-all is 15.76.

Table V. Summary of results for the fourth data set.

Successful Unsuccessful % of attempts with Iterations Final avg. error
Strategy obs. obs. respect to all-against-all until stop in pixels

1. Expected overlap 49 38 21.43 9 235.22
2. Highest OMI 64 224 70.94 25 12.27
3. Overlap weighted OMI 64 186 61.58 26 9.58
4. Random order 58.7 143.3 49.75 21 91.28
5. Combined (1–3) 64 185 61.33 26 8.21
Bundle adjustment 64 342 100.00 N.A. 6.63

images after the initialization step means that those im-
ages have a higher probability of being overlapping im-
age pairs. Therefore, the expected overlap criterion tries
to match them first. However, due to the nonoverlapping
time-consecutive images between two transects of the tra-
jectory, it failed to find the overlapping pairs between the
transects. Such behavior is expected because no additional
navigation information was used apart from the image
data.

One of the advantages of the proposed approach is
computational efficiency related to the naı̈ve but robust
approach of matching all images against all others. In
the worst-case limit, our framework converges to the all-
against-all strategy. However, we showed in the last exper-
iment that our proposal is able to reduce the total number of
matching attempts even if the assumption of overlapping
time-consecutive images is violated. Our experiments high-
light the importance of finding the most informative image
pairs at the start of the search to reduce the drift and un-
certainty of the trajectory for a low-cost vehicle equipped
with only optical sensors. In later iterations, as the trajec-
tory estimation gets closer to the real one and uncertainty
on the trajectory reduces, there is no need to look for the

most informative image pairs. In general, we conclude that
the combined strategy performs better than the other strate-
gies tested here.

6. CONCLUSIONS

Cost and weight constraints mean that low-cost ROVs
usually have a very limited number of sensors. When
a low-cost ROV carries out a seafloor survey, it uses a
down-looking camera and usually follows a predefined tra-
jectory that provides several non-time-consecutive overlap-
ping image pairs. Finding these pairs is one of the most im-
portant requirements for accurate trajectory estimation and
quality mapping, which are necessary for the global view
of the surveyed area. In this paper, we have presented an
ASKF–EKF combined framework to estimate the topology
with the minimum number of image matching attempts.
The proposed framework allows the use of existing theory
for estimation and control problems in batch mosaicking
of large areas. All overlapping image pairs that are suc-
cessfully matched contribute differently in terms of reduc-
ing uncertainty and reprojection error. We have proposed a
novel and easy derivation to compute the OMI efficiently.
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An important conclusion of this study is that it is impor-
tant to decide which image pair is to be matched and when
it is to be matched. In this context, different strategies for
ordering image matching have been tested and their perfor-
mances have been compared. Our future directions will be
aimed at obtaining and extracting prior information from
images to enable better uncertainty modeling of the trajec-
tory in the initialization step.

7. APPENDIX: OBSERVATION MODEL

We assume that the robot has a down-looking camera and
the camera optical axis is orthogonal to the scene, which is
approximately flat. We also assume that the camera keeps a
constant distance to the plane of the scene. The camera has
been intrinsically calibrated, from which the 3 × 3 intrinsic
parameter matrix was obtained.

On the basis of the above, we model the image mo-
tion between any pair of images using four parameters, ac-
counting for 1D rotation, 2D translation, and 1D scaling.
The image-to-image homography has the general form

H =
⎡
⎣a −b c

b a d

0 0 1

⎤
⎦ .

7.1. Noise Model for the Observations

We perform image matching between pairs of images us-
ing SIFT (Lowe, 2004) to detect features and RANSAC
(Fischler & Bolles, 1981) to reject outliers and calculate the
motion. The outcome of this process is two lists of image
points that contain the image projections of the same set
of world points. We follow the standard assumption that
the uncertainty in the matching can be modeled as additive
zero-mean Gaussian noise that corrupts one of the lists of
point coordinates. Therefore, for a pair of matched points
[u∗

i v∗
i ] and [uj vj ], in image coordinates, we have[

u∗
i

v∗
i

]
= H(1:2,1:2) ·

[
uj

vj

]
+ H(1:2,3) + η,

where η ∼ N (0, �η).
We assume that �η = σ 2 · I2, where σ is the noise stan-

dard deviation in pixels and I2 is a 2 × 2 identity matrix.
The value of σ was obtained experimentally with underwa-
ter data, to account for the inevitable departures from the
planarity assumption, because the 3D structure of the scene
will induce noise. Experiments with real data showed that
this structure for �η is an adequate approximation. Olson
(2002) described a method for point matching using corre-
lation where �η has the most general structure.

7.2. Obtaining the Observation Distribution

We model the observations as a Gaussian random variable
z ∼ N (z, �z), where z = [a b c d]T contains the four pa-
rameters of the normalized homography H , defined above.

The observation mean z is obtained through minimiza-
tion of a least-squares criterion:

z = arg min
∑
n

⎛
⎝[

u∗
i

v∗
i

]
−

[
a −b c

b a d

]
·
⎡
⎣uj

vj

1

⎤
⎦

⎞
⎠2

,

where the lists of point matches were obtained by robust
feature matching using the similarity motion model. De-
tails can be found in Gracias and Santos-Victor (2000). The
observation covariance �z is obtained by a first-order ap-
proximation for the covariance propagation of small noise
in implicit functions (Haralick, 1998):

�z
∼=

(
∂G

∂z

)−1
·
(

∂G

∂u

)T

· �u · ∂G

∂u
·
(

∂G

∂z

)−1
,

where

G = ∂F

∂z
(Jacobian of the cost function with respect

to parameters),

F = RT R(cost function – sum of squared residues),

R =

⎡
⎢⎣

r1
...

rN

⎤
⎥⎦ (residues vector),

rn =
[
u∗

i

v∗
i

]
−

[
a −b c

b a d

]
·
⎡
⎣uj

vj

1

⎤
⎦ (point residue).

The simple structure of the image motion model allows
for compact closed-form expressions for the above entities.
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