Autonomous Navigation for Mobile Service Robots
in Urban Pedestrian Environments

E. Trulls, A. Corominas Murtra, J. Pérez-Ibarz, and G. Ferrer
Institut de Robotica i Informatica Industrial, CSIC-UPC, Barcelona, Spain
e-mail: etrulls@iri.upc.edu, acoromin@iri.upc.edu, jnperez@iri.upc.edu, gferrer@iri.upc.edu

D. Vasquez

Swiss Federal Institute of Technology, Ziirich, Switzerland
e-mail: vasquez@mavt.ethz.ch

Josep M. Mirats-Tur

Cetaqua, Centro Tecnologico del Agua, Barcelona, Spain
e-mail: jmirats@cetaqua.com

A. Sanfeliu

Institut de Robotica i Informatica Industrial, CSIC-UPC, Barcelona, Spain

e-mail: sanfeliu@iri.upc.edu

Received 2 August 2010; accepted 27 January 2011

This paper presents a fully autonomous navigation solution for urban, pedestrian environments. The task at
hand, undertaken within the context of the European project URUS, was to enable two urban service robots,
based on Segway RMP200 platforms and using planar lasers as primary sensors, to navigate around a known,
large (10,000 m?), pedestrian-only environment with poor global positioning system coverage. Special consid-
eration is given to the nature of our robots, highly mobile but two-wheeled, self-balancing, and inherently
unstable. Our approach allows us to tackle locations with large variations in height, featuring ramps and stair-
cases, thanks to a three-dimensional, map-based particle filter for localization and to surface traversability in-
ference for low-level navigation. This solution was tested in two different urban settings, the experimental
zone devised for the project, a university campus, and a very crowded public avenue, both located in the city
of Barcelona, Spain. Our results total more than 6 km of autonomous navigation, with a success rate on go-to
requests of nearly 99%. The paper presents our system, examines its overall performance, and discusses the

lessons learned throughout development. © 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

Large, modern cities are becoming cluttered, difficult places
to live in, due to noise, pollution, traffic congestion, secu-
rity, and other concerns. This is especially true in Europe,
where urban planning is severely restricted by old struc-
tures already laid out. Ways to alleviate some of these prob-
lems include enhancements to public transportation sys-
tems and car-free areas, which are becoming common in
city centers. In May 2010 New York City closed to motor ve-
hicles two key sections of midtown, Times Square and Her-
ald Square, after a pilot program in 2009 that reduced pol-
lution, cut down on pedestrian and bicyclist accidents, and
improved overall traffic by rerouting. A Green Party initia-
tive to close to vehicles 200 streets in the center of Geneva,
Switzerland, had been approved in principle in early 2010.
Barcelona already features an iconic hub in La Rambla, a

Multimedia files may be found in the online version of this article.

prominently pedestrian-only thoroughfare more than 1 km
in length running through the historic center of the city.

It is expected that urban service robots will be de-
ployed in such areas in the near future, for tasks such as
automated transportation of people or goods, guidance, or
surveillance. The study of these applications was a basic
requirement of URUS: Ubiquitous networking Robotics in
Urban Settings (Sanfeliu & Andrade-Cetto, 2006; URUS,-)
(2006-2009), a European IST-STREP project of the Sixth
Framework Programme, whose main objective was to de-
velop an adaptable network robot architecture integrating
the basic functionalities required to perform tasks in urban
areas. This paper is concerned with autonomous navigation
for a mobile service robot in pedestrian environments.

In recent years significant advances have been
experienced in the area of autonomous navigation,
especially thanks to the efforts of the scientific and engi-
neering teams participating in the DARPA Urban Chal-
lenge (Montemerlo, Becker, Bhat, Dahlkamp, Dolgov, et al.,
2008; Rauskolb, Berger, Lipski, Magnor, Cornelsen, et al.,
2008), as well as other contests (Luettel, Himmelsbach,

Journal of Field Robotics 28(3), 329-354 (2011) © 2011 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com e DOI: 10.1002/rob.20386

330 -« Journal of Field Robotics—2011

Hundelshausen, Manz, Mueller, et al.,, 2009; Morales,
Carballo, Takeuchi, Aburadani, & Tsubouchi, 2009). Even
if most of this body of work is designed for car-like ve-
hicles running on roads, some important ideas translate
to robots of different configurations operating in pedes-
trian areas, especially in terms of navigation architecture
and software integration. However, urban pedestrian areas
present additional challenges to the robotics community,
such as narrow passages, ramps, holes, steps, and stair-
cases, as well as the ubiquitous presence of pedestrians, bi-
cycles, and other unmapped, dynamic obstacles. This leads
to new challenges in perception, estimation, and control.
For instance, global positioning system (GPS)-based sys-
tems remain an unreliable solution for mobile robots oper-
ating in urban areas, due to coverage blackouts or accuracy
degradation (Levinson, Montemerlo, & Thrun, 2007; Yun &
Miura, 2007), so that additional work is necessary for robot
localization.

This paper presents a fully autonomous navigation
solution for urban service robots operating in pedestrian
areas. In this context, the navigation framework will re-
ceive go-fo queries sent by some upper level task allocation
process or directly by an operator. The go-to query will in-
dicate a goal point on the map coordinate frame. The sys-
tem is designed as a collection of closely interrelated mod-
ules. Some of them have been applied successfully on other
robots during the URUS project demonstrations, whereas
the lower level modules are geared toward our Segway
robots and take into account their special characteristics.
The main contribution of this paper is the presentation of
a set of techniques and principles that jointly yield a valu-
able experimental field report: (1) the consideration of real-
world urban pedestrian environments, with inherent fea-
tures such as ramps, steps, holes, pedestrians, and other
dynamic obstacles; (2) the use of Segway-based platforms,
which provide high mobility but create perception and con-
trol issues successfully addressed by our approach; (3) real-
time three-dimensional (3D) localization, without relying
on GPS, using state-of-the-art techniques for online com-
putation of expected range observations; (4) the success-
ful integration of all navigation software modules for real-
time, high-level actions; and (5) extensive field experiments
in two real-world urban pedestrian scenarios, accomplish-
ing more than 6 km of autonomous navigation with a high
success rate.

The paper is organized as follows. Section 2 describes
the locations where the experiments were conducted. Sec-
tion 3 presents the robots at our disposal and the sensors
onboard. Section 4 presents the architecture of the naviga-
tion system. Sections 5 and 6 present our path planning and
path execution algorithms. Section 7 summarizes the local-
ization algorithm, a 3D map-based particle filter. Section 8
is concerned with our low-level navigation module, an ob-
stacle avoidance (OA) system capable of dealing with ter-
rain features such as ramps. Field results are summarized in

Section 9, and Section 10 presents the main lessons learned
by the scientific team and identifies critical aspects to work
on in the future.

A previous version of this work was presented in
Corominas Murtra, Trulls, Sandoval, Pérez-Ibarz, Vasquez,
et al. (2010). A new localization algorithm, using full 3D
information, and several improvements on the path exe-
cution and OA modules allowed us to increase our suc-
cess rate on go-fo requests from 79% to nearly 99%. We also
present experiments in two urban areas instead of one. All
experimental data presented in this paper are new.

2. SITES AVAILABLE FOR EXPERIMENTATION

Most of the experiments were conducted at the Campus
Nord of the Universitat Politecnica de Catalunya (UPC),
located in Barcelona, where a large section was outfitted
as an experimental area (Barcelona Robot Lab) for mo-
bile robotics research. This installation covers more than
10,000 m? and is equipped with wireless coverage and 21
Internet protocol (IP) video cameras. Our robots are cur-
rently self-contained, using only onboard sensors for navi-
gation. A more thorough overview of the capabilities of this
lab is available in Sanfeliu, Andrade-Cetto, Barbosa, Bow-
den, Capitan, et al. (2010). Additional experiments were
carried out at Passeig de Sant Joan in the district of Gracia,
also in the city of Barcelona, with the cooperation of the
city’s administration. This area comprised a 1,900-m? sec-
tion of a pedestrian-only boulevard, with bicycle lanes on
both sides and a large monument in the middle. Figure 1
shows an aerial view of both locations.

The main experimental site, the campus, is situated in
a hilly region, close to a mountain range. It features dif-
ferences in height of up to 10 m within the experimen-
tal area, resulting in ramps—which the robot must be able
to navigate—sudden level changes and staircases—which
should be avoided—and other obstacles such as bulletin
boards, bicycle stands, trashcans, and flower pots. A geo-
graphic information system (GIS) map with elevation data
was built for the project and later extended to a full 3D
model. All tests made during the robots” development stage
were conducted in this area. Figure 2 presents a top view of
the 3D model and some photographs of the area. Campus
buildings are situated over a four-row, six-column grid and
labeled according to row (letters from A to D, bottom to
top) and column (numbers from 1 to 6, left to right), e.g.,
A1 or D6. The experimental area covers the eastern part of
the campus. The main features found in this area are the
terrace at the bottom of the map, the FIB (Computer Fac-
ulty) square and cafeteria, and a promenade with another
terrace above it, between rows B and C.

The site at Passeig de Sant Joan does not feature ramps
or staircases but is again on sloped terrain, rising more
than 2 m in height along 70 m of length, with a rela-
tively even slope of nearly 2 deg. This poses a problem for

Journal of Field Robotics DOI 10.1002/rob

i o H
ety N s | [} G &
- % E
[=0 o Sprares e od 5
. -':.' 3 _J ‘ : e e 4
T (SATR S e
. : % A 4 [ear]
Pt Lgats e . Frarc el Tuid .‘M % q—%%g
: . A =
e ﬁﬁ
B-20 § &
£
a8l Camtell J‘ Via Mﬁﬁ’ :.{
Drenats 808
a
; g«ﬂw
‘ ;’ an.;db
Uoiiarmidd FUIQe e Barcelona 225 s
Polécnica 2 rs LY
de Catahamya a A
' K .ﬁf
Fosoan Pyl
= O‘q.
(= ;
ratera de Comvlanc [ITETT] g Ananguas dal Paral il
L]
g‘p Jardims de
.)
]
Jitalet % Parc e
nreaat il . Montjuic 4 :
Figure 1. Campus site (blue) and Grac1a 81te (red)

two-wheeled robots such as ours, as will be further ex-
plained in Section 3. It is of particular interest that there are
few clear landmarks such as walls, as most of the area is en-
circled by hedges on either side, and the monument in the
middle was at the time (spring) surrounded by rose bushes.
Whereas the campus scenario is somewhat controlled and
mostly populated by students, the Gracia environment is
a very crowded public street in the middle of a large city,
frequented by pedestrians, children, and bicyclists. A 3D
model of the area was built from scratch, in much lesser de-
tail. The area is pictured in Figure 3. We placed four fences
below the monument for safety reasons, which were in-
cluded in the 3D map. Later we had to put other fences in
place to reroute part of the traffic, but these were not in-
cluded in the map.

3. ROBOTS

Two mobile service robots, designed to operate in urban,
pedestrian areas, were developed for the URUS project.
These are Tibi and Dabo, pictured in Figure 4. They are
based on two-wheeled, self-balancing Segway RMP200
platforms and as such are highly mobile, with a small foot-
print, a nominal speed up to 4.4 m/s, and the ability to ro-
tate on the spot (while stationary).
They are equipped with the following sensors:

® Two Leuze RS4 two-dimensional (2D) laser range find-
ers, scanning over the local XY plane, pointing forward

Journal of Field Robotics DOI 10.1002/rob

and backward, respectively, at a height of 40 cm from the
ground. These scanners provide 133 points over 190 deg
at the fastest setting, running at approximately 6 Hz.
This device has a range of 64 m, but in practice we use a
15-m cap. Front and back laser observations are notated
as oy, and o 1.,- Tespectively.

e A third 2D laser scanner, a Hokuyo UTM-30LX,
mounted at a height of 90 cm, pointing forward and ro-
tated 90 deg over its side, scanning over the local XZ
plane. This scanner provides 1,081 points over 270 deg
at 40 Hz and has a range of 30 m, again capped to 15 m.
Aperture is limited to 60 deg to ignore points interfering
with the robot’s frame or aiming too high for our needs.
This observation is notated as o’LV.

® Wheel encoders, providing odometry readings o, from
the Segway platform.

® Inclinometers from the Segway platform, providing
pitch and roll data 0.

The robot also features two stereo camera pairs and a GPS
receiver, which are not used in this work. The user can in-
teract with the robot through a touchscreen, entering go-to
requests manually. Two off-the-shelf laptop computers run-
ning Ubuntu Linux are onboard the robot, one for naviga-
tion and the other for communications and human-robot
interaction. Experiments were performed using only one
robot at time, Tibi or Dabo.

332 -« Journal of Field Robotics—2011

120

100

80_|

60

40|

20

Figure 2. Top view of the 3D model for the campus site, with a set of pictures highlighting certain features of the environment.
Note the many ramps (3, 4), the steps around the square (7, 8), changing obstacles such as the cafeteria terrace (7), narrow passages
such as around the trees at the square (8), the prevalence of glass windows at waist and foot level (3, 4), and the transparent plastic
balcony on (5). Note also the ubiquitous presence of pedestrians.

D4 D5 D6
o
c4
B4
o
L I-:"' ul i] | = |::II ":.I_'_-l;'_'_v] 2
A4 A5 BS
—"— £] E] L3 n
1@ -l [[T !
[:]
T T T T T T T A T ,L T
20 40 &0 a0 100 120 140

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 333

T —

e
n 1]
60 = o -
2]
50— -
]
40—
30 =
20 - ' .
3]
e
10—
) n 14

[T T T T
[a] o 10 20 3t 40

Figure 3. Top view of the 3D model for the Gracia site, with some pictures of the area. The wide lanes on either side of the map
are the road, with buildings beyond. Note the lack of clear landmarks. The site is encircled by vegetation (1, 4), and the elevation
around the monument (1, 2, 3) rises to either below or just at laser height (cf. Section 3).

laser scanner

Horizontal
back/front Leuze
laser scanner

Segway RMP200

Figure 4. Left, Tibi (left) facing Dabo. Right, Onboard devices used in this work and the robot coordinate frame.

Journal of Field Robotics DOI 10.1002/rob

334 .« Journal of Field Robotics—2011

154y [m] 154
10 104
51 4

. SR (]

STIE e 5 10 15
_4“ T
5
10 10
-151 15

0.6

Speed [m/s]
o
»
T

0.2r

14 16 18 20 22 24 26 28 30 32
Time [s]

¥ [m] 151yf [m]

10

-10

-154

Pitch [deg]
n

4t

. .
14 16 18 20 22 24 26 28 30 32
Time [s]

i I I I

Figure 5. Top, left to right, sequence of horizontal laser scans with the robot accelerating forward on a flat surface. Time between
scans is about 0.6 s. Bottom left, Commands for translational velocity (v) in red and its estimation from the Segway platform in

blue. Bottom right, Pitch estimation from the Segway platform.

The Segway RMP200 is in many ways an ideal
platform on which to build an urban robot. Humanoid
robots are not yet ready for outdoor environments, and
four-wheeled vehicles have a much larger footprint and
are more restricted in their mobility. Moreover, Segway
robots can carry heavy payloads, up to 45 kg for this
model. On the downside, Segway platforms are stati-
cally unstable, keeping their balance using embedded
gyroscopic sensors to track and correct their tilt. The
robot will pitch forward or backward to accelerate or
decelerate, or simply to keep its balance while station-
ary. This behavior presents two issues for their use in
robotics.

On one hand, it creates a perception issue for onboard
2D laser scanners. A 2D laser range finder scanning over
the local XY plane, a very common solution in robotics
for navigation or simultaneous localization and mapping
(SLAM), may point higher toward the sky/roof or, more
critically, lower toward the ground. Using this configura-
tion may result in spurious features or obstacles unless
some kind of filtering is used. Figure 5 displays a sequence
of 2D range data over time, starting with the robot in a sta-

tionary, upright position, which is then instructed to move
forward and later to stop. The front laser visibility is re-
duced significantly due to the platform’s tilt, up to 2 m on
a flat surface and less on a ramp. The figure also shows ve-
locity commands and the estimation for velocity and pitch
from the Segway platform, for the same sequence. These
data were taken under laboratory conditions, on a flat,
regular surface. In outdoor environments this behavior is
much more pronounced, especially on slopes and changes
in slope.

The second issue in using Segway platforms is control:
the platform’s own control algorithm takes precedence over
the user’s instructions, as its first priority is to stay upright.
This problem, present in all Segway platforms, is com-
pounded by the fact that our robots weigh about 120 kg,
which slows them down. In practice, the platform typically
takes 1-2 s to react to the user’s commands, or even more
in extreme situations such as when moving from a flat sur-
face to a slope or vice versa. This ultimately means that it
is not possible to execute previously planned trajectories
with a high degree of accuracy. An example can be seen in
Figure 5.

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments e

335

w
o
<
Q
o
N
o
[3)
Q
o
5|apow
juswuouiaug

(4 v
Back Laser Particle Filter

Leuze RS4

’_> Localization
Ny |

Front Laser
Leuze RS4

\

J

=P Reactive Loop (10 Hz)
== Deliberative Loop (5 Hz)

-
v zs
1]
Vertical Laser — | Traversability 2z
Hokuyo UTM - inference g S
P
Wheel ._>| Acquisiti Obstacle
encoders Avoidance J
Segway 4
RMP200] v . vy -
Wheel " DWA Motion RRT-based . . 9 C=T
1 D H | | e
actuators Control Local Planning N Path execufion Path Planning } ?,— g
o @
P’

Go-to
Request

20DyI84u|
SN

Figure 6. Process diagram for our navigation architecture. Each block is an independent process. Arrows are transmission control

protocol (TCP) connections.

Our navigation solution deals effectively with these is-
sues. To solve the perception problem caused by the plat-
form tilt, we use full 3D information for localization and the
vertical scanner to determine surface traversability for nav-
igation. The control problem is tackled with a loose, low-
level navigation scheme. These procedures are explained in
further detail in Sections 7 and 8.

4. NAVIGATION ARCHITECTURE

Our complete navigation framework for Tibi and Dabo
is diagrammed in Figure 6. This solution is divided into
four different blocks, in decreasing level of abstraction:
path planning, path execution, localization, and obstacle
avoidance. The obstacle avoidance module consists of three
blocks: traversability inference, local planning, and motion
control.

The path planning module is tasked with finding a
global path between the platform’s current position and a
goal upon a go-to request, in the form of a list of waypoints
WM = (x g’f X g’f]m} in global (map) coordinates. The lo-
calization, path execution, and obstacle avoidance modules
constitute two different control loops. The obstacle avoid-
ance module is the only component in direct control of the
robot’s motion and constitutes by itself the reactive loop.
Its mission is to move the robot to a local goal, expressed
in the robot coordinate frame X g. It is important to point
out that this loop does not depend on the localization es-
timate because it ensures only that the robot will arrive

Journal of Field Robotics DOI 10.1002/rob

at a local goal while avoiding the obstacles perceived by
onboard sensors. The second loop is deliberative and is
tasked with guiding the robot through the waypoints com-
puted by the path planning module. The deliberative loop
includes the localization module, a map-based particle fil-
ter, and the path execution process, which uses the current
localization estimate X¥ to transform the waypoints from
map coordinates X% to robot coordinates X 5’,. This local
goal is the input to the obstacle avoidance module, thus
closing the deliberative loop. This is a particularly suitable
solution for our Segway robots, for which it is possible to
execute planned trajectories only loosely.

We use two different environment models, a 2D map
and a 3D map. The 3D map is a model containing the en-
vironment’s static geometry. The 2D map is inherited from
previous work (Corominas Murtra, Trulls, Sandoval, et al,,
2010) and is required for path planning. The reactive loop
runs at 10 Hz, and the deliberative loop runs at 5 Hz. Be-
cause the platform moves at speeds up to 1 m/s, these rates
are deemed sufficient.

Each sensor has an associated data acquisition pro-
cess. All navigation and data acquisition processes run con-
currently on the same computer. The software framework
follows a publish/subscribe architecture, with the aim to
ease software integration between developers: each block
of Figure 6 has been implemented as an independent pro-
cess, accessible through an interface. The resulting specifi-
cation runs over YARP as middleware, a free, open-source,
platform-independent set of libraries, protocols, and tools

336 -« Journal of Field Robotics—2011

N
resssrenessensres
[1 |

LI |
| |
| |

"
-
i i
e = :
. .
IOAX0e 0 0o o o 0 80 B 0o 0 0 o33
ne Y "

renmn e

ww e

Figure 7. Left, The cost map for the UPC campus. Warmer tones indicate high costs, and white indicates unreachable places.
Right, Three sample paths displayed using our simulation environment. Red dots indicate the path computed by the path planning
module. Red circles correspond to the circle path, which will be introduced in Section 6. Green and blue dots correspond to the
localization estimate and mark the starting position for each iteration. Further examples are available in the videos introduced in

Section 9.

aimed at decoupling the transmission of information from
the particulars of devices and processes in robotic systems
(Metta, Fitzpatrick, & Natale, 2006). For a further descrip-
tion of our software architecture, please refer to Corominas
Murtra, Mirats-Tur, Sandoval, and Sanfeliu (2008).

5. PATH PLANNING

Our planning algorithm has been developed in the context
of the URUS project, having as a key requirement the ability
to effectively deal with the diversity of platforms involved
in the project. Thus we have privileged reliability and flex-
ibility over other concerns such as online replanning. That
said, it is worth noting that limited online planning capabil-
ities are actually fulfilled by the local planning component
of our architecture (cf. Section 8.1).

The global planner takes as input a global cost 2D grid
map (Figure 7), as well as the physical properties of the
robot such as its size and kinematic constraints. The cost
we have used in our experiments is the distance transform
(i.e., distance to the nearest obstacle), computed from a bi-
nary map of the static obstacles in the environment. By
using such a cost, we maximize the distance between the
path and the obstacles in the same way as using a Voronoi
graph, with the advantage that the cost is defined also for
points that are not part of the graph. Another advantage
of the distance transform is that a single map can be used
for coarse collision testing on all the different platforms by
simply comparing the cell’s value against the radius of the
platform’s bounding sphere.

The planner computes a search graph in which nodes
represent robot poses and graph edges represent collision-
free motion arcs that are deemed to be feasible according to

the robot’s kinematics. To limit the size of the search space,
graph expansion is performed using a fixed arc length and
a discrete number of arc curvatures. The graph is explored
using the A* algorithm, in which the heuristic is the naive
grid distance to the goal, computed on the cost map using
Dijkstra’s algorithm.

It is worth noting that using a fixed arc length and an-
gle discretization implies, in most cases, that the plan is not
able to reach the exact goal pose, making it necessary to use
an acceptance threshold. However, in practice this has not
been a problem. We have used a threshold of 30 cm, which
is precise enough for our particular application.

As stated above, this module was common to all
robotic platforms in the project. Our navigation system de-
fers online replanning to the obstacle avoidance module
and has simpler requirements for global path planning: the
distance between waypoints is set to 2 m for Tibi and Dabo,
and we disregard heading angle data for the waypoint. Ex-
amples of its application are displayed in Figure 7.

6. PATH EXECUTION

The task of the path execution algorithm is to provide lo-
cal goal points to the robot so that the trajectory computed
by the global planner is followed in a smooth manner, even
in the presence of unmapped obstacles that force the robot
to stray out of the path. Our approach consists of defining
circle-based search zones centered on the plan’s waypoints.
The localization estimate is then used to determine which
circle the robot lies on, if any, and the next waypoint to tar-
get, which is then transformed into robot coordinates and
sent to the obstacle avoidance module as a local goal.

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 337

Figure 8.

[llustration demonstrating the behavior of the path execution algorithm under normal operating conditions. Waypoints

and the circle path are plotted in red when considered by the path execution algorithm, in purple when not. The localization
estimate and an arrow signaling the current target are plotted in green. The environment (unbeknown to the path execution
module) is plotted in black. On the left, the circle currently being followed is Cy_,, centered on waypoint X ,\"}’72, and so the current
target is X 1’\‘,471. The algorithm considers this circle and its neighbors in this order: first Cy_1, then Cy_5, and finally Cy_3. As the
first circle that contains the localization estimate is Cyy_,, the target does not change. On the right, the robot moves forward and
enters circle Cy_1, so that the new circle being followed is Cy_; and X 1\"}’ becomes the new target.

The circle path is created upon receiving a new path
from the global planner, once per go-fo request, and is de-
fined as a list of circles {C1 ... Cy,} with center each way-
point and radius the distance to the following waypoint.
The radius for the last circle, with center the goal, is de-
fined as the goal tolerance dg, a global parameter set to
0.5 m. The algorithm stores an index to the circle currently
being followed, k, which is initialized to 2, as X A’ll is the
robot’s starting position. During run time, the algorithm
determines whether the circle currently being followed and
its adjacent circles Cx_1, Cx41 contain the localization esti-
mate XM, starting from the higher index and moving down.
Whenever this is true, the process stops and & is set to the
index of the compliant circle. The waypoint to target is in
every case the center of the next circle, Cy.1, which by defi-
nition lies on the circumference of Cy. That is, when a robot
nears a waypoint (enters its associated circle), the goal will
switch to the next waypoint (the center of the next circle).
We check only the next circle to enforce smoothness and
the previous circle as a safeguard against small variations
on the localization estimate. This procedure is illustrated in
Figure 8.

If no circle contains the localization estimate, we com-
pute its distance to the path, defined as the shortest dis-
tance to a waypoint. If this distance is smaller than the re-
covery distance d,, set to 3 m, the path execution algorithm
will enter recovery mode, sending the robot to the closest
waypoint. When the robot is farther away than the recov-
ery distance, we presume that recovery is not possible, stop
the robot, and request the path planning module for a new
path to the same global goal. These situations are illustrated
in Figure 9. Figure 7 displays examples of circle paths in the
campus area.

Journal of Field Robotics DOI 10.1002/rob

This approach is valid for obstacle-free environments
but may fail if an unmapped object rests over a waypoint
that thus cannot be reached. We solve this by computing
not one but an array of goal candidates G¥, which are of-
fered to the obstacle avoidance module as possible targets.
X ?’1 being the current target, we consider all waypoints

{XM)i € [j, Nul}. We take a maximum of Noa points, and
only candidates closer to the robot than dpp are considered
valid. The first candidate that violates this rule is truncated
to doa, and the rest are ignored. For our implementation
we use doa = 5.5 m and Npoa = 8. This guarantees at least
three goal candidates within range. The obstacle avoidance
module considers one candidate at a time, starting from
the lower index, and selects the first candidate that may be
reached, as explained in Section 8.

7. MAP-BASED LOCALIZATION

Localization is the process in charge of closing the delibera-
tive loop (Figure 6), thus allowing the path execution mod-
ule to convert goal points from the global planner, in map
coordinates, to local goal points, in robot coordinates. Lo-
calization plays a key role in autonomous navigation for
mobile robots, and a vast amount of work can be found
in the literature. It is accepted by mobile robot researchers
that GPS-based solutions are not robust enough in urban
environments due to insufficient accuracy and partial cov-
erage. This fact has forced the mobile robotics commu-
nity to design alternative or complementary methods for
localization (Georgiev & Allen, 2004; Levinson, et al., 2007;
Nuske, Roberts, & Wyeth, 2009; Thrun, Fox, Burgard, &
Dellaert, 2001; Yun & Miura, 2007).

338 « Journal of Field Robotics—2011

Figure 9.

Ilustration demonstrating the behavior of the path execution module when the robot strays off the path. The dashed

circles determine the recovery zone. On the left, the robot is following circle Cy_», targeting waypoint X¥_,, but moves off the
circle path and is instructed to return to Xy_,. On the right, the robot strays farther off the path and moves out of the recovery
zone, prompting the algorithm to stop the robot and request a new path from the global planner, plotted in blue. The old path is

discarded.

In recent years, researchers worldwide have opted
for particle filter-based solutions for localization
(Levinson et al.,, 2007; Nuske et al., 2009; Thrun et al.,
2001), which offer design advantages and greater flexi-
bility than approaches based on the Kalman filter (Arras,
Castellanos, Schilt, & Siegwart, 2003; Georgiev & Allen,
2004; Yun & Miura, 2007). However, when particle filter
localization is developed for autonomous navigation, it
has to deal with real-time requirements. Particle filters
need to compute expected observations from particle
positions. Computations can be performed offline and
then stored in large lookup tables discretizing the space of
positions, so that during online executions these lookup
tables will be queried from particle positions (Levinson
et al., 2007; Thrun et al., 2001). However, when the robot
operates in large environments and the position space
has a dimensionality greater than three, precomputing
expected observations becomes a critical database issue.

In this section we describe a 3D map-based localiza-
tion method, consisting of a particle filter that computes
the expected observations online by means of fast manip-
ulation of a 3D geometric model of the environment, im-
plemented using the OpenGL library (OpenGL, -). Using
OpenGL for online observation model computations has
already been proposed by some researchers (Nuske et al.,
2009). However, in that paper the authors use an edge map
of the environment and compute only expected edge obser-
vations. Our approach does not perform any feature extrac-
tion step and deals with online computation of the full sen-
sor model, so that real sensor data are directly compared
with expected sensor data to score the particles in the fil-
ter loop. This approach overcomes the issue of feature oc-
clusion due to the ubiquitous presence of pedestrians and
other unmodeled obstacles around the robot, achieving

robust tracking of the robot’s position. Our solution runs
at 5 Hz, enough for our platform’s speed.

7.1. State Space

The state space considered in our approach, X, is that of 3D
positions, parameterized as a (x, y, z) location referenced to
the map frame and the three Euler angles, heading, pitch,
and roll, (0, ¢, ¥), defined starting with the heading angle
with respect to the x map axis. In this section, all positions
will be referenced to the map frame if no specific mark or
comment indicates otherwise.

At each iteration ¢, the filter produces a set of particles,
P!, in which each particle is a pair formed by a position in
the state space and a weight:

Pr={si...sn, b sp = (Xi wi); Xi = (xi. v 200, 60 ¥7;)
@

where s/ is the ith particle produced by the rth iteration,
X! e X, and w! €[0,1].

7.2. 3D Environment Model

The environment model used by the localization module,
also referred to as the map and notated as M, is a geomet-
ric 3D representation of the static part of the area where
the robot operates. In both the campus and Gracia areas,
the static part considered includes buildings, stairs, ramps,
borders, curbs, some important vegetation elements, and
urban furniture such as benches and streetlamps. Our im-
plementation uses the .0bj geometry definition file format
(OB]J, -), originally developed for 3D computer animation
and scene description, which has become an open format
and a de facto exchange standard.

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 339

Both maps were built by hand, taking measurements
with laser distance meters and measuring tape, which were
used to build a coherent 3D model. Even if the maps in-
corporate the most important geometrical elements of each
experimental area, they are always considered incomplete
models: for instance, trees were modeled only partially, due
to the difficulty of the modeling, and minor urban furniture
was not always mapped. Thus the localization approach
should be robust enough to address this issue. Further de-
tails are available in Corominas Murtra, Trulls, Mirats-Tur,
& Sanfeliu (2010).

7.3. Kinematic Model

In particle filtering, having a motion model allows us to
propagate the particle set, thus limiting the search space
to positions satisfying the motion model constrained to
given sensor inputs. Probabilistic kinematic models (Thrun,
Burgard, & Fox, 2005) compute a new sample set, called the
prior, P!, based on the previous set, P’ ~1 constrained to
the platform’s motion. We define the platform wheel odom-
etry readings as

oy = (A Ap). @

where Al is the translational 2D increment in the local XY
plane and A}, is the rotational increment around the local Z
axis of the platform. Both increments are the accumulated
odometry from iteration t — 1 up to iteration 7. The Seg-
way RMP200 platform also features embedded inclinome-
ters that provide a pitch increment measure from ¢ — 1 to ¢:

oy = Afp. 3)

With these two input observations, at the beginning of each
iteration the state of the ith particle is moved according to
the probabilistic kinematic model described by

A;’i = N(Afo,o;); a[’, = epA;),
5= Nl o = oty
Boi = N(8G.04); 04 = co sy,

xl=xI= ;cos 017 Ty

~~
-
H

>, *)
)

yi=yi" +A’ sm(

1
6] =6/ + Ay,
¢t = ¢ '+ AL

where the first three lines draw, for each particle, random
data with normal distribution centered at the platform data
(A}, Af, A}) with standard deviation depending linearly
with each respective increment by parameters ¢,, €, €p, SO

Journal of Field Robotics DOI 10.1002/rob

that large increments imply a more sparse propagation. Ep-
silon values were set to €, 9,4} = 0.2 during the experimen-
tal sessions.

Please note that the orientation angles of a Segway
robot do not necessarily indicate a displacement direction
because the platform is unconstrained in pitch. Thus this
kinematic model approximates displacements in the local
plane provided by the platform odometry as displacements
in the global (map) XY plane. This approximation leads to
an error that is negligible in practice because the slopes in
our test environments have at most an inclination of 10%.
Note also that the kinematic model does not modify z} and
¥! because these two variables are constrained by gravity,
as will be explained in the next subsection.

7.4. Gravity Constraints

A wheeled robot will always lie on the floor, due to grav-
ity. For relatively slow platforms, such as those presented
in Section 3, it can be assumed as well that the whole plat-
form is a rigid body, so that a suspension system, if present,
does not modify the attitude of the vehicle. With these as-
sumptions, and for two-wheeled self-balancing platforms,
there are constraints on the height z and roll / dimensions
of the position space, given a (x, y, 0) triplet and the envi-
ronment model M. Both constraints will be computed us-
ing OpenGL for fast manipulation of 3D models.

The height constraint sets a height z for a given coordi-
nate pair (x, y). To compute it, the floor part of the map is
rendered in a small window (5 x 5 pixels) from an overhead
viewpoint at (x, y, zox), limiting the projection to a narrow
aperture (1 deg). After rendering, we obtain the depth com-
ponent of the central pixel, d., and compute the constrained
z value as z = 7o — d..

The roll constraint fixes the roll component for a coor-
dinate triplet (x, y,). Its computation is based on finding
zr and z;, the height constraints at two points to the left and
to the right of (x, y,). These points are separated a known
distance L (i.e., size of the platform), so that the roll con-
straint can be computed as ¢ = atan2(z; — z,, L).

The computation of the roll constraint is based on com-
puting height constraints, which can be viewed as a simple
2D height map, relating (x, y) pairs with a height value z.
This leads us to precompute, offline, a height grid of the
environment, so that during online executions gravity con-
straints will be resolved with simple and fast queries to a
table. Figure 10 shows the height grid for the UPC Campus
site. The cell size of this grid is 0.2 x 0.2 m?.

Note that this approach is valid for maps with a
single traversable z level such as ours and although our
algorithms can be directly applied to multilevel maps,
further work would be required in determining the ap-
propriate map section to compute. To avoid discretization
problems, especially when computing the roll constraint
using the height grid, we use lineal interpolation on the
grid.

340 . Journal of Field Robotics—2011

¥ [m]

31

33

15

z [m]

023

T

o 20 40

¥ [m]

T

B0 100

Figure 10. Height grid for the UPC campus site.

7.5. Range Observation Model
and Similarity Metrics

Fast and accurate computation of observation models is a
key issue for successful particle filtering. The result of com-
puting an observation model is an expected observation
computed from a particle position, denoted as of (X!) for
a laser scanner. Given this expected observation, the condi-
tional probability of an actual laser observation given that
the robot is in particle position X; can be approximated as

p(oL|X]) ~ L[o}, 01 (X])]. €0,1], ®)

where £ is a similarity function measuring the closeness of
two laser observations. This subsection first details how the
expected observations o} are computed and then presents
the similarity function used to compare real and expected
laser scanner data.

We propose a method using the OpenGL library for
fast online computation of expected laser scanner obser-
vations. The method is based on rendering the 3D model
from the viewpoint of the sensor’s position given the par-
ticle position X! and reading the depth buffer of the com-
puter graphics card. The rendering window size has been
minimized to reduce the computation time while keeping
the sensor’s accuracy given by the scanner aperture, Ay,
and the number of scan points Ny . Algorithm 1 outlines the
procedure to compute an expected laser scan from a parti-
cle position X l’ , given a 3D environment model M and a
set of sensor parameters (A, NL, Fmin, max), being respec-
tively, the angular scan aperture, the number of scan points,
and range limits.

Because the Leuze scanner has an aperture greater than
180 deg, we divide the computation into two sectors. For
the Hokuyo scanner we use only an aperture of 60 deg, so

Algorithm 1 Laser scanner observation model

INPUT: Xz{’ M, (Aa; NL. "max, rmin)
OUTPUT: OSL (Xll)

w= Zrmintan(%); h = 2rm,~ntan(%); p=7%; //metric
dimensions [m] and aspect ratio of projection
setProjection(1 deg, p, rmin, 'max); //rendering volume:
1 deg of vertical aperture, aspect ratio, depth limits

8o = ﬁ—z ; / /sensor’s angular resolution [deg]

Pa = (i nt)th'Z(nA(gn/)z) ; // compute window width [pixels]

setWindowSize(pq, 5); / /set window size [pixels]
X = Transform (X l’ X‘f); //transform sensor’s position
from robot frame to map frame
renderUpdate(M, X;); //render the model from the sen-
sor’s position
b, = readZbuffer(CENTRALROW); //read normalized
depth values of the central image row
for j=1...Ny do

aj = Ao(0.5— §-); //ray angle [deg]

) tan(a;)
k= (in) (0.5 — o,

sponding to j'* ray

)Pa; //pixel index corre-

cos(a
end for

return {rq, .

rj= Lj); / /range of the jth ray [m]

S PNLY

that a single sector is enough. According to the device pa-
rameters detailed in Section 3, the resulting window sizes
are 88 x 5 pixels for the Leuze device (for each sector)
and 265 x 5 pixels for the Hokuyo scanner. This optimized

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments « 341

implementation allows the filter to run at 5 Hz while com-
puting at each iteration Np x (133 + 133 + 241) ranges. For
Np = 50 particles, this implies 126,750 ranges per second.
Further details on computing such expected range observa-
tions can be found in Corominas Murtra, Trulls, Mirats-Tur,
etal. (2010).

Once both the expected and real observations are avail-
able, a similarity function £ computes their similarity. We
use the mean over all scan points of the complementary er-
ror function (erfc) of the difference between actual and ex-
pected range data, so that given real and expected observa-
tions denoted, respectively, by o} = {r;} and o} = {r}}, the
similarity function is

] Ny [t —rS Xf |
Loy 0y (X))] = N% D erfe [’qé)} SNG)

j=1

where oy is the standard deviation of the range obser-
vation, set to 5 cm. This similarity function has the de-
sired property that its value is limited to the [0, 1] inter-
val, evaluating to 1 for two identical scans and approaching
0 when the scans diverge, whereas the function depends
only on the standard deviation associated with laser range
measurements.

7.6. Particle Filter

The preceding subsections have introduced the kinematic
model, the gravity constraints, a method for online compu-
tation of expected laser observations, and a similarity func-
tion to compare them with actual laser data. Algorithm 2
overviews how to combine these elements to build a parti-
cle filter to estimate the 3D position of the robot within the
map coordinate frame.

The filter is initialized with a 2D position provided by
the user, (xo, yo, 6p). The first particle set is initialized within
asquare of 4 m? around the (xg, yo) location, within heading
range 6y £ 3 deg and with pitch equal to zero (we initialize
the localization algorithm with the robot stopped and on
flat terrain). After the propagation and correction steps, in
order to output a close estimation of the filter, a gaussian
parametrization of the particle set is performed. The robot
position estimate X is computed as the weighted mean of
the particle positions, and the covariance parameters C' are
computed as the weighted sample variance. The following
equations detail the computations for x and 6. The y and z
coordinates are computed as for x, and the ¢ and y coordi-

Journal of Field Robotics DOI 10.1002/rob

Algorithm 2 Particle filter localization algorithm
INPUT: (xo, yo, 6p), M, o}, o}, otLF, O’LB, otLV

OUTPUT: X!,C!,t" //robot position, associated uncer-
tainty and time stamp

t = 0; / /iteration counter
PO = initialization(xp, yo, 6); //initialization with prior
knowledge
while running do
t<—t+1
fori=1...Npdo
(L, v, 60, o) = F(XI71, 0, 0h); / /kinematic model
7t = heightConstraint(X!); //gravity height con-
straint
V! =rollConstraint(X}); / /gravity roll constraint
end for
t! = timeStamp(NOW);
fori=1...Npdo
wi = L(O’LF, O‘ZF(Xf)) . ﬁ(o’LB, 0%, (xH -
L(o} 07 ,(X})); //correction
end for
fori=1...Np do
% ; / /normalization

wf <«
L w;

end for

(XL, Cl) = gaussian Parameters(P');

publish(X!, C!, t"); / /publish produced data

P! « resampling(P'); //draw a new particle set re-
sampling the current one

end while

nates are computed as for 6:

Np
fo= Yol (607 = Y0 (k= 2)% s
i=1 i

Np Np
! = atan2 Zsin@l-’ “wi, Zcos of -wl|;
i=1 i=1

QE:
Il

Np
(60) = > (acos[cos (8}) cos (8) + sin (9!) sin ©1)])* - w!.
i=1
@)
We consider all cross covariances to be zero, except for 6y,
that results from
Np
Giy =2 (i =)0 = 37) - wi. ®)
i=1

In the last step of the filter, a resampling function draws
a new particle set keeping the mean of the current
one. Resampling is necessary to avoid particle depletion
(Arulampalam, Maskell, Gordon, Clapp, Sci, et al., 2002;

342 . Journal of Field Robotics—2011

Doucet, de Freitas, & Gordon, 2001), an undesired phe-
nomenon of particle filters in which the particle set
collapses to a single state point, rendering the filter no
longer capable of exploring new solutions for the estima-
tion and therefore compromising its robustness.

As an aside, the vertical laser is integrated into the
correction stage only when appropriate. Most unmodeled
obstacles, such as pedestrians or bicyclists, have a rela-
tively small footprint on the XY plane, so that the horizon-
tal lasers remain usable despite numerous occlusions (as
our experiments demonstrate). The vertical scanner on the
other hand can be nearly fully occluded by a single pedes-
trian a few meters in front of the robot. In that scenario
the filter attempts to match actual and expected observa-
tions by pitching the robot forward, lifting the floor surface
toward the part of the scan corresponding to the pedes-
trian, and thus increasing the similarity between scans. This
is clearly inadequate and compromises the filter’s perfor-
mance, so we use the vertical laser only when the difference
between actual and expected observations, as computed by
the similarity function, is smaller than a threshold, deter-
mined experimentally. We do not want to perform feature
extraction or segmentation over the raw scan, but there ex-
ist more elaborate solutions, such as iteratively consider-
ing sets of data removing the points farther away from the
robot until the threshold is met. These shall be explored in
the future.

Section 9 summarizes the field work and discusses in
depth the two failures we experienced during the experi-
ments, both due to localization issues.

8. OBSTACLE AVOIDANCE

The motion planning problem is well known and studied
when using a priori information (Latombe, 1991). However,
many techniques are not applicable when the environment
is not known or is highly dynamic. This problem is com-
pounded by the fact that both the environment (i.e., the real
world) and the robot carry uncertainties due to sensing and
actuation, respectively, so that it is not feasible to treat mo-
tion planning separately from its execution. To solve these
problems, it is necessary to incorporate sensory informa-
tion in the planning and control loop, making reactive navi-
gation possible. A real-time approach based on the artificial
potential field concept was presented in Khatib (1986), was
later extended in Khatib and Chatila (1995), and became
widely used, as for instance in Haddad, Khatib, Lacroix,
and Chatila (1998). Other methods extract higher level in-
formation from the sensor data, such as, for instance, in
Minguez and Montano (2004), a reactive obstacle avoidance
system for complex, cluttered environments based on in-
ferring regions from geometrical properties. None of these
methods takes into account the physical properties of the
robot platform itself: two common approaches that do so
are the curvature velocity method (Simmons, 1996) and the
dynamic window approach (Fox, Burgard, & Thrun, 1997).

Our proposal consists of an obstacle avoidance method
that combines a local planner with a slightly modified dy-
namic window approach so as to generate motion con-
trol commands suitable for the robot platform. Decoupling
planning and execution is a common practice in mobile
robotics, as the full path planning problem is typically too
complex for real-time processing. This is particularly ap-
propriate in our case, as our Segway robots cannot execute
trajectories with a high degree of accuracy. Inputs to the lo-
cal planner are a set of local goal candidates, provided by
the path execution module and notated as G, and sensor
data: the front laser scan o} _and odometry updates oy,. The
output of the local planner is an obstacle-free goal, denoted
by X ?. This goal is the input of the motion controller unit
that computes suitable commands for translational and ro-
tational velocities.

This approach would be sufficient for traversing flat
environments. This is not the case, as urban environments
contain features such as ramps, which the robot must be
able to navigate, and drops and staircases, which should be
avoided. Notably, a configuration of front and back lasers
only is not capable of navigating a ramp upward, as a ramp
is seen from its base as a wall at a distance determined by
the ramp’s slope and the laser’s mounting height. In ad-
dition, our robots suffer from the tilt problem, introduced
in Section 3, so that navigation on ramps, or even on flat
surfaces when accelerating or decelerating, is impaired as
well.

One possible solution lies in using an additional pla-
nar laser scanner somewhat tilted toward the ground, as
introduced in Wijesoma, Kodagoda, and Balasuriya (2004),
where it is used for detection and tracking of road curbs.
A similar approach is used in Morales et al. (2009) for
navigating cluttered pedestrian walkways. In the latter,
the authors use two planar laser scanners tilted toward the
ground so that on a flat surface the beams intersect the
floor at 1 and 4 m from the robot, respectively. This infor-
mation is used to perform traversable road extraction and
allows the robot to navigate on outdoor paths. We found
this technique challenging to implement on our robots for
two reasons. First, its application on two-wheeled robots is
much more involved than on statically stable robots, due to
the additional degree of freedom (pitch). Second, this ap-
proach requires the robot to move toward an area of space
to determine its traversability. This may negate one of the
main advantages of our platform: its ability to rotate on the
spot. We should also be able to ensure map consistency
in time and deal explicitly with occlusions and dynamic
obstacles.

We instead opt for a reactive solution, based on the
vertical laser scanner, positioned as explained in Section 3,
to perform traversability inference. We introduce the local
planner and motion controller first and later present the
traversability inference component. The obstacle avoidance
module’s block diagram is pictured in Figure 11.

Journal of Field Robotics DOI 10.1002 /rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 343

¢ -
oy ‘ gt
o Traversability OLp 1tH
”ff_ v - Inference —l
. ! Motion
OLr —— v, w
¥ Controller
; I
g Local Planner
oty —+ XF
Figure 11. Obstacle avoidance module with local planner,

motion controller, and traversability inference. o} " is the front
laser scan after traversability inference, and [y is the length of
the traversable surface in front of the robot.

8.1. Local RRT-Based Planner

The local planner has been implemented using a rapidly-
exploring random tree (RRT) (LaValle, & Ku, 2000). This
technique explores a workspace by incrementally build-
ing a tree, creating new branches by generating points ran-
domly in the workspace, and linking them to the closest
point already in the tree if an obstacle-free transition to
the point exists. The presence of obstacles is determined
by the front laser scanner. Range measurements are trans-
formed into Cartesian coordinates, and each point is made
into a circle with radius r, the clearance parameter for our
robot (half its width plus safety room), set to 1 m. The
search space S is restricted to sectors of a circle centered

on the robot with radius the distance to the goal, in or-
der to better deal with occlusions. The search sectors are
injtially restricted in angle, to favor solutions going for-
ward, and are expanded on each iteration until reaching the
maximum sensor workspace, determined by the laser scan-
ner’s aperture ®g (190 deg). That is, in polar coordinates
(.), fora goal XX, S = ((r. 9)Ir € [0, r¢], ¢ € [pmin. ¢max]),
where gmin = max{pg — @0, —Pr/2} and ¢max = min{y, +
@0, Pr/2}. We expand the search space around ¢ by Ag
in each direction every time a random point is generated,
whether it is possible to add it to the tree or not, while en-
forcing ¢ € [-Pp /2, Pg/2]. The parameter ¢y determines
the initial sector’s width and is set to 15 deg, and Ag is set
so that the whole search space will be used before we deter-
mine that there is no solution and the RRT is not allowed to
expand further.

Every time a new branch is added to the tree, we check
for an obstacle-free transition to the goal. If it exists, we
store the path to the goal and discard the rest of the tree. The
path is smoothed, if possible, by determining obstacle-free
transitions between pairs of points and eliminating redun-
dancies. The resulting path is denoted P. The first point in
the path is provided to the motion controller as its current
local goal, X jf. Note that while farther points may not be
reachable due to occlusions in the laser scan, this point is in
sight and thus guaranteed to be obstacle-free. The process
is illustrated in Figure 12.

We opt for RRTs for ease of use and efficiency. Un-
like potential fields or Voronoi-based approaches, or hybrid
techniques (Dolgov, Thrun, Montemerlo, & Diebel, 2010),
they do not offer a “best” solution. We defer this step to the
motion controller, whose only requirement is an obstacle-
free goal. As we do not perform any kind of feature

with clearance ., are depicted in red. The figure on the left shows the tree, in blue, after a few iterations. The figure in the middle
shows the tree after finding a solution. The figure on the right shows the RRT path in blue and the final, smoothed path in purple,

the first point of which is the obstacle-free goal X]13.

Journal of Field Robotics DOI 10.1002/rob

344 .« Journal of Field Robotics—2011

extraction or tracking, the local planning step is very fast
to compute.

As can be inferred from these constraints, we do not al-
low the robot to move backward. On one hand, our Segway
robots can rotate 180 deg with ease, which is preferable, and
second, the vertical laser scanner is a requirement for safe
navigation and is facing forward. If the goal is behind the
robot, we stop and rotate the robot until the goal lies within
sensor range. Likewise, if the local planner is unable to find
a path to the goal, we stop the robot and allow it to rotate
to attempt to find a solution. This process will be described
in Section 8.4.

8.2. Motion Controller

Our motion controller is based on the dynamic window
approach (Fox et al., 1997). This method circumvents the
complexity of the full path planning problem by consider-
ing small time increments periodically, at a high rate. The
approach considers only those configurations [in our case,
(v, w) pairs] reachable within a single time increment At for
the current state (the dynamic window), implicitly comply-
ing with the robot’s dynamic constraints. This workspace
is then discretized into a number of cells, for which an ob-
jective function G is maximized. This function considers a
trade-off between velocity, target heading, and clearance to
obstacles:

G(U,a)):ava(vaw)+a<pf<p(vvw)+acfc(vsa))-)
The clearance value function f, is a measure of time un-
til collision for the cell’s configuration, relative to the plat-
form’s breaking time, as proposed in Philippsen (2004). We
define

0 if teo1 < tstop
fcol — Istop

fe= if fstop < fcol < Tstop » (10)
Tstop - tstop
1

otherwise

where 7., is the time to collision if the robot continued in
a straight line, Zstop the time required to stop the robot at

min (o + aS™At, max)
A
. R — KR
max
mm(a),—l—aw At 3 _KA,wma
R R
rpnr =10
A
R+ K
max |w; + all™ At R
KB k4
R R
max(w; — al®™ At, —wmax)

maximum speed, and fstop the time required to stop the
robot at the current speed.

The value functions for velocity and heading, f, and
fo, are a measure of closeness to the configurations that
maximize translational velocity and minimize the angle to
the goal, respectively. The platform’s dynamics must be
incorporated into the velocity value function so as not to
overshoot the goal and into the target heading value func-
tion to avoid oscillations around the desired trajectory. We
achieve this by defining

Tr m
7T — Uy L d7g Ky — goal _ dgav ax (1)
stop a{,“ax) goal v s T Ts{op v? s
R @ R ¥s glgal Pl
Tstop = —max: ==, Kp= =—3—, (12)
P g™ goal @r Tslteop wt2

where v, and w; are the translational and rotational veloc-
ities of the robot and 4" and a;®* the maximum accel-
erations. K7 and Ky give us a measure of the difficulty of
stopping the robot in either case. For values of |K| > 1, the
robot may accelerate at the maximum rate, whereas for val-
ues greater than and close to 1, time to stop the robot is crit-
ical. We determined adequate acceleration rates for differ-
ent values of K7 and K and used them to devise a control
law experimentally, as we find the behavior of the Segway
robots to be highly dependent on external factors and thus
too hard to model. We define the target translational veloc-
ity U;4ar as

Vr4-At
min (v; 4+ a"™ Az, Vmax) if K7 > K2
Kr — KA
. T .
= { min {v; + a"** At B_KA,vmaX 1fK’TL\<KT<K75.
T T
max (v; — a™At, 0) if K < K$

(13)

Analogously, we define the target rotational velocity @4 a¢
as

if Kg > K5

ifKg <Kg <KB

if —Kg <Kp<Kg | (14)

if —KE <Kp<-Kjp
if Kp < —K5

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 345

Table I. Physical and practical limits for our Segway robots.

Vmax (M/s) ®max (rad/s) a™™ (m/s?) a™ (rad/s?)
Platform 44 3.15 Undetermined Undetermined
Our implementation 0.85 4 2.5

where K 7‘1‘, K f, K Iﬁ‘, and K g are derived experimentally
for our robot with its particular weight distribution. The
velocity and heading value functions are then a measure
of closeness to targets U;4a; and @;ya;, respectively. For
this we use simple triangular functions centered on the tar-
get values with a given width. The weight distribution for
the value functions depends on the robot’s capabilities and
the formulation of the value functions. Our implementation
is weighted as follows: o, = 1, oty = 2, ¢ = 3. Prioritizing
clearance to obstacles is typical, and weighting the heading
value function more than the velocity value function allows
for tighter bends, which our robot can do easily. We settled
on this distribution after some experimentation. The values
for maximum velocities and acceleration rates are provided
in Table I.

By Egs. (11) and (13), K ? is the parameter that deter-
mines when the robot starts decelerating, which may cause
the robot to overshoot the goal if it is too conservative.
In practice, the robot is commanded to stop whenever it
reaches the goal, decelerating at the platform’s maximum
rate. This happens likewise for Egs. (12) and (14) when we
set @;4s to 0 regardless of its current value. This violates
the limits listed in Table I, but not the platform limits, thus
still observing the dynamic window principle. We find that
this allows for better control of the platform.

8.3. Traversability Inference

False obstacles due to, for instance, ramps may be detected
by incorporating the localization estimate and using the 3D
map to identify the situation, but this solution dangerously
couples the robot’s reactive behavior to the robustness of
the localization process. This would compromise the safety
of our navigation system. Thus our approach is based on
the vertical laser scanner, used to infer whether the robot
can traverse this region of space. It also enables the robot to
detect some obstacles outside the field of view of the hori-
zontal laser scanners.

The campus features three different kinds of
traversable surfaces: flat, sloped with a relatively even
incline, and transitions from one to the other. The Gracia
environment does not feature noticeable changes in incli-
nation, while being sloped throughout. The vertical laser
observations in these environments can thus be modeled
with one or two line segments. Linear regressions are ex-
tracted from the sensor data by least-squares fitting, using
the average regression error to determine quality. Prior to

Journal of Field Robotics DOI 10.1002/rob

this computation, the vertical laser scan is preprocessed
by removing points beyond the range of the obstacle
avoidance module (8 m) or due to interference with the
robot chassis. The inference process is divided into three
steps, executed in order, and is terminated whenever one
of these steps produces a satisfactory solution. We consider
the following:

1. A single regression using all data.

2. Two regressions, using all data sorted over x and di-
vided into two sets by a threshold, for a set of thresholds
over x until conditions are met.

3. A single regression, iteratively removing the points far-
thest away from the robot over x until conditions are
met.

In any case, a maximum regression error and a minimum
regression length must be satisfied. In the second case two
additional conditions are enforced in order to ensure the
compatibility between segments: the vertical gap and the
angular difference between regressions must be sufficiently
small. These thresholds were determined empirically for
our sensors in the campus environment.

This inference process enables the robots to enter and
traverse ramps by removing points from the front laser scan
incorrectly indicating the presence of obstacles prior to lo-
cal planning. To do this, we use the linear regressions and
the front laser mounting height to determine where the
scanner’s central point should intersect the floor. We call
this distance the sensor’s horizon. Range measurements
are then transformed into Cartesian coordinates, and points
such that {X = (x, y)|x > x4, —yith <y < yn} are removed
from the scan. x;;, is shorter than the horizon to account for
noise, and y;;, determines the points to consider and is set
to 4 m. Results are shown in Figure 13.

The processed laser scan, o} ', is required by both
the local planner and the motion controller, as illustrated
in Figure 11. The length of the traversable surface Iy is
used as an additional parameter for the motion controller,
limiting the translational speed or directly stopping the
robot. The robot is also commanded to stop if the slope
is too steep for the platform. Staircases are easy to dis-
criminate when seen from the bottom, but from the top
the laser’s accuracy presents a problem and some obser-
vations are close enough to those of a ramp to fall under
the threshold. The staircase’s steep incline is then used to
disambiguate.

346 -

Journal of Field Robotics—2011

Mm) 2]
VS S D R R e s i A N I s D
¥ [m] ¥ [m] ¥ [m]
154y" [m] 154y7 [m] 154y [m]
10+ LY 104 10+
.
5 ’ 5
= -
T 10 2 T =40 <+ .
3 =i - o 1
-5 4 . -5 1-
i L
!‘r i
104+ 4 -104 -104
151 a5 154

Figure 13. Demonstration of the traversability inference component on the campus site. The first row shows the action captured
by a handheld camera, for reference. The second row shows the vertical laser scan as green dots and the linear regressions in red.
Note that the coordinate frame in this figure is that of the laser scanner. Vertical lines indicate the central range measurement for
the front laser in green, the horizon in blue, and the actual threshold applied over the front laser range data in red. The third
row shows the front laser scan after filtering, where points in the green area are to be ignored. The first column shows the robot
attempting to enter a ramp. In the second column, the robot is already traversing the ramp, its visibility reduced to approximately
2.5 m. The red dots in front and to the right of the robot correspond to pedestrians. The third column shows the tilt problem of
our Segway robots on a flat surface. In any of these situations the robot would be unable to reach the goal without traversability

inference.

8.4.

The different components of the obstacle avoidance mod-
ule are integrated as diagrammed in Figure 14. First, we
check for new goal candidates G from the path execution
module. If none exists, we update the current set of goal
candidates with odometry updates only, closing the reac-
tive loop. We also update the RRT path, if any. If the robot
has reached the goal, it stops and waits for further instruc-
tions. Otherwise, we perform traversability inference over
the vertical laser scan o’LV, obtaining a filtered laser scan,

Integration

o’LHl, and the length of the traversable surface in front of

the robot, Ig. If [y is too small, the robot enters recovery
mode: it stops and then turns around in the direction of the
goal (¢g). After a certain number of iterations stuck in this
step, we desist and notify upper level modules. This step is
required due to the robot’s limited perception capabilities
and is equivalent to sweeping the space around the robot
with the vertical laser scanner. The rotation is controlled by
a version of the motion controller that allows only for (v, w)
pairs such that v = 0.

If no new front laser scan is available, we use the com-
mands computed in the last iteration. This does happen, as
the module runs at a frequency higher than the horizontal

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 347

gJ’lJ - updnlc[a},—. gl’t!— l}

P = update(of,. PA41)
v
Yos Goal Mo
achisved

I (lir,0f,") = traversabilityInf(o}, ., o}) I

v

Mo Yo

Pt = RRT(o,’, 65) XF = nextPathPoint (P XF=ght
L] 20
pht
Xf=pi
b k. “I‘ = 1,,1 -1
(v,) = stop() (.1} = recovery(ip,) (v',") = DWA(XF, o}, ur) wlm
warningConnter4 4

Figure 14. Obstacle avoidance module diagram. Parameters are goal candidates from the path execution module G**, laser scans
o} and o} ,and odometry updates of,. The process stores the last set of goal candidates G*'~! and the last path computed by the
local planner P®~1. Blocks painted blue, green, and red belong to the traversability inference algorithm, the local planner, and the
motion controller, respectively. Gray blocks are process logic.

laser scanners and lower than the vertical scanner. Other- 1. First, we check for line of sight to any goal candi-
wise we proceed to local planning. If the goal is behind, we date, in the order determined by the path execution
want the robot to rotate until it lies within sensor range, us- module.

ing again recovery mode. If the goal is within sensor range, 2. If a path, updated by odometry data, exists and is valid
we attempt to find a path to a goal candidate in three ways, for the current laser scan, we follow it.

stopping when a valid solution is found: 3. Otherwise, we try to find a new path to a goal candidate.

Journal of Field Robotics DOI 10.1002/rob

348 « Journal of Field Robotics—2011

Table ll. Experimental results (1).

Place and date D (m) Inav (S) Ifree (S) foa (S) tstop (S) Irot (S) ROA (0/0) b (m/s)
Gracia, 20 May 2010 777.7 1,107.9 978.9 40.1 15 739 13.2 0.71
Campus, 3 Jun 2010 858.5 1,056.2 903.3 91.9 19.9 411 14.5 0.81
Campus, 22 Jun 2010 2,481.8 3,426.3 2,481.1 541.3 174.3 229.6 27.6 0.72
Campus, 23 Jun 2010 2,252.5 2,727.3 2,325.8 186.8 75.4 139.3 14.7 0.83
Accumulated 6,370.5 8,317.7 6,689.1 860.1 284.6 483.9 19.6 0.77

If the local planner cannot find a solution, we enter re-
covery mode. This happens especially when a pedestrian
walks right in front of the robot and remains too close for
the robot to move. In this case, we allow it to rotate.

9. EXPERIMENTS AND ASSESSMENT OF RESULTS

The navigation system was validated over the course of
four experimental sessions, one on the Gracia site and three
at the campus. An external computer, connected to the
onboard computer via wireless, was used to send man-
ual go-to requests (XY coordinates over the map) to the
navigation system and for online monitoring using our
graphical user interface (GUI). Note that these are high-
level requests, equivalent to “send a robot to the south-
east door of the A5 building.” Goals in the experiments
include both long distances across the campus (the longest
possible path between two points being around 150 m)
and goals closer to each other to force the robot (and thus
the path planning algorithm) through more complex sit-
uations such as around the trees in the square or around
the columns in the A5/A6 buildings. Requests were often
chained to keep the robot in motion, sending the robot to a
new location just before reaching the current goal. We typ-
ically chose closer goals to keep some control over the tra-
jectories and have the robot explore all of the area.

Run time for all experiments added up to 2.3 h, with
more than 6 km of autonomous navigation. We set a speed
limit of 0.75 m/s for the first session and increased it to
0.85 m/s for the following three sessions—note that this
is a soft limit, and the robot often travels faster due to its
self-balancing behavior. We used Tibi and Dabo without
distinction.

Results are displayed in Tables II and III. Table II lists
the navigation distance D, as estimated by the localization

module, and the total navigation time th,y, understood to
be that spent with the robot attending to a go-to request.
This measure is divided in time spent on obstacle-free nav-
igation tfre, active obstacle avoidance 1o, safety stops stop,
and rotation on recovery mode tyt. The ratio Roa is a
measure of the time spent avoiding obstacles, computed
as Roa = (toa + tstop + trot)/thav, and 1 is an estimation of
the average translational speed computed using the previ-
ous values, b = D/tnay. Table Il displays the number of re-
quests and failures and success rate, as well as the average
navigated distance per request d req-

We were allowed 3 days (mornings only) to conduct
experiments at the Gracia site, the last of which was ded-
icated to a public demonstration, and so the scope of that
session is limited, totaling less than 1 km of autonomous
navigation. Even so, it must be noted that, due to time con-
straints, these experiments were conducted with little to no
prior on-site testing. Moreover, although part of the area
was fenced, many pedestrians and bicyclists disregarded
instructions and crossed the area anyway. This proves the
robustness of our navigation system in new environments
under similar conditions.

The four runs are plotted in Figure 15. For the session
at the Gracia site, we fenced the rightmost passageway and
allowed pedestrians and bicyclists to use the one on the
left. The rest of the area was left as is except for four fences
placed below the monument, at y = 20 (Figure 15, top left),
as a safety measure. The second session, already at the cam-
pus site, starts at (90,38) and ends at (17,69) when the robot
encounters a large section occupied by public works and
thus unmapped. In the third session, we ventured once
to the passageway between the C and D buildings, which
is on the verge of the experimental area and was roughly
mapped, and hence we did not revisit. We also had the op-
portunity to navigate the narrow passageway to the right

Table lll. Experimental results (2).

Place and date Requests (#) cfreq (m) Errors (#) Success rate (%)
Gracia, 20 May 2010 33 23.6 0 100
Campus, 3 Jun 2010 23 37.3 0 100
Campus, 22 Jun 2010 55 45.1 0 100
Campus, 23 Jun 2010 60 37.5 2 96.7
Accumulated 171 37.3 2 98.8

Journal of Field Robotics DOI 10.1002/rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments e

Giribcia, 20-May-2010
oo} ; |s? .

=N

i {mi}

—ema—e

20 =T 0 0 = 30)
x (mj}

UPC Campus, 22=Jun-2010

¥ (m)

of the FIB square, which is usually occupied by the cafete-
ria’s terrace. Please note that areas where the localization
estimate is within a building, such as A5, A6, and C6, are
covered (Figure 2, picture number 2).

The fourth run contains the only two errors we en-
countered. Both are related to the localization algorithm
and were mainly due to features of the terrain. These two
failures are analyzed in detail below.

The first and second sessions are documented by one
video each, available in the online version of this article.
The video for the second session contains the session in its
entirety. Figure 16 provides a sample screenshot with an ex-
planation of the different data shown.

All navigation processes run concurrently on a single
laptop. The localization process runs at 5 Hz, and the ob-
stacle avoidance process runs at 10 Hz. Traversability in-
ference is typically computed in less than 1 ms, whereas
the local planner takes 1-10 ms per iteration, up to about
50 ms for the worst-case scenario (five goal candidates, no
solution). The computational cost for the dynamic window
computation depends on its granularity, taking an aver-
age of 10 ms for 175 cells. The path execution module car-
ries a negligible computational load, and the path planning
module is executed only upon a go-to request and takes

Journal of Field Robotics DOI 10.1002/rob

349

UPC Campus, 3-Jun-2010

M

FQp e

== ===
| 5N '

|~ g~ -
m"y%

¢ 1| _‘\f"_|

i 1
AS AB
20 |

u(m)

¥ im)
] ™

UPC Campus, 23-Jun-2010

 {mi

i)
Figure 15. Localization results for the four experimental sessions. Red circles in the bottom right figure mark failure points.

approximately 1 s, which does not interfere in real-time
navigation.

Having failures gives us the chance to learn, advance,
and improve our system. Therefore, we provide insights
into the two localization failures that occurred during the
last session, at the campus site. This analysis was made
possible by the offline study of the logged data for that
session, automatically stored by our software framework.
Our localization module can be run offline using dummy
sensors, which publish logged sensor data under the same
interfaces as during online executions, while keeping syn-
chronization. This allows us to run new real-time, offline
executions of the localization process with the data col-
lected during online executions.

The first failure happened approximately at the XY
point (90,50). The robot was traveling from left to right
along y =38 and turned to its left to go up the ramp
at x =90 (Figure 15). The turning point can be seen in
Figure 2, picture number 3. After turning, the localization
uncertainty grew larger, while the position estimate devi-
ated very clearly from the true position as perceived by the
team members, finally causing a navigation error. This was
due to two causes. First, the robot passed over a big terrain
irregularity (a crack on the pavement) just before starting

350 -

Journal of Field Robotics—2011

[xm=30.0

Figure 16. Sample screenshot. Clockwise, starting from the top left: (1) 3D map from the localization viewpoint, (2) handheld
camera, (3) vertical laser and regressions, (4) horizontal laser scans in green and expected front laser scan in red, (5) logo, (6) obstacle
avoidance and path execution output, (7) path planning output (red) and particle set from the localization algorithm (blue), and
(8) path planning (red), accumulated odometry (green), and localization estimate (blue) on the full 2D map, for reference.

the turning maneuver, reported by odometry data as a pe-
riod with high roll oscillations (Figure 17) and noisy head-
ing increments. Our current approach constrains the roll
component to the 3D model, assuming that the platform is
arigid body, so that roll oscillations caused by surface irreg-
ularities are not tracked well by the filter, as can be seen in
Figure 17. Second, this happened around the bottom-right
corner of the B6 building, which has large, floor-to-ceiling
glass windows, which we modeled as walls. Offline inspec-
tion of the front laser data shows how in many instances
the laser beam penetrates the windows before the robot
turns to face the ramp (Figure 17). Modeling this behavior
would require a complex observation model, because it de-
pends on outdoor and indoor window lighting, as well as
on ray incidence, this being one of the main limitations for
laser devices. Figure 17 also shows the presence of three
pedestrians (team members) close to the robot, blocking
three important sectors of the back laser scan. The odom-
etry issue led to noisy particle propagation, and the laser
issue led to poor filter correction. The combination of the
two events caused a localization error. We have performed
20 real-time, offline executions of the localization filter at
this point with the logged data, resulting in a failure ra-
tio of 45%, clearly indicating that this was a challenging
situation.

The second localization failure was due to faulty
odometry data, again after passing over a big terrain ir-
regularity. Our localization approach can filter noisy data

peaks, but this case was extreme as odometry data were
clearly incorrect for both translation and rotation for ap-
proximately 1.2 s, providing odometry increments around
0.4 m and —8 deg for an odometry acquisition period of
Todo = 0.1 s. These data are clearly erroneous as the robot
was at this time moving straight ahead at a speed of ap-
proximately 1 m/s (Figure 18). This was the first time that
such an error was reported on our platforms, and the local-
ization filter did not check the coherency of odometry data
before using them for particle propagation [see Eq. (4)]. Us-
ing faulty data for about six consecutive iterations caused
the localization estimate to advance and turn right with no
chance for recovery in the filter’s correction step. This can
be clearly seen in Figure 15, where the robot jumped from
(16,37) to (13,42). After acknowledging the error, we relo-
calized the robot manually and resumed the experiments;
hence the second jump to the correct position. The terrain
irregularity that caused this error was another crack in the
pavement. These are frequent throughout the campus and
occasionally cause the robot to take a small jump and thrash
sideways. This behavior can be seen in the campus video.

These two failures teach us that robust navigation is
still an open issue for mobile robots operating in urban
pedestrian areas. We are currently working on improving
the localization module in several directions:

® Use the translational and rotational velocities pro-
vided by the Segway platform instead of the odometry

Journal of Field Robotics DOI 10.1002 /rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments e

351

15r’rml 15 ly"[m]

10 10

=
Q
=, \
= ; . < Im)
i —r 05— o 1s
s-
IDJ' 10
-15 154
154y [m] 15 447 [m]
10
5 4
\ 1 E * [m] . =% [m]
15 10 e _?'. 5 10 15:15=— =10 5 10 15
‘5-
-10
T T T T T T 15 .151
300 302 304 306 308 310
7ls]

Figure 17. Left: Pitch (top) and roll (bottom) data provided by the platform (red) and estimated (blue) at the surroundings of the
first failure. Right: Four consecutive laser scans just before the failure. Note how the front laser beams penetrate in many instances
the windows at y® ~ 6 m and the pedestrians blocking three large sectors of the back laser scan.

increments, in order to avoid the integration of faulty
odometry data. Velocities are the outcome of an embed-
ded filter and as such are more stable (Figure 18).

® Integrate the roll increment provided by the platform in
the propagation step, as is done for pitch. In the correc-
tion step, we plan to add a similarity function related
to the expected roll, given (x, y, #) and the gravity con-
straint on the floor map.

® Investigate the trade-off between the number of particles
and the filter rate. Relaxing the filter rate, while keep-
ing the navigation requirements, leads to the possibility
of increasing the number of particles, thus exploring a
larger area of the state space.

An early, improved version of the particle filter is giv-
ing promising results after a series of real-time, offline
executions when the robot passes over the two failure
situations.

10. LESSONS LEARNED AND FUTURE WORK

Despite many recent advances, reliable autonomous nav-
igation in urban, pedestrian environments remains a ma-
jor challenge in robotics. This paper presents a solution
geared toward two-wheeled robots, highly mobile and with
a small footprint, and deals effectively with problems in

Journal of Field Robotics DOI 10.1002/rob

both perception and control due to their self-balancing be-
havior. It has been extensively tested in two different urban
scenarios, covering more than 6 km with a 99% success rate.

The main issue to be addressed in the future is one
of perception. We rely on 2D laser scanners for localiza-
tion and obstacle avoidance because (1) they provide an
immediate perception stage with no need for feature extrac-
tion and (2) they are robust to varying illumination condi-
tions. On the downside, they are by definition limited to
a 2D plane. This impairs the visibility of horizontal laser
scanners on urban scenarios with ramps, which has been
addressed by means of the vertical laser scanner and the
traversability inference algorithm. But obstacles outside ei-
ther plane remain a problem. We find in practice that ob-
jects or terrain features lying low on the floor, such as curbs
or steps, are the most problematic, as the vertical scanner
can sense only forward and the wheels extend approxi-
mately 30 cm to either side. 3D laser scanners are costly
and bulky, and current time-of-flight cameras are not us-
able under direct sunlight. We plan to explore the use of
multiple laser scanners tilted to the floor to build local ob-
stacle maps, using feature matching and/or in conjunction
with the localization estimate. Note that with this configu-
ration the platform’s tilt would again pose a problem and
the mobility of the robot may be reduced because of blind

352 .

Journal of Field Robotics—2011

vl [deg]

vyldeg)/s]

517 518 519

520 521 522
7{s]

Figure 18. Odometry increments and velocities provided by the Segway platform during the second localization failure. Acqui-
sition period is Toqo = 0.1 s. After a first peak in translation at r = 518.8 s, odometry increments are faulty during the time period
[519.3, 520.5] s, while platform velocities remain coherent. The robot was moving straight ahead at approximately 1 m/s.

spots when turning on its axis, as explained in Section 8.
We would also have to deal with occlusions and dynamic
obstacles explicitly. We also plan to explore the use of stereo
cameras in hybrid laser-camera solutions, for both localiza-
tion and obstacle avoidance.

Future research also includes the identification and
tracking of moving objects for better motion planning
on the local domain and the extension of the path plan-
ning and path execution algorithms from 2D to 3D. The
latter would enable us to deal with multilevel environ-
ments: whereas the campus setting presents great varia-
tions in height, there is at most one traversable surface
for a (x, y) point. Higher level extensions include the seg-
mentation of unmapped objects for incorporation to the

3D map, by extending past and current work on mapping
the campus area (Valencia, Teniente, Trulls, & Andrade-
Cetto, 2009). The robot may then deal with situations such
as the one encountered in the second experimental ses-
sion, in which most of a passageway was blocked by pub-
lic works (see the end of the campus video). Lower level
work includes redesigning the robot to reduce its weight
and accomplish a better response, specially when travers-
ing ramps.

APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS

The videos are available as Supporting Information in the
online version of this article.

Journal of Field Robotics DOI 10.1002 /rob

Trulls et al.: Autonomous Navigation for Mobile Service Robots in Urban Pedestrian Environments o 353

Extension = Media type Description

1 Video Session 1: Gracia, 20 May 2010
2 Video Session 2: Campus, 3 June 2010
ACKNOWLEDGMENTS

This research was conducted at the Institut de Robotica
i Informatica Industrial of the Universitat Politécnica
de Catalunya and Consejo Superior de Investigaciones
Cientificas. It was partially supported by project IST-045062
of the European Community Union, by Consolider Inge-
nio 2010 MIPRCYV, project CSD2007-00018, and by CICYT
project DPI2007-61452. E. Trulls is supported by a scholar-
ship from Universitat Politecnica de Catalunya.

REFERENCES

Arras, K., Castellanos, J., Schilt, M., & Siegwart, R. (2003).
Feature-based multi-hypothesis localization and tracking
using geometric constraints. Journal of Robotics and Au-
tonomous Systems, 44, 41-53.

Arulampalam, M., Maskell, S., Gordon, N., Clapp, T., Sci, D.,
Organ, T, & Adelaide, S. (2002). A tutorial on particle
filters for online nonlinear/non-gaussian Bayesian track-
ing. IEEE Transactions on Signal Processing, 50(2), 174—
188.

Corominas Murtra, A., Mirats-Tur, J.,, Sandoval, O., &
Sanfeliu, A. (2008, November). Real-time software for
mobile robot simulation and experimentation in coop-
erative environments. In Proceedings of the Simulation,
Modelling and Programming for Autonomous Robots
(SIMPAR'08), Lecture Notes on Artificial Intelligence,
Venice, Italy.

Corominas Murtra, A., Trulls, E., Mirats-Tur,], &
Sanfeliu, A. (2010, November). Efficient use of 3D
environment models for mobile robot simulation and
localization. In Proceedings of the International Confer-
ence on Simulation, Modelling and Programming for
Autonomous Robots (SIMPAR’10), Lecture Notes on
Artificial Intelligence, Darmstadt, Germany.

Corominas Murtra, A., Trulls, E., Sandoval, O., Pérez-Ibarz, J.,
Vasquez, D., Mirats-Tur, J. M., Ferrer, M., & Sanfeliu, A.
(2010, May). Autonomous navigation for urban service
mobile robots. In Proceedings of the IEEE International
Conference on Robots and Systems, Taiwan, Republic of
China.

Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010).
Path planning for autonomous vehicles in unknown
semi-structured environments. International Journal of
Robotics Research, 29(5), 485-501.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential
Monte Carlo methods in practice. New York: Springer
Science.

Journal of Field Robotics DOI 10.1002/rob

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window
approach to collision avoidance. Robotics & Automation
Magazine, 4(1), 23-33.

Georgiev, A., & Allen, P. (2004). Localization methods for a mo-
bile robot in urban environments. IEEE Transactions on
Robotics and Automation, 20(5), 851-864.

Haddad, H., Khatib, M., Lacroix, S., & Chatila, R. (1998,
May). Reactive navigation in outdoor environments us-
ing potential fields. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, Leuven,
Belgium.

Khatib, M., & Chatila, R. (1995, March). An extended poten-
tial field approach for mobile robot sensor-based mo-
tions. In Proceedings of Intelligent Autonomous Systems,
Karlsruhe, Germany (pp. 490-496).

Khatib, O. (1986). Real-time obstacle avoidance for manipula-
tors and mobile robots. International Journal of Robotics
Research, 5(1), 90-98.

Latombe, J. (1991). Robot motion planning. Norwell, MA:
Kluwer Academic Publishers.

LaValle, S., & Ku, J. (2000, March). Rapidly-exploring random
trees: Progress and prospects. In Algorithmic and com-
putational robotics: New directions. Fourth Workshop on
the Algorithmic Foundations of Robotics, Hanover, NH.
Natick, MA: AK Peters, Ltd.

Levinson, J., Montemerlo, M., & Thrun, S. (2007, June). Map-
based precision vehicle localization in urban environ-
ments. In Proceedings of the Robotics: Science and Sys-
tems Conference, Atlanta, GA.

Luettel, T., Himmelsbach, M., Hundelshausen, F. V., Manz,
M., Mueller, A., & Wuensche, H.-J. (2009, October). Au-
tonomous offroad navigation under poor GPS conditions.
In Proceedings of the IROS 2009 3rd Workshop on Plan-
ning, Perception and Navigation for Intelligent Vehicles,
St. Louis, MO.

Metta, G., Fitzpatrick, P, & Natale, L. (2006). YARP: Yet an-
other robot platform. International Journal on Advanced
Robotics Systems, 3(1), 43-48.

Minguez, J., & Montano, L. (2004). Nearness diagram (ND)
navigation: Collision avoidance in troublesome scenarios.
Transactions on Robotics and Automation, 20(1), 45-59.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dol-
gov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann,
G., Huhnke, B., Johnston, D., Klumpp, S., Langer, D.,
Levandowski, A., Levinson, J., Marcil, J., Orenstein, D.,
Paefgen, J., Penny, I, Petrovskaya, A., Pflueger, M.,
Stanek, G., Stavens, D., Vogt, A., & Thrun, S. (2008). Ju-
nior: The Stanford entry in the Urban Challenge. Journal
of Field Robotics, 25(9), 569-597.

Morales, Y., Carballo, A., Takeuchi, E., Aburadani, A., &
Tsubouchi, T. (2009). Autonomous robot navigation in
outdoor cluttered pedestrian walkways. Journal of Field
Robotics, 26(8), 609-635.

Nuske, S., Roberts, J., & Wyeth, G. (2009). Robust outdoor
visual localization using a three-dimensional-edge map.
Journal of Field Robotics, 9(26), 728-756.

OBJ. (-). OBJ file format. http://local.wasp.uwa.edu.au/
~pbourke/dataformats/obj/. Accessed 24 February 2011.

354 .« Journal of Field Robotics—2011

OpenGL. (-). OpenGL website. http://www.opengl.org.
Accessed 24 February 2011.

Philippsen, R. (2004). Motion planning and obstacle avoid-
ance for mobile robots in highly cluttered dynamic en-
vironments. Ph.D. thesis, reference number 3146, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland.

Rauskolb, F. W,, Berger, K., Lipski, C., Magnor, M., Cornelsen,
K., Effertz, J., Form, T., Graefe, F.,, Ohl, S., Schumacher,
W., Wille,].-M., Hecker, P, Nothdurft, T., Doering, M.,
Homeier, K., Morgenroth, J., Wolf, L., Basarke, C., Berger,
C., Glke, T., Klose, F., & Rumpe, B. (2008). Caroline: An au-
tonomously driving vehicle for urban environments. Jour-
nal of Field Robotics, 25(9), 674-724.

Sanfeliu, A., & Andrade-Cetto, J. (2006, October). Ubiquitous
networking robotics in urban settings. In Proceedings of
the IEEE/RS] IROS Workshop on Network Robot Sys-
tems, Beijing, China.

Sanfeliu, A., Andrade-Cetto, J., Barbosa, M., Bowden, R.,
Capitén, J., Corominas Murtra, A., Gilbert, A., Illingworth,
J., Merino, L., Mirats-Tur, J. M., Moreno, P, Ollero, A.,
Sequeira, J., & Spaan, M. (2010). Decentralized sensor fu-
sion for ubiquitous networking robotics in urban areas.
Sensors, 10(3), 2274-2314.

Simmons, R. (1996, April). The curvature-velocity method
for local obstacle avoidance. In Proceedings of the IEEE
International Conference on Robotics and Automation,
Minneapolis, MN (vol. 4).

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics.
Cambridge, MA: MIT Press.

Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust
Monte Carlo localization for mobile robots. Artificial In-
telligence, 128, 99-141.

URUS. (-). URUS project website. http://urus.upc.edu.
Accessed 24 February 2011.

Valencia, R., Teniente, E. H., Trulls, E., & Andrade-Cetto, J.
(2009, October). 3D mapping for urban service robots. In
Proceedings of the IEEE/RS] International Conference on
Intelligent Robots and Systems, St. Louis, MO (pp. 3076—
3081).

Wijesoma, W. S., Kodagoda, K. R. S., & Balasuriya, A. (2004).
Road-boundary detection and tracking using ladar sens-
ing. Transactions on Robotics and Automation, 20(3), 456—
464.

Yun, J., & Miura, J. (2007, April). Multi-hypothesis outdoor
localization using multiple visual features with a rough
map. In Proceedings of the IEEE International Conference
on Robotics and Automation, Rome, Italy.

Journal of Field Robotics DOI 10.1002/rob

