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This work presents an experimental method for visualizing and analyzing machine-soil interactions, namely the
soil optical flow technique (SOFT). SOFT uses optical flow and clustering techniques to process images of soil
interacting with a wheel or tool from photos taken through a glass wall of a soil bin. It produces results that are
far richer than past approaches that utilized long-exposure photography. It achieves a performance comparable
to particle image velocimetry or particle tracking velocimetry, but without the need for specialized measurement
equipment or specially marked soil particles. The processing technique demonstrates robustness to different
soil types. Ground-truth and cross-validation experiments exhibit subpixel accuracy in estimating soil motions.
An example of an application of this technique for field robotics research is the detailed study of push-rolling
for slope climbing and soft soil traverse. Push-rolling advances a vehicle by rolling a subset of its wheels while
changing its wheelbase to keep the other wheels static and pushing against the ground. Experiments show that
push-rolling achieves higher net traction than conventional rolling. Observing the two aspects of push-rolling
(rolling and horizontal pushing) using SOFT shows that they result in entirely different forms of soil shearing
(“grip failure” and “ground failure,” respectively). SOFT also demonstrates how the direction of soil motion
is more efficiently utilized for horizontal thrust by pushing than conventional rolling. Ongoing work utilizing
SOFT has also demonstrated its potential use in studying excavation tool interactions, the effects of grousers on
wheel efficiency, as well as a variety of other wheel-soil interactions. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Field robots, as well as other off-road vehicles and machines,
are often required to traverse or work in granular soil.
Wheels are commonly used in off-road applications that
span construction, mining, agriculture, recreation, military
operations, and planetary exploration. The wheels’ inter-
action with the terrain governs performance; traction, slip,
sinkage, and soil transport directly influence a machine’s
ability to climb slopes, traverse soft ground, and push tools
through the soil.

The effect of wheel design parameters (geometry, sur-
face features, compliance, control modes) on soil interaction
(soil flow, thrust, and resistance) and overall performance
(trafficability, efficiency) are not yet understood in sufficient
detail, as evidenced by continued activity in the field of ter-
ramechanics. The goal of this work was to create a system
that enabled visual analysis of the wheel-soil interactions,
allowing the effects of design changes to be observed quali-
tatively and quantitatively. While the focus of this work was
on evaluating wheel-soil interactions, the methods could

also be used to study other machine-soil interactions, such
as those of tracks and excavation tools.

Observing subsurface soil motion near the machine-
soil interface provides critical information about how soil
is interacting with wheels and tools that cannot be gleaned
from observing the soil surface. Normally, it is not possi-
ble to look through soil at subsurface particles. However,
experiments with implements up against a glass-sided soil
bin can provide insight into specific modes of soil shearing,
the direction of soil flow (and the existence of forward flow
regions, for example), and other phenomena.

Direct observation of soil motion through glass side-
walls has been utilized in soil mechanics and terramechan-
ics research for over half a century (Bekker, 1948). A half-
width test implement is placed up against the glass, and
correspondingly half the payload weight is applied. When
this half-width implement is driven along the glass wall,
it simulates a full implement in unconstrained conditions
with the same ground pressure. Wong concluded experi-
mentally that as long as shear stress between glass and soil
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is negligible, the glass surface acts as a plane of symmetry
and the soil behaves as it would directly below an imple-
ment twice as wide (Wong, 1967; Wong & Reese, 1966).

One archetypical photographic method for observing
soil motion uses long-exposure photos and distinguishes
sharp and streaking soil grains as stationary and moving,
respectively. Streaks in the photos also provide information
about the directions of soil motion. This is the technique that
was used by Bekker, Wong, and others, including Harrison
(1973).

More recently, researchers in the fields of soil mechanics
and geotechnical studies have applied imaging techniques
adapted from fluid flow experiments, including particle
image velocimetry (PIV) and particle tracking velocimetry
(PTV) (Gnanamanickam et al., 2007; Murthy et al., 2009;
White et al., 2003). These techniques, however, make use of
specialized equipment such as high-speed cameras, pulsed
lasers, or multiphase LED lamps (Cowen & Morismith,
1997; Gnanamanickam et al., 2007), and/or they require ref-
erence markers or specially colored sand (Gachet et al., 2003;
White et al., 2003).

In addition to imposing stringent equipment and soil
preparation requirements, prior techniques have also had
to sacrifice data resolution and accuracy. PIV techniques
divide images into a grid, and they estimate velocity just
once per grid square (Gachet et al., 2003; White et al., 2003).
With typical grid sizes on the order of 8 × 8 to 30 × 30 pixels,
this results in approximately 1,000–3,000 data points per
image. Optical flow techniques presented here calculate a
data point at each pixel, resulting in closer to 1,000,000 data
points per image. In PIV, there is also a tradeoff between
resolution and accuracy. White achieves 95% error bounds
of 0.02 pixels only if restricting measurements to large grids
and thus fewer than 250 data points; motion at any of the
pixels not at the center of a grid can at best be interpolated.
To reach 2,500 data points with a finer grid spacing, the
95% error bound grows beyond 1 pixel and indeed is larger
than the measured motion signal (White et al., 2003). The
optical flow technique presented in this work achieves low
subpixel errors (fewer than 0.3 pixels) while calculating a
data point at every pixel, as will be shown in Section 3.

The objective of this work was to develop and evaluate
an experimental technique that produces rich soil flow data
using just a digital camera. A technique is sought that would
not require special soil preparation, and that can accomplish
the required processing using readily available software al-
gorithms. This would make the study of machine-soil in-
teractions both more data-rich than ever before and more
widely accessible to researchers.

The work presents the soil optical flow technique
(SOFT). This analytic technique is based on optical flow, a
dense motion estimation algorithm (i.e., calculated at each
pixel) developed in computer vision. Murthy did a pre-
liminary study of applying optical flow to displaced soil,
but it still required initial (sparse) estimates of the motion

collected using a high-speed camera and multiphase LED
lamps (Gnanamanickam et al., 2007; Murthy et al., 2009).
The optical flow algorithm applied here is robust enough to
be used alone.

Previous work by the authors has already demon-
strated preliminary results of SOFT’s utility. It has been
used to study how soil failure under wheels is modi-
fied when implementing a novel inching locomotion mode
(Moreland et al., 2011). It has also been used to study the
effects of grousers on wheel traction (Moreland et al., 2012;
Skonieczny et al., 2012). This work develops SOFT in detail
and characterizes its performance quantitatively.

The hardware and software implementation of SOFT is
detailed in Section 2. Section 3 presents error analyses that
quantify the performance of this method. Section 4 demon-
strates applications of the technique to the design and op-
eration of field robots. Section 5 reviews conclusions, and
outlines ongoing and future work.

2. DESCRIPTION OF THE SOIL OPTICAL
FLOW TECHNIQUE

This section describes both the software and hardware de-
velopment of SOFT.

2.1. Hardware Setup

The experimental system, shown in Figure 1, drives a sin-
gle wheel though granular terrain and allows for the soil
particle reactions to be observed. The system consists of
a glass-walled soil bin, a motor-driven wheel, a horizon-
tally driven carriage, and a digital camera. Wheel rotation is
velocity-controlled in coordination with the carriage travel
to create a controlled slip rate between the wheel and the
terrain. Note that slip rate is defined as

Slip rate = 1 − vcarriage

rω
(1)

where vcarriage is the horizontal speed of the carriage, r is
the wheel radius, and ω is the wheel’s angular velocity. The
wheel is connected to a vertical rail system, so its vertical
travel is unconstrained. This allows for deadweight payload
to be applied, and for the wheel to sink naturally into the
terrain. The system may be alternatively configured to test
other implements, such as tracks or excavation tools.

The motions of the test implement and soil are observed
through a sheet of high hardness tempered glass that ex-
tends the depth of the soil bin. A half-width test implement
is placed against the glass without normal pressure (no hori-
zontal preload was applied to the wheel against the glass) to
keep the interface friction low. Lack of scratching or mark-
ing suggests negligible friction. If lower shearing resistance
is ever required, the inside of the glass can be lubricated
with silicone wax (Gachet et al., 2003; Witney, 1968).

A digital camera with a 50 mm macrolens is used to
image the soil in the region where it interfaces with the
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Figure 1. Experimental system for studying wheel-soil interactions using SOFT.

Table I. Soil parameters for GRC-1 and Fillite.

Soil type GRC-1 Fillite

Particle size range 0.05–2 mm 0.005–0.5 mm
Median particle size 0.3 mm 0.1–0.2 mm
Bulk density 1,600–1,900 kg/m3 350–450 kg/m3

test implement. The camera travels with the implement in
the horizontal direction as the carriage moves. The cam-
era is pointing downward and views the region of interest
through an angled mirror. The mirror arrangement is nec-
essary for this particular setup, because there is not enough
space for the camera to be mounted with a direct view. Two
external halogen flood lights are placed approximately 1 m
from the soil bin to provide constant illumination, high con-
trast, and reduced shadows. The lights are pointed at a high
angle from the normal of the glass to avoid direct reflection
into the camera.

Soil motion tests have been conducted on two distinct
types of homogeneous soil to date, without needing to mod-
ify the technique or computations used. These soils include
GRC-1, a relatively coarse lunar soil simulant (Oravec et al.,
2010), and Fillite, commercial low-density aluminosilicate
microspheres. Particle sizes and densities for GRC-1 and
Fillite are given in Table I. Raw images from tests with these
soils are shown in Figure 2.

Table II shows typical system parameters used for
wheel testing.

2.2. Overview of Processing Technique

An overview of the SOFT processing technique is presented
in Figure 3. The images from the test sequence are converted
from color to black and white, and each sequential image
pair is processed. Optical flow computes displacements be-
tween the image pairs at each pixel, in units of pixels; this
step is described in detail in Section 2.3. Next, data are trans-
formed to an inertial reference frame by subtracting the hor-
izontal motion of the camera from the computed horizontal
flow. Considering that most of the soil is static relative to the
experimental apparatus, the median horizontal component
of velocity of the soil moving through the camera’s field of
view is used to estimate the camera motion.

The displacements at each pixel, now in an inertial ref-
erence frame, are translated into polar coordinates (magni-
tude and direction) and are multiplied by frame rate and
spatial pixel size to convert into soil velocity. A frame rate
of 8 fps and a pixel size of 0.2 mm are typical settings for
wheel tests (see Table I).

Clustering is used to distinguish the portion of the im-
age that contains soil, as described in more detail in Section
2.4. Velocity magnitude and direction are graphically dis-
played over the top of the soil portion of the image, as shown
in Figure 4. Further clustering on the soil velocity magni-
tude identifies the region of soil where significant motion is

Journal of Field Robotics DOI 10.1002/rob



756 • Journal of Field Robotics—2014

Figure 2. Soil motion tests set up in GRC-1 (left) and Fillite (right). The imaging technique has proven to be robust to changes in
soil type, and it does not require specific preparation of the soil (with colored markers, etc.).

Table II. Typical system parameters for wheel testing.

Carriage speed Up to 1 cm/s

Wheel radius 11.4 cm
Wheel angular velocity Up to 0.087 rad/s
Camera acquisition rate Up to eight frames per second (fps)
Field of view 12 cm × 24 cm
Resolution 600 × 1,200 pixels (pixel size =

0.2 mm)
Soil particle size GRC-1: 0.05–2 mm

Fillite: 0.005–0.5 mm

observed. An optional feature of SOFT is the demarcation
of a shear interface around this region (i.e., between mov-
ing and static soil). Another optional feature is the filtering
out of soil flow direction outside the region with significant

motion, as direction has little meaning when the velocity
magnitude is near zero.

2.3. Optical Flow

Soil motion between subsequent images is estimated us-
ing optical flow. Optical flow is a dense motion estimation
technique, meaning motion is calculated for each pixel of
the image. The technique outputs two displacement fields,
corresponding to horizontal and vertical motion, in units of
pixels.

Optical flow solves for the displacement fields by at-
tempting to satisfy constraints stemming from two assump-
tions: data conservation and spatial coherence. Data con-
servation assumes that each point visible in an image will
look the same when present in another part of a subsequent
image, while spatial coherence assumes that neighboring
points can only move relative to one another according to
some constraints. As these assumptions will not be strictly

Figure 3. Image processing flowchart showing how optical flow and clustering lead to soil flow and shear interface output.
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Figure 4. Sample processed output for a driven wheel experiment. Soil flow velocity magnitude (upper) is denoted from blue
(static) to red (maximum). The shear interface defines the boundary between moving and stationary soil. Soil flow direction (lower)
within the shear interface is denoted according to the color wheel on the bottom right.

satisfied for any general motion, optical flow minimizes an
objective function that assigns weights to deviations from
the different constraints.

The mathematical framework of optical flow described
here is a summary of detailed formulations presented by
Szeliski (2011) and Black and Anandan (1996) that were
developed for general application. The cited references are
valuable sources for investigating details beyond those in-
cluded here.

The data conservation assumption underpinning op-
tical flow states that the intensity of each point (each soil
particle, for example) in a black and white image stays con-
stant. This implies that

I (x + u (x, y) , y + v (x, y) , t) = I (x, y, t − 1) (2)

where I is the intensity at pixel location (x, y) and time step
t, and u and v denote the displacements in the x and y
directions, respectively, at each pixel. What Eq. (2) states is
that the intensity of the point at location (x, y) in the image
indexed t − 1, when displaced by u and v, will look the same
at its new location in the subsequent image. Assuming u
and v are small [classically less than 1 pixel, though this can
be increased to motions on the order of 10 pixels through
course-to-fine Gaussian smoothing (Anandan, 1989)], the
left-hand side of Eq. (2) can be replaced with its Taylor

series expansion, leading to

(∇I )Tu + It = 0, (3)

where (∇I ) is the gradient of the image intensity, u =
[u, v]T, and It = I (x, y, t) − I (x, y, t − 1). Equation (3) is un-
derconstrained (two unknowns with only one equation),
so another constraint is typically introduced in the form of
spatial coherence. Affine flow is assumed for the spatial co-
herence in this implementation, which allows for the region
around each pixel to rotate, shear, as well as change aspect
ratio and scale. This is appropriate for estimating soil mo-
tion, as soil particles naturally exhibit such types of motion
relative to one another. The affine flow spatial constraint is
written as

u(x, y;a) =
[

u(x, y)
v(x, y)

]
=

[
a1 + a2x + a3y

a4 + a5x + a6y

]
(4)

where ai are dimensionless coefficients (that must also be
optimized).

The defined set of constraints in Eqs. (3) and (4), taken
together, cannot be strictly satisfied for nontrivial motions,
but they provide a starting point for setting up an error
minimization to estimate u. The exact form of this objective
function is very cumbersome due to complexities of opti-
mizing all the affine flow parameters; the interested reader
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is encouraged to consult Black and Anandan’s work directly
(Black & Anandan, 1996).

Minimization is performed in several steps that fall
into two higher-level stages: quadratic and nonconvex min-
imization. First, a quadratic error norm is used (note that
a quadratic error norm does not require any parametriza-
tion); the minimization is thus a least-squares calculation. To
avoid local minima while accounting for potentially large
motions, the minimization is done at four different levels of
scale (achieved by subjecting the image to varying degrees
of Gaussian smoothing) in a course-to-fine refinement.

Once a least-squares estimate of the motion has been
found, the solution is further refined with graduated non-
convexity. This consists of two additional stages of mini-
mization, now using a (nonconvex) robust error norm, such
as a Lorentzian:

ρ (z; σ ) = log
(

1 + 1
2

( z

σ

)2
)

(5)

where z is replaced by a constraint equation such as Eq. (3).
A Lorentzian norm is less sensitive to outliers than a
quadratic norm, which can lead to a better estimate of a
pixel’s dominant motion when there are multiple motions
present in its vicinity. Each of the two successive stages of
minimization with a Lorentzian reduces sensitivity to out-
liers, the second time by reducing the width parameter, σ .
Both stages of minimization with the Lorentzian also calcu-
late a two-scale course-to-fine refinement.

Black and Anandan’s optical flow technique (includ-
ing the key aspects described in this subsection) has been
implemented by Sun (Sun et al., 2008), and is available open-
source on the web.

2.3. Clustering

A technique called k-means clustering is used twice in the
data processing: to find the dividing line between soil and
not-soil as well as to locate the line between stationary and
moving soil masses.

The k-means clustering algorithm is applied to a set
of data to classify them into k categories. It is initialized by
randomly selecting k data points and setting them as the cen-
troids of the categories. Each data point is then assigned to
whichever category has the closer centroid. The calculation
iterates, alternating between category assignment and cen-
troid update (i.e., recalculating the centroid for each newly
populated category) steps, until convergence criteria are
satisfied.

Soil versus not-soil clustering: The region of the image
containing soil is distinguished from the rest of the image
based on pixel intensity. In the work presented here, the test
implements and background were generally darker than
the soil being studied. To study the flow of particularly
dark soil, a light-colored test implement and background
could conversely be used. After initial clustering of pixel

intensities using k-means (with k = 2), any gaps in the (sin-
gle largest) “soil” region are filled (as the soil is assumed
to remain a single connected mass). This is achieved with
alternating binary dilation and erosion operations [for more
information, see Gonzalez et al. (2009)].

High/low magnitude soil flow clustering: With soil motion
expressed in the inertial frame, soil velocity magnitudes
at each pixel are clustered into “stationary/low magnitude
flow” and “high magnitude flow.” After initial clustering,
gaps within the single largest region (of high velocity magni-
tude) are filled. The boundary surrounding this high veloc-
ity magnitude region is interpreted as a soil-shear interface.

3. QUANTITATIVE EVALUATION OF OUTPUT

This section compares measured and processed soil flow
to ground-truth motions as well as to output from another
processing technique. The analyses demonstrate the tech-
nique’s robustness and quantify its limitations.

3.1. Ground-truth Testing

Ground-truth testing was conducted using both GRC-1 and
Fillite. See Section 2.1 for descriptions of both of these soils.

3.1.1. Controlled Rotation Tests

To quantify the error of soil flow output, soil was spread out
flat covering a plate (Figure 5), which was then rotated by a
very precise amount: 0.02944 ± 0.00003 rad.

The ground truth of this prescribed motion was com-
pared to the soil flow output by processing pre- and post-
motion photographs, as shown in Figure 6. The largest dis-
placement, at the corners of the image, is 15.6 pixels, or
3.12 mm.

Motion error at each pixel is measured by the Euclidean
norm:

Error =
√

(u − uref )2 + (v − vref )2 (6)

This error is shown in Figure 7 for GRC-1 and Fillite, ac-
cording to its distribution in the image. Figures 8 and
9 show the statistical distributions of the error magni-
tude for GRC-1 and Fillite, respectively. Errors are sub-
pixel in magnitude throughout the image, with more of the
higher magnitude errors observed near the edges where
motion magnitude is also larger (as high as 15.6 pixels). Re-
gression shows a weak correlation of error magnitude with
motion magnitude, with a 0.01 pixel increase in error for
every 1 pixel of additional motion and an R2 of 0.25 for this
correlation.

Figures 8 and 9 show confidence bounds based on
multiple measurements output by SOFT. It shows that 95%
of the errors in the ground-truth tests are less than or equal
to 0.3 pixels. This means, for example, that motions of three
pixels between subsequent images have a signal-to-noise
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Figure 5. Test soils spread flat on a plate (GRC-1 left, Fillite right), viewed from directly above. A sharpened pin at the center
marks the point of rotation for ground-truth testing.

Figure 6. Ground truth (left) and measured (right) soil displacement magnitude (top) and direction (bottom), induced by a
prescribed 0.02944 rad rotation (GRC-1 results shown).

Journal of Field Robotics DOI 10.1002/rob



760 • Journal of Field Robotics—2014

Figure 7. Motion error at each pixel of the image (GRC-1 left; Fillite right). Warmer colors indicate higher error, and are more
prevalent at the edges where motions are also large.

Figure 8. Distribution of motion error by magnitude for
GRC-1.

(S/N) ratio of at least 10 with 95% confidence, and, based
on the median error of 0.15 pixels, a S/N of at least 20 with
50% confidence.

3.1.2. Constant Horizontal Speed Tests

Typical soil flow tests involve moving the test implement
and camera horizontally at a constant speed (and, in the
case of wheel tests, coordinated rotation of the wheel for
constant slip, as described in Section 2.1). The majority of
the soil captured in the image is not influenced by the test

Figure 9. Distribution of motion error by magnitude for Fillite.

implement, and it remains static (see the large region of
dark blue in Figure 10, for example). This static soil should
thus move horizontally through the passing camera’s field
of view, at the speed at which the carriage is commanded
(as discussed in Section 2.2). The velocity of the static soil in
the camera’s reference frame may deviate slightly from the
commanded travel velocity due to error in the processing
technique, error in the control of the horizontal motion,
vibrations in the structure between the test implement and
the camera, and/or inconsistencies in the camera’s frame
rate.
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Figure 10. Sample output from a rolling wheel test at constant commanded horizontal speed (constant slip). The region colored
dark blue in the velocity magnitude plot (top), covering the majority of the image, represents static soil unaffected by the test
implement.

Figure 10 shows a sample of processed output from a
rolling wheel test in GRC-1, commanded to a constant 20%
slip rate. Results from a single frame pair are shown; the
full test consists of 51 frames (and thus 50 frame pairs). The
wheel is commanded at a tangential speed of 1 cm/s, and
the carriage is advanced at 0.8 cm/s to maintain the desired
20% slip test condition. From the median horizontal soil
flow of each of the 50 frame pairs of the test, the average
horizontal velocity was estimated to be 0.79 cm/s with a
95% confidence range of ±0.04 cm/s. This corresponds to
7.23 ± 0.34 pixels/frame. The variation in horizontal motion
detected is thus similar to what was observed in the bench-
mark plate rotation test for GRC-1 (±0.31 pixels/frame, as
shown in Figure 8). This suggests that the additional poten-
tial sources of error are no more significant than the already
small error in the optical flow itself.

3.2. Cross-validation with Feature Tracking

Ground-truth measurements of soil displacement can be
made for simple motions, such as the rotation and horizon-
tal flow described in Section 3.1, but they are not easy to
obtain or enforce for more complex flows. When validation
against ground truth is not feasible, it is useful to at least
cross-validate against other techniques.

To gain insight into how SOFT handles complex soil
flows, its output is compared to corresponding output cal-
culated via scale-invariant feature tracking (SIFT) (Lowe,
1999). SIFT searches for robustly distinguishable features in
an image, and it can then match those features in a sub-
sequent image. Soil displacement can thus be calculated at
key points between an image pair.

Cross-validation for optical flow and SIFT output was
performed with a rolling wheel experiment. The wheel was
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Figure 11. Soil flow captured using scale-invariant feature tracking (SIFT; top image) for cross-validation of optical flow (bottom).
Motions at key points are indicated by line segments, shown blue when the two techniques agree within 0.56 pixels. Red lines
indicate larger disparities, concentrated where the wheel interacts with the soil causing complex flow (see online for color).

driven at constant angular velocity in soil with a portion
of particles dyed black. The black particles increased the
number of features discernible by SIFT. For each SIFT fea-
ture, the corresponding optical flow (OF) motion is found
by reading the u and v from the pixel nearest the feature.
The cross-validation error between the motions computed
by the two techniques is

√
(uOF − uSIFT )2 + (vOF − vSIFT )2 (7)

Sample output from both techniques for the driven wheel
test is shown in Figure 11. Note that this output has not
been converted to an inertial frame, so there is a dominant
horizontal component to the motion. The top image shows
motions of the tracked SIFT features between a pair of im-
ages, indicated by line segments. The bottom image shows
the corresponding motion at the feature locations computed
with optical flow.

For key points where the computed cross-validation
error is less than 0.56 pixels (twice the 95% percentile error
calculated from the ground-truth rotation test), the motion is

displayed with blue line segments. When the error is larger,
the motion is displayed in red. Note that these instances are
rare, but they do tend to occur in regions of the soil affected
by the test implement (where more complex flow occurs).
Again, SIFT output is not ground-truth, so differences be-
tween optical flow and SIFT should not automatically be
considered as errors on the optical flow side. However,
these cross-validation tests do explicitly show that captur-
ing soil motion for regions of complex flow is more chal-
lenging than for simple rotations and translations. Errors
in these regions may thus be higher than those character-
ized in ground-truth testing. Further research is required to
comprehensively quantify errors in regions of complex soil
flow.

The fact that SOFT’s optical flow output generally
agrees with SIFT lends further confidence to the optical
flow results. Optical flow is still highly preferable to SIFT, if
choosing between the two, because it provides data at each
pixel rather than a sparse subset. However, as discussed
above, no individual technique has yet conclusively demon-
strated superiority in capturing highly complex flows.
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Figure 12. Soil flow calculated from a single frame pair (left), and averaged over 100 successive frame pairs (right) taken over the
course of a rigid wheel test. The averaged data ignore transients caused by local soil irregularities, and they boost the signal-to-noise
ratio.

3.3 Signal Averaging

It is often useful to discern average machine-soil interac-
tions, ignoring transients caused by variability in the soil
state, for example. To reduce the prevalence of transients
in soil motion measurements, output can be averaged over
successive frame pairs taken over the course of a test. Note
that averaging is most appropriate for tests operating at
steady state at their highest level (constant slip, sinkage,
etc.). Conversely, averaging is not advised for tests with
time-dependent soil response, as it can blur periodic events
such as the responses to successive grouser passage.

Averaging can also boost the signal-to-noise ratio. In
the ideal case, S/N is multiplied by the square root of
the number of samples over which the signal is averaged.
However, this assumes error is random and uncorrelated
with the signal. As Figure 7 shows, this is not quite the case.
Faint grid and spiral patterns are discernible in the error
plots. Also, the error magnitude is (weakly) correlated to
the magnitude of the signal, as discussed in Section 3.1.1.
Averaging still boosts S/N, but not quite by the maximum
amount predicted for the ideal case.

Figure 12 shows relatively noisy soil flow computed
from a single frame pair, as well as the smoother flow
computed by averaging 100 frames from the same test.
In addition to smoothing the results for any (non-time-
varying) test, averaging can actually reveal meaningful
results for tests in which motion is too small to discern
from a single frame pair. One such example, for a compli-

ant wheel that induced very little soil motion, is shown in
Figure 13.

4. APPLICATIONS TO FIELD ROBOTICS

As mentioned in the introduction to this article, field robots
(as well as other off-road vehicles and machines) are of-
ten required to traverse or work in granular soil. Wheels are
commonly used in off-road applications that span construc-
tion, mining, agriculture, recreation, military operations,
and planetary exploration. Agricultural and earthworking
robots must also interact with granular soils using buckets,
plows, and other tools.

This section describes application of the soil motion vi-
sualization and analysis technique to a field robot capable
of a novel form of push-rolling locomotion. It also demon-
strates the technique’s applicability to field robot imple-
ments other than wheels.

4.1. Soil Motion Analysis for a “Push-rolling”
Field Robot

Advancing a vehicle by changing its wheelbase, while
rolling a subset of its wheels and keeping the others static
to push against the ground, is referred to as push-rolling
(Bekker, 1956). Scarab is a robot with independent suspen-
sion of its side-frames, and it achieves push-rolling by rais-
ing and lowering its body while expanding and contracting,
like an inchworm (Scarab’s push-rolling locomotion is thus
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Figure 13. The soil motion induced by a compliant wheel is
an order of magnitude smaller than that induced by a rigid
wheel (shown in Figure 10, for example). To make meaningful
observations, signal averaging (over 100 frames, in this case) is
required.

sometimes called “inching”) (Wettergreen et al., 2010). Pho-
tos of Scarab performing push-rolling in the field are shown
in Figure 14.

The motion cycle commanded to achieve push-rolling
with Scarab is shown in Figure 15. First, the angle be-
tween the side-arms is increased, lowering the body and
expanding the wheelbase. During this expansion, the front
wheels roll forward while the rear wheels remain static rel-
ative to the ground. Once the limit of body expansion is
reached, the body raises and the wheel base contracts while
the rear wheels roll forward and the front wheels remain

Figure 15. Simplified Scarab kinematics demonstrating how
push-rolling is achieved by rolling a single pair of wheels while
side-frames expand or contract (Moreland et al., 2011).

static with respect to the ground. To implement this motion
on Scarab, the “static” wheels must actually counter-rotate
in synchrony with the expanding or contracting side frame;
if they were to be locked they would rotate in the soil as
the side frame moves and thereby break their static contact
with the soil.

The concept of push-rolling is not unique, and it has
been investigated in the past. At the U.S. Army Land Loco-
motion Laboratory (Czako et al., 1963), a segmented vehicle
with the ability to push-roll was introduced. It was deter-
mined through theoretical analysis that keeping one axle
stationary and propelling the other forward decreases net
resistance on the vehicle as a whole. It was surmised that
the thrust generated by the stationary wheels would as-
sist the rolling wheels and allow them to overcome greater

Figure 14. Scarab performing push-rolling during field tests.
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Figure 16. Drawbar pull force being applied to Scarab through a load cell at rear wheel hubs (Creager et al., 2012).

rolling resistance. However, the possibility was not consid-
ered that the static wheels may in fact also generate higher
thrust forces leading to additional utility for doing external
work (e.g., climbing or towing).

This research [see also Creager et al. (2012) and
Moreland et al. (2011)] provides a better understanding of
the thrust benefit of push-rolling through full-scale robot
tests in the laboratory as well as soil flow visualization and
analysis using SOFT.

4.1.1. Experimental Comparison between Rolling
and Push-rolling

A series of experiments were conducted in the SLOPE labo-
ratory at NASA GRC to quantitatively compare the perfor-
mance of rolling to push-roll locomotion. One major chal-
lenge for off-road vehicles is traversing steep slopes in soft
soil. The drawbar pull test can be used to predict a vehicle’s
slope-climbing performance (Freitag et al., 1970). Drawbar
pull force is essentially the external force that a vehicle can
generate, which is indirectly related to its ability to climb a
slope. The test consists of driving a vehicle across prepared
terrain while applying resistance opposite to the direction
of travel (the drawbar pull force) and observing how the
vehicle’s driving performance is affected. To apply a draw-
bar pull force, a cable is attached to a hitch at the rear wheel
hubs of Scarab (see Figure 16). The cable’s tension is mea-
sured by a load cell and controlled (kept constant) using a
magnetic clutch connected to the cable’s spooling drum.

Travel reduction was chosen as the metric for evalu-
ating these two modes. It can be defined as the reduction
in vehicle velocity for a given drawbar pull force relative to

the vehicle’s self-propelled velocity (no drawbar pull force),
normalized to the self-propelled velocity (assuming con-
stant wheel rotational velocity):

T R = Vsp − Vactual

Vsp

× 100% (8)

TR = travel reduction (%),
Vsp = self-propelled velocity of vehicle (m/s or m/cycle),
Vactual = velocity of vehicle for given drawbar pull force

(m/s or m/cycle),

= d(t) − d(t − 1)
�t

(9)

where d is the distance from total station (m), and t is the
time (s).

For the case of rolling, distance measurements are taken
with a laser total station at 1 Hz. For inching, because the
vehicle velocity is not constant throughout each cycle, the
velocities are calculated as distance per cycle (i.e., using one
total station data point from the start of each cycle).

Figure 17 shows how drawbar pull affects travel re-
duction for various wheels (rigid versus pneumatic) and
locomotion modes (rolling versus inching/push-rolling).
The values near the top of the figure, during motion with
high travel reduction, indicate the maximum drawbar pull
achievable for each case. Push-rolling (inching) achieves at
least 30% higher DP than that achievable with conventional
rolling (0.33 versus 0.24 for rigid wheels, and 0.37 versus
0.28 for pneumatic tires).

Journal of Field Robotics DOI 10.1002/rob



766 • Journal of Field Robotics—2014

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

0

20

40

60

80

100

Drawbar Pull Normalized to Vehicle Weight

T
ra

ve
l R

ed
uc

tio
n(

%
)

 

 

Rigid Tires - rolling

Rigid Tires - inching
Pneumatic Tires - rolling

Pneumatic Tires - inching

Figure 17. Comparison of rolling versus inching for compliant and rigid wheels in loose GRC-1 (Creager et al., 2012). For rolling,
the load was increased approximately every 0.5 m; for inching, the load was held constant for at least two inching cycles, and then
increased.

4.1.2. Understanding Soil Response using Visual Analysis

Two types of wheel travel were reproduced in the glass-
walled soil bin described in Section 2. For the first type of
travel, conventional rolling, the wheel and carriage were
driven at speeds corresponding to slip and positive draw-
bar pull. This creates a noticeable amount of shearing in
the terrain below the wheel. For the second type of mo-
tion, pushing, the wheel rotational speed was held at zero
(braked) while the carriage was moved horizontally a short
distance. This produced a situation similar to push-rolling,
where the stationary wheels generate thrust by pushing off
of the soil in a horizontal direction.

Examples of the soil shearing patterns for the two cases
can be seen in Figure 18 (particle velocity magnitude) and
Figure 19 (particle velocity direction). In both cases, the sim-
ulated motion of the full vehicle is to the right; the rolling
wheel is driving clockwise and the braked/pushed wheel
moves to the left slightly to push off of the terrain (note that
in push-rolling, the static wheel is pushed opposite to the
direction of net vehicle motion). Large differences in the di-
rection and shape of the shearing patterns are evident. The
soil beneath the rolling wheel appears to follow the shape of
the wheel in a direction tangential to the wheel rotation. The
failure occurs close to the wheel-terrain contact and is fairly
uniform. This type of soil response was defined by Bekker as
“grip” failure” (Bekker, 1960). The braked/pushed wheel,
however, produces a much different response in the soil.

The soil displacement occurs as a bulk quantity moving
at once in a single direction. Bekker describes this soil
response as “ground failure” or “general shear failure”
(Bekker, 1960).

For these specific examples, the magnitude of the parti-
cle velocities cannot be used for comparison because differ-
ent amounts of thrust are being generated here. However,
the direction of the soil particles being displaced provides
valuable insight. For rolling, only a certain portion of the
particle motion is in the direction of thrust. Much energy is
spent moving the soil vertically. The constant changing of
particle direction requires more wheel motion to compact
the soil and generate thrust. The braked/pushed wheel, on
the other hand, creates soil displacement almost exclusively
in the direction of thrust. Soil compaction is produced more
quickly because the soil particles can only move in one direc-
tion. Due to this lack of vertical motion, pushing or pulling
a braked wheel appears to be a much more efficient method
of generating large amounts of thrust. This difference in
soil failure could help explain the observed differences in
performance for rolling versus inching. Adding to previ-
ous theories that claimed inching and other methods of
push-roll locomotion exhibited more DP capability over
rolling by decreasing the wheel resistance (Czako et al.,
1963), the image analysis shown here indicates that an en-
tirely different mode of soil response occurs when inching,
producing an increase in thrust force as well.
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Figure 18. Soil velocity response to rolling wheel versus pushed wheel; color (see online) indicates the magnitude of soil motion.

Figure 19. Soil directional response to rolling wheel versus pushed wheel; color (see online) indicates the direction of soil motion.

4.2 Soil Flow during Excavation

Excavation tools are another important type of robot-soil
interaction. A deeper understanding of soil flow during ex-
cavation can lead to more efficient earthworking and agri-
cultural machines. Agui (Agui & Wilkinson, 2010) describes

the evolution of a pile of granular soil at the leading edge of
a bucket cutting horizontally, based on measurements of the
soil surface. Figure 20 shows how the SOFT images motion
below the soil surface. The bucket in this analysis has half-
scale dimensions compared to that described by Agui, and
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Figure 20. Soil is pushed forward as it is excavated with a
bucket. Soil at the fore of the pile is also pushed up, while soil
near the rear of the pile has a downward component to its flow.

it is commanded at half-scaled depth and forward speed,
but with the same cut angle.

All soil in the pile is pushed forward (to the left in the
image) with the bucket. Soil at the fore of the pile is also
pushed up (light blue), while soil near the rear of the pile
has a downward component (magenta) to its flow.

Additional applications of soil imaging to excavation
tool analysis have been demonstrated in other ongoing
work by the authors (Diaz Lankenau et al., 2012).

5. CONCLUSIONS AND FUTURE WORK

The work presents a novel experimental method for visual-
izing and analyzing machine-soil interactions, namely the
soil optical flow technique (SOFT). It produces results that
are far richer than past approaches used in terramechanics,
with data at each image pixel. It achieves accuracy compa-
rable to approaches used in geotechnical engineering, but
without the need for specialized measurement equipment
or specially marked soil particles. Its utility has been demon-
strated on two different soil types (fine low-density Fillite
and the relatively coarse GRC-1), both used without any
modification of the soils or the processing technique.

SOFT uses computer vision techniques to process im-
ages of soil interacting with a wheel or tool. The critical pro-
cessing step is optical flow, which estimates a data-rich flow

field; each pixel of the image is a data point. The constraints
imposed on the optical flow processing are particularly rel-
evant to soil motions. Affine flow captures shearing and
rotating motions as well as changes in aspect ratio, while
an error norm that is robust to outliers (a Lorentzian norm)
allows estimates with multiple distinct flows in a single
proximate region.

The k-means clustering technique is effectively em-
ployed to classify regions of the image as soil/not-soil, and
to identify shear interfaces between regions of significant
soil flow and static soil.

A total of 95% of errors in SOFT’s optical flow output
are approximately 0.3 pixels or smaller (60 μm or smaller
for the test conditions). The median error is approximately
0.15 pixels (30 μm). These errors were quantified with
ground-truth experiments in which a flat plate covered in
GRC-1 and Fillite soils was rotated by a precisely measured
angle. The error is approximately constant, with just a weak
correlation between signal and noise. In cases of relatively
low signal-to-noise ratio (S/N), it is possible to boost it by
signal averaging over several frame pairs capturing multi-
ple instances of the same motion.

Additional ground-truth tests where a wheel is driven
at constant slip and constant horizontal speed show that es-
timated bulk horizontal motion is constant within ±0.34
pixels (95% confidence bounds). This error is not much
larger than the error induced by the optical flow technique
itself, suggesting that errors in rig velocity control, vibra-
tions in the experimental apparatus between camera and
test implement, and inconsistencies in camera frame rate are
not dominant sources of error in the overall experimental
procedure.

Cross-validation of SOFT’s optical flow output with
scale-invariant feature tracking (SIFT) shows general agree-
ment. The vast majority of points where motion is estimated
by both techniques agree within 0.56 pixels (twice the er-
ror identified for the optical flow output). The few points
where the two techniques disagree by more than 0.56 pixels
are all found in the region with the most complex soil flow.
This suggests that errors in these complex regions may be
higher than those quantified by the (necessarily less com-
plex) ground-truth experiments. Additional research is re-
quired to comprehensively quantify soil motion errors in
regions of complex flow.

Using SOFT to observe the two aspects of a novel form
of locomotion for field robots, termed push-rolling (conven-
tional rolling as well as pushing horizontally with a static
wheel) leads to a deeper understanding of the phenomenon
than was possible before.

Tools for excavation are another important regime, in
addition to wheels, of robot-soil interactions. The SOFT
technique demonstrates utility in visualizing and analyzing
this type of interaction. All soil in a pile is pushed forward
when a simple bucket executes a horizontal cut. Addition-
ally, soil at the fore of the pile is also pushed upward, while
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soil near the rear of the pile has a downward component to
its flow.

Ongoing and future work utilizing SOFT will lead to
further discoveries related to wheel-soil interactions. Study-
ing grousers has identified the strongly periodic effects they
induce in soil. SOFT has engendered the discovery of peri-
odic resistive forward flow (Moreland et al., 2012), leading
to the development of a quantitative equation for predict-
ing appropriate grouser spacing (Skonieczny et al., 2012).
Other ongoing experimental campaigns include studying
the effects of varying slip in different soil types, of varying
wheel diameter, and of varying normal load on the wheel.
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