

City, University of London Institutional Repository

Citation: Kechagias-Stamatis, O., Aouf, N. & Dubanchet, V. (2020). Evaluating 3D local

descriptors and recursive filtering schemes for LIDAR-based uncooperative relative space
navigation. Journal of Field Robotics, 37(5), pp. 848-888. doi: 10.1002/rob.21904

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23172/

Link to published version: https://doi.org/10.1002/rob.21904

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Evaluating 3D Local Descriptors and Recursive Filtering schemes for LIDAR 1
based Uncooperative Relative Space Navigation 2

 3

Odysseas Kechagias-Stamatis* Nabil Aouf Vincent Dubanchet
Signals and Autonomy group
Centre for Electronic Warfare,

Information and Cyber
Cranfield Defence and Security,

Cranfield University

Department of Electrical and
Electronic Engineering

City, University of London
Northampton Square

London EC1V 0HB, UK

Thales Alenia Space
5 Allée des Gabians
Cannes, FR 06150,

FRANCE

Shrivenham, SN6 8LA, UK
o.kechagiasstamatis@cranfield.ac.uk

 4

Abstract 5

We propose a Light Detection and Ranging (LIDAR) based relative navigation scheme that is 6
appropriate for uncooperative relative space navigation applications. Our technique combines the 7
encoding power of the 3D local descriptors that are matched exploiting a correspondence grouping 8
scheme, with the robust rigid transformation estimation capability of the proposed adaptive 9
recursive filtering techniques. Trials evaluate several current state-of-the-art 3D local descriptors 10
and recursive filtering techniques on a number of both real and simulated scenarios that involve 11
various space objects including satellites and asteroids. Results demonstrate that the proposed 12
architecture affords a 50% odometry accuracy improvement over current solutions, while also 13
affording a low computational burden. From our trials we conclude that HoD-S combined with the 14
adaptive αβ filtering poses the most appealing combination for the majority of the scenarios 15
evaluated, as it combines high quality odometry with a low processing burden. 16

1. Introduction 17

Autonomous ego-motion estimation, i.e. odometry, for space platforms is currently of high interest 18
due to the increasing number of spacecrafts deployed. Specifically, great research interest is in the 19
field of relative space odometry of a Source spacecraft platform in relation to a non-cooperative 20
Target platform, i.e. with unknown attitude. The aim of space odometry is to estimate the six 21
Degrees of Freedom (DoF) relative motion between the Source and the Target, with three DoF 22
representing the relative translation and three the relative rotation. Applications utilizing the 23
autonomous relative Source – Target motion estimation involve close-proximity operations where 24
the distance of the two space platforms is such that possible communication loss or delay between 25
the ground station and the Source may lead to a Source – Target platform impact. Typical distances 26
for close-proximity operations range from a few meters up to tens of meters and depend on the 27
sensors employed, the type of operation and the target size (Fehse, 2003). The need for autonomous 28
navigation extends to a wide range of tasks such as controlled orbiting, docking and close range 29
rendezvous that are required for space missions such as active debris removal (Bonnal, Ruault, & 30
Desjean, 2013; Yılmaz, Aouf, Majewski, Sanchez-Gestido, & Ortega, 2017), celestial body 31
exploration, e.g. comets and asteroids (Cheng, 2002) and on-orbit servicing (Flores-Abad, Ma, 32
Pham, & Ulrich, 2014). 33

2

In the context of close-proximity space navigation, the sensors typically used are electro-optical 1
with the majority of current solutions relying on passive sensors using visual or Infrared (thermal) 2
sensing devices in a monocular or stereo camera configuration, or alternatively 3D LIDAR for 3
active systems (Opromolla, Fasano, Rufino, & Grassi, 2017). Indeed, current space relative 4
navigation solutions involve 2D visual data in a monocular (Krämer, Hardt, & Kuhnert, 2018; C. 5
Liu & Hu, 2014) or a stereo camera configuration (Li, Lian, Guo, & Wang, 2013; Maimone, 6
Cheng, & Matthies, 2007; Tykkala & Comport, 2011; Yang Cheng, Maimone, & Matthies, 2006), 7
2D Infrared (IR) data (Yılmaz et al., 2017) and 3D Light Detection and Ranging (LIDAR) data 8
(Galante et al., 2012; Gómez Martínez, Giorgi, & Eissfeller, 2017; Naasz & Moreau, 2012; 9
Opromolla, Di Fraia, Fasano, Rufino, & Grassi, 2017; Opromolla, Fasano, Rufino, & Grassi, 2014, 10
2015a; Sell, Rhodes, Woods, Christian, & Evans, 2014; Song, 2017; Volpe, Palmerini, & Sabatini, 11
2017; Woods & Christian, 2016). For a comprehensive review on spaceborne sensors for 12
spacecraft pose determination the reader is referred to (Opromolla, Fasano, et al., 2017). 13

Utilizing sensors that exploit passive data, i.e. visual or IR, can be an effective solution that is 14
characterized by low hardware complexity, cost and power consumption due to neglecting a 15
transmitting device. Using visual and IR sensors can be an effective solution, however, IR has 16
several advantages over the visual domain such as operating during day and night under several 17
harsh illumination conditions like eclipse and solar glare (Yılmaz et al., 2017). Despite these 18
advantages, the performance of IR odometry depends on the temperature of the Target platform, 19
which is affected by both internal parameters, e.g. heat dissipation of the platform’s components, 20
and external parameters, e.g. reflection of sun’s radiation. This temperature fluctuation can affect 21
the robustness of the IR based local feature detection and matching technique presented in current 22
literature (Yılmaz et al., 2017). On the contrary, 3D LIDAR based odometry outmatches its 2D 23
counterparts (visual and IR) as it operates during day and night, is independent of the Target’s 24
thermal properties, is capable of revealing the underlying structure of an object (Guo, Sohel, 25
Bennamoun, Lu, & Wan, 2013a), can provide full Target pose estimation (6-DoF), can 26
discriminate the target from the background, is robust in poor visibility conditions and has a greater 27
operating distance compared to the maximum stereo odometry range that poses acceptable 28
accuracy (Opromolla, Fasano, et al., 2017). Despite these advantages, LIDAR sensors and the 29
associated software that exploits the 3D Target information acquired, impose higher hardware 30
requirements compared to the visual and IR sensors that in principle produce 2D data. However, 31
due to the advantages of LIDAR sensors against visual / IR sensors and given that the former have 32
already been placed on space platforms (Kornfeld et al., 2003a), it is clear that LIDAR based 33
navigation is an overall appealing and affordable option. An open case is the processing recourses 34
required for 3D data manipulation. Space platforms use space-graded field programmable gate 35
arrays (FPGA) and recent work (Estébanez Camarena, Feetham, Scannapieco, & Aouf, 2018) 36
demonstrated that it is feasible FPGA boards to perform 2D computer vision based navigation. 37
Hence, there is the potential for FPGA boards to perform complex 3D navigation utilizing LIDAR 38
data. However, the aim of this work is to evaluate the conceptual validity and performance of 39
several 3D local descriptors and recursive filtering schemes rather than suggesting a readily 40
available navigation system. 41

On that basis and driven by the advantages of LIDAR, current literature suggests quite a few 42
LIDAR based relative navigation solutions (Galante et al., 2012; Gómez Martínez et al., 2017; 43
Naasz & Moreau, 2012; Opromolla, Di Fraia, et al., 2017; Opromolla et al., 2014, 2015a; Sell et 44

3

al., 2014; Song, 2017; Volpe et al., 2017; Woods & Christian, 2016). However, these present a 1
number of deficiencies: 2

a. Registration of the two sequential point clouds current methods mostly relies on the 3
Iterative Closest Point (ICP) method (Besl & McKay, 1992) that may settle in a local rather than 4
a global optimum solution. 5

b. Current algorithms involve an off-line training process that uses a 3D model of the 6
expected Target platform (A. B. Dietrich & McMahon, 2018; A. P. Rhodes, Christian, & Evans, 7
2017). However, these models are not available for unknown Targets such as unexplored comets, 8
asteroids or space debris, or for known Target space platforms that are corrupted with an unknown 9
level of corruption. 10

c. Current space navigation solutions that rely on computer vision concepts involve 11
regional 3D feature description and not local description (A. Rhodes, Kim, Christian, & Evans, 12
2016; A. P. Rhodes et al., 2017), neglecting the state-of-the-art performance afforded by the latter 13
type. It should be noted that (A. Rhodes et al., 2016) made an attempt using the local feature 14
descriptor Spin Images (Andrew Edie Johnson & Hebert, 1998), however the research concluded 15
that this descriptor is not optimal for space navigation. To the best our knowledge none other local 16
descriptor has been used to date. 17

d. The majority of current proposals is evaluated on fully simulated scenarios (Gómez 18
Martínez et al., 2017; Opromolla et al., 2014, 2015a; A. P. Rhodes et al., 2017; Song, 2017; Volpe 19
et al., 2017; Woods & Christian, 2016), while only a few algorithms are tested on real but rather 20
simplistic scenarios (Galante et al., 2012; Sell et al., 2014). Recently, orbit determination around 21
small bodies using LIDAR has been proposed (A. B. Dietrich & McMahon, 2018), however this 22
architecture uses a shape model of the Target restricting this technique to known Targets 23
(deficiency (b)). 24

e. Space related odometry literature does not involve any type of feature matching 25
refinement schemes, such as a correspondence grouping technique (Yang, Xian, Xiao, & Cao, 26
2018). 27

In contrast to space robotics odometry, terrestrial odometry (ground and aerial) is more mature 28
spreading over several data domains. A few examples are 2D visual in a monocular or stereo 29
camera configuration (Cvišić, Ćesić, Marković, & Petrović, 2018; Nemra & Aouf, 2009), 2D IR 30
(Mouats, Aouf, Chermak, & Richardson, 2015), fusion of visual with IR data (Mouats, Aouf, 31
Sappa, Aguilera, & Toledo, 2015), fusion of 3D LIDAR with visual data (Graeter, Wilczynski, & 32
Lauer, 2018; Zhang & Singh, 2015b), 3D LIDAR fused with inertial data (Neuhaus, Koß, Kohnen, 33
& Paulus, 2019; Zhang & Singh, 2015a), odometry that solely relies on LIDAR data (Deschaud, 34
2018; Ji et al., 2018) and methods that are based on RGB-D data (Jaimez & Gonzalez-Jimenez, 35
2015; Kim & Kim, 2016; Zhou, Li, & Kneip, 2019). An extensive review on the odometry methods 36
for terrestrial applications is presented in (Aqel, Marhaban, Saripan, & Ismail, 2016). 37

Simply extending current algorithms designed for terrestrial LIDAR based robotics odometry into 38
the field of space robotics odometry is not an optimum solution for the following reasons: 39

4

 a. The space environment lacks surrounding objects forcing space odometry to rely 1
on a limited number of vertices that belong to a single object. Typical terrestrial point cloud scenes 2
comprise of a few hundreds of thousands of vertices and involve many objects, while a space 3
odometry scene has at least one order of magnitude fewer vertices and encloses a single object. 4

 b. Space objects are typically less complex than terrestrial scenes further increasing 5
the already challenging space odometry estimation. The advantage of complex scenes is affording 6
sufficiently unique and non-degenerated geometries enforcing odometry to converge to acceptable 7
solutions. 8

 c. Methods that solely use LIDAR data may also not be appealing as these exploit the 9
hardware properties of terrestrial LIDAR sensors that differ from the spaceborne ones. For 10
example, the method in (Deschaud, 2018) uses the continuous spinning effect of the LIDAR 11
sensor, which for spaceborne LIDAR sensors this is not applicable as either scanning or flash 12
LIDAR sensors are used. 13

 d. Terrestrial odometry that exploits LIDAR data may involve fusing information 14
from additional sensors such as visual data or inertial data (Graeter et al., 2018; Neuhaus et al., 15
2019; Zhang & Singh, 2015b, 2015a). However, a spaceborne sensor suite selection is constrained 16
by the size, weight and power consumption of each sensor and thus involving two different sensor 17
types, e.g. LIDAR and visual camera, may not be payload efficient. 18

Additional challenges preventing directly utilizing algorithms for terrestrial applications on space 19
navigation scenarios are the differences between the earth-based point cloud data and the space-20
based point cloud data, which are linked to the device that they were generated from. Considering 21
point clouds originating from LIDAR, as is the case in this work, the LIDAR earth-based point 22
cloud would be in general denser as its mapping covering area is much focused and smaller than 23
the general LIDAR space-based point clouds. However, the later from a farther range would be 24
mapping a large area on orbit to detect the satellite and the satellite sub-part of interest. In terms 25
of noise, the space-based data would be less affected than their earth counterpart since the space 26
LIDAR would have less noisy returns. This is because the background around the target satellite 27
is empty, while on earth applications, i.e. autonomous cars, the background contains several 28
objects. In terms of range accuracy, the space-based point cloud data would be more accurate than 29
the earth-based point cloud data. 30

Spurred by the advantages of 3D LIDAR odometry and the deficiencies of the current solutions 31
for space navigation, we suggest a LIDAR based relative navigation architecture appropriate for 32
space applications. The contributions and innovations of this work can be summarized to: 33

a. We suggest an odometry architecture that combines the concepts of 3D local feature 34
description, feature matching refinement and recursive filtering for the rigid body transformation 35
estimation. 36

b. The recursive filtering process is adaptive and linked to the quality of the matched 37
features. 38

5

c. Opposed to current space-oriented odometry solutions, this architecture does not require 1
any prior knowledge of the Target platform extending significantly the usability of the proposed 2
solution. 3

d. We evaluate the suggested technique on seven scenarios that involve one real and four 4
simulated space objects of various complexity. 5

e. On each scenario, we evaluate six current 3D local feature descriptors and four recursive 6
filtering schemes that are tested in all possible combinations. 7

f. We also evaluate the performance of the proposed architecture against five variations of 8
ICP that is widely used for space robotics odometry, and also against two techniques used for 9
registration application in the computer vision domain. To the best of our knowledge such an 10
extensive evaluation is unique in the space-related odometry literature. 11

It is expected the proposed method to achieve lower odometry errors compared to current ICP 12
based methods, because the feature matching and the geometric correspondence grouping schemes 13
shall provide to the recursive filter only well-established correspondences. These correspondences 14
combined with the adaptive nature infused in the recursive filter affords further improvement and 15
optimization of the odometry performance. 16

The rest of the paper is organized as follows; Section 2 presents the suggested odometry 17
architecture, while Section 3 compares the accuracy of the proposed pipeline involving several 3D 18
descriptors and recursive filtering combinations against current registration methods on a variety 19
of scenarios. Section 4 analyses the contribution of each module within our architecture, compares 20
our method against a mainstream computer vision-based registration method and also presents the 21
interaction between the number of iterations and the odometry performance for each competitor 22
ICP variant. Finally, Section 5 concludes this paper. 23

2. Proposed odometry architecture 24

2.1 LIDAR odometry 25

The suggested LIDAR relative navigation architecture considers a two-platform setup, i.e. a 26
Source platform that incorporates a 3D LIDAR sensor and an uncooperative Target platform. The 27
aim of the proposed technique is to estimate the relative position of the Source platform to the 28
Target platform. 29

Given two sequential point clouds and of the Target that are 30
captured from the LIDAR device placed on the Source platform at instance k and k+1, with each 31
vertex being in the form and , aim of the odometry process is to 32
calculate a rigid body transformation: 33

 (1) 34

with R the rotation and T the translation component that remap point cloud Pk to Pk+1: 35

1{ ,..., }ak k kp p=P 1
1 1 1{ ,..., }b

k k kp p+ + +=P

(, ,)k k k kp x y z= 1 1 1 1(, ,)k k k kp x y z+ + + +=

*

0 1
R T

R
é ù

= ê ú
ë û

6

 (2) 1

 (3) 2

Then at instance , the position of the Source moving platform relatively to the uncooperative 3
Target platform is given by: 4

 (4) 5

The rotation matrix in eq. (2) may originate from Euler or Quaternion angle encodings. In this 6
work we adopt (A. B. Dietrich & McMahon, 2018; A. Dietrich & McMahon, 2017) and use Euler 7
angles. 8

Typically, is estimated by employing a global registration technique such as the ICP, the ICP 9
variants or the Super 4-point Congruent Sets (S4PCS) (Mellado, Aiger, & Mitra, 2014), involving 10
Pk and Pk+1. 11

2.2 Recursive Filtered 3D Local Features based LIDAR odometry 12

Driven by the need of a high performing uncooperative relative navigation architecture for relative 13
space navigation, we suggest an architecture that estimates by combining the concepts of 3D 14
local feature description, geometrical correspondence refinement and adaptive recursive filtering. 15
For the former, we evaluate several current state-of-the-art 3D local feature descriptors (Section 16
2.2.1) while for the latter we evaluate both linear and non-linear filters (Section 2.2.3). The 17
suggested architecture is presented in Figure 1. It is worth noting that current odometry literature 18
for terrestrial applications suggests global pose-graph optimization, i.e. finding feature matches 19
between non-adjacent frames or exploiting the loop closure technique. Despite that, in this work 20
we do not adopt these concepts and push the limits by investigating the performance attained by 21
exploiting only sequential point clouds. Preliminary work is presented in (Kechagias-stamatis & 22
Aouf, 2019) without though involving in that work any geometric consistency checks and limiting 23
the evaluation on a single 3D descriptor and to real data scenarios. 24

 25
Figure 1: Suggested relative navigation architecture 26

1k kp Rp T+ = +

1 11 12 13

1 21 22 23

1 31 32 33

k k x

k k y

k k z

x r r r x T
y r r r y T
z r r r z T

+

+

+

é ù é ùé ù é ù
ê ú ê úê ú ê ú= +ê ú ê úê ú ê ú
ê ú ê úê ú ê úë û ë ûë û ë û

u

* *

1

u

uR Rµ
µ=

=Õ

*R

*R

3D Local feature description and matching Adaptive recursive filtering
Target
Point

cloud Pk

Target
Point

cloud Pk+1

3D local
feature

description

3D local
feature

description

FLANN
feature

matching

Correspondence
quality metric

Point
correspondences

Source
platform

position at
instance k

Adaptive
recursive
filtering

Estimated Source
position at instance

k+1

Geometric
consistency

check

7

 1

2.2.1 3D local feature description 2

Local feature description techniques describe local patches around a point of interest, i.e. keypoint, 3
by encoding the geometric properties and the underlying structure of the local patch (O. Kechagias-4
Stamatis et al., 2018). Their major advantages are affording robust feature description to partially 5
visible objects (Odysseas Kechagias-Stamatis, Aouf, & Nam, 2017) and being less affected by 6
illumination variation and pose changes (Lei Yunqi, Lai Haibin, & Jiang Xutuan, 2010; Mian, 7
Bennamoun, & Owens, 2006). 8

Current literature suggests quite a few handcrafted 3D local descriptors with representative ones 9
being the Signatures of Histograms of Orientations (SHOT) (Salti, Tombari, & Di Stefano, 2014), 10
Spin Images (Andrew E. Johnson & Hebert, 1999), Rotational Projection Statistics (RoPS) (Guo 11
et al., 2013a), Tri-Spin Images (TriSI) (Guo, Sohel, Bennamoun, Lu, & Wan, 2013b), Fast Point 12
Feature Histograms (FPFH) (Rusu, Blodow, & Beetz, 2009), 3D Shape Context (3DSC) (Frome, 13
Huber, Kolluri, Bülow, & Malik, 2004), Unique Shape Context (USC) (Tombari, Salti, & Di 14
Stefano, 2010), Histogram of Distances (HoD) (Odysseas Kechagias-Stamatis & Aouf, 2016), 15
HoD-Short (HoD-S) (Odysseas Kechagias-Stamatis & Aouf, 2017, 2018), Local Feature Statistics 16
Histogram (LFSH) (Yang, Cao, & Zhang, 2016), Multi-attribute Statistics Histograms (MaSH) 17
(Yang, Zhang, & Cao, 2017), Statistic of Deviation Angles on Subdivided Space (SDASS) (Zhao, 18
Le, & Xi, 2019) and Binary Rotational Projection Histogram (BRoPH) (Zou et al., 2018). It is 19
worth noting that lately except from handcrafted local feature descriptors, learned 3D feature 20
descriptors have also been used. Examples are the Point Pair Feature Network (Deng, Birdal, & 21
Ilic, 2018) and the Compact Geometric Features descriptor (Khoury, Zhou, & Koltun, 2017). A 22
downside of both methods is the requirement of offline training prohibiting their usage for 23
odometry that involves an uncooperative and unknown Target platform. 24

In this work we use within our odometry architecture several commonly used 3D feature 25
descriptors and specifically SHOT, TriSI, HoD-S, HoD, FPFH and RoPS. A common principle of 26
all these 3D descriptors is encoding a spherical volume V of radius r that is centered on a keypoint 27
p(x,y,z). For completeness, a short description of the 3D descriptors evaluated is presented. 28

2.2.1.1 HoD and HoD-S 29

HoD and HoD-S calculate the probability mass density of the normalized point-pair L2-norm 30
distance distributions within V. The difference between these two 3D descriptors is that HoD 31
encodes the distance distributions in a coarse and a fine manner, while HoD-S only in a coarse 32
manner. Main advantages of both these descriptors over the current ones are neglecting the 33
requirement of a Local Reference Frame or Axis (LRF/A), being robust to nuisance factors such 34
as noise and being fast to compute. Indeed, HoD and HoD-S are robust to Gaussian noise, 35
occlusion, clutter and point cloud resolution variation (Odysseas Kechagias-Stamatis & Aouf, 36
2016, 2017, 2018; Odysseas Kechagias-Stamatis et al., 2017). 37

2.2.1.2 SHOT 38

SHOT divides the support volume V into a pre-defined number of sub-volumes along the azimuth, 39
the elevation and the radius. For each sub-volume, a 1D histogram is calculated based on the 40
normal variation between the keypoint p(x,y,z) (including its surrounding vertices) and the vertices 41

8

that lie in each sub-volume. SHOT is robust to Gaussian noise and Shot noise, and sensitive to 1
occlusion and clutter (Guo et al., 2016). 2

2.2.1.3 FPFH 3

FPFH establishes on V a Darboux LRF. Then for each point belonging to V, FPFH encodes the 4
angular relationship between the keypoint p(x,y,z) and its neighbors as provided by the LRF. 5
Finally, this angular relationship is transformed into a histogram. FPFH is robust to resolution 6
variation and sensitive to Gaussian noise, Shot noise, occlusion and clutter (Guo et al., 2016). 7

2.2.1.4 RoPS 8

RoPS establishes on V a LRF. Then V is rotated around each axis of the LRF and is projected on 9
each of the coordinate planes. Finally, each projection undergoes a statistical analysis based on 10
low order moments and entropy, and all the results are concatenated into a histogram. RoPS is 11
robust to Gaussian noise and sensitive to Shot noise, occlusion and clutter (Guo et al., 2016). 12

2.2.1.5 TriSI 13

TriSI is an extension of the 3D descriptor Spin Images (SI). For the latter, given a support volume 14
V centered at point p(x,y,z), a LRA is aligned with the normal vector of the plane fitted to the 15
vertices within V. Then a 2D array accumulator of user defined dimensions is placed on the LRA 16
and the SI descriptor is generated by accumulating the neighboring points into each bin of the 2D 17
array as the array rotates around the LRA. TriSI uses the same technique as the SI but substitutes 18
the LRA with an LRF and calculates a SI descriptor for each axis of the reference frame. Finally, 19
the three SI descriptors are concatenated to from a single descriptor. TriSI is robust to Gaussian 20
noise, Shot noise and resolution variation, while it is sensitive to occlusion and clutter (Guo et al., 21
2016). 22

2.2.2 Local feature matching 23

Let and be two sets of 3D features for point clouds Pk and 24

Pk+1 respectively that are the output of a 3D descriptor. We match feature from with its 25

nearest feature from based on an L2-norm Nearest Neighbor metric (Mikolajczyk & 26

Schmid, 2005): 27

 (5) 28

where ι,j are the feature indexes and the threshold is set to 1 to reduce the dependency between 29
the threshold value and the metric used (O. Kechagias-Stamatis et al., 2018). We speedup the 30
feature correspondence process of Eq. (5) by employing the Fast Library for Approximate Nearest 31
Neighbors (FLANN) technique (Muja & Lowe, 2009). FLANN is a widely used library that 32
performs fast approximate nearest neighbor searches in high dimensional spaces. It uses either a 33
hierarchical k-means tree search with a priority search order scheme, or a multiple randomized kd-34
trees scheme. The search scheme and the optimum FLANN parameters are automatically chosen 35
from the FLANN library and depend on the dataset. 36

1{ ,..., }iNk k kf f=F 1
1 1 1{ ,..., }jNk k kf f+ + +=F

i
kf kF

1
j
kf + 1k+F

()1 1 21,2,...,
arg min

j

i j i j
k k k kn N
f f f f t+ +=

¬¾¾ - <!

t

9

Feature matching is then performed by using geometric consistency checks (GCC) (Chen & 1
Bhanu, 2007). Specifically, the correspondences obtained from FLANN (Eq. (5)) are clustered into 2
hypotheses, using their true physical geometric consistency. Geometric consistency aims at 3
reducing mismatches by grouping correspondences into clusters that are geometrically consistent. 4
For the latter, a list of descriptor correspondences is created , where and 5

are the Target correspondences at instance k and k+1 from the FLANN matching stage (Eq. (5)): 6

 (6) 7

Given a seed correspondence from , the first cluster is initialized and all correspondences 8
, v <u not yet grouped that are geometrically consistent with the cluster are added 9

to it. The consistency check for a pair of correspondences , is valid if the following distance 10
relation holds: 11

 (7) 12

ε being the threshold tolerance for their consensus set that is experimentally set during tuning. 13
Finally, the matched feature pairs belonging to the cluster with the largest cardinality 14

are considered as feature matches, while their associated vertices are considered as 15

point correspondences. 16

It is worth noting that we use a GCC module instead of the popular Random Sample and Consensus 17
(RANSAC) (Fischler & Bolles, 1981) because the latter has a longer execution time than GCC, 18
which can be up to two orders of magnitude (Yang et al., 2018) and thus is inappropriate for 19
odometry applications examined in this work. For completeness, in Section 4 we demonstrate the 20
efficiency of GCC by substituting in the proposed odometry method the GCC module with 21
RANSAC. 22

2.2.3 Recursive filtering 23

The aim of the recursive filtering is to remove the noise from a signal while retaining useful 24
information. Hence, in the context of odometry, given the correspondences we solve Eq. (2) by 25
suggesting an adaptive recursive filtering scheme based on the quality of the correspondences . 26
The proposed architecture is based on a recursive optimal state estimation of the state variable 27

 that encompasses the rigid transformation between Pk 28

and Pk+1 by exploiting the correspondences . For our trials, we consider an initialization value 29
for . It should be noted that in contrast to our solution, (A. P. Rhodes 30
et al., 2017) uses a Multiplicative Extended Kalman Filter (MEKF) to smooth R* rather than 31
estimating as done in this work. The adaptive recursive filters evaluated in this paper are: 32

 33

 34

{ }1,u u
u k kH p p += u

kp 1
u
kp +

{ }1 1,u u i j
u k k k kH p p f f+ += ¬¾¾ !

uH

{ }1,m m
v k kH p p +=

uH vH

2 1 1 2|| || || ||u m u m
k k k kp p p p e+ +- - - <

1{ , }i j
k kf f +

{ }1,i j
k kp p +W =

W
W

11 12 13 21 22 23 31 32 33[]Tk x y zx r r r r r r r r r t t t=
W

[1 0 0 0 1 0 0 0 1 0 0 0]Tkx =

*R

10

2.2.3.1 Adaptive H∞ Filter 1

The H∞ filter is a recursive optimal state estimator with the state variable vector and 2

 the measurement vector that contains the 3D coordinates of the point 3

correspondences belonging to Pk+1, which are included in . The adaptive H∞ filter is given 4
by: 5

 (8) 6

 (9) 7

where is the state transition matrix and the measurement model matrix. We set 8
 with I the identity matrix and , and are the model and the 9

measurement noise factors respectively with covariance matrices and 10

 where and are small positive values and is the unity matrix. 11

contains the actual measured 3D coordinates of belonging to Pk that are included in : 12

 (10) 13

with an adaptive coefficient that aims at adjusting the measurement noise covariance based on 14
the quality of the matched features defined as: 15

 (11) 16

In contrast to the typical H∞ filter (Simon, 2000), in this work we suggest an adaptive measurement 17
model matrix Hk. The constant in Eq. (11) is experimentally estimated to fine tune the overall filter 18
performance. The problem that the H∞ filter is trying to solve is the where G is 19

defined as: 20

 (12) 21

subject to , with being a weighting matrix and a small constant number representing 22
the required accuracy of the filter. The H∞ filter equations solving Eq. (12) are: 23

 (13) 24

 (14) 25

kx
[, ,]k k k

k x y zy T=

1
j
kp + W

1 1k k kx x w- -=F +

k k k kH x vy = +

F H
*
0 0[|]R I TF = = 0 [0 0 0]TT = w v

2
12(0,)wW N Js!

2
3(0,)vV N M Js! ws vs J kH

i
kp W

1 1 1

1 1 1

1 1 1

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

k k k

k k k k

k k k

x y z
H M x y z

x y z

+ + +

+ + +

+ + +

é ù
ê ú= ê ú
ê úë û

M

1{ , }i j
k kf f +

()110 i j
k kM f f += × -å

! ,min maxw vx
G

!()
() ()

kk
Q

k kW V

average x x
G

average w average v

-
=

+

1/G g< Q g

() 11
1 1

T
k k k k kL I gQP H V H P

--
- -= - +

1
1

T
k k k kK P L H V -

-=F

11

 (15) 1

 (16) 2

where with and being regulating parameters. The number of iterations of 3

the H∞ filter is the cardinality of and ultimately the final after all iterations is transformed 4
into , which is input to Eq. (4) in order to estimate the LIDAR odometry. The parameters of the 5
adaptive H∞ filter as well as of the rest adaptive filters evaluated in this work are tuned based on 6
scenario 1. 7

2.2.3.2 Adaptive Kalman Filter 8

Using the same notation as for the H∞ filter, the Kalman filter is given by (Simon, 2001): 9

 (17) 10

 (18) 11

with B a matrix and q a known input to the system. The Kalman filter equations are: 12

 (19) 13

 (20) 14

 (21) 15

where K is the Kalman gain and P the estimation error covariance, with and 16
that are experimentally defined to gain optimum odometry performance. 17

2.2.3.3 Adaptive αβ Filter 18

Using the same notation as for the H∞ filter, the αβ filter is given by (Penoyer, 1993): 19

 (22) 20

 (23) 21

 (24) 22

 (25) 23

where is the residual error, , , and as computed by Eq. (11). 24

1
T

k k kP P L W-=F F +

! ! !()1k k kk kx x K H xy+ =F + -

Q Idt= 510dt -= 0.1g =

W !x
*R

1 1k k k kx x q w- -=F +B +

k k k kH x vy = +

() 1T T
k k k k k kK AP H H P H VM

-
= +

! !() !()1k k kk k k kx x Bu K H xy+ = F + + -

1
1

T T T
k k k k k kP P W P V H P-

-=F F + -F H F

1vs = 35 10ws
-= ×

1k k kx x V t-= + D

1k k kr x x-= -

k k kx x ra= +

k k kV V x
t
b

= -
D

kr 1kV = 510t -D = 610a -= Mb =

12

2.2.3.4 Adaptive State-Dependent Riccati Equation (SDRE) Filter 1

This is a non-linear filter (Arnold & Laub, 1984) that solves the equation: 2

 (26) 3

where and . 4

 5

3. Experiments 6

3.1 Experimental setup 7

We evaluate the proposed architecture for LIDAR based uncooperative relative navigation on 8
seven scenarios that consider as the Target platform one real space platform mock-up and four 9
simulated space objects. We assume that the Target is not rotating in any significant way and the 10
reference frame where odometry is searched for is fixed on the Source and rotating with it. 11
However, for the scenarios involving real data, the Source platform has a minor tumbling during 12
data acquisition. 13

The first two scenarios consider a moving Source platform that utilizes a VLP-16 Velodyne Puck 14
Lite LIDAR to capture the point cloud of a scaled EnviSat mock-up Target. The ground truth of 15
the Source is estimated by capturing its position via an Optitrack device (“Optitrack,” 2018). 16
Optitrack can provide in sub-millimeter accuracy the position of objects that are within its field of 17
view and are visible in the Near Infrared (NIR) band. Therefore, we placed on the VLP-16 highly 18
NIR reflective markers. The real data scenarios involve a straightforward – backward trajectory 19
(Real-FB) and a highly curved forward – backward trajectory (Real-Curved). Both scenarios are 20
challenging as they involve real point clouds and are presented in Figure 2 along with the point 21
cloud cardinality per frame. 22

Main characteristics of these scenarios are the poor features on the Target point cloud that is mostly 23
presented by flat surfaces. This is because the original Envisat, and thus our scaled mock-up, 24
comprises of flat surfaces, on top of which several antennas are placed. The mock-up is acquired 25
by the 16 vertical beams of the VLP-16, constraining the vertical vertex cardinality to 16 vertices 26
per acquisition instance neglecting the fine details of the mock-up. However, this situation can be 27
considered as a simulation of a low-resolution point cloud that is acquired by a space graded 28
LIDAR sensor at greater distances or by a low-cost low-resolution space-graded LIDAR device. 29

It is worth noting that the VLP-16 we used in our trials is not an optimum choice for spaceborne 30
platforms mainly due the 360° horizontal field of view (FoV), the 16 vertical beams limiting the 31
Target details per sweep in the vertical axis, and finally, due to the relatively short operating range 32
compared to the majority of currently available space graded LIDAR sensors. Table 1 compares a 33
number of space graded LIDAR sensors against the VLP-16 we use in our trials. From Table 1 it 34
is obvious that for a short operating distance, the accuracy provided by space graded LIDAR 35
sensors is higher compared to the commercial VLP-16. However, we believe that using the VLP-36
16 to acquire real data is both valid and valuable for the following reasons: First, we evaluate the 37
performance of our architecture against the competitor odometry methods on real data that contain 38

1() 0T T T TA XA X A XB B XB R B XA-- - + =

wA Q I s= = × B IM=

13

arbitrary minor Source tumbling. Second, we limit the 360° horizontal FoV by post processing the 1
point cloud acquired and discard vertices that do not belong to the Target. Third, the low point 2
cloud resolution may resemble a scenario of a space graded LIDAR at a great distance or utilizing 3
a low-cost low-resolution sensor. Overall and given that e VLP-16 poses a decent cost-effective 4
alternative to validate space navigation algorithms that has already been used by the relevant 5
community (Opromolla, Di Fraia, et al., 2017), we believe that the quality of the acquired point 6
clouds is sufficient for conceptual verification of the proposed architecture. 7

 8

(a) (b)

(c) (d)

Figure 2: Real -FB and Real-Curved scenarios (a) Scaled EnviSat satellite mock-up (b) top view of the acquisition
setup and the trajectory plots of the LIDAR sensor, i.e. Source, moving along the black trajectory for the Real-FB
and the red trajectory for the Real-Curved scenarios, (c) Pk point cloud example (d) Pk cardinality per frame k
(colored arrows indicate the corresponding trajectory direction)

 9

The simulation and the test data used in this paper present a few differences, without causing loss 10
in performance, to the real space scenarios in terms of the LIDAR sensor characteristics used and 11
in terms of the operation range. The LIDAR sensor technology envisaged/ used in space (NEPTEC, 12
Jena-Optronik used on ESA programs) are denser, more accurate comparing to the technology 13
used to generate our data in this paper. In space the close-range operation for this relative 14
navigation problem could be from 100m down to 2m close to the target and the LIDAR technology 15
mentioned above and used in space would cover up well to that range. All the experiments for 16
relative navigation available in the literature are of similar range (few meters) as we proposed in 17
our simulation and real data. The accuracy achieved by our algorithm in our tests is optimal and 18
we strongly believe that it would be kept similar if we went for real space scenarios as in this case 19
the sensor would be of better quality (range of operation, accuracy although with less or similar 20
density as our LIDAR system we used in our experiment is not of great quality in terms of density) 21
and the noise is much less than that of our experimental data since in space the background is quite 22
obscure and no noisy returns are expected comparing to our lab testbed. 23

Table 1: Comparison of existing space-graded LIDAR sensors and VLP-16 24

0
1000
2000
3000

1 45 89 13
3

17
7

22
1

26
5

30
9

35
3

39
7

44
1

48
5

52
9

57
3

61
7

66
1

70
5

74
9

79
3Pk

 c
ar

di
na

lit
y

frame k

Real - FB
Real - Curved

Optitrack
sensors

LIDAR sensor

Satellite mock-up

14

Se
ns

or

Fo
V

(H

 x
 V

)1

Po
in

ts

M
ax

im
um

R

an
ge

 (m
)

ac
qu

is
iti

on

m
od

e

re
fr

es
h

ra
te

(H

z)

ra
ng

e
ac

cu
ra

cy
 a

t
m

ax
 ra

ng
e

(c
m

)

an
gu

la
r

re
so

lu
tio

n
(r

ad
)

po
w

er
 (W

)

w
ei

gh
t

(k
g)

 LAMP
(Kornfeld et al.,
2003b; Liebe et

al., 2003)

10°x10° n/a 2500 scanning
beam 10,000 ≤ 2.6 10-3 33 6.4

RVS-3000
(Jena Optronik,

2019)
40°x40° n/a 100 scanning

beam 1-4 n/a n/a 50 8

DragonEye
(ASC, 2019a)

45°x45° 32,768 1500 flash LIDAR 5-30 15 n/a 35 3

GoldenEye
(ASC, 2019b)

45°x45° 32,768 3000 flash LIDAR 5-10 10 n/a 50 6.5

VLP-16 360°x30° 37,5002 100
16 vertical
laser beams

spinning 360°
5-20 ≤ 3 H: ≤7x10-3

V:35 x10-3
8 0.59

 1

Scenario three studies the odometry performance of a simulated Ellipse of Inspection (Sim-EoI) 2
trajectory of the Source platform around the Target. The latter space platform is developed by 3
Thales Alenia Space (France) and is inspired from the Globalstar-2 and Iridium constellations. The 4
Sim-EoI trajectory is a realistic space-oriented scenario that considers the influence of the Earth’s 5
mass, the Sun’s sunlight power with respect to each spectral band and the typical physical size of 6
the Target and the Source platform. In the Sim-EoI trajectory the Source platform performs a 7
complete translational motion along the ellipsoid. Figure 3 presents the satellite model, the Sim-8
EoI trajectory and the point cloud cardinality per frame. 9

Scenario four named Sim-Helical is presented in Figure 4 and simulates a 3D helical trajectory of 10
the Source platform that is approaching the Thales Alenia Space model acting as the Target. We 11
create self-occluded point cloud views of the Target platform emulating realistic views of the 12
virtual LIDAR placed on the Source platform by exploiting the Hidden Point Removal (HPR) 13
algorithm (Katz, Tal, & Basri, 2007). The challenge in this scenario is the sparse Pk and complex 14
trajectory as we want to push the limits of 3D space odometry and investigate the performance of 15
the suggested pipeline. 16

The following scenarios five to seven simulate the Source platform orbiting around the Target 17
platform in an Ellipsoidal trajectory. Compared to the Sim-EoI trajectory, here the Source platform 18
performs 2.5 times a complete translation along the ellipsoid aiming at evaluating the performance 19
of the competitor methods on repetitive trajectories. Additionally, in scenarios five to seven 20
consider as the Target platform the Voyager satellite, the Orion space capsule and the Bennu 21
asteroid respectively. Computer Aided Design (CAD) models for all three space objects are 22
obtained from (NASA, 2019), while the corresponding point clouds are created by applying the 23

1 Nomenclature: H stands for Horizontal, V for Vertical and n/a for not available
2 In the single return mode VLP-16 generates approx. 300,000 points per second for a 360° x 30° FoV. For comparison reasons, for a hypothetical

45° x 30° FoV the points per second generated by VLP-16 would be 37,500

15

code of (Aldomà, 2011) with 800 views. Finally, similarly to scenario four, we use the HPR 1
algorithm to create self-occluded point cloud views of the Target platform. The challenge in 2
scenarios five to seven is multi-fold. First, opposing to the large size of the simulated Envisat 3
Target platform evaluated in scenario three, the Voyager and the Orion space platforms are smaller 4
providing a smaller point cloud cardinality. Second, Bennu, lacks distinctive features making the 5
evaluation of the local feature descriptors evaluated quite challenging. Third, the Orion and Bennu 6
point clouds are quite sparse. It should be noted that we intentionally tuned HPR to create sparse 7
point clouds as we want to investigate the performance of the suggested pipeline in low resolution 8
conditions simulating large Source – Target distances, which is the norm as the Source approaches 9
the Target, or alternatively we simulate exploiting a low-cost low-resolution LIDAR sensor. The 10
simulated scenarios five to seven namely the Sim-Voyager, Sim-Orion and Sim-Bennu are 11
presented in Figure 5. 12

(a) (b)

(c) (d)

Figure 3: Sim-EoI scenario (a) satellite model (b) trajectory plot, (c) Pk example (d) Pk cardinality per frame k
 13

(a) (b)

(c) (d)

Figure 4: Sim-Helical scenario (a) satellite model (b) trajectory plot, (c) Pk example based on HPR simulation (d)
Pk cardinality per frame k

 14

0
2000
4000
6000
8000

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

52
3

55
2

58
1Pk

 c
ar

di
na

lit
y

frame k

0

500
1000

1500

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1Pk

 c
ar

di
na

lit
y

frame k

Target point cloud

Source platform

Target point cloud

Source platform

16

(a)

(b)

(c)

(d)

Figure 5: Simulated scenarios presenting the space object model, Pk based on HPR simulation and Pk cardinality
per frame k respectively for the (a) Sim-Voyager scenario, (b) Sim-Orion scenario and (c) Sim-Bennu scenario,
along with the generic Ellipsoidal trajectory of all three scenarios is presented in (d). For better readability we
visualize in (d) only the Voyager model.

 1
It should be noted that the CAD models we use to generate the Target point clouds are accurate, 2
but the point clouds created are not ideal. This is because the method of (Aldomà, 2011) we use to 3
generate the point clouds from CAD models and the HPR algorithm we employ to generate 4
viewing dependent point clouds, affect the point cloud accuracy during reconstruction. 5

The differences between the real and the simulated Target point clouds of our trials can be 6
summarized as follows. First, the vertical cardinality of the real LIDAR data is fixed to 16 vertices, 7
while for the synthetic there is not such a constraint. Second, the level of details of the real data is 8
lower compared to the simulated. Third, real data during acquisition involve minor Source 9
tumbling. Fourth, due to the real data acquisition setup, i.e. high LIDAR refresh rate and slow-10
moving Source platform, the inter-motion between Pk and Pk+1 is lower compared to the simulated 11
data where the fictitious dynamics of the Source and Target platforms are greater. However, 12
despite these differences, both scenario classes are useful for evaluation. Except from these 13
differences, both real and simulated data are sparse aiming at simulating large Source – Target 14

0
200
400
600
800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Pk

 c
ar

di
na

lit
y

frame k

0
200
400
600
800

1000
1200

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Pk

 c
ar

di
na

lit
y

frame k

120

170

220
1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Pk
 c

ar
di

na
lit

y

frame k

Target point cloud

Source platform

17

distances or spaceborne LIDAR sensors that are less expensive and less accurate. Despite these 1
differences, we believe that in the context of conceptual validation of our odometry method and in 2
terms of comparing its performance against current solutions, both data modalities are acceptable. 3

Figure 6 shows the ground truth trajectory of each scenario along with the most accurate trajectory 4
obtained by the proposed method, i.e. best performing feature description and filtering 5
combination. In our trials we describe all vertices belonging to each point cloud Pk and Pk+1 with 6
the 3D descriptors introduced in Section 2.2.1. The proposed pipeline is in MATLAB while 7
descriptors are implemented either in MATLAB or in C++/PCL using a MEX wrapper. The 8
parameters of each descriptor are fixed either to the ones originally proposed by their authors or to 9
their PCL implementation (Alexandre, 2012; Guo et al., 2016; Odysseas Kechagias-Stamatis & 10
Aouf, 2016). An exception is the support radius r that we tune individually for each descriptor 11
during the Real-FB scenario. 12
 13

(a) (b) (c)

(d) (e) (f)

(g)
Figure 6: Ground truth trajectories (in red) along with the top performing method (in black) per the scenario (a)
Real – FB scenario with HoD-S/ αβ (b) Real – Curved scenario with HoD-S/ αβ (c) Sim – EoI scenario with HoD-
S/ αβ (d) Sim-Helical scenario with HoD-S/ αβ (e) Sim – Voyager scenario with HoD-S/ SDRE (f) Sim – Orion
scenario with SHOT/ Kalman (g) Sim – Bennu scenario with HoD-S/ αβ. The Real-FB scenario considers a forward
– backward motion, while the Sim – Voyager, Sim – Orion scenario and Sim – Bennu scenarios involve 2.5 times a
complete motion translation along the elliptical trajectory.

 14
 15

18

Indeed, we use the Real-FB scenario 1 not only to evaluate the odometry performance of each 1
method but also to tune the free parameters of every module of the proposed architecture and the 2
parameters of the competitor methods presented shortly. Regarding the proposed method, we tune 3
the encoding radius r of each descriptor, the geometric consistency threshold tolerance ε of eq. (7) 4
and the regulating parameters of each adaptive filtering scheme. Tuning is performed via a try and 5
evaluation scheme aiming to achieve the lowest possible translational and rotational error and also 6
the lowest possible processing time. It should be noted that during tuning, odometry accuracy and 7
computational burden are of equal importance. Regarding the sensitivity of each method to these 8
parameters: 9

a. Encoding radius: We confirm that SHOT is fairly stable and is less affected by the encoding 10
radius, while TriSI, FPFH and RoPS gain a peak performance and then drop (Guo et al., 2016, 11
2015). During tuning, we identified this peak performance at , with the average Pk+1 12
resolution. Regarding HoD and HoD-S, as the encoding radius increases these tend to increase 13
their encoding capability and provide more distinctive features. However, regardless of the 14
descriptor, as the encoding radius increases the processing time to compute the descriptor increases 15
exponentially (Guo et al., 2016). Thus, the encoding radius of HoD and HoD-S is set to to 16
balance odometry performance with computational burden. Table 2 presents the parameters of 17
each descriptor evaluated in this work along with the main traits per method. It is worth noting that 18
even though USC and 3DSC are widely used, our initial results during the tuning process of each 19
descriptor showed that both failed to provide valid correspondences due to the highly sparse Target 20
point cloud where USC and 3DSC are quite sensitive confirming (Guo et al., 2016). 21

Table 2: 3D descriptors evaluated 22

D
es

cr
ip

to
r

D
es

cr
ip

to
r

Le
ng

th

ra
di

us
 r

of

vo
lu

m
e

V

Im
pl

em
en

t
at

io
n

pl
at

fo
rm

O
pe

ra
tin

g
pr

in
ci

pl
e

R
ob

us
t n

es
s

Se
ns

iti
v i

ty

SHOT 352 20 × Tr C++
(MEX wrapper)

Angular variations Gaussian noise, Shot
noise occlusion, clutter

TriSI 675 20 × Tr MATLAB Accumulating points
Gaussian noise, Shot

noise, resolution
variation

occlusion, clutter

HoD-S 40 80 × Tr MATLAB L2-norm distances with
coarse encoding

Gaussian noise, Shot
noise, resolution

variation
occlusion, clutter

HoD 240 80 × Tr MATLAB
L2-norm distances with

coarse and fine
encoding

Gaussian noise, Shot
noise, resolution

variation
occlusion, clutter

FPFH 33 20 × Tr C++
(MEX wrapper)

Angular variations resolution variation
Gaussian noise,

Shot noise,
occlusion, clutter

RoPS 135 20 × Tr MATLAB Low order statistics Gaussian noise Shot noise,
occlusion, clutter

20 Tr´ Tr

80 Tr´

19

b. Geometric consistency threshold: This defines how strict the geometric point-pair distance 1
comparisons are (eq. (7)). The threshold dependents on the encoding quality of the 3D descriptor 2
and on the characteristics of the Pk such as being sparse. Hence, to increase the robustness of our 3
method to sparse Target point clouds and to potential feature description mismatches, we use an 4
adaptive threshold that is set to , with the average Pk+1 resolution. Due to its adaptive 5
nature, the sensitivity of the geometric consistency threshold is relatively low. 6

c. Adaptive filtering regulating parameters: These define for each iteration how much the 7
measurements, i.e. the feature correspondence coordinates for our odometry architecture, affect 8
the prediction step, i.e. the updated R*. These require to be finely tuned as the output of the filter 9
is quite sensitive to these parameters. Tuning is performed based on the Real-FB scenario. 10

Opposing to current literature (Opromolla et al., 2014, 2015a; Opromolla, Fasano, Rufino, & 11
Grassi, 2015b; Woods & Christian, 2016) we compare the accuracy of the suggested architecture 12
not only against an optimally tuned ICP point-to-point registration process, but also against point-13
to-plane ICP, point-to-point and point-to-plane Sparse ICP (Bouaziz, Tagliasacchi, & Pauly, 14
2013), x84 ICP (Fusiello, Castellani, Ronchetti, & Murino, 2002) and S4PCS (Mellado, 2017). To 15
the best of our knowledge such an extended comparison has not been presented yet in the current 16
literature. 17

For completeness, the ICP point-to-point variant aims at aligning Pk and Pk+1, where Pk is kept 18
fixed and Pk+1 is transformed via the R* to match Pk. During each transformation, ICP iteratively 19
revises (eq. (1)) to minimize the Euclidean point-pair distances between Pk and Pk+1. The point-20
to-point ICP, presented thereafter as ICP point, is a 4-step process: 21

a. Each vertex belonging to Pk+1 is matched to its closest point in Pk 22
using a Euclidean distance metric. A match (inlier) is considered if the absolute Euclidean 23
translational distance is less than 0.01. 24

b. The matrices R and T of (eq. (1)) are estimated using a root mean square point-to-point 25
distance metric minimization method that will best align each with its 26
matched vertex in Pk. 27

c. The estimated from step (b) is applied on Pk+1. 28
d. If for the three latest consecutive iterations the average absolute translational and rotational 29

difference between Pk and the transformed Pk+1 of step (c) is less than 0.01 and 0.009 respectively, 30
or the number of iterations has reached a pre-defined number, then ICP stops iterating. The output 31

 from ICP is the latest estimated . If these thresholds are not met, then ICP re-iterates starting 32
from step (a). 33

Current literature proposes various numbers of ICP iterations ranging from as few as 12 34
(Opromolla et al., 2014), up to 20 (L. Liu, Zhao, & Bo, 2016) or 30 (Opromolla et al., 2015b), 35
aiming at balancing the odometry accuracy and the computational burden imposed by ICP. Spurred 36
by the current literature trends, in this work the number of iterations for ICP is set to 20. We also 37
evaluate a second variant of ICP, namely the point-to-plane (presented thereafter as ICP plane), 38
that estimates the Pk and Pk+1 point correspondences and then calculates the error metric based on 39
the distance of the tangent plane of the corresponding point. For this ICP variant we use the same 40
thresholds as for the ICP point, while the number of maximum iterations is increased to 1000. To 41

2 Tr´ Tr

*R

1 1 1 1(, ,)k k k kp x y z+ + + +=

*R
1 1 1 1(, ,)k k k kp x y z+ + + +=

*R

*R *R

20

compensate the sparse nature of the Target point cloud, we also compare the proposed architecture 1
against Sparse ICP (Bouaziz et al., 2013) in a point-to-point and a point-to-plane scheme, presented 2
in the evaluation section as S-ICP point and S-ICP plane respectively. We use the code of 3
(Langlois, 2018) with 20 iterations. For completeness, an analysis between the interaction of the 4
number of iterations for all ICP variants with the odometry performance and processing time is 5
presented in Section 4. 6

Furthermore, in our experimental section we also evaluate the x84 ICP variant (Fusiello et al., 7
2002). The difference between ICP and x84 ICP is that the former uses as a threshold to reject 8
outliers based on the standard deviation of the point pair distances, while x84 ICP the median 9
absolute deviation. For the x84 ICP we use the code of (Birdal, 2015) that is properly modified to 10
facilitate the x84 ICP outlier rejection scheme. The maximum number of iterations is set to 20. We 11
also challenge our proposed method against S4PCS which is an optimized version of the 4PCS 12
global registration technique (Aiger, Mitra, & Cohen-Or, 2008). 4PCS is an iterative process that 13
extracts all coplanar 4-point sets from Pk+1 that are approximately related by a rigid transformation 14
to a given planar 4-points from Pk. The operating principle of 4PCS is that under rigid motion 15
between Pk and Pk+1 a number of coplanar 4-point sets from Pk+1 remain invariant under affine 16
transformations. Thus, 4PCS estimates between the randomly chosen coplanar 4-point sets 17
from Pk and Pk+1 and retains the optimum based on a similarity score. S4PCS affords a speedup 18
over 4PCS by eliminating redundant 4-point congruent sets, i.e. sets that are related by a rigid 19
transformation, and by indexing the coplanar 4-point sets for fast retrieval. In this work we use the 20
S4PCS code of (Mellado, 2017). Based on the tuning scenario Real-FB, we set an estimated 21
overlap ratio of 70% between Pk and Pk+1 and a registration accuracy δ=0.01, while the rest of the 22
parameters are the default ones. 23

Finally, we also challenge our technique against the global/ local inlier voting (Buch, Yang, 24
Kruger, & Petersen, 2014) that involves a dual layer correspondence check comprising of GCC 25
and RANSAC followed by a singular value decomposition scheme. However, for better readability 26
comparison is presented in a compact form in Section 4. 27

Alternatively, current literature also suggests employing computer vision concepts (A. Rhodes et 28
al., 2016; A. P. Rhodes et al., 2017) and specifically proposes applying coarse Target pose 29
estimation utilizing the Oriented Unique and Repeatable Clustered Viewpoint Feature Histogram 30
(OUR-CVFH) regional descriptor (Aldoma, Tombari, Rusu, & Vincze, 2012) or the local feature 31
descriptor Spin Images (Andrew Edie Johnson & Hebert, 1998), that are then followed by a fine 32
registration process based on ICP point-to-point. Regarding OUR-CVFH, in our preliminary trials 33
we observed that it is not able to cluster the sparse Target point clouds of our scenarios and 34
considered the entire Target point cloud as a single cluster. This inevitably degraded OUR-CVFH 35
to the inferior VFH descriptor that did not manage to provide any feature matches. Additionally, 36
in our preliminary trials, we confirmed (A. Rhodes et al., 2016) stating that the Spin Images 37
descriptor is affected by the low resolution of Pk and thus is not an optimum solution for space 38
odometry. In fact, we identified that Spin Images suffer from an ambiguous local reference axis 39
(LRA), the estimation of which is affected by a sparse Target point cloud. Due to the drawbacks 40
of Spin Images and OUR-CVFH on sparse point clouds, in our experimental section we will not 41
evaluate these two descriptors. 42

*R
*R

21

It should be noted that in any case, i.e. evaluating the proposed odometry architecture or the ones 1
suggested by the literature, we consider that the initial position and pose of the Source is known 2
and that all methods aim to build-up an accurate odometry solution. It is assumed that this prior 3
knowledge is obtained before commencement of any of the methods examined in this work and 4
can be based on Earth-based range and Doppler measurements or spacecraft-based optical images 5
(A. B. Dietrich & McMahon, 2018). Additionally, it is worth noting that changing the point cloud 6
resolution, accuracy and adding noise presents an additional challenge to the already challenging 7
scenarios. However, the impact of each of these nuisances is related to their severity and to the 8
robustness of the 3D feature descriptors and GCC module. For better readability and to keep the 9
paper in a reasonable length, we will not involve any robustness to nuisance factors evaluation. 10

3.2 Evaluation criteria 11

Odometry performance metrics are based on the average and the maximum tri-axial translational 12
error between the ground truth (GT) position of the moving platform as tracked by the Optitrack 13
and the estimated one as provided by the proposed architecture: 14

 (27) 15

 (28) 16

where N is the number of point cloud instances per scenario, is the 17
transformed translation at instance k from the LIDAR reference frame to the Optitrack reference 18
frame in order to make its comparison with the GT translation applicable, and averages the 19
tri-axial translation into a single value. In addition to these metrics, we also calculate the drift, i.e. 20
RMSE, between the estimated endpoint and the GT endpoint, the corresponding translational error 21
Terror as a percentage over the distance travelled and the average processing time t per Target scene. 22

Similarly to eq. (27) and eq. (28), we calculate the average rotational error: 23

 (29) 24

 (30) 25

Additionally, we also use the pose-graph comparison method of (Burgard et al., 2009) 26

 (31) 27

where is the translational and the rotational part of the R* and transformation 28
matrices respectively between Pk and Pk+1 and is the inverse motion composition operator as 29

*R

()2
1

1 () ()
N

T GT opt
avg k k

k
e avg T avg T

N =

= -å

()2max max () ()T GT opt
k ke avg T avg T= -

opt opt LIDAR
k LIDAR kT T T= ×

()avg ×

()2
1

1 () ()
N

R GT opt
avg k k

k
e avg R avg R

N =

= -å

()2max max () ()R GT opt
k ke avg R avg R= -

() ()()2 2* * * *

1

1 N
RT

GT k GT k
k

e trans R R rot R R
N =

= +å ! !

()trans × ()rot × *
GTR

!

22

defined in (Lu & Milios, 1997). The advantage of using the metric is two-fold. First, it uses 1
only relative relations between the R* and , and thus it is more objective as it is not influenced 2
by any reference frame. Second, it encompasses in a single value both translational and rotational 3
errors affording an easy but complete comparison between the competitor methods. Note that the 4
GT translation and GT rotation are provided by the Optitrack. Thus, for the synthetic 5
scenarios the corresponding GT translation and rotation is the fictitious position per instance k of 6
the Source platform. Each of these performance metrics presented next are averaged over 20 7
simulations with a standard deviation that is in the order of 10% the average value. However, for 8
better readability and to preserve the number of figures and tables to a reasonable amount, we will 9
only present the averaged performance metrics. 10

Given the large amount of feature description and recursive filtering combinations evaluated in 11
our odometry architecture, challenging our method against six methods offered by current 12
literature and utilizing a large number of performance metrics, for the sake of readability, all 13
scenarios will be analyzed based on the metric. We prefer against the other metrics as is 14
encompasses both translational and rotational errors in a single metric. However, for the sake of 15
completeness, all error metrics are presented in the corresponding tables. 16

3.3 Odometry trials on real LIDAR data 17

3.3.1 Real-FB trajectory 18

This scenario considers a straight-line forward - backward motion of the Source with respect to 19
the Target. Point clouds are acquired by a LIDAR device that is placed on the Source platform. 20
The average point cloud size per Target platform comprises of 882 vertices demonstrating the 21
sparse nature and the limited structure of the EnviSat Target point cloud (Figure 2 (c)). 22
Performance metrics are presented in Table 3 with the top performing method per error being 23
highlighted in red. Additionally, Figure 7 presents the corresponding odometry trajectory obtained 24
per 3D descriptor and recursive filtering method along with all competitor methods. For better 25
readability, methods with large errors are discarded and not presented in the corresponding plots. 26

From Table 3 it is evident that quite a few 3D local description and recursive filtering combinations 27
are more accurate compared to the majority of the competitor methods. Top performance affording 28
lowest at a low processing time, is provided by the combination of HoD-S with the adaptive 29
αβ filter, i.e. HoD-S/ αβ. It should be noted that in terms of error, SHOT/ αβ is slightly more 30
accurate than HoD-S/ αβ. However, the latter is three times faster to execute than SHOT/ αβ and 31
thus HoD-S/ αβ is considered as an overall more appealing option. This is because HoD-S neglects 32
estimating a LRF/A and thus is more robust to sparse point clouds. Additionally, neglecting a 33
LRF/A and relying on a small description length, makes HoD-S the most processing efficient 34
descriptor among the ones evaluated. In terms of pure odometry accuracy, SHOT attains the lowest 35

 error, but interestingly, from Table 3 it is evident that HoD-S is the most accurate descriptor 36
in terms of translational error, and TriSI in terms of rotational error. This reveals that SHOT 37
achieves the best balance between the translational and the rotational error. It is worth noting that 38
current literature offers several evaluations on the robustness of 3D local feature descriptors to 39
mesh/ point cloud resolution variations (Guo et al., 2016, 2015, 2013a; Salti et al., 2014). However, 40
these papers examine the case where the features from a dense point cloud, e.g. Source, are 41

RTe
*
GTR

opt
iT

opt
iR

RTe RTe

RTe

RTe

23

matched against the features of a sparse point cloud, e.g. Target. In contrast to this, here we involve 1
a Source and a Target point cloud that present some variation and are both sparse. Finally, FPFH 2
presents the largest errors due to its short feature descriptor (33 elements) and its sensitive LRF to 3
low resolution point clouds. Interestingly, Table 3 presents TriSI as the optimum descriptor for the 4
adaptive SDRE filter. However, from Table 3 and Figure 7, is it clear that TrISI provides one of 5
the largest translational errors indicating that the metric is biased by the very low rotational 6
errors of TriSI. In fact, that sparse nature of Pk and Pk+1 forces TriSI to fail providing enough 7
geometrically consistent feature matches to the recursive filtering module, and thus the latter does 8
not iterate properly, forcing the estimated R* to preserve its initialization value. 9

Table 3: Performance metrics for the Real-FB scenario 10

Descriptor drift
(m)

Terror
(%)

 max Error (m) Average error (m) t (ms) X Y Z X Y Z
 adaptive H∞ recursive filtering

HoD-S 0.16 2.11 0.17 0.09 0.05 0.13 0.09 0.05 0.03 0.05 9.12 13.58 9.91 560
FPFH 3.56 48.02 3.56 2.32 0.91 3.19 1.28 0.62 1.91 0.76 9.11 13.57 13.38 687
SHOT 0.58 7.77 0.59 0.23 0.56 0.15 0.09 0.12 0.09 0.10 8.61 12.77 9.89 1794
HoD 0.15 2.00 0.36 0.17 0.34 0.07 0.01 0.12 0.04 0.03 9.12 13.57 10.05 950
RoPS 0.84 11.39 0.85 0.25 0.19 0.68 0.48 0.05 0.15 0.13 9.13 13.57 10.26 2376
TriSI 0.26 3.56 3.13 1.69 3.13 0.01 0.01 1.39 0.03 0.04 3.35 4.55 6.32 1536
 adaptive Kalman recursive filtering

HoD-S 0.84 11.29 1.29 0.79 1.12 0.08 0.64 0.50 0.03 0.41 2.34 4.90 4.48 557
FPFH 2.41 32.49 2.82 1.78 0.70 2.37 1.36 0.56 1.24 0.73 2.48 4.55 6.04 687
SHOT 0.58 7.84 0.59 0.23 0.57 0.16 0.06 0.12 0.10 0.11 0.27 0.51 1.56 1794
HoD 0.26 3.52 0.35 0.21 0.30 0.06 0.16 0.12 0.04 0.12 0.91 1.83 2.09 946
RoPS 1.64 22.09 1.64 0.81 0.64 0.65 1.37 0.29 0.13 0.53 2.60 4.66 4.45 2375
TriSI 0.26 3.57 3.13 1.69 3.13 0.01 0.01 1.39 0.03 0.04 0.05 0.07 3.02 1536
 adaptive αβ recursive filtering

HoD-S 0.16 2.20 0.18 0.10 0.11 0.07 0.13 0.05 0.04 0.05 0.99 1.34 1.79 518
FPFH 3.58 48.21 3.58 2.33 0.87 3.23 1.26 0.60 1.93 0.77 0.60 0.81 4.87 679
SHOT 0.56 7.54 0.57 0.23 0.54 0.17 0.08 0.12 0.10 0.11 0.26 0.35 1.57 1784
HoD 0.15 2.00 0.38 0.18 0.36 0.07 0.01 0.13 0.04 0.03 0.99 1.36 1.94 903
RoPS 0.86 11.53 0.86 0.26 0.15 0.70 0.48 0.04 0.16 0.13 0.66 0.96 1.75 23620
TriSI 0.26 3.53 3.13 1.69 3.13 0.01 0.01 1.40 0.03 0.04 0.06 0.08 3.03 1535
 adaptive SDRE recursive filtering

HoD-S 0.85 11.41 0.86 0.40 0.45 0.54 0.49 0.18 0.23 0.16 9.12 13.58 10.85 521
FPFH 4.19 56.46 4.19 2.54 1.31 3.61 1.69 0.82 2.12 0.63 9.11 13.57 13.74 684
SHOT 1.13 15.28 1.14 0.46 0.92 0.52 0.44 0.17 0.28 0.13 8.61 12.77 10.24 1752
HoD 0.85 11.43 0.85 0.38 0.48 0.53 0.47 0.14 0.20 0.18 9.12 13.57 10.71 907
RoPS 1.23 16.63 1.24 0.53 0.50 1.04 0.42 0.22 0.35 0.17 9.13 13.57 11.07 2376
TriSI 0.27 3.57 3.10 1.67 3.10 0.02 0.03 1.37 0.02 0.04 3.35 4.55 6.28 1536
 competitor schemes

ICP point 0.44 5.90 1.41 0.64 1.30 0.50 0.22 0.43 0.15 0.13 84.49 133.01 86.32 5
ICP plane 1.90 25.61 1.91 0.97 1.79 0.07 0.67 0.61 0.40 0.35 -171.1 -111.87 191.71 9
ICP x84 8.75 117.97 11.36 9.57 8.69 4.94 4.56 6.65 3.78 4.24 -165.4 -121.96 206.69 40
S4PCS 1.26 16.98 1.91 1.09 0.10 1.89 0.19 0.16 0.73 0.45 77.01 141.53 79.53 1225

S-ICP point 0.13 1.70 3.52 1.97 3.51 0.20 0.11 1.64 0.08 0.07 0.01 0.01 3.42 145.76
S-ICP plane 0.13 1.70 3.52 1.97 3.51 0.20 0.11 1.64 0.08 0.07 0.01 0.01 3.42 150.16

RTe

max
Te T

avge
T
avge max

Re RTe

24

In terms of processing efficiency, as expected HoD-S with HoD are the fastest to execute as both 1
neglect a LRF/A estimation, and RoPS with TriSI are the least processing efficient due to involving 2
a complex LRF estimation process. It is worth noting that despite HoD-S and HoD being 3
implemented in MATLAB, these are still faster to execute than FPFH and SHOT that are in 4
implemented in C++/PCL. From Table 3, we also observe that the adaptive αβ and Kalman filters 5
afford similar accuracy, with αβ being slightly more accurate, demonstrating that due to the minor 6
motion between Pk and Pk+1, a linear motion estimation model with two parameters, as is the αβ 7
filter, is sufficient for space odometry. For better visualization of which filter is performing better, 8
in Figure 8 we compare the best feature descriptor from each filter. 9
 10

(a) (b)

Figure 8: Forward – Backward Real-FB scenario, odometry performance per filtering method with the lowest eRT
metric along with the overall top performing in terms of accuracy and processing efficiency HoD-S/ αβ. SHOT/
Kalman and SHOT/ αβ present quite similar results highlighting the effectiveness of a linear 2-parameter motion
estimation model. Despite TriSI presenting the lowest eRT error for the SDRE filter, the error is biased by a low
rotational error as the translational one is quite large.
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

GT TriSI/ H∞ SHOT/ Kalman SHOT/ αβ TriSI/ SDRE HoD-S/ αβ

0
0.1
0.2
0.3
0.4
0.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.6

0.8

1

1.2

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

25

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7: Forward – Backward Real-FB odometry plots of the 3D descriptors combined with the adaptive filter (a)-
(b) H∞, (c)-(d) Kalman, (e)-(f) αβ, (g)-(h) SDRE, and (i)-(j) the competitor methods along with the top performing
method HoD-S/ αβ, which is the black trajectory closest to the GT (due to large errors and for better readability we
crop RoPS from (a),(b),(c),(e),(g) , omit FPFH from (a) – (h) and ICP x84 and S4PCS from (i) –(j)). TriSI due to the
sparse point clouds fails to provide an adequate number of geometrically consistent feature matches, forcing the
recursive filtering process not to iterate properly and thus R* mostly preserves its initialization value.

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-0.1

0.1

0.3

0.5

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.6
0.8

1
1.2
1.4
1.6
1.8

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

-0.1

0.1

0.3

0.5

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Z

(m
)

X (m)

-0.1

0.1

0.3

0.5

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.6
0.8

1
1.2
1.4
1.6
1.8

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

0
0.2
0.4
0.6
0.8

1

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.8
1

1.2
1.4
1.6
1.8

2
2.2

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

-0.5

0

0.5

1

-4.5 -3.5 -2.5 -1.5 -0.5

Y
 (m

)

X (m)

0.5

0.7

0.9

1.1

1.3

-4.5 -3.5 -2.5 -1.5 -0.5

Z
(m

)

X (m)

26

Regarding the competitor methods, the ICP point and plane variants are the fastest to execute and 1
are the most accurate methods among all competitor techniques evaluated. Despite that, in terms 2
of accuracy these are still inferior to most of the proposed combinations. From Table 3 and Figures 3
7 (i) and (j), we observe that ICP point is slightly more accurate than ICP plane, despite Pk mostly 4
comprising of flat surfaces. An explanation is that Pk has quite a few groups of vertices that are 5
horizontally aligned (Figure 2 (c)) with these groups having a substantial vertical distance between 6
them. Hence, depending on the frame-to-frame motion of the Target point cloud, the plane 7
estimation involved in the ICP plane process is affected by this structure, degrading the overall 8
performance of ICP plane. Similarly, ICP point fails to present an accurate odometry solution 9
because the structure of Pk forces this ICP variant to converge to an appealing solution only if most 10
of these “horizontal groups of vertices” are aligned. Accordingly, ICP x84 and both S-ICP variants 11
fail to provide an accurate odometry. In addition to that, sparse point clouds force ICP to perform 12
suboptimal (Opromolla, Fasano, et al., 2017). For the S-ICP variants, due to the vertex geometry 13
these in most cases provide an R* with zero rotation and translation, which is clearly presented in 14
Figure 7 (i) and (j). 15

3.3.2 Real-Curved trajectory 16

This scenario also considers real LIDAR data but is more challenging compared to the Real-FB 17
scenario because in addition to the poor structure and sparse Target point cloud, this trajectory is 18
also highly curved. Hence, most of the descriptors attains a larger error compared to the Real-19
FB scenario. From analyzing Table 4 and Figure 9, we conclude that HoD/ Kalman attains the 20
lowest error with HoD-S/ αβ following next. However, given that the latter requires half the 21
processing time of the former, and that the based performance difference between these two 22
combinations is relatively small, we conclude that the overall optimum choice for this scenario is 23
the HoD-S/ αβ. A commonality between the two real scenarios is that Trisi affords the lowest 24
error for a few filters, but again this metric is biased by the low rotational error of TriSI. In fact, 25

TriSI has the highest odometry error for the reasons already presented in Section 3.3.1. 26

For the adaptive Kalman and αβ filters, HoD-S is the optimum choice as it affords the lowest eRT 27
error and simultaneously requires the lowest processing time. Finally, similarly to the Real-FB 28
scenario, in this scenario FPFH also attains the largest errors, which are more evident in the Z-29
axis. In terms of processing efficiency, except for TriSI, the hierarchy is the same as for the Real-30
FB scenario. 31

Regarding the accuracy of the recursive filtering schemes, we notice from Table 4 and Figure 9 32
that the adaptive αβ filter gains the lowest eRT error with the adaptive Kalman to follow. This is 33
due to the minor motion between Pk and Pk+1 that can be simulated with a 2-parameter linear model. 34
To highlight which filter is performing better, in Figure 10 we compare the best feature descriptor 35
from each filter. A further analysis at a higher level involving the overall performance of each 36
descriptor and filtering method over all scenarios is presented in Section 4. 37

 38

 39

 40

RTe

RTe

RTe

T
avge

27

(a) (b)

Figure 10: Real-Curved scenario, odometry performance per filtering method with the lowest eRT metric along with
the overall top performing in terms of accuracy and processing efficiency HoD-S/ αβ. TriSI/SDRE presents the lowest
eRT, however it is biased by a low rotational error as the translational one is quite large forcing this combination to
preserve the filter’s initialization R*.
 1

Table 4: Performance metrics for the Real-Curved scenario 2

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t (ms) X Y Z X Y Z

 adaptive H∞ recursive filtering
HoD-S 0.27 2.15 0.28 0.16 0.20 0.04 0.20 0.08 0.07 0.08 12.22 17.95 13.51 481
FPFH 1.19 9.60 1.60 1.01 0.29 0.62 1.43 0.22 0.53 0.71 11.99 17.90 14.60 690
SHOT 0.72 5.86 0.93 0.71 0.80 0.45 0.11 0.57 0.34 0.04 11.05 16.72 13.55 1698
HoD 0.06 0.51 0.47 0.23 0.42 0.22 0.03 0.16 0.10 0.05 12.00 17.96 13.42 817
RoPS 0.91 7.35 0.91 0.37 0.17 0.05 0.89 0.16 0.06 0.26 12.27 18.18 14.08 2373
TriSI 0.51 4.12 3.45 1.93 3.43 0.37 0.03 1.50 0.49 0.03 4.27 6.10 7.83 2452
 adaptive Kalman recursive filtering

HoD-S 0.40 3.23 0.53 0.31 0.29 0.05 0.30 0.25 0.09 0.09 14.85 22.70 16.66 480
FPFH 1.20 9.68 1.60 1.02 0.30 0.62 1.43 0.22 0.54 0.72 1.92 3.62 4.53 690
SHOT 0.71 5.78 0.93 0.71 0.80 0.45 0.10 0.57 0.33 0.04 0.61 1.03 3.10 1697
HoD 0.06 0.50 0.48 0.24 0.42 0.22 0.03 0.16 0.11 0.05 0.98 1.90 2.41 816
RoPS 0.36 2.90 1.01 0.65 0.42 0.39 0.56 0.18 0.05 0.51 13.57 20.16 15.35 2372
TriSI 0.51 4.11 3.45 1.93 3.43 0.36 0.03 1.50 0.49 0.03 0.21 0.25 3.77 2452
 adaptive αβ recursive filtering

HoD-S 0.25 2.03 0.27 0.16 0.17 0.05 0.20 0.09 0.08 0.08 1.44 1.81 2.75 464
FPFH 1.21 9.75 1.60 1.02 0.30 0.62 1.43 0.23 0.54 0.72 0.57 0.85 3.21 683
SHOT 0.72 5.84 0.94 0.72 0.81 0.45 0.10 0.58 0.33 0.04 0.43 0.60 2.93 1691
HoD 0.05 0.41 0.49 0.24 0.43 0.22 0.03 0.17 0.11 0.05 1.21 1.47 2.65 809
RoPS 0.91 7.35 0.91 0.38 0.19 0.06 0.89 0.18 0.06 0.25 1.15 1.59 2.99 2357
TriSI 0.51 4.11 3.45 1.93 3.43 0.36 0.03 1.50 0.49 0.03 0.14 0.16 3.70 2451
 adaptive SDRE recursive filtering

HoD-S 0.74 5.99 0.77 0.41 0.49 0.34 0.49 0.16 0.22 0.22 12.22 17.95 14.14 466
FPFH 1.55 12.50 1.56 1.02 0.24 0.68 1.37 0.17 0.68 0.57 11.99 17.90 14.54 685
SHOT 0.46 3.74 0.79 0.56 0.68 0.34 0.22 0.44 0.21 0.13 11.05 16.72 13.40 1675
HoD 0.56 4.54 0.66 0.39 0.43 0.40 0.29 0.19 0.25 0.14 12.00 17.96 13.92 812
RoPS 1.24 10.05 1.24 0.50 0.12 0.35 1.19 0.06 0.13 0.37 12.27 18.18 13.96 2360
TriSI 0.46 3.72 3.43 1.91 3.41 0.35 0.05 1.48 0.48 0.04 4.27 6.10 7.84 2453
 competitor schemes

ICP point 2.70 21.81 2.78 1.68 1.68 2.07 0.53 0.66 1.14 0.16 104 -179.13 107.90 6
ICP plane 1.90 25.61 1.91 0.97 1.79 0.07 0.67 0.61 0.40 0.35 -171 -111.87 191.71 9
ICP x84 7.08 57.23 7.46 4.24 6.30 3.66 1.59 2.48 2.07 1.17 135 -142.43 140.29 53
S4PCS 4.60 37.18 4.60 2.89 3.52 2.53 1.54 1.47 1.73 0.81 141 -124.33 146.51 1219

S-ICP point 0.13 1.70 3.52 1.97 3.51 0.20 0.11 1.64 0.08 0.07 0.01 0.01 3.42 137
S-ICP plane 0.13 1.70 3.52 1.97 3.51 0.20 0.11 1.64 0.08 0.07 0.01 0.01 3.42 145

GT TriSI/ H∞ HoD/ Kalman HoD/ αβ TriSI/ SDRE HoD-S/ αβ

-1
-0.5

0
0.5

1
1.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.8

1

1.2

1.4

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

max
Te T

avge T
avge max

Re RTe

28

 1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9: Real-Curved scenario odometry plots of the 3D descriptors combined with the adaptive filter (a)-(b) H∞, (c)-(d)
Kalman, (e)-(f) αβ, (g)-(h) SDRE, and (i)-(j) competitor methods along with the top performing proposed method HoD-S/ αβ,
which is the black trajectory closest to the GT (due to large errors and for better readability we omit FPFH from (b), (d), (f),
(h), RoPS from (d), ICP x84 from (i)-(j)). TriSI due to the sparse point clouds fails to provide an adequate number of
geometrically consistent feature matches, forcing the recursive filtering process not to iterate properly and thus R* mostly
preserves its initialization value.

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-2

-1

0

1

2

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.6

0.8

1

1.2

1.4

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

-1.5

-0.5

0.5

1.5

2.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.8

1

1.2

1.4

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Z

(m
)

X (m)

-1.5

-0.5

0.5

1.5

2.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.5

0.75

1

1.25

1.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

-1.5

-0.5

0.5

1.5

2.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Y
 (m

)

X (m)

0.5

1

1.5

2

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Z
(m

)

X (m)

-4

-2

0

2

-7 -6 -5 -4 -3 -2 -1 0

Y
 (m

)

X (m)

0.5

1

1.5

2

-7 -6 -5 -4 -3 -2 -1 0

Z
(m

)

X (m)

29

As expected, the processing burden of every 3D local feature descriptor and recursive filtering 1
combination is higher than the time needed by any ICP variant, mainly due to the feature matching/ 2
correspondence grouping process. Except from being processing efficient, all ICP methods are less 3
accurate posing a non-optimal odometry solution for the reason presented in Section 3.3.1. 4
Similarly to the Real-FB scenario, in this trajectory ICP x84 and both S-ICP variant also to fail to 5
provide an accurate odometry. 6

3.4 Odometry trials on synthetic LIDAR data 7

3.4.1 Sim-EoI trajectory 8

This is a synthetic data scenario that involves a simulated Ellipsoidal trajectory of the Source 9
platform around the Target platform. This is a realistic scenario with an average Target point cloud 10
size of 3099 vertices that are affected by several external parameters described in the introduction 11
of Section 3. Results on the Sim-EoI trajectory are presented in Table 5 and Figure 11. 12

The combination of HoD-S with the adaptive αβ filter exhibits the highest accuracy. However due 13
to the large vertex cardinality of Pk and the number of correspondences, the processing time 14
required by HoD-S is now one of the highest. Computationally, FPFH affords overall the smallest 15
burden due to the fewer number of correspondences it provides, but its accuracy is one of the 16
poorest. On the contrary, RoPS and TriSI require the highest processing time due to the processing 17
burden implied by their complex LRF estimation, in combination with the high cardinality of the 18
Target point cloud. In terms of translational error, HoD-S presents the lowest error, while similarly 19
to the Real-FB and Real-Curved scenarios, TriSI affords the lowest rotational error. However, in 20
contrast to TriSI’s translational performance presented in the scenarios earlier, here it achieves a 21
moderate accuracy. This is because as in this scenario TriSI has 1572 geometrically consistent 22
correspondences Ω, and thus the recursive filtering scheme performs 1572 iterations settling to a 23
more accurate rigid body transformation . 24

Regarding the accuracy of the recursive filtering schemes, we notice from Table 5 that the adaptive 25
αβ filter achieves the lowest average error, with the H∞ and SDRE filters following closely. 26
Surprisingly, the adaptive Kalman filter fails to provide an appealing accuracy with any of the 27
evaluated descriptors. In Figure 12 we compare the best feature descriptor from each filter. The 28
Kalman filter constantly attains the highest errors for all feature descriptors, while the latter ones 29
perform quite well with the rest of the filtering methods. This is because all modules within the 30
proposed architecture are tuned based on the sparse Real-FB scenario. Considering that the Sim-31
EoI scenario examined here is denser, we observe that the parameters of the Kalman filter are more 32
sensitive to the point cloud cardinality, while the rest of the filters are more robust. Thus, for this 33
scenario Kalman requires to have its parameters re-tuned, loosing though its generalization. For 34
the sake of the latter, we preserve the same parameter values as already tuned in the Real-FB 35
scenario. 36

 37

 38

 39

*R

30

(a) (b)

Figure 12: Sim -EoI scenario, odometry performance per filtering method with the lowest eRT metric. Due to the Pk
cardinality of this scenario, the parameters of Kalman fail to attain an appealing odometry accuracy.
 1

Table 5: Performance metrics for the Sim-EoI scenario 2

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t (ms) X Y Z X Y Z

 adaptive H∞ recursive filtering
HoD-S 1.16 0.40 1.19 0.69 0.92 0.53 0.50 0.48 0.21 0.20 8.81 10.88 15.86 28157
FPFH 2.56 0.88 2.59 1.49 2.40 0.94 0.18 1.24 0.36 0.22 7.56 10.71 17.18 6525
SHOT 1.93 0.66 1.94 1.30 1.87 0.46 0.19 1.13 0.18 0.09 2.89 3.95 10.56 13701
HoD 1.16 0.40 1.28 0.81 0.91 0.72 0.55 0.48 0.39 0.28 8.83 10.97 17.47 34832
RoPS 2.37 0.81 3.16 1.87 2.82 0.77 1.18 1.56 0.27 0.39 7.91 10.33 18.45 40647
TriSI 1.90 0.65 1.95 1.08 1.68 0.43 0.27 0.84 0.29 0.09 8.98 11.16 16.80 38306
 adaptive Kalman recursive filtering
HoD-S 28.14 9.68 38.48 25.49 2.28 29.11 25.07 9.63 13.67 14.27 127.37 97.55 178.64 28144
FPFH 14.83 5.10 14.98 11.69 13.40 3.27 4.59 9.64 2.16 3.42 109.41 154.76 136.54 6518
SHOT 18.85 6.48 37.37 25.98 10.37 24.73 25.63 10.63 11.36 16.25 105.31 164.46 148.07 13870
HoD 15.88 5.46 29.03 21.60 8.80 11.59 25.11 4.24 12.64 14.14 79.02 117.81 125.87 34817
RoPS 20.36 7.00 39.97 28.72 8.13 29.34 23.98 10.17 13.88 18.76 156.53 200.72 202.61 40637
TriSI 17.64 6.07 32.87 21.86 1.49 20.78 25.18 6.91 6.92 16.38 50.72 66.26 90.25 38296
 adaptive αβ recursive filtering
HoD-S 1.24 0.43 1.26 0.70 1.02 0.44 0.24 0.55 0.18 0.09 2.91 3.98 9.23 27954
FPFH 2.61 0.90 2.63 1.49 2.47 0.89 0.11 1.26 0.34 0.10 2.77 3.88 11.59 6424
SHOT 1.93 0.66 1.94 1.30 1.87 0.46 0.19 1.13 0.18 0.09 2.89 3.95 10.56 13701
HoD 1.22 0.42 1.27 0.81 1.00 0.63 0.30 0.55 0.38 0.15 2.89 3.92 10.80 34610
RoPS 2.56 0.88 3.25 1.96 2.88 0.76 1.30 1.60 0.27 0.51 2.89 4.02 13.90 40502
TriSI 2.04 0.70 2.08 1.16 2.04 0.35 0.19 0.90 0.30 0.13 2.73 3.66 11.10 38160
 adaptive SDRE recursive filtering
HoD-S 1.44 0.50 1.46 0.86 1.17 0.27 0.76 0.63 0.13 0.34 8.81 10.88 16.56 27990
FPFH 2.79 0.96 2.81 1.65 2.70 0.64 0.48 1.39 0.24 0.35 7.56 10.71 17.45 6425
SHOT 2.21 0.76 2.21 1.49 1.88 0.73 0.57 1.23 0.32 0.32 7.96 10.29 18.06 13702
HoD 1.40 0.48 1.49 0.94 1.16 0.46 0.80 0.62 0.25 0.43 8.83 10.97 17.72 34725
RoPS 2.63 0.91 3.21 2.02 2.98 0.62 1.02 1.70 0.35 0.30 7.91 10.33 18.65 40502
TriSI 2.28 0.78 2.31 1.31 2.16 0.60 0.39 0.97 0.44 0.18 8.98 11.16 18.17 38161
 competitor schemes

ICP point 50.32 17.31 62.20 39.09 29.20 1.53 54.76 12.62 3.77 29.92 -164.3 -42.15 249.55 30.50
ICP plane 42.71 14.69 57.96 36.50 28.71 0.08 49.43 10.99 0.45 29.10 -167.5 -30.44 235.93 31.38
ICP x84 2.79 0.96 70.47 45.93 16.94 39.69 52.85 11.13 27.50 21.97 -165.6 -22.33 257.89 49.36
S4PCS 151.14 51.99 151.14 103.35 46.02 79.36 114.71 43.40 45.31 60.85 -155.6 32.60 342.80 1147

S-ICP point 0.04 0.01 20.08 11.44 0.37 0.05 20.06 0.24 0.04 9.05 0.01 0.01 17.49 276.68
S-ICP plane 0.04 0.01 20.08 11.44 0.37 0.05 20.06 0.24 0.04 9.05 0.01 0.01 17.49 327.62

GT SHOT/ H∞ TriSI/ Kalman HoD-S/ αβ HoD-S/ SDRE

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Y
 (m

)

X (m)

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Z
(m

)

X (m)

max
Te T

avge T
avge max

Re RTe

31

 1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 11: Sim-EoI scenario 3 odometry plots of the 3D descriptors combined with the adaptive filter (a)-(b) H∞, (c)-
(d) Kalman, (e)-(f) αβ, (g)-(h) SDRE, and (i)-(j) competitor methods along with the top performing proposed method
HoD-S/ αβ (due to large errors and for better readability we omit from (i)-(j) S4PCS). The Kalman filter clearly fails
to provide a valid accuracy independently of the descriptor that it is combined. This is due to the Kalman parameters
that are sensitive to the Pk cardinality. Competitor methods except from both S-ICP variant fail to attain accurate
odometry as the Pk cardinality is below the operating threshold of ICP. Most of the proposed methods present a large
error in the relatively sharp turning positions due to the combined Source-Target distance presenting less distinctive
Target features.

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-35
-25
-15

-5
5

15
25
35

-15 -10 -5 0 5 10 15

Y
 (m

)

X (m)

-35
-25
-15

-5
5

15
25
35

-15 -10 -5 0 5 10 15

Z
(m

)

X (m)

-60
-40
-20

0
20
40
60

-30 -20 -10 0 10 20 30 40 50

Y
 (m

)

X (m)

-60
-40
-20

0
20
40
60

-30 -20 -10 0 10 20 30 40 50

Z
(m

)

X (m)

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Y
 (m

)

X (m)

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Z
(m

)

X (m)

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Y
 (m

)

X (m)

-40

-20

0

20

40

-15 -10 -5 0 5 10 15

Z
(m

)

X (m)

-40

-20

0

20

40

-60 -40 -20 0 20 40 60

Y
 (m

)

X (m)

-100

-50

0

50

100

-50 -40 -30 -20 -10 0 10 20 30 40 50

Ti
tle

Title

32

Concerning the performance of the competitor methods, both S-ICP variants provide a highly 1
accurate odometry in an appealing execution time. The remaining competitor techniques attain an 2
accuracy that is one order of magnitude larger compared to S-ICP. This is because despite this trial 3
having more vertices compared to the rest of the scenarios, the number of vertices is still small for 4
an ICP process to iterate properly (Opromolla, Fasano, et al., 2017). 5

In any case, it should be noted that the errors in this trial are larger compared to the real scenarios 6
mainly due to the length of each scenario as it is well known that odometry errors build-up as the 7
length of the trajectory increases. Therefore, at this point where we investigate the absolute 8
performance per scenario, cross comparing each method among all scenarios is not realistic. 9
However, in Section 4 we normalize the all the errors attained by each method and over all 10
scenarios, such as to make a cross-scenario comparison possible. 11

Despite a few descriptors and filtering combinations achieving an appealing accuracy, the 12
processing time required by each combination does not pose an overall valid choice for space 13
applications. Hence, for point clouds with a large cardinality as in this trial, adopting a subsampling 14
scheme or utilizing a keypoint detection method shall afford a lower computational burden. 15
However, for the sake of generalization and given that in the rest of the trials such an additional 16
process within our architecture is not mandatory, we retain for this trail our architecture as it is and 17
demonstrate it weakness. 18

3.4.2 Sim-Helical trajectory 19

This scenario involves synthetic data and is quite challenging due to the large curvature of the 20
trajectory in the X-Y plane, the large translational disposition in all three axes and the small Target 21
point cloud size that has an average size of only 438 vertices. This trajectory considers a 360° 22
rotation and simultaneous translation as presented in Figure 6 (d). We create self-occluded point 23
cloud views of the Target platform emulating realistic views of the virtual LIDAR placed on the 24
Source platform by exploiting the HPR algorithm. Even though in the context of space odometry 25
this trajectory might be extreme, we intentionally push the limits of odometry and investigate the 26
performance of the evaluated methods. Table 6 presents the detailed performance metrics, while 27
Figure 13 the error, i.e. difference of the GT trajectory and the estimated one per method, for each 28
of the three axes. For this scenario we prefer presenting the corresponding errors per method rather 29
than the estimated trajectory, due to the small errors attained by the majority of the feature 30
descriptors and recursive filtering methods. 31

From Table 6 it is evident that the HoD-S descriptor attains the lowest eRT error among all 32
descriptors evaluated. Additionally, HoD-S achieves the lowest error per filter with any of the 33
filtering methods that it is combined with. Next to follow is SHOT, which poses the second-best 34
choice for each filter. From Table 6 and Figure 13 it is clear that TriSI is the least accurate 35
descriptor as it achieves the highest eRT error for any of the filters evaluated. Given that RoPS and 36
TriSI share the same LRF estimation method and that RoPS gains a better odometry accuracy, the 37
encoding capability of TriSI on this scenario is limited. This is because the Spin Images descriptor 38
that is included in the TriSI descriptor is prone to highly sparse structures, in combination to the 39
large frame-to-frame motion between Pk and Pk+1. Regarding processing efficiency, HoD-S is the 40
fastest to compute because it neglects a LRF/A estimation process. 41

33

Table 6: Performance metrics for the Sim-Helical scenario 1

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t

(ms) X Y Z X Y Z
 adaptive H∞ recursive filtering

HoD-S 1.85 0.90 2.09 1.61 1.79 0.42 1.00 1.28 0.17 0.74 0.08 0.16 12.55 137
FPFH 2.22 1.08 2.90 2.07 1.77 0.07 2.30 1.04 0.22 1.65 0.08 0.16 15.81 620
SHOT 5.89 2.86 5.92 2.17 3.63 4.33 1.64 1.67 0.37 0.74 0.08 0.15 13.69 1094
HoD 6.27 3.04 6.27 3.29 5.25 1.50 3.08 2.03 1.27 1.04 0.08 0.14 17.55 997
RoPS 2.16 1.05 2.45 1.83 1.37 0.33 1.74 1.20 0.14 1.28 0.08 0.16 14.88 1164
TriSI 12.74 6.18 12.74 8.26 7.40 7.24 7.24 2.69 4.86 2.82 0.07 0.13 26.49 1042
 adaptive Kalman recursive filtering

HoD-S 2.03 0.98 2.47 1.59 1.79 0.12 1.70 1.22 0.23 0.77 0.01 0.01 13.13 134
FPFH 32.38 15.71 33.74 14.92 10.05 5.48 31.74 2.63 1.12 8.52 32.61 -179.99 58.38 619
SHOT 5.87 2.85 5.90 2.16 3.58 4.38 1.57 1.64 0.37 0.79 0.01 0.01 13.71 1092
HoD 6.37 3.09 6.37 3.29 5.21 1.55 3.31 2.01 1.26 1.10 0.01 0.01 17.70 995
RoPS 9.36 4.54 10.03 6.12 6.94 0.14 7.24 3.70 0.19 3.36 0.20 0.24 23.89 1161
TriSI 12.84 6.23 12.84 8.28 7.42 7.20 7.37 2.70 4.85 2.86 0.01 0.01 26.52 1041
 adaptive αβ recursive filtering

HoD-S 1.86 0.90 2.09 1.61 1.79 0.39 1.01 1.28 0.17 0.75 0.01 0.01 12.53 112
FPFH 2.27 1.10 2.91 2.08 1.77 0.10 2.30 1.04 0.24 1.66 0.01 0.01 15.87 607
SHOT 5.92 2.87 5.96 2.17 3.64 4.38 1.61 1.67 0.37 0.74 0.01 0.01 13.61 1074
HoD 6.28 3.05 6.28 3.28 5.26 1.55 3.06 2.03 1.25 1.03 0.01 0.01 17.45 979
RoPS 2.20 1.07 2.49 1.85 1.37 0.35 1.76 1.20 0.16 1.29 0.01 0.01 14.97 1140
TriSI 12.73 6.18 12.73 8.25 7.41 7.20 7.23 2.70 4.85 2.81 0.01 0.01 26.43 1024
 adaptive SDRE recursive filtering

HoD-S 1.81 0.88 2.08 1.60 1.74 0.47 1.04 1.24 0.19 0.77 0.08 0.16 12.64 116
FPFH 2.29 1.11 2.91 2.08 1.73 0.03 2.34 1.01 0.19 1.68 0.08 0.16 15.75 609
SHOT 5.78 2.81 5.82 2.14 3.57 4.27 1.58 1.64 0.38 0.75 0.08 0.15 13.69 1077
HoD 6.18 3.00 6.18 3.27 5.19 1.44 3.02 2.00 1.29 1.03 0.08 0.14 17.46 981
RoPS 2.20 1.07 2.48 1.83 1.15 0.09 2.18 1.16 0.13 1.32 0.08 0.16 14.82 1143
TriSI 12.68 6.15 12.68 8.25 7.35 7.29 7.19 2.66 4.87 2.80 0.07 0.13 26.40 1027
 competitor schemes

ICP point 2.92 1.42 3.15 1.96 2.07 0.44 2.34 1.39 0.26 1.15 11.71 20.83 26.85 18
ICP plane 22.70 11.02 27.08 11.36 22.61 10.36 4.70 5.99 3.35 2.06 58.66 -96.87 84.62 89
ICP x84 16615 8063 17277 9210 12253 8668 8333 1905. 2878 3333 -132 -15.79 8346 25
S4PCS 147.65 71.65 155.65 84.13 46.40 146.59 24.19 15.94 64.69 10.21 109 -169 207.98 1081

S-ICP point 47.90 23.25 47.90 39.05 28.09 19.00 31.66 19.15 12.80 23.86 0.01 0.01 50.04 107
S-ICP plane 49.32 23.93 49.32 40.37 29.40 19.40 32.86 20.21 12.96 24.82 0.01 0.01 51.00 105
 2

We further analyze the interplay between HoD-S, which is the descriptor offering the smallest 3
errors, and the filtering methods evaluated in this work, and present the results in Figure 14. From 4
this figure we observe that H∞, αβ and SDRE have a very similar performance, with Kalman being 5
less accurate especially in the Z-axis. 6

 7

max
Te T

avge T
avge max

Re RTe

34

 1

Considering the competitor methods, the top performing ICP plane has half the accuracy of HoD-2
S/ αβ. As already mentioned in Section 1, the proposed method can present an accurate odometry 3
due to the feature matching and the geometric correspondence grouping schemes that provide to 4
the recursive filter only well-established correspondences. These correspondences combined with 5
the adaptive nature infused in the recursive filter afford an odometry trajectory with low errors. 6
Despite that, ICP is highly processing efficient requiring only 18ms. Even though literature 7
suggests that ICP attains a low accuracy on sparse point clouds (Opromolla, Fasano, et al., 2017) 8
and we confirmed that in the previous trials, this trial despite being sparse, the frame-to-frame 9
motion between Pk and Pk+1 is such allowing ICP to settle to a more accurate solution. 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

(a) (b)

Figure 14: Sim -Helical scenario, odometry performance per filtering method with the lowest eRT metric

GT HoD-S/ H∞ HoD-S/ Kalman HoD-S/ αβ HoD-S/ SDRE

0

1

2

3

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-1

-0.5

0

0.5

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-2

-1

0

1

2

0 50 100 150

Z
er

ro
r (

m
)

frame k

35

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 13: Sim- Helical odometry error plots of the 3D descriptors combined with the adaptive filter (a)-(c) H∞, (d)-
(f) Kalman, (g)-(i) αβ, (j)-(l) SDRE, and (m)-(o) competitor methods along with the top performing proposed method
HoD-S/ αβ (due to large errors and for better readability we omit ICP x84, S-ICP point , S-ICP plane and S4PCS from
(m)-(o)). The large frame-to-frame motion combined with the highly sparse Pk prevent TriSI from providing an
accurate odometry. Despite the sparse nature of Pk ICP point presents an odometry that is more accurate to the rest of
the competitor methods.
 1

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

0
2
4
6
8

10

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-15

-10

-5

0

5

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-5

0

5

10

0 50 100 150

Z
er

ro
r (

m
)

frame k

0
2
4
6
8

10
12

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-12

-8

-4

0

4

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-10
0

10
20
30
40

0 50 100 150

Z
er

ro
r (

m
)

frame k

0
2
4
6
8

10

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-15

-10

-5

0

5

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-5

0

5

10

0 50 100 150

Z
er

ro
r (

m
)

frame k

-5

0

5

10

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-15
-10

-5
0
5

10

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-5

0

5

10

0 50 100 150

Z
er

ro
r (

m
)

frame k

0

10

20

30

0 50 100 150

X
 e

rr
or

 (m
)

frame k

-10

0

10

20

0 50 100 150

Y
 e

rr
or

 (m
)

frame k

-6
-4
-2
0
2
4
6

0 50 100 150

Z
er

ro
r (

m
)

frame k

36

3.4.3 Sim-Voyager trajectory 1

This scenario considers the Source platform orbiting in an ellipsoidal trajectory around the 2
Voyager space platform. This is a synthetic scenario with an average Pk cardinality of 190 vertices, 3
where the various Target platform poses are created using the HPR algorithm. In order to assess 4
the performance our architecture on repetitive trajectories, this scenario considers the Source 5
platform moving along the ellipsoidal trajectory 2.5 times. Thus, in contrast to the trajectories 6
evaluated so far, this is the longest one with a GT length of 788 meters. 7

The results on this scenario are presented in Table 7 and Figure 15. As expected, due to the long 8
trajectory length evaluated here, the performance of al methods is substantially higher. However, 9
as already stated, a direct cross-scenario performance comparison is biased towards the shortest 10
trajectories. Hence, in Section 4, we normalize the performance of each method such as to make it 11
independent of the distance travelled and thus make a cross-scenario performance comparison 12
feasible. The performance achieved by each method is quite similar among the filters evaluated. 13
This demonstrates that establishing correct feature matches is very important as miss-matches will 14
negatively influence the odometry output of the filter. However, as demonstrated in Section 34.1, 15
for the Kalman filter the training and testing scenarios should involve a Target with a similar level 16
of sparsity. Optimum scheme is the SHOT/ αβ, while the overall tope performing descriptor is 17
SHOT with HoD following closely. However, due to the large computational burden of SHOT and 18
given that the next best performing combination is HoD-S/ SDRE that is also 10 times faster to 19
execute, we select the latter as the optimum method. Considering the performance of the filtering 20
methods, the overall top performing is H∞ with αβ being the next optimum choice. In terms of 21
processing efficiency, once again HoD-S and HoD are the fastest to compute. The least accurate 22
method is HoD-S/ Kalman posing large translational and rotational errors. 23

Figure 16 presents the performance of the most appealing schemes per filtering method, where we 24
observe that SHOT/ αβ shows a substantial accuracy drop in the X-axis after frame 200, i.e. after 25
two complete ellipsoidal translations. Additionally, Figure 16 highlights that all methods present 26
a repetitive error that coincides with the corresponding relative Source – Target position. 27

 28
Considering the competitor methods, ICP point attains an eRT error that is close but inferior to the 29
well performing proposed combinations, with ICP plane following. However, as expected, both 30
these ICP variants are much faster to execute. Despite the average Pk cardinality is only 190, both 31
S-ICP variants are less accurate than their standard ICP counterparts because Pk is not sparse. 32
Interestingly, all errors are sinusoidal-based that coincides with the relative Source-Target 33

(a) (b)

Figure 16: Sim -Voyager scenario, odometry performance per filtering method with the lowest eRT metric.

GT HoD-S/ H∞ HoD/ Kalman SHOT/ αβ HoD-S/ SDRE

-40

-20

0

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-30
-20
-10

0
10
20

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-30

-20

-10

0

10

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

37

position. This is more evident for the S4PCS, where the error amplitude is the highest presented in 1
Figure 15 (m)-(o). 2

 3

Table 7: Performance metrics for the Sim-Voyager scenario 4

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t

(ms)
X Y Z X Y Z

 adaptive H∞ recursive filtering
HoD-S 16.59 2.10 28.76 14.27 10.68 18.79 18.97 5.12 7.50 7.54 0.14 0.27 40.91 66
FPFH 104 13.24 105 62.86 28.27 50.14 88.19 11.47 29.59 47.60 0.13 0.26 97.43 438
SHOT 33.35 4.23 38.02 18.05 9.55 36.17 6.80 4.84 12.11 2.63 0.13 0.25 42.38 599
HoD 24.31 3.08 27.71 15.36 19.58 18.44 6.63 9.25 9.04 3.18 0.13 0.26 41.68 103
RoPS 21.66 2.75 31.10 16.00 12.20 19.09 14.14 5.68 10.79 5.79 0.14 0.27 43.15 398
TriSI 22.87 2.90 39.56 22.20 12.54 29.45 23.24 7.13 13.09 12.63 0.08 0.16 46.39 336

 adaptive Kalman recursive filtering
HoD-S 10.34 1.31 55.07 22.22 52.30 12.06 2.33 13.55 6.65 4.64 95.19 -162.41 140.12 66
FPFH 93.16 11.82 93.21 59.57 32.86 35.56 79.65 13.70 24.50 46.74 0.10 0.20 94.85 438
SHOT 34.55 4.38 39.12 18.30 8.69 37.61 6.37 4.43 12.13 2.46 0.18 0.40 45.20 598
HoD 25.04 3.18 28.35 15.74 20.29 18.81 6.20 9.67 9.18 3.03 0.01 0.02 41.79 102
RoPS 21.99 2.79 28.41 17.71 19.10 12.94 15.49 8.05 5.87 11.90 24.21 92.37 71.60 397
TriSI 22.50 2.85 38.94 22.09 12.59 29.27 22.39 7.14 13.07 12.61 1.19 2.98 47.58 335

 adaptive αβ recursive filtering
HoD-S 15.77 2.00 28.03 13.83 10.64 18.03 18.63 5.11 7.05 7.35 1.88 3.58 41.68 57
FPFH 104 13.24 105 62.86 28.27 50.14 88.19 11.47 29.59 47.60 0.13 0.26 97.43 438
SHOT 33.36 4.23 38.03 17.89 9.82 36.00 7.32 5.00 11.89 2.81 1.53 3.09 38.19 595
HoD 24.29 3.08 27.49 15.18 20.09 17.70 6.21 9.44 8.67 3.04 2.23 4.51 43.13 91
RoPS 22.08 2.80 30.72 16.08 12.71 18.64 14.88 5.98 10.57 6.18 1.03 1.97 44.68 390
TriSI 22.93 2.91 39.64 22.22 12.55 29.36 23.50 7.11 13.07 12.67 0.80 1.50 47.06 331

 adaptive SDRE recursive filtering
HoD-S 16.41 2.08 28.67 14.20 10.77 18.70 18.88 5.12 7.45 7.49 0.14 0.27 40.78 57
FPFH 104 13.23 105 62.83 28.16 50.26 88.08 11.42 29.65 47.54 0.13 0.26 97.38 435
SHOT 33.21 4.21 37.87 17.98 9.44 36.06 6.69 4.79 12.06 2.61 0.13 0.25 41.23 595
HoD 24.14 3.06 27.52 15.26 19.47 18.33 6.52 9.19 8.99 3.13 0.13 0.26 41.52 91
RoPS 21.46 2.72 30.98 15.91 12.09 18.98 14.03 5.63 10.74 5.74 0.14 0.27 42.99 391
TriSI 22.85 2.90 39.50 22.18 12.60 29.39 23.18 7.16 13.08 12.62 0.08 0.16 46.42 332

 competitor schemes
ICP point 9.52 1.21 21.03 11.22 4.93 19.40 6.43 4.48 6.37 2.91 19.22 34.10 55.27 15
ICP plane 11.15 1.41 26.18 13.30 3.73 23.66 10.27 3.92 8.38 4.26 41.48 75.56 80.69 16
ICP x84 80.60 10.22 80.60 61.73 53.26 58.43 15.68 43.74 24.99 9.27 147.65 -160 234.32 17
S4PCS 39.98 5.07 50.32 38.59 26.07 30.43 30.39 20.14 18.90 18.91 1.65 1.65 52.48 136

S-ICP point 28.94 3.67 38.45 29.50 21.24 14.80 28.40 14.82 12.27 16.18 0.01 0.01 46.33 171
S-ICP plane 28.94 3.67 38.45 29.50 21.24 14.80 28.40 14.82 12.27 16.18 0.01 0.01 46.33 177
 5

 6

 7

max
Te T

avge max
Re T

avge
RTe

38

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 15: Sim-Voyager scenario 5 odometry error plots of the 3D descriptors combined with the adaptive filter (a)-
(c) H∞, (d)-(f) Kalman, (g)-(i) αβ, (j)-(l) SDRE, and (m)-(o) competitor methods and top performing proposed method
HoD-S/ SDRE (due to large errors and for better readability we omit FPFH from Z error plots, HoD-S from (d) and
ICP x84 from (m)-(o))

 1

 2

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-40

-20

0

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-60
-40
-20

0
20
40
60

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-30
-20
-10

0
10
20

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

-40

-20

0

20

40

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-50
-30
-10
10
30
50

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-30

-10

10

30

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

-40

-20

0

20

40

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-50
-30
-10
10
30
50

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-30
-20
-10

0
10
20

0 50 100 150 200 250
Z

er
ro

r (
m

)

frame

-40

-20

0

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-50
-30
-10
10
30
50

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-30
-20
-10

0
10
20

0 60 120 180 240

Z
er

ro
r (

m
)

frame

-60

-40

-20

0

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

Title

-40

-20

0

20

40

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-40

-20

0

20

40

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

39

3.4.4 Sim-Orion trajectory 1

This scenario is identical to the Sim-Voyager, but the Voyager satellite is substituted with the Orion 2
space capsule. Main characteristics of this trial are the flat surfaces of Orion that include less 3
distinctive features. The average Pk cardinality is 288. In terms of performance, Table 8 and Figure 4
17 demonstrate that SHOT and RoPS provide the smallest eRT errors with the former combined 5
with the Kalman filter being the optimum choice for this scenario. In contrast to the previous 6
scenarios, HoD and HoD-S perform poor highlighting that for point clouds that are mainly flat 7
with poor distinctive features neglecting a LRF/A has a negative impact on the feature matching 8
process. Similarly to the Sim-Voyager scenario, quite a few descriptor and filtering combination 9
present the sinusoidal error. Due to the challenging nature of this scenario, HoD, HoD-S and TriSI 10
present quite large errors and thus for the sake of readability these descriptors are neglected from 11
several plots in Figure 17. In Figure 18 we present the top performing descriptor per filtering 12
method. Interestingly, this figure indicates that all RoPS descriptors attain almost the same 13
performance independently of the filter. Additionally, all RoPS based solutions and the SHOT/ 14
Kalman achieve a similar performance in the Y-axis. 15

Considering the competitor methods, these are of inferior accuracy to the majority of the feature 16
descriptor / recursive filtering combinations of the proposed method. Specifically, both ICP 17
variants present a low translational error but due to their low rotational accuracy, these cannot be 18
considered as overall optimum choices. On the contrary, S4PCS and both S-ICP variants attain 19
low rotational errors and large translational errors. 20

 21

 22

 23

 24

 25

 26

 27

(a) (b)

Figure 18: Sim -Orion scenario, odometry performance per filtering method with the lowest eRT metric along with
the overall top performing in terms of accuracy and processing efficiency HoD-S/ SDRE

GT RopS/ H∞ RoPS/ αβ SHOT/ Kalman RoPS/ SDRE

-15

-10

-5

0

5

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-10

-5

0

5

10

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-20

-10

0

10

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

40

Table 8: Performance metrics for the Sim-Orion scenario 1

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t (ms) X Y Z X Y Z

 adaptive H∞ recursive filtering
HoD-S 109 13.84 111 64.28 7.72 4.21 109 3.61 3.89 54.45 0.14 0.27 70.76 156
FPFH 12.22 1.55 14.74 8.72 8.50 3.27 9.86 5.06 1.97 5.12 0.14 0.27 30.19 720
SHOT 9.43 1.20 11.94 5.91 7.39 7.08 6.16 3.08 2.59 2.74 0.14 0.27 26.93 859
HoD 118 14.97 138 78.47 79.15 81.10 78.99 48.37 33.68 32.72 0.03 0.06 101 169
RoPS 7.30 0.93 11.33 6.70 7.21 6.38 5.56 5.13 2.03 2.27 0.14 0.27 26.46 1514
TriSI 77.47 9.83 85.93 50.77 65.86 39.21 38.37 38.10 16.16 16.04 0.06 0.12 67.97 1159
 adaptive Kalman recursive filtering

HoD-S 29.37 3.73 37.06 25.17 19.83 6.74 28.52 11.48 5.03 18.05 50.37 -159 94.00 156
FPFH 11.88 1.51 14.59 8.70 7.58 3.41 10.38 4.63 2.02 5.34 0.01 0.01 29.85 719
SHOT 8.46 1.07 10.76 5.32 5.72 6.80 6.07 2.44 2.29 2.65 0.01 0.01 24.25 858
HoD 118 14.98 138 78.50 79.24 81.09 78.99 48.42 33.68 32.72 0.01 0.01 101 169
RoPS 13.40 1.70 16.59 6.44 0.89 3.53 16.19 2.14 1.90 4.33 0.10 0.22 24.69 1513
TriSI 77.59 9.84 86.05 50.82 66.00 39.19 38.42 38.15 16.16 16.05 0.01 0.01 67.95 1158
 adaptive αβ recursive filtering

HoD-S 109 13.91 111 64.50 7.66 4.07 110 3.59 3.90 54.62 0.05 0.10 70.84 146
FPFH 12.29 1.56 14.77 8.75 8.55 3.35 9.85 5.09 2.00 5.12 0.07 0.13 30.28 711
SHOT 9.55 1.21 11.98 5.96 7.39 7.09 6.21 3.10 2.63 2.79 0.11 0.22 26.99 845
HoD 118 14.97 138 78.50 79.19 81.09 79.04 48.39 33.68 32.74 0.01 0.03 101 166
RoPS 7.24 0.92 11.40 6.72 7.23 6.39 5.61 5.15 2.01 2.28 0.09 0.19 26.46 1503
TriSI 77.54 9.84 86.01 50.80 65.92 39.23 38.41 38.12 16.17 16.05 0.03 0.05 67.95 1154
 adaptive SDRE recursive filtering

HoD-S 109 13.83 111 64.22 7.83 4.09 109 3.65 3.90 54.39 0.14 0.27 70.74 147
FPFH 12.12 1.54 14.59 8.66 8.39 3.38 9.74 5.00 2.02 5.08 0.14 0.27 30.24 712
SHOT 9.53 1.21 11.95 5.94 7.36 7.10 6.18 3.05 2.64 2.79 0.14 0.27 26.60 846
HoD 118 14.97 138 78.46 79.18 81.07 78.97 48.39 33.67 32.71 0.03 0.06 101 168
RoPS 7.11 0.90 11.33 6.65 7.19 6.40 5.58 5.07 2.01 2.27 0.14 0.27 26.40 1504
TriSI 77.50 9.83 85.93 50.78 65.91 39.16 38.32 38.12 16.15 16.03 0.06 0.12 68.01 1155
 competitor schemes

ICP point 13.90 1.76 16.75 9.38 6.71 11.50 8.08 4.63 5.09 3.41 -130 35.91 262.48 13
ICP plane 11.54 1.46 12.59 8.64 8.10 3.02 8.79 4.62 1.80 4.91 -123 65.04 267.53 50
ICP x84 88.92 11.28 127.39 66.46 89.92 1.62 90.21 26.43 21.73 37.32 -163 26.55 277.57 24
S4PCS 54.65 6.93 65.76 43.33 39.43 37.30 37.11 27.31 19.49 19.47 0.54 1.07 60.24 1641

S-ICP point 29.98 3.80 46.69 32.92 20.57 28.57 30.31 15.04 17.15 16.66 0.01 0.01 48.12 125
S-ICP plane 29.98 3.80 46.69 32.92 20.57 28.57 30.31 15.04 17.15 16.66 0.01 0.01 48.12 133

 2

 3

 4

 5

 6

 7

max
Te T

avge max
Re T

avge
RTe

41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 17: Sim-Orion scenario 6 odometry plots of the 3D descriptors combined with the adaptive filter (a)-(b) H∞,
(c)-(d) Kalman, (e)-(f) αβ, (g)-(h) SDRE, and (i)-(j) competitor methods and top performing proposed method SHOT/
Kalman (due to large errors and for better readability we omit HoD from (a), (b), (c), (d), (e), (f), (g), (h), (j), (k),
HoD-S from (c), (i), (l), TriSI from (a), (b), (c), (d),(g), (h), (j), (k), and S4PCS, Sparse ICP point2point and ICP x84
from (m)-(o))

 1

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-20

-10

0
10

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-10
-5
0
5

10
15

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-20

-10

0

10

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

-20

-10

0

10

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-60

-40

-20

0

20

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-50

-30

-10

10

30

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

-20

-10

0

10

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-15

-5

5

15

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-100
-75
-50
-25

0
25

0 50 100 150 200 250
Z

er
ro

r (
m

)

frame k

-20

-10

0

10

20

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-10
-5
0
5

10
15

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-100
-75
-50
-25

0
25

0 60 120 180 240

Z
er

ro
r (

m
)

frame k

-15

-5

5

15

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-5

0

5

10

15

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-15

-5

5

15

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

42

3.4.5 Sim-Bennu trajectory 1

This also the same trajectory to the Sim-Voyager and Sim-Orion but considers the Bennu asteroid 2
as the Target object. The main challenge of this trial is the very small average point cloud 3
cardinality which is only 151. The results obtained are presented in Figure 19 and Table 9, where 4
it is evident that for all filters but Kalman, HoD-S is the optimum choice. This is because, in 5
contrast to the Sim-Orion scenario where the Target involves perfectly flat surfaces, the surfaces 6
of Bennu despite being smooth, these still allow for HoD-S to efficiently encode the local region 7
where it is applied. Considering the Kalman filter, FPFH attains the lowest eRT error. However, it 8
is obvious from Figure 20 that FPFH/ Kalman presents a relatively large periodic translational 9
error, and thus this combination cannot be considered as an optimum choice. This error is because 10
the FPFH descriptor lacks providing geometrically consistent point pair correspondences and thus 11
the FPFH feature matches are rejected by the GCC module, forcing the proposed architecture to 12
proceed with the initialization R*, i.e. a unity rotation matrix and a zero-translation matrix. 13

Similarly to the previous trials, the competitor method do not pose an optimum choice as these do 14
not offer a balanced rotational and translational error, forcing the eRT error to be quite large. 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

(a) (b)

Figure 20: Sim -Bennu scenario, odometry performance per filtering method with the lowest eRT metric along with
the overall top performing in terms of accuracy and processing efficiency HoD-S/ SDRE

GT HoD-S/ H∞ HoD-S/ αβ HoD-S/ SDRE FPFH/ Kalman

-0.5

0
0.5

1
1.5

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame k

-5
-3
-1
1
3
5

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame k

-5
-3
-1
1
3
5

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame k

43

Table 9: Performance metrics for the Sim-Bennu scenario 1

Descriptor drift
(m)

Terror
(%)

max Error (m) Average error (m) t (ms)

X Y Z X Y Z
 adaptive H∞ recursive filtering

HoD-S 2.02 0.26 2.04 1.15 0.21 0.64 1.93 0.15 0.38 0.92 0.14 0.28 10.76 47
FPFH 3.41 0.43 5.59 3.67 0.21 4.31 3.43 0.52 1.97 2.22 0.14 0.27 18.12 440
SHOT 1.22 0.15 7.05 4.54 0.25 4.98 4.99 0.58 2.89 2.92 0.13 0.26 22.72 516
HoD 77.69 9.85 104 56.85 40.82 67.82 67.71 27.89 27.51 27.46 0.03 0.06 69.37 53
RoPS 11.07 1.40 11.08 6.19 1.73 7.16 8.26 0.76 2.95 3.56 0.14 0.28 20.72 591
TriSI 50.19 6.37 55.81 39.46 36.34 29.85 29.83 25.40 17.93 17.93 0.03 0.06 59.38 457

 adaptive Kalman recursive filtering
HoD-S 8.67 1.10 29.09 16.80 9.38 24.27 12.99 3.68 11.23 6.43 0.02 0.08 40.24 46
FPFH 3.40 0.43 5.57 3.67 0.21 4.32 3.42 0.52 1.96 2.22 0.01 0.01 17.96 439
SHOT 1.20 0.15 7.06 4.54 0.25 4.98 4.99 0.57 2.89 2.92 0.01 0.01 22.57 516
HoD 77.69 9.85 104 56.85 40.83 67.82 67.70 27.89 27.51 27.46 0.01 0.01 69.34 53
RoPS 11.07 1.40 11.08 6.19 1.74 7.15 8.27 0.76 2.95 3.56 0.01 0.01 20.59 590
TriSI 50.19 6.37 55.82 39.46 36.34 29.86 29.83 25.40 17.93 17.93 0.01 0.01 59.35 456

 adaptive αβ recursive filtering
HoD-S 2.04 0.26 2.05 1.16 0.20 0.64 1.94 0.15 0.38 0.93 0.01 0.01 10.65 41
FPFH 3.42 0.43 5.59 3.67 0.21 4.32 3.42 0.52 1.97 2.23 0.01 0.01 17.96 437
SHOT 1.21 0.15 7.06 4.54 0.25 4.98 4.99 0.57 2.90 2.92 0.01 0.01 22.58 509
HoD 77.71 9.86 104 56.85 40.84 67.83 67.71 27.90 27.52 27.46 0.01 0.01 69.35 51
RoPS 11.07 1.40 11.09 6.19 1.74 7.15 8.27 0.76 2.95 3.56 0.01 0.01 20.58 583
TriSI 50.20 6.37 55.83 39.47 36.36 29.86 29.83 25.40 17.93 17.93 0.01 0.01 59.35 453

 adaptive SDRE recursive filtering
HoD-S 1.97 0.25 1.98 1.12 0.33 0.76 1.80 0.21 0.44 0.86 0.14 0.28 11.14 42
FPFH 3.54 0.45 5.69 3.68 0.30 4.41 3.52 0.50 1.96 2.22 0.14 0.27 18.09 437
SHOT 1.40 0.18 6.92 4.51 0.34 4.89 4.89 0.62 2.88 2.91 0.13 0.26 22.83 509
HoD 77.68 9.85 104 56.84 40.84 67.79 67.69 27.90 27.50 27.45 0.03 0.06 69.37 52
RoPS 10.88 1.38 10.90 6.09 1.61 7.03 8.15 0.71 2.91 3.50 0.14 0.28 20.46 584
TriSI 50.21 6.37 55.80 39.47 36.37 29.83 29.81 25.41 17.93 17.93 0.03 0.06 59.39 453

 competitor schemes
ICP point 150 19.05 275.76 177.24 147.90 194.21 116.25 85.52 90.65 79.85 -143 38.05 458.55 13
ICP plane 39.90 5.06 52.43 38.27 25.85 32.17 32.21 19.93 18.58 18.62 0.01 0.01 50.07 82
ICP x84 219 27.86 532.12 330.03 281.96 349.77 238.77 160 138.63 152.07 -146 41.38 653.59 35
S4PCS 22.72 2.88 34.53 20.89 14.95 20.87 23.09 9.07 10.72 10.35 81.95 172.80 125.48 1137

S-ICP point 39.90 5.06 52.43 38.27 25.85 32.17 32.21 19.93 18.58 18.62 0.01 0.01 50.07 99
S-ICP plane 39.90 5.06 52.43 38.27 25.85 32.17 32.21 19.93 18.58 18.62 0.01 0.01 50.07 112

 2

 3

 4

 5

 6

 7

max
Te T

avge max
Re T

avge
RTe

44

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 19: Sim-Bennu scenario 7 odometry plots of the 3D descriptors combined with the adaptive filter (a)-(b) H∞,
(c)-(d) Kalman, (e)-(f) αβ, (g)-(h) SDRE, and (i)-(j) competitor methods (due to large errors and for better readability
we omit HoD and TriSI from all plots, HoD-S from (d)-(f) and ICP-x84 from (m)-(o). We also omit the top performing
HoD-S/ αβ from (m)-(o) as errors compared to competitor methods are at least one order of magnitude lesser)

 1

 2

-20
0

20

-15 -10 -5 0 5 10 15 20 25

GT HoD-S HoD FPFH SHOT
RoPS TriSI ICP point ICP plane ICP x84
S4PCS S-ICP point S-ICP plane

-2

-1

0
1

2

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

-2

-1

0

1

2

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

-2

-1

0

1

2

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250
Z

er
ro

r (
m

)

frame

-2

-1

0

1

2

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-10

-5

0

5

0 60 120 180 240

Z
er

ro
r (

m
)

frame

-300
-200
-100

0
100
200
300

0 50 100 150 200 250

X
 e

rr
or

 (m
)

frame

-300
-200
-100

0
100
200
300

0 50 100 150 200 250

Y
 e

rr
or

 (m
)

frame

-300
-200
-100

0
100
200
300

0 50 100 150 200 250

Z
er

ro
r (

m
)

frame

45

4. Discussion 1

In Section 3 we presented the odometry performance of several feature descriptors and recursive 2
filtering combinations against several competitor methods. Trials involved seven scenarios that 3
included real and simulated point cloud data. In this section we further analyze the contribution of 4
each descriptor and filtering method to the odometry performance based on the normalized eRT. 5
Normalization is performed by dividing all eRT metrics by the worst eRT per filter or descriptor 6
depending on the evaluation. This normalization is done for each scenario. In order to cross-7
compare the normalized eRT between the different scenarios we also divide it with the ground truth 8
distance of each scenario. This is important as it is well known that odometry errors build up with 9
distance and therefore cross-comparing eRT across all scenarios is only possible if it is normalized 10
for the distance travelled. For better readability of the plots we use a logarithmic scale and in order 11
to compensate for values that are less than one, we scale the normalized eRT errors by multiplying 12
them with a fixed constant. Additionally, in order to highlight the performance improvement only 13
when the descriptor can provide true matches, we discard the descriptor with the lowest odometry 14
accuracy. 15

4.1 Feature description performance analysis 16

Figure 21 presents the average normalized eRT metric of all recursive filters evaluated in this work 17
per feature and per scenario vs. the total processing time required by the entire odometry 18
architecture. This is important because for odometry applications the trajectory accuracy and the 19
computational burden are equally important. In Figure 21 the color of the marker is related to the 20
scenario, while the shape to the descriptor. Identifying the overall most appealing descriptor is not 21
an easy task because the performance of each descriptor varies for each scenario depending on the 22
characteristics of the trajectory, i.e. Source – Target range, frame-to-frame Target motion, and on 23
the complexity of the Target structure. Figure 21 demonstrates that the average normalized eRT for 24
each descriptor is of the same order, with only minor differences. However, in terms of processing 25
efficiency, the descriptors impose a different processing time that is governed by several 26
parameters including the individual features of each scenario, i.e. level of sparsity, the robustness 27
of each descriptor, the number of geometrically consistent feature matches and finally, the number 28
of iterations for each filter. Overall, we conclude that HoD-S is the most appealing descriptor for 29
the majority of the scenarios, i.e. Real-FB, Sim-Orion, Sim-Helical and Sim-Bennu, with FPFH 30
being the most appealing for the Real-Curved and the Sim-EoI scenarios. These findings confirm 31
that HoD and HoD-S are very robust to low density point clouds (Odysseas Kechagias-Stamatis & 32
Aouf, 2016), while in parallel these also afford a low processing time. 33

Interestingly, for each scenario all descriptors attain errors of the same order, with the only major 34
differentiation being the processing burden. This claim should not be confused with the individual 35
findings for each scenario, as in Section 3 we presented the performance of each feature descriptor 36
and filtering method per scenario, while here we evaluate the average performance of each 37
descriptor aver all filtering methods. From Figure 21 it is evident that scenarios exploiting real 38
LIDAR data pose larger errors compared to the synthetic ones. This is important as it highlights 39
that despite creating realistic synthetic scenarios as done in this work, simulating various noise 40
sources, range dependent Pk resolution variation and viewing dependent Pk creation from a 41
complete 3D Target model, cannot be as realistic as real data acquisition. However, the feature 42
description hierarchy for the top performing descriptors is relatively stable confirming that validity 43

46

of the results and that despite the disadvantages of synthetic vs. real data, exploiting synthetic data 1
is still valuable. 2

Regarding computational efficiency, in most cases HoD-S is at least one order of magnitude faster 3
to compute than the rest of the descriptors. On the contrary, RoPS imposes the highest processing 4
burden. This is because the former descriptor neglects estimating a LRF/A, while the latter 5
involves a computationally expensive LRF. This is also evident from the TriSI descriptor that 6
exploits the same LRF estimation method as RoPS, and thus is also processing inefficient. 7
Interestingly, despite FPFH and SHOT being implemented in C++/PCL and executed via a MEX 8
wrapper, in most of the scenarios these are less processing efficient than HoD-S and HoD that are 9
entirely implemented in MATLAB. It is worth noting that the Sim-EoI scenario imposes the 10
highest processing burden among all scenarios. This is due to the large Pk cardinality, 11
demonstrating that in such cases, down sampling Pk or exploiting a keypoint detection strategy 12
rather encoding all Pk should be considered. 13

 14

 15
Figure 21: Normalized eRT vs. processing time per feature descriptor and scenario. Marker shape indicates the 16
descriptor type, while color the scenario. Descriptors attain similar average performance, over all filtering methods, 17
with HoD-S in the majority of cases being the fastest descriptor. 18
 19
Figure 22 presents the interplay between the Pk cardinality and the processing burden per 20
descriptor. This figure highlights that FPFH is the least affected by the Pk cardinality, while HoD 21
and HoD-S are the most affected ones. This is because the processing efficiency of HoD and HoD-22
S, due to neglecting an LRF/A estimation, is not balanced in high cardinality point cloud scenarios, 23
i.e. Sim-EoI scenario, due to their large description radius. Our findings in Figure 22, confirm (Guo 24
et al., 2016) in respect to the relative processing efficiency between SHOT, RoPS, TriSI and FPFH. 25
The minor processing time fluctuations between various Pk cardinality values are because the total 26
processing time considered in this plot is not only affected by the cardinality of Pk but also by the 27
number of correspondences between Pk and Pk+1. 28
 29

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

10 100 1000 10000 100000av
er

ag
e

no
rm

al
iz

ed
 e

RT
 x

10
4

(lo
g

sc
al

e)

processing time (ms) log scale

scenario Real-FB Real-Curved Sim-EoI Sim-Helical Sim-Voyager Sim-Orion Sim-Bennu

descriptor HoD-S FPFH SHOT HoD RoPS TriSI

47

 1
Figure 22: Average processing time per feature descriptor and scenario 2

 3

4.2 Recursive filtering performance analysis 4

Next, we evaluate the performance of each filter per scenario, as an average over all feature 5
descriptors evaluated. From Tables 3-9 we observe that the average processing time of each filter 6
per scenario is almost independent from the recursive filtering method used, i.e. the fastest filter 7
has only a 2% speed-up against the slowest one. Therefore, in Figure 23 we decouple the average 8
normalized eRT error from the total processing time per scenario and presents only the error. The 9
results clearly demonstrate the superiority of the adaptive Kalman filtering as in five out of seven 10
trials it affords a greater odometry accuracy over its competitor filters. Even for the Real-FB and 11
Sim-Bennu scenarios where the adaptive Kalman filter is not the top performing one, it’s eRT error 12
is only 2.5% and 8.3% greater compared to the top performing filter respectively. This is because 13
opposing to the αβ filter that is restricted by two states and uses static manually defined filter gains, 14
the Kalman filter is not restricted and relies on a time-dependent automatically updated estimate 15
of the state covariance, which is based on user defined covariance noise models. SDRE is a non-16
linear filter and since the Target point cloud between Pk and Pk+1 is small, it can be better 17
approximated with linear models. However, as already mentioned, these observations consider the 18
average performance per filter and scenario, and do not prohibit the case where a filter attains a 19
low average performance but a very appealing odometry accuracy if combined with a specific 20
descriptor. Similarly to Figure 21, Figure 23 also highlights the difference between using real and 21
synthetic data. In fact, scenarios involving real data impose errors that are at least one order of 22
magnitude greater compared to synthetic data. This is mainly due to the poor structure of the Pk 23
acquired by the LIDAR sensor and due to the minor Source platform tumbling. 24

 25

 26
Figure 23: Average processing time per feature descriptor and scenario. Real data-based scenarios have present 27

larger errors compared to the synthetic due to the lack of features on the Pk and the Source tumbling of the former 28
ones. 29

 30

40

400

4000

40000

151 190 288 438 737 882 3099

Sim-Bennu Sim-
Voyager

Sim-Orion Sim-
Helical

Real-
Curved

Real-FB Sim-EoIto
ta

l p
ro

ce
ss

in
g

tim
e

(m
s)

lo

g
sc

al
e

average Pk cardinality per scenario

HoD-S

FPFH

SHOT

HoD

RoPS

TriSI

1

10

100

1000

Real-FB Real-Curved Sim-EoI Sim-Helical Sim-Voyager Sim-Orion Sim-Bennuav
er

ag
e

no
rm

al
iz

ed
 e

RT

x1
04

(lo
g

sc
al

e)

scenario
adaptive H∞ adaptive Kalman adaptive αβ adaptive SDRE

48

In Figure 24 we further analyze the performance of each filter by presenting the eRT, and 1

errors per filter and scenario. From this figure it is also obvious that the data modality, i.e. real vs. 2
synthetic, has a great impact on the odometry accuracy. As already presented in Figure 23, the eRT 3
error in the real scenarios is higher compared to the error in the simulated ones. Interestingly, in 4

the real LIDAR data and in the Sim-EoI scenario, which has a high Pk cardinality, the is 5

smaller than the , while in the remaining synthetic scenarios with a low Pk cardinality this is 6

reversed. This effect is because of the frame-to-frame motion of the real-data scenarios that is less 7
smooth compared to the synthetic ones and also due to the high Pk cardinality of the Sim-EoI 8
scenario. Furthermore, given that the Sim-EoI and the Sim-Voyager, Sim-Orion and Sim-Bennu 9

scenarios adopt the same trajectory, the difference between the and errors can be related 10

to the Pk sparsity in combination to the amount of details/ distinctive features in each Pk. It should 11
be noted that the calculation of the error metrics presented in Figure 24 is based on eq. (27), (29) 12
and (31) respectively, with the former two equations being conceptually different compared to the 13

third one. Therefore, the and errors can significantly differ from the eRT error, e.g. the 14

errors of the Kalman filter for the Sim-EoI scenario presented in Figure 24. 15

 16

 17
Figure 24: Odometry accuracy breakdown per recursive method and scenario 18

 19
For completeness, we also investigate the importance of the recursive filtering module by 20
substituting it in our odometry pipeline with the ICP point-to-point registration process, which is 21
a commonly used registration method in the space navigation literature. Hence, in this trial we 22
apply the ICP point-to-point on the correspondences produced by the GCC process, rather than on 23
the entire Pk as done in the trials of Section 3. The performance attained with and without the 24
recursive filtering module per scenario is presented in Table 10, where it is clear that the recursive 25
filtering process has a great impact on the odometry accuracy. However, exploiting a recursive 26
filtering scheme increases the total computational time. 27
 28
 29
 30
 31
 32
 33
 34
 35

T
avge

R
avge

T
avge

R
avge

R
avge

T
avge

R
avge

T
avge

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05

H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E
H
∞

K
al

m
an αβ

SD
R

E

Real-FB Real-Curved Sim-EoI Sim-Helical Sim-Voyager Sim-Orion Sim-Bennu

no
rm

al
iz

ed
 e

rr
or

 x
10

2

(lo
g

sc
ca

le
)

eRT

eT

eR

RTe

R
avge

T
avge

49

Table 10: Odometry performance with and without the recursive filtering module 1
 2

Scenario top combination
 t (ms)

with
filtering

without
filtering

with
filtering

without
filtering

with
filtering

without
filtering

with
filtering

without
filtering

 Real-FB HOD-S/ αβ 0.10 11.58 0.99 -77.59 1.79 298.93 1753 1481
Real-Curved HOD-S/ αβ 0.16 2.05 1.44 137.10 2.75 140.36 816 801

Sim-EoI HOD-S/ αβ 0.70 37.88 2.91 -163.74 9.23 246.67 27954 26362
Sim-Helical HOD-S/ αβ 1.61 10.36 0.01 18.56 12.53 45.06 112 66
Sim-Voyager HoD-S/ SDRE 14.20 28.52 0.14 119.44 40.78 177.50 57 27
Sim-Orion SHOT/ Kalman 5.32 49.83 0.01 91.69 24.25 176.40 858 714
Sim-Bennu HOD-S/ αβ 1.16 147.22 0.01 164.89 10.65 365.75 41 27

 3
4.3 Performance analysis of the top performing description – filtering combination 4

In Table 11 we summarize the most appealing module per scenario, i.e. descriptor, filtering method 5
and the combination of the former two modules, along with the special features per scenario. From 6
the results presented in Figure 21 and summarized in Table 11, it can be concluded that overall in 7
terms of odometry accuracy and computational burden, HoD-S is the most appealing feature 8
descriptor, with FPFH to follow. Considering the best performing filtering scheme, from Figure 9
23 we observe that the adaptive Kalman is the optimum choice, with the adaptive αβ filter to 10
follow. A summary of the top performing filtering method per scenario is presented in Table 11. 11
Interestingly, the most appealing descriptors and recursive filtering methods per scenario, as 12
concluded from the scenarios in Section 3, do not necessarily coincide with the most appealing 13
combination of these two modules individually. This is because in the former analysis on the 14
optimum descriptor per scenario, we considered the overall performance of all recursive filtering 15
methods evaluated in this work. 16

Table 11: Top performing module per scenario 17

Scenario Top
descriptor

Top recursive
filtering Top combination Scenario features

 Real-FB HoD-S αβ HoD-S / αβ Low density – poor structure

Real-Curved FPFH Kalman HoD-S / αβ Low density – high curvature – poor
structure

Sim-EoI FPFH Kalman HoD-S / αβ High density – high curvature

Sim-Helical HoD-S Kalman HoD-S / αβ Very low density – high curvature –
large 3D translation

Sim-Voyager HoD-S Kalman HoD-S / SDRE Very low density – high curvature

Sim-Orion HoD-S Kalman SHOT / Kalman Very low density – High curvature –
poor structure

Sim-Bennu HoD-S αβ HoD-S / αβ Very low density – High curvature
 18

 19
HoD-S is appealing because of its robustness to low and very low density point clouds along with 20
their processing efficiency confirming the findings of (Odysseas Kechagias-Stamatis & Aouf, 21
2016). Despite that, in the Sim-Orion scenario SHOT combined with the adaptive Kalman filter 22
present the most appealing combination. This is because the Target involved in this scenario has 23

T
avge

R
avge

RTe

50

a poor structure comprising mostly of flat surfaces, indicating that for that type of scenarios 1
involving a LRF in the description process is crucial. 2

We further analyze the performance of the top performing combinations per scenario, by 3
comparing them against the corresponding top performing competitor solutions. Evaluation 4
considers the odometry accuracy expressed via the normalized eRT error metric and the 5
computational burden imposed by each solution. From Figure 25 it is obvious that the proposed 6
method is more accurate, while ICP based methods are generally faster to execute. It should be 7
noted that the results of Figure 25 are normalized but not scaled, i.e. multiplied with a fixed 8
constant. By combining the information presented in Figure 25 and the average Pk cardinality per 9
scenario shown in Figure 12, the following conclusions can be made: First, for highly sparse point 10
clouds, e.g. Sim-Voyager and Sim-Bennu scenarios, the proposed method is more accurate than the 11
top performing competitor method evaluated in this work and is faster to execute. For sparse Pk, 12
e.g. Real-FB, Real-Curved, Sim-Helical and Sim-Orion, identifying the most appealing solutions 13
depends on the nature of Pk, i.e. real vs. simulated data. Specifically, for the real LIDAR data case, 14
the top performing ICP variant is one order of magnitude faster than the proposed method, with 15
the eRT error being of the same order. 16

 17

 18
Figure 25: Normalized eRT of the top performing proposed vs. competitor solution per scenario 19

 20
From the trials presented in this paper, it is clear that the proposed odometry is more accurate 21
compared to current space-oriented navigation techniques. One limitation of our method is that for 22
point clouds exceeding 200 vertices, its computational burden is higher than the burden imposed 23
by the ICP variants. However, in this paper we focus on cases simulating a low-resolution point 24
cloud that is acquired by a space graded LIDAR sensor at greater distances or by a low-cost low-25
resolution space-graded LIDAR device. Thus, this limitation considers a broader usage of our 26
architecture and not for the cases examined here. Regarding the computational burden, partially 27
this is because our architecture is a blend of MATLAB and C++ and thus it is not optimized in 28
terms processing efficiency. However, given that our odometry architecture comprises of several 29
processes, i.e. feature description, matching, geometric consistency checks and recursive filtering, 30
implementing it in C++ shall still be more processing costly compared to ICP, but with a smaller 31
time difference. However, as already stated, this paper is focusing on the conceptual validity of 32
the proposed method rather than to a readily available solution. An additional limitation of our 33

1

10

100

10 100 1000 10000 100000

no
rm

al
iz

ed
 e

RT
er

ro
r

(lo
g

sc
al

e)

processing time (ms) log scale

SHOT/Kalman HoD/Kalman HoD-S/αβ HoD/αβ HoD-S/SDRE SHOT/Kalman HoD-S/αβ

S-ICP point S-ICP point S-ICP point ICP point S-ICP point S-ICP point ICP plane

Real-FB Real-Curved Sim-EoI Sim-Helical Sim-Voyager Sim-Orion Sim-Bennu

method

scenario

51

method is its sensitivity to Targets with smooth surfaces because 3D local feature descriptors are 1
prone to mismatches affecting the odometry accuracy. Despite that, in scenarios that involve 2
Targets with flat surfaces, the proposed odometry solution still manages to attain lower odometry 3
errors compared to typical ICP techniques. 4

4.4 GCC module performance analysis 5

We also investigate the influence of the GCC module by substituting it in our odometry pipeline 6
with RANSAC, which is a commonly used in computer vision applications to define the inliers of 7
two data sets. Table 12 compares the odometry performance of our original architecture against 8
the one using RANSAC. We implement the latter with a false alarm rate of 0.1, an inlier ratio of 9
99% and performing at least 50,000 iterations. From Table 12, it is evident that GCC is up to one 10
order of magnitude more accurate than RANSAC, while the normalized rotational accuracy is up 11
to two orders of magnitude more accurate. This performance difference is more evident in the real 12
scenarios highlighting that RANSAC is more prone to real LIDAR point clouds that suffer from 13
minor noise and sensor tumbling during acquisition. 14

In terms of processing burden, we partially confirm (Yang et al., 2018), which states that RANSAC 15
imposes up to two orders of magnitude additional computational time. In fact, our trials confirm 16
the former statement but only for Target point clouds with a cardinality that is less than 17
approximately 700 vertices. In fact, for larger point clouds we observe that GCC and RANSAC 18
require the same order of execution time, with RANSAC though being faster to execute. This is 19
because for each iteration RANSAC exploits only a random sample out of the corresponding 20
vertices and then applies the estimated model on the entire input data, while GCC involves in each 21
iteration all the corresponding vertices as produced by the coarse matching process of eq. (5). 22
Therefore, given that the inter-motion between Pk and Pk+1 is small, the number of corresponding 23
vertices produced by eq. (5) is directly related to the point cloud cardinality. In simple words, GCC 24
is faster to execute because if Pk and Pk+1 have a small cardinality, then eq. (5) produces less 25
correspondences that need to be evaluated by the GCC module. 26
 27

Table 12: Odometry performance with and without the GCC module 28
 29

Scenario top combination normalized normalized normalized t (ms)

GCC RANSAC GCC RANSAC GCC RANSAC GCC RANSAC
 Real-FB HoD-S / αβ 0.013 0.543 0.133 11.690 0.241 12.421 1753 1442

Real-Curved HoD-S / αβ 0.013 0.351 0.116 11.215 0.222 11.800 816 677
Sim-EoI HoD-S / αβ 0.002 0.190 0.010 0.550 0.032 0.761 27954 9896

Sim-Helical HoD-S / αβ 0.008 0.518 0.001 -0.553 0.061 1.776 112 3102
Sim-Voyager HoD-S/ SDRE 0.018 0.067 0.001 0.226 0.052 0.300 57 3128

Sim-Orion SHOT/ Kalman 0.007 0.058 0.001 -0.175 0.031 0.347 858 3857
Sim-Bennu HOD-S/ αβ 0.001 0.071 0.001 -0.190 0.014 0.348 41 3409

 30
4.5 Comparison against the Correspondence by Local and Global Voting method 31

We further challenge the performance of the proposed pipeline against the Correspondence by 32
Local and Global Voting (CLGV) (Buch et al., 2014). This technique involves four steps, namely 33
feature description, correspondence refinement via GCC and RANSAC, and finally Singular Value 34

T
avge

R
avge

RTe

52

Decomposition (SVD) to estimate the rigid transformation between Pk and Pk+1. Table 13 1
highlights that the proposed solution is more appealing compared to CLGV, attaining odometry 2
accuracy that is one order of magnitude more accurate and more processing efficient. This is 3
because the SVD suffers from ambiguity in the orientation of the singular vectors (Tomasi, 2016) 4
affecting the estimation of R* (eq. (1)). Regarding computational effort, CLGV imposes a large 5
processing burden mainly due to the two iterative processes involved, i.e. GCC and RANSAC. 6

Table 13: Proposed vs. Global / Local voting odometry 7
 8

Scenario top combination normalized normalized normalized t (ms)

proposed CLGV proposed CLGV proposed CLGV proposed CLGV
 Real-FB HoD-S / αβ 0.013 0.554 0.133 14.447 0.241 15.260 1753 1382

Real-Curved HoD-S / αβ 0.013 0.328 0.116 7.183 0.222 7.653 816 645
Sim-EoI HoD-S / αβ 0.002 0.185 0.010 0.510 0.032 0.705 27954 39249

Sim-Helical HoD-S / αβ 0.008 0.319 0.001 0.613 0.061 0.958 112 3016
Sim-Voyager HoD-S/ SDRE 0.018 0.061 0.001 -0.140 0.052 0.378 57 3245
Sim-Orion SHOT/ Kalman 0.007 0.103 0.001 -0.204 0.031 0.379 858 4221
Sim-Bennu HOD-S/ αβ 0.001 0.087 0.001 -0.213 0.014 0.345 41 3482

 9

4.6 Interplay between performance and number of iterations for the ICP variants 10

In Section 3, we set the number of maximum iterations per ICP method, i.e. ICP point 20, ICP 11
plane 1000, ICP x84 20, while the iterations for both S-ICP variants are set to 20. To support this 12
choice per ICP method, we evaluate each ICP variant by setting the maximum number of iterations 13
to 20 and 1000. Evaluation considers the scenarios presented in Section 3 and the corresponding 14
results are presented in Table 14. For better readability, the best performance per normalized error 15
is highlighted in red, if it is attained by setting to 20 iterations, and in blue if setting to 1000 16
iterations. 17

From the results obtained it is clear that the chosen number of iterations used in Section 3 is the 18
optimum one for each ICP variant. However, from further analyzing the results of Table 14, we 19
observe that the ICP plane variant settles in up to 20 iterations, for both the real and the simulated 20
data scenarios. Accordingly, the ICP plane variant requires more iterations to settle and thus setting 21
to the threshold up to 1000 is mandatory. It is worth noting that for both variants, the normalized 22
translational, rotational and eRT errors equally benefit from the number of iterations set. However, 23
interestingly this is not the case for the ICP x84 variant, as the translational and eRT errors benefit 24
from a low number of iterations, while the rotational error from a large number. This behavior is 25
present in both the real and the synthetic data scenarios. The S-ICP point variant, presents overall 26
a higher odometry accuracy when the iterations are up to 20. However, this is only valid for the 27
synthetic data scenarios, as real data scenarios require more iterations. Given that during the 28
parameter setup we set the parameters of each method to be universal, i.e. selected for an overall 29
optimum odometry accuracy on both real and synthetic data scenarios, we set iterations to 20. 30
Finally, the S-ICP plane variant is quite stable requiring up to 20 iterations. The results obtained 31
confirm our previous findings that real and simulated data require a different parameter setup. 32
 33
 34

T
avge

R
avge

RTe

53

Table 14: ICP performance vs. number of iterations 1
 2

Scenario ICP variant
normalized normalized normalized t (ms)

20
iterations

1000
iterations

20
iterations

1000
iterations

20
iterations

1000
iterations

20
iterations

1000
iterations

Real-FB

ICP point 0.086 0.086 11.402 11.402 11.649 11.649 5 6
ICP plane 0.131 0.131 -23.090 -23.090 25.872 25.872 9 9
ICP x84 1.291 6.126 -22.321 -16.821 27.893 38.699 41 983

S-ICP point 0.266 0.131 0.001 -23.090 0.462 25.872 145 191
S-ICP plane 0.266 0.105 0.001 0.313 0.462 0.602 150 305

Real-Curved

ICP point 0.136 0.227 8.447 12.427 8.723 12.745 6 6
ICP plane 0.146 0.177 -13.567 12.922 15.792 13.225 10 28
ICP x84 0.343 11.547 10.971 -9.621 11.341 31.967 53 1058

S-ICP point 0.159 0.176 0.001 12.933 0.276 13.234 137 28
S-ICP plane 0.159 0.025 0.001 1.196 0.276 1.343 145 250

Sim-EoI

ICP point 0.134 0.135 -0.565 -0.565 0.858 0.859 30 30
ICP plane 0.126 0.126 -0.576 -0.576 0.811 0.811 31 51
ICP x84 0.158 1.004 -0.570 -0.445 0.887 2.223 49 1059

S-ICP point 0.039 0.126 0.001 -0.576 0.060 0.811 276 51
S-ICP plane 0.039 0.088 0.001 0.434 0.060 0.610 327 14702

Sim-Helical

ICP point 0.041 0.019 0.057 0.339 0.192 0.422 8 10
ICP plane 1012 0.048 0.578 0.297 3x1011 0.461 17 127
ICP x84 11.933 3.500 -0.788 -0.657 18.400 5.940 36 417

S-ICP point 0.190 0.055 0.001 0.285 0.243 0.411 107 84
S-ICP plane 0.196 0.008 0.001 0.001 0.248 0.064 105 123

Sim-Voyager

ICP point 0.038 0.083 0.209 0.220 0.296 0.344 7 10
ICP plane 7x105 0.025 0.174 0.126 6x105 0.189 8 19
ICP x84 0.358 0.362 0.215 -0.164 0.710 0.749 16 284

S-ICP point 0.037 0.017 0.001 0.053 0.059 0.102 171 14
S-ICP plane 0.037 0.028 0.001 0.120 0.059 0.176 177 307

Sim-Orion

ICP point 0.012 0.065 -0.165 0.064 0.333 0.185 13 14
ICP plane 761.035 0.045 0.192 0.062 1014.713 0.158 12 14
ICP x84 0.084 0.963 -0.207 -0.176 0.352 1.701 24 407

S-ICP point 0.042 0.069 0.001 -0.223 0.061 0.354 125 15
S-ICP plane 0.042 0.069 0.001 0.004 0.061 0.122 133 52

Sim-Bennu

ICP point 0.371 0.055 -0.199 0.212 0.731 0.300 11 16
ICP plane 3x1014 0.143 -0.189 0.184 5x1014 0.373 36 84
ICP x84 0.265 0.652 -0.014 -0.223 0.604 1.127 35 419

S-ICP point 0.049 0.011 0.001 -0.157 0.064 0.339 99 55
S-ICP plane 0.049 0.034 0.001 0.107 0.064 0.172 112 300

 3

5. Conclusion 4

LIDAR based odometry for space relative navigation is challenging due to the absence of 5
background, the limited structure and the sparsity of the Target point cloud. As demonstrated, 6
several ICP variants, the S4PCS, and the Correspondence Local/ Global voting method, which are 7
currently widely used for point cloud registration and odometry applications, do not guarantee an 8
accurate space odometry trajectory. Spurred by this, we suggest a robust architecture appropriate 9
for space odometry that combines the concepts of 3D local feature description, geometric 10
correspondence grouping for feature matching refinement and adaptive recursive filtering. 11

T
avge

R
avge

RTe

54

The accuracy of the proposed pipeline is tested on seven scenarios that include both real and 1
synthetic point cloud data, on four space objects comprising of quite a few different satellites, a 2
space capsule and an asteroid. In our trials we evaluate several current 3D local descriptor and 3
recursive filtering combinations and demonstrate that the proposed architecture is 50% more 4
accurate compared to current solutions. Our trials highlighted that HoD-S combined with the 5
adaptive αβ filtering poses the most appealing combination for the majority of the scenarios 6
evaluated, affording a high quality odometry performance with a low processing burden. 7
Additional advantages of the proposed architecture over current LIDAR space odometry 8
architectures are; being independent of an off-line training process and not requiring a priori 9
knowledge of the Target platform. 10

Acknowledgements 11

This research was supported by the European Union as part of the H2020 project “Integrated 3D 12
Sensors (I3DS)” under grant No 730118. Authors would like to thank Thales Alenia Space for 13
providing the simulated data for the Sim-EoI scenario 3. The authors would also like to thank 14

the anonymous reviewers for their constructive comments. 15

References 16

Aiger, D., Mitra, N. J., & Cohen-Or, D. (2008). 4-Points Congruent Sets for Robust Pairwise 17
Surface Registration. ACM Transactions on Graphics, 27(3), 1. 18
https://doi.org/10.1145/1360612.1360684 19

Aldomà, A. (2011). render view. Retrieved March 24, 2015, from 20
https://github.com/PointCloudLibrary/pcl/blob/master/apps/include/pcl/apps/render_views_t21
esselated_sphere.h 22

Aldoma, A., Tombari, F., Rusu, R. B., & Vincze, M. (2012). OUR-CVFH – Oriented, Unique and 23
Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose 24
Estimation. In Lecture Notes in Computer Science (including subseries Lecture Notes in 25
Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7476 LNCS, pp. 113–122). 26
https://doi.org/10.1007/978-3-642-32717-9_12 27

Alexandre, L. A. (2012). 3D Descriptors for Object and Category Recognition : a Comparative 28
Evaluation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 34(8), 1–29
6. https://doi.org/10.1109/TPAMI.2011.263 30

Aqel, M. O. A., Marhaban, M. H., Saripan, M. I., & Ismail, N. B. (2016). Review of visual 31
odometry: types, approaches, challenges, and applications. SpringerPlus, 5(1). 32
https://doi.org/10.1186/s40064-016-3573-7 33

Arnold, W. F., & Laub, A. J. (1984). Generalized eigenproblem algorithms and software for 34
algebraic Riccati equations. Proceedings of the IEEE, 72(12), 1746–1754. 35
https://doi.org/10.1109/PROC.1984.13083 36

ASC. (2019a). DragonEye 3D Flash LIDAR Space CameraTM. Retrieved March 19, 2019, from 37
http://www.advancedscientificconcepts.com/products/older-products/dragoneye.html 38

ASC. (2019b). GoldenEye 3D Flash LIDARTM Space Camera. Retrieved March 14, 2019, from 39

55

http://www.advancedscientificconcepts.com/products/portable.html 1

Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions 2
on Pattern Analysis and Machine Intelligence, 14(2), 239–256. 3
https://doi.org/10.1109/34.121791 4

Birdal, T. (2015). ICP Registration using Efficient Variants and Multi-Resolution Scheme. 5
Retrieved March 7, 2019, from 6
https://uk.mathworks.com/matlabcentral/fileexchange/47152-icp-registration-using-7
efficient-variants-and-multi-resolution-scheme?s_tid=prof_contriblnk 8

Bonnal, C., Ruault, J. M., & Desjean, M. C. (2013). Active debris removal: Recent progress and 9
current trends. Acta Astronautica, 85, 51–60. https://doi.org/10.1016/j.actaastro.2012.11.009 10

Bouaziz, S., Tagliasacchi, A., & Pauly, M. (2013). Sparse Iterative Closest Point. Computer 11
Graphics Forum, 32(5), 113–123. https://doi.org/10.1111/cgf.12178 12

Buch, A. G., Yang, Y., Kruger, N., & Petersen, H. G. (2014). In Search of Inliers: 3D 13
Correspondence by Local and Global Voting. In 2014 IEEE Conference on Computer Vision 14
and Pattern Recognition (pp. 2075–2082). IEEE. https://doi.org/10.1109/CVPR.2014.266 15

Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C., … Tardós, J. D. 16
(2009). A comparison of SLAM algorithms based on a graph of relations. 2009 IEEE/RSJ 17
International Conference on Intelligent Robots and Systems, IROS 2009, 2089–2095. 18
https://doi.org/10.1109/IROS.2009.5354691 19

Chen, H., & Bhanu, B. (2007). 3D free-form object recognition in range images using local surface 20
patches. Pattern Recognition Letters, 28(10), 1252–1262. 21
https://doi.org/10.1016/j.patrec.2007.02.009 22

Cheng, A. F. (2002). Near Earth asteroid rendezvous: mission summary. Asteroids III, 1, 351–366. 23

Cvišić, I., Ćesić, J., Marković, I., & Petrović, I. (2018). SOFT-SLAM: Computationally efficient 24
stereo visual simultaneous localization and mapping for autonomous unmanned aerial 25
vehicles. Journal of Field Robotics, 35(4), 578–595. https://doi.org/10.1002/rob.21762 26

Deng, H., Birdal, T., & Ilic, S. (2018). PPFNet: Global Context Aware Local Features for Robust 27
3D Point Matching. In 2018 IEEE/CVF Conference on Computer Vision and Pattern 28
Recognition (pp. 195–205). IEEE. https://doi.org/10.1109/CVPR.2018.00028 29

Deschaud, J.-E. (2018). IMLS-SLAM: Scan-to-Model Matching Based on 3D Data. In 2018 IEEE 30
International Conference on Robotics and Automation (ICRA) (pp. 2480–2485). IEEE. 31
https://doi.org/10.1109/ICRA.2018.8460653 32

Dietrich, A. B., & McMahon, J. W. (2018). Robust Orbit Determination with Flash Lidar Around 33
Small Bodies. Journal of Guidance, Control, and Dynamics, 41(10), 2163–2184. 34
https://doi.org/10.2514/1.G003023 35

Dietrich, A., & McMahon, J. W. (2017). Orbit Determination Using Flash Lidar Around Small 36
Bodies. Journal of Guidance, Control, and Dynamics, 40(3), 650–665. 37
https://doi.org/10.2514/1.G000615 38

56

Estébanez Camarena, M., Feetham, L. M., Scannapieco, A., & Aouf, N. (2018). FPGA-based 1
multi-sensor relative navigation in space: Preliminary analysis in the framework of the I3DS 2
H2020 project. In 69 th International Astronautical Congress (IAC), (pp. 1–8). Bremen: 3
Internation Astronautical Federation. 4

Fehse, W. (2003). The drivers for the approach strategy. Automated Rendezvous and Docking of 5
Spacecraft; Cambridge University Press: Cambridge, UK, 124–126. 6

Fischler, M. a, & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting 7
with applications to image analysis and automated cartography. Communications of the ACM, 8
24(6), 381–395. https://doi.org/10.1145/358669.358692 9

Flores-Abad, A., Ma, O., Pham, K., & Ulrich, S. (2014). A review of space robotics technologies 10
for on-orbit servicing. Progress in Aerospace Sciences, 68, 1–26. 11
https://doi.org/10.1016/j.paerosci.2014.03.002 12

Frome, A., Huber, D., Kolluri, R., Bülow, T., & Malik, J. (2004). Recognizing Objects in Range 13
Data Using Regional Point Descriptors. In ECCV (Vol. 3023, pp. 224–237). 14
https://doi.org/10.1007/978-3-540-24672-5_18 15

Fusiello, A., Castellani, U., Ronchetti, L., & Murino, V. (2002). Model Acquisition by Registration 16
of Multiple Acoustic Range Views. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), 17
Computer Vision --- ECCV 2002 (pp. 805–819). Berlin, Heidelberg: Springer Berlin 18
Heidelberg. 19

Galante, J., Van Eepoel, J., Strube, M., Gill, N., Gonzalez, M., Hyslop, A., & Patrick, B. (2012). 20
Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated-21
Flight Conditions. In AIAA Guidance, Navigation, and Control Conference (pp. 1–26). 22
Reston, Virigina: American Institute of Aeronautics and Astronautics. 23
https://doi.org/10.2514/6.2012-4927 24

Gómez Martínez, H., Giorgi, G., & Eissfeller, B. (2017). Pose estimation and tracking of non-25
cooperative rocket bodies using Time-of-Flight cameras. Acta Astronautica, 139(February), 26
165–175. https://doi.org/10.1016/j.actaastro.2017.07.002 27

Graeter, J., Wilczynski, A., & Lauer, M. (2018). LIMO: Lidar-Monocular Visual Odometry. In 28
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 29
7872–7879). IEEE. https://doi.org/10.1109/IROS.2018.8594394 30

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2016). A Comprehensive 31
Performance Evaluation of 3D Local Feature Descriptors. International Journal of Computer 32
Vision, 116(1), 66–89. https://doi.org/10.1007/s11263-015-0824-y 33

Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Zhang, J. (2015). Performance Evaluation 34
of 3D Local Feature Descriptors. In Computer Vision -- ACCV 2014 (pp. 178–194). 35
https://doi.org/10.1007/978-3-319-16808-1_13 36

Guo, Y., Sohel, F., Bennamoun, M., Lu, M., & Wan, J. (2013a). Rotational Projection Statistics 37
for 3D Local Surface Description and Object Recognition. International Journal of Computer 38
Vision, 105(1), 63–86. Computer Vision and Pattern Recognition. 39
https://doi.org/10.1007/s11263-013-0627-y 40

57

Guo, Y., Sohel, F., Bennamoun, M., Lu, M., & Wan, J. (2013b). TriSI : A Distinctive Local Surface 1
Descriptor for 3D Modeling and Object Recognition. In 8th International Conference on 2
Computer Graphics Theory and Applications. Barcelona, Spain. https://doi.org/10.5220 3

Jaimez, M., & Gonzalez-Jimenez, J. (2015). Fast Visual Odometry for 3-D Range Sensors. IEEE 4
Transactions on Robotics, 31(4), 809–822. https://doi.org/10.1109/TRO.2015.2428512 5

Jena Optronik. (2019). RVS-3000. Retrieved March 19, 2019, from http://www.jena-optronik.de 6

Ji, K., Chen, H., Di, H., Gong, J., Xiong, G., Qi, J., & Yi, T. (2018). CPFG-SLAM:a Robust 7
Simultaneous Localization and Mapping based on LIDAR in Off-Road Environment. IEEE 8
Intelligent Vehicles Symposium, Proceedings, 2018–June(Iv), 650–655. 9
https://doi.org/10.1109/IVS.2018.8500599 10

Johnson, A. E., & Hebert, M. (1998). Efficient multiple model recognition in cluttered 3-D scenes. 11
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 12
Recognition (pp. 671–677). https://doi.org/10.1109/CVPR.1998.698676 13

Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 14
3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 433–15
449. https://doi.org/10.1109/34.765655 16

Katz, S., Tal, A., & Basri, R. (2007). Direct visibility of point sets. ACM Transactions on Graphics, 17
26(3), 24. https://doi.org/10.1145/1276377.1276407 18

Kechagias-stamatis, O., & Aouf, N. (2019). H∞ LIDAR Odometry for Spacecraft Relative 19
Navigation. IET Radar, Sonar & Navigation, (1). https://doi.org/10.1049/iet-rsn.2018.5354 20

Kechagias-Stamatis, O., & Aouf, N. (2016). Histogram of distances for local surface description. 21
In 2016 IEEE International Conference on Robotics and Automation (ICRA) (Vol. 2016–22
June, pp. 2487–2493). Stockholm, Sweden: IEEE. 23
https://doi.org/10.1109/ICRA.2016.7487402 24

Kechagias-Stamatis, O., & Aouf, N. (2017). Evaluating 3D local descriptors for future LIDAR 25
missiles with automatic target recognition capabilities. The Imaging Science Journal, 65(7), 26
428–437. https://doi.org/10.1080/13682199.2017.1361665 27

Kechagias-Stamatis, O., & Aouf, N. (2018). A New Passive 3-D Automatic Target Recognition 28
Architecture for Aerial Platforms. IEEE Transactions on Geoscience and Remote Sensing, 1–29
10. https://doi.org/10.1109/TGRS.2018.2855065 30

Kechagias-Stamatis, O., Aouf, N., Gray, G., Chermak, L., Richardson, M., & Oudyi, F. (2018). 31
Local feature based automatic target recognition for future 3D active homing seeker missiles. 32
Aerospace Science and Technology, 73, 309–317. https://doi.org/10.1016/j.ast.2017.12.011 33

Kechagias-Stamatis, O., Aouf, N., & Nam, D. (2017). 3D Automatic Target Recognition for UAV 34
Platforms. In 2017 Sensor Signal Processing for Defence Conference (SSPD) (pp. 1–5). 35
London, UK: IEEE. https://doi.org/10.1109/SSPD.2017.8233223 36

Khoury, M., Zhou, Q.-Y., & Koltun, V. (2017). Learning Compact Geometric Features. In 2017 37
IEEE International Conference on Computer Vision (ICCV) (pp. 153–161). IEEE. 38
https://doi.org/10.1109/ICCV.2017.26 39

58

Kim, D.-H., & Kim, J.-H. (2016). Effective Background Model-Based RGB-D Dense Visual 1
Odometry in a Dynamic Environment. IEEE Transactions on Robotics, 32(6), 1565–1573. 2
https://doi.org/10.1109/TRO.2016.2609395 3

Kornfeld, R. P., Bunker, R. L., Cucullu, G. C., Essmiller, J. C., Hadaegh, F. Y., Christian Liebe, 4
C., … Wong, E. C. (2003a). New millennium ST6 autonomous rendezvous experiment 5
(ARX). In 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652) (Vol. 1, pp. 6
1–380). IEEE. https://doi.org/10.1109/AERO.2003.1235067 7

Kornfeld, R. P., Bunker, R. L., Cucullu, G. C., Essmiller, J. C., Hadaegh, F. Y., Christian Liebe, 8
C., … Wong, E. C. (2003b). New millennium ST6 autonomous rendezvous experiment 9
(ARX). In 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652) (Vol. 1, pp. 10
1–380). IEEE. https://doi.org/10.1109/AERO.2003.1235067 11

Krämer, M. S., Hardt, S., & Kuhnert, K. (2018). Image Features in Space - Evaluation of Feature 12
Algorithms for Motion Estimation in Space Scenarios. In Proceedings of the 7th International 13
Conference on Pattern Recognition Applications and Methods (pp. 300–308). Funchal, 14
Madeira, Portugal: SCITEPRESS - Science and Technology Publications. 15
https://doi.org/10.5220/0006555303000308 16

Langlois, P.-A. (2018). ICP Sparse. Retrieved from https://github.com/palanglois/icpSparse 17

Lei Yunqi, Lai Haibin, & Jiang Xutuan. (2010). 3D face recognition by SURF operator based on 18
depth image. In 2010 3rd International Conference on Computer Science and Information 19
Technology (Vol. 9, pp. 240–244). IEEE. https://doi.org/10.1109/ICCSIT.2010.5563632 20

Li, L., Lian, J., Guo, L., & Wang, R. (2013). Visual odometry for planetary exploration rovers in 21
sandy terrains. International Journal of Advanced Robotic Systems, 10, 1–7. 22
https://doi.org/10.5772/56342 23

Liebe, C. C., Abramovici, A., Bartman, R. K., Bunker, R. L., Chapsky, J., Cheng-Chih Chu, … 24
Wright, M. (2003). Laser radar for spacecraft guidance applications. In 2003 IEEE Aerospace 25
Conference Proceedings (Cat. No.03TH8652) (Vol. 6, p. 6_2647-6_2662). IEEE. 26
https://doi.org/10.1109/AERO.2003.1235190 27

Liu, C., & Hu, W. (2014). Relative pose estimation for cylinder-shaped spacecrafts using single 28
image. IEEE Transactions on Aerospace and Electronic Systems, 50(4), 3036–3056. 29
https://doi.org/10.1109/TAES.2014.120757 30

Liu, L., Zhao, G., & Bo, Y. (2016). Point cloud based relative pose estimation of a satellite in close 31
range. Sensors (Switzerland), 16(6). https://doi.org/10.3390/s16060824 32

Lu, F., & Milios, E. (1997). Globally Consistent Range Scan Alignment for Environment Mapping. 33
Autonomous Robots, 4(4), 333–349. https://doi.org/10.1023/A:1008854305733 34

Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of Visual Odometry on the Mars 35
Exploration Rovers. Journal of Field Robotics, 24(3), 169–186. 36
https://doi.org/10.1002/rob.20184 37

Mellado, N. (2017). Super4PCS. 38

Mellado, N., Aiger, D., & Mitra, N. J. (2014). Super 4PCS Fast Global Pointcloud Registration via 39

59

Smart Indexing. Computer Graphics Forum, 33(5), 205–215. 1
https://doi.org/10.1111/cgf.12446 2

Mian, A. S., Bennamoun, M., & Owens, R. (2006). Three-Dimensional Model-Based Object 3
Recognition and Segmentation in Cluttered Scenes. IEEE Transactions on Pattern Analysis 4
and Machine Intelligence, 28(10), 1584–1601. https://doi.org/10.1109/TPAMI.2006.213 5

Mikolajczyk, K., & Schmid, C. (2005). Performance evaluation of local descriptors. IEEE 6
Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. 7
https://doi.org/10.1109/TPAMI.2005.188 8

Mouats, T., Aouf, N., Chermak, L., & Richardson, M. A. (2015). Thermal Stereo Odometry for 9
UAVs. IEEE Sensors Journal, 15(11), 6335–6347. 10
https://doi.org/10.1109/JSEN.2015.2456337 11

Mouats, T., Aouf, N., Sappa, A. D., Aguilera, C., & Toledo, R. (2015). Multispectral Stereo 12
Odometry. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1210–1224. 13
https://doi.org/10.1109/TITS.2014.2354731 14

Muja, M., & Lowe, D. G. (2009). Fast Approximate Nearest Neighbors with Automatic Algorithm 15
Configuration. In International Conference on Computer Vision Theory and Applications 16
(VISAPP ’09) (pp. 1–10). Lisboa, Portugal. https://doi.org/10.1.1.160.1721 17

Naasz, B., & Moreau, M. (2012). Autonomous RPOD technology challenges for the coming 18
decade. Advances in the Astronautical Sciences, 144, 403–425. 19

NASA. (2019). NASA 3D models. Retrieved March 7, 2019, from 20
https://nasa3d.arc.nasa.gov/models 21

Nemra, A., & Aouf, N. (2009). Robust Airborne 3D Visual Simultaneous Localization and 22
Mapping with Observability and Consistency Analysis. Journal of Intelligent and Robotic 23
Systems, 55(4–5), 345–376. https://doi.org/10.1007/s10846-008-9306-6 24

Neuhaus, F., Koß, T., Kohnen, R., & Paulus, D. (2019). MC2SLAM: Real-Time Inertial Lidar 25
Odometry Using Two-Scan Motion Compensation. In T. Brox, A. Bruhn, & M. Fritz (Eds.), 26
Pattern Recognition (pp. 60–72). Cham: Springer International Publishing. 27

Opromolla, R., Di Fraia, M. Z., Fasano, G., Rufino, G., & Grassi, M. (2017). Laboratory test of 28
pose determination algorithms for uncooperative spacecraft. In 4th IEEE International 29
Workshop on Metrology for AeroSpace, MetroAeroSpace 2017 - Proceedings (pp. 169–174). 30
Padua, Italy. https://doi.org/10.1109/MetroAeroSpace.2017.7999558 31

Opromolla, R., Fasano, G., Rufino, G., & Grassi, M. (2014). Spaceborne LIDAR-based system for 32
pose determination of uncooperative targets. In 2014 IEEE International Workshop on 33
Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings (pp. 265–270). Benevento, 34
Italy. https://doi.org/10.1109/MetroAeroSpace.2014.6865932 35

Opromolla, R., Fasano, G., Rufino, G., & Grassi, M. (2015a). A model-based 3D template 36
matching technique for pose acquisition of an uncooperative space object. Sensors 37
(Switzerland), 15(3), 6360–6382. https://doi.org/10.3390/s150306360 38

Opromolla, R., Fasano, G., Rufino, G., & Grassi, M. (2015b). Uncooperative pose estimation with 39

60

a LIDAR-based system. Acta Astronautica, 110, 287–297. 1
https://doi.org/10.1016/j.actaastro.2014.11.003 2

Opromolla, R., Fasano, G., Rufino, G., & Grassi, M. (2017). A review of cooperative and 3
uncooperative spacecraft pose determination techniques for close-proximity operations. 4
Progress in Aerospace Sciences, 93(July), 53–72. 5
https://doi.org/10.1016/j.paerosci.2017.07.001 6

Optitrack. (2018). Retrieved May 22, 2018, from https://optitrack.com/ 7

Penoyer, R. (1993). The Alpha-Beta Filter. C User’s Journal, 11(7), 73–86. 8

Rhodes, A., Kim, E., Christian, J. A., & Evans, T. (2016). LIDAR-based Relative Navigation of 9
Non-Cooperative Objects Using Point Cloud Descriptors. In AIAA/AAS Astrodynamics 10
Specialist Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics. 11
https://doi.org/10.2514/6.2016-5517 12

Rhodes, A. P., Christian, J. A., & Evans, T. (2017). A Concise Guide to Feature Histograms with 13
Applications to LIDAR-Based Spacecraft Relative Navigation. Journal of the Astronautical 14
Sciences, 64(4), 414–445. https://doi.org/10.1007/s40295-016-0108-y 15

Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast Point Feature Histograms (FPFH) for 3D 16
registration. In 2009 IEEE International Conference on Robotics and Automation (pp. 3212–17
3217). Kobe, Japan: IEEE. https://doi.org/10.1109/ROBOT.2009.5152473 18

Salti, S., Tombari, F., & Di Stefano, L. (2014). SHOT: Unique signatures of histograms for surface 19
and texture description. Computer Vision and Image Understanding, 125, 251–264. 20
https://doi.org/10.1016/j.cviu.2014.04.011 21

Sell, J. L., Rhodes, A., Woods, J. O., Christian, J. A., & Evans, T. (2014). Pose Performance of 22
LIDAR-Based Navigation for Satellite Servicing. AIAA/AAS Astrodynamics Specialist 23
Conference, (August), 1–14. https://doi.org/10.2514/6.2014-4360 24

Simon, D. (2000). From here to infinity. Embedded Systems Programming, 14(11), 20–32. 25

Simon, D. (2001). Kalman Filtering. Embedded Systems Programming, 72–79. 26

Song, J. (2017). Sliding window filter based unknown object pose estimation. In 2017 IEEE 27
International Conference on Image Processing (ICIP) (pp. 2642–2646). IEEE. 28
https://doi.org/10.1109/ICIP.2017.8296761 29

Tomasi, C. (2016). Orthogonal matrices and the singular value decomposition. University of 30
Duke. 31

Tombari, F., Salti, S., & Di Stefano, L. (2010). Unique shape context for 3d data description. In 32
Proceedings of the ACM workshop on 3D object retrieval - 3DOR ’10 (p. 57). New York, 33
New York, USA: ACM Press. https://doi.org/10.1145/1877808.1877821 34

Tykkala, T., & Comport, A. I. (2011). A dense structure model for image based stereo SLAM. In 35
Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 1758–1763). 36
Shangai, China. https://doi.org/10.1109/ICRA.2011.5979805 37

Volpe, R., Palmerini, G., & Sabatini, M. (2017). Monocular and Lidar Based Determination of 38

61

Shape , Relative Attitude and Position of a Non-Cooperative , Unknown Satellite. In 1
International Astronautical Congress (IAC 2017) (pp. 25–29). Adelaide, Australia. 2

Woods, J. O., & Christian, J. A. (2016). Lidar-based relative navigation with respect to non-3
cooperative objects. Acta Astronautica, 126, 298–311. 4
https://doi.org/10.1016/j.actaastro.2016.05.007 5

Yang Cheng, Maimone, M., & Matthies, L. (2006). Visual Odometry on the Mars Exploration 6
Rovers. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 1, 7
pp. 903–910). Waikoloa, HI, USA. https://doi.org/10.1109/ICSMC.2005.1571261 8

Yang, J., Cao, Z., & Zhang, Q. (2016). A fast and robust local descriptor for 3D point cloud 9
registration. Information Sciences, 346–347(August), 163–179. 10
https://doi.org/10.1016/j.ins.2016.01.095 11

Yang, J., Xian, K., Xiao, Y., & Cao, Z. (2018). Performance evaluation of 3D correspondence 12
grouping algorithms. In Proceedings - 2017 International Conference on 3D Vision, 3DV 13
2017 (pp. 467–476). https://doi.org/10.1109/3DV.2017.00060 14

Yang, J., Zhang, Q., & Cao, Z. (2017). Multi-attribute statistics histograms for accurate and robust 15
pairwise registration of range images. Neurocomputing, 251, 54–67. 16
https://doi.org/10.1016/j.neucom.2017.04.015 17

Yılmaz, O., Aouf, N., Majewski, L., Sanchez-Gestido, M., & Ortega, G. (2017). Using infrared 18
based relative navigation for active debris removal. In 10th International ESA Conference on 19
Guidance, Navigation & Control Systems (pp. 1–16). Salzburg, Austria. 20

Zhang, J., & Singh, S. (2015a). LOAM: Lidar Odometry and Mapping in Real- time. IEEE 21
Transactions on Robotics, 32(July), 141–148. https://doi.org/10.15607/RSS.2014.X.007 22

Zhang, J., & Singh, S. (2015b). Visual-lidar odometry and mapping: low-drift, robust, and fast. In 23
2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2174–2181). 24
IEEE. https://doi.org/10.1109/ICRA.2015.7139486 25

Zhao, B., Le, X., & Xi, J. (2019). A novel SDASS descriptor for fully encoding the information of 26
a 3D local surface. Information Sciences, 483, 363–382. 27
https://doi.org/10.1016/j.ins.2019.01.045 28

Zhou, Y., Li, H., & Kneip, L. (2019). Canny-VO: Visual Odometry With RGB-D Cameras Based 29
on Geometric 3-D–2-D Edge Alignment. IEEE Transactions on Robotics, 35(1), 184–199. 30
https://doi.org/10.1109/TRO.2018.2875382 31

Zou, Y., Wang, X., Zhang, T., Liang, B., Song, J., & Liu, H. (2018). BRoPH: An efficient and 32
compact binary descriptor for 3D point clouds. Pattern Recognition, 76, 522–536. 33
https://doi.org/10.1016/j.patcog.2017.11.029 34

 35

