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Abstract

Harmonic functions are solutions to Laplace's Equation. As noted in a previous paper,

they can be used to advantage for potential-�eld path planning, since they do not exhibit

spurious local minima. In this paper, harmonic functions are shown to have a number of

other properties (including completeness) which are essential to robotics applications. These

properties strongly recommend harmonic functions as a mechanism for robot control.

1 Introduction

Harmonic functions were proposed in Connolly et al. [1] as a means for generating paths in a robot

con�guration space. These functions are solutions to Laplace's Equation. One important feature

of harmonic functions is that they can be used to generate smooth, collision-free paths without the

threat of spurious local minima. In this paper, harmonic functions are shown to provide a global,

complete path-planning scheme. As noted by Tarassenko and Blake [2], a resistive grid can compute

such functions very quickly, further motivating their use.

It is important to note that nearly all the potential �eld models in use prior to [1] were not

based on charge distribution. If they had been, then the resulting functions would have been

harmonic, hence free of spurious local minima. The possible exception to this is the work of Rimon

�Portions of this work were funded by the National Science Foundation under grants CDA-8921080 and CDA-

8922572.
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and Koditschek [3], whose functions also appear to be free of spurious local minima. The main

motivations for the introduction of harmonic functions in [1] were the elimination of local minima

and the use of a true analogy to phenomena such as charge distribution and 
uid 
ow. In fact,

the mathematical literature often refers to Laplace's Equation as the \potential equation" (see, for

example, Courant and Hilbert [4]).

In this paper, harmonic functions are shown to have several more useful properties which make

them well suited for robotics applications:

� Fast surface normal computation

� Completeness (up to discretization error in the environment model)

� Ability to exhibit di�erent modes of behavior (grazing vs. avoidance)

� Robust control in the presence of unanticipated obstacles and errors

2 Harmonic functions

A harmonic function on a domain 
 � Rn is a function which satis�es Laplace's equation:

r
2� =

nX

i=1

@2�

@x2
i

= 0

In the case of robot path construction, the boundary of 
 (@
) consists of the boundaries of all

obstacles and goals in a con�guration space representation. Harmonic functions satisfy the min-

max principle (see [4, 1]): Spontaneous creation of local mimima within the region is impossible if

Laplace's equation is imposed as a constraint on the functions used. In the context of this paper,

harmonic functions are computed over a regular grid of points which is a discrete representation

of the robot con�guration space. A �nite di�erence scheme is often used to compute harmonic

functions (see [1] for details), and one can also employ a resistive grid [2].

In [1], Dirichlet-style boundary conditions were used. With Dirichlet boundary conditions,

obstacles are raised to a constant high potential, while goal regions are kept at a low potential.

The resulting potential in free space is then constrained by r2� = 0. When Dirichlet boundary

conditions are used in this manner, the gradient of � is aligned with the surface normals of the

obstacles. If this function is used for path generation, it will tend to repel the robot away from

obstacles.

In [2], a Neumann-style boundary condition is proposed. Here, rather than keep obstacles at

a constant potential, the derivative of � is constrained so that n � r� = 0, where n is the surface
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normal function for the obstacles1. This causes r� to be tangential to obstacle surfaces. Here, the

paths generated will graze any obstacles they encounter.

As noted in [1] and [2], the Dirichlet solution tends to have precision problems. Flat regions can

develop resulting in very small (but of necessity nonzero) gradients, requiring higher precision in

generating the solution. On the other hand, the grazing behavior exhibited by a Neumann solution

can result in a tendency for a robot to stay close to obstacle surfaces.

3 Properties

The original motivation for the use of harmonic functions arose from the prevention of spurious local

minima. However, there are several other useful properties than can be exploited. The following

sections elaborate on these properties.

3.1 Surface Normals

In subsequent sections, some use will be made of the fact that the gradient of a constant-value

Dirichlet solution to Laplace's Equation will be normal to the surfaces of boundaries. The Dirichlet

solution for r2� = 0 (as described in section 2) causes any obstacle boundary to become an

equipotential surface. Therefore, the gradient r�D must be orthogonal to this surface [5]. Hence

r�D must be aligned with object surface normals. Several algorithms in computer vision rely on

the computation of surface normals ([6], [7]). In combination with a resistive grid [2], harmonic

functions provide a very fast method for surface normal computation on discrete solid models (e.g.

bitmap or octree models of objects { see [8] for an example of how such data could be acquired).

3.2 Completeness

Under certain assumptions regarding the boundary conditions, it is possible to show that a path

planning scheme using harmonic functions is complete (up to the approximation of the environment).

We assume the following:

� 
 is a compact subset of Rn.

� � is a solution to Laplace's Equation on 
 with Dirichlet boundary conditions.

� Streamlines for � are computed via gradient descent.

1In general, Neumann boundary conditions are described by n �r�(x) = f(x), where x 2 Rn. To get the gradient

to 
ow around obstacles, one can simply set f � 0.
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� All boundaries @
 are held at the obstacle potential � = 1.

� All goal regions are held at the goal potential � = 0.

As noted previously, every streamline of a harmonic function must reach a goal point.

Conjecture 1 Let x 2 Rn
be the manipulator starting con�guration, and y 2 Rn

be any manipu-

lator goal con�guration. There is no path between x and y i�. r�(x) = 0.

Proof: Let S � 
 denote the connected component of freespace which contains x.

) If there is no path from x to y, it must be the case that x 2 S and y 62 S. Therefore, the

only potentials within S must be the high potentials (� = 1) on @S. By the min-max property of

harmonic functions, both the minimum and the maximum potentials in any neighborhood of x, and

since the neighborhood is arbitrary, any point in S, must be the same, i.e. �(x) = 1. Therefore, �

is constant and r� at any point in S must be zero.

( If r�(x) = 0 in S, then the derivatives of � must be zero and � must be a constant function.

Consider a point z 2 S � @S. The min-max property requires that the minimum and maximum

values of � in any neighborhood of z must be attained on the boundary of the neighborhood. Let

a given neighborhood of z contain points in @S. By the min-max property, since � is constant, it

must also be true that �(z) = 1 (the value at @S). Since the neighborhood is arbitrary, �(z) = 1

must hold for any z 2 S. For y to be in S then would be a violation of the min-max property, since

�(y) = 0. Hence y cannot be in S and there is no path between the e�ector and the goal.

Similar arguments may be applied to the case of Neumann boundary conditions. The key to

these arguments is simply that the function in any connected component without goals will converge

to a constant in that region (see Courant and Hilbert [4] for a detailed treatment of this property).

3.3 Behavior

Solutions to Laplace's Equation obey the principle of superposition. By superposing the Dirichlet

and Neumann solutions, one can obtain a harmonic function that exhibits a behavior somewhere

between the two original solutions. Let �D be a Dirichlet solution on a domain 
, and let �N
be a Neumann solution on 
. A new harmonic function can be constructed by taking a linear

combination of the two:

� = k�D + (1� k)�N

where k 2 [0; 1]. By varying k, the new function can be made to exhibit some mixture of the

\repel" and \graze" behaviors inherent in the original solutions. It is easy to envision situations

where either behavior might be more desirable than the other. If k is kept away from zero, the
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precision problems inherent in the Dirichlet solution are avoided. The resulting � is harmonic, has

no local minima and, provided that k 2 [0; 1], guarantees collision-free paths.

To see why the collision-free property is maintained, consider what happens to harmonic func-

tions at the boundaries of obstacles. The gradient of a Dirichlet solution is outward normal to

the surface at these points, while the gradient of a Neumann solution is parallel to the surface.

Any convex combination of the two solutions will therefore yield a gradient which is bounded by

the Dirichlet and the Neumann gradient. This gradient must have a component which is outward

normal to the surface.

The variability of robot behavior is especially useful in two ways: Repulsion from obstacles is

desirable in fragile environments, where the environment model is accurate and where contact is to

be avoided if at all possible. It is also desirable in the case where the robot system itself is fragile

or can be damaged by contact with the environment. On the other hand, the grazing behavior of

the Neumann solution is useful as an exploratory strategy, in cases where contact with obstacles is

acceptable and even desirable. Force sensing can then be used to update the environment model.

To illustrate the e�ect of this style of superposition, consider the con�guration space of a two-

jointed robot where each link is 1 unit long. A rectangular obstacle is placed near the robot, and a

smaller rectangular goal region is placed just above the obstacle (�gure 1). Figures 2, 3 and 4 show

the con�guration space that results, and the streamlines obtained from the superposed harmonic

functions for k = 0, k = 1, and k = 0:5 respectively. In each �gure, the right side depicts the robot

con�guration space, while the left side shows its cartesian workspace. The lines in cartesian space

show the paths of the end e�ector corresponding to the streamlines in con�guration space. Lightly

shaded regions are obstacles, and black regions are goal points.

Note that in �gure 3, many paths graze the con�guration space obstacles (the black region). In

contrast, �gure 2 shows streamlines which tend to stay well clear of obstacles. Finally, 4 shows the

streamlines exhibiting a behavior somewhere between the two.

3.4 Velocity Control

Velocity control can be used to great advantage with harmonic functions. The gradient of a harmonic

function can be used to supply velocity commands at every point in the robot workspace. In the

absence of external forces, a robot so commanded will follow a streamline2 in con�guration space,

which will always lead to a goal con�guration [9]. De
ections in the streamline which result from

external forces will simply place the robot on another streamline.

For example, admittance control [10, 11, 12] is ideally suited for use with harmonic functions.

2The integral curve resulting from the gradient descent of the harmonic function.
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Figure 1: Cartesian space (left) and con�guration space (right) for Problem A.
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Figure 2: Streamlines for the Dirichlet solution of Problem A.
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Figure 3: Streamlines for the Neumann solution of Problem A.

8



Figure 4: Streamlines for Problem A with a superposition constant of 0.5.
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This control law is as follows:

V = V0 +AF

where A is an admittance matrix that alters the nominal command velocities V0 in response to

external forces and torques F. The scaled gradient of a harmonic function can be used as the

command velocity V0.

A robot which uses harmonic functions to provide velocity control in this manner is robust

in the presence of uncertainty in the robot's model of its environment. Errors in the model of

the environment can result in contact between the robot and obstacles. This causes the robot

to be de
ected from its path. Since every streamline of a harmonic function must terminate at

a goal point, the system can simply sample the harmonic function gradient at the current robot

con�guration and follow it. The application of harmonic functions to velocity control is described

in more detail in Section 5.

4 Examples

A system has been implemented which demonstrates the use of harmonic functions for control of a

revolute robot arm. The system simulates a two-link planar robot which uses harmonic functions for

generating paths. In the experiments shown here, the left side of each �gure depicts the cartesian

space grid, while the right side shows the corresponding con�guration space grid. As before, lightly

shaded regions denote obstacles, while solid black regions are goals. Each harmonic function is

computed over the con�guration space grid. Not shown is a \virtual" obstacle which in each case

is placed at singular points of the manipulator Jacobian matrix (diagonal lines in cspace).

Figures 5, 6, and 7 all show paths generated from the same starting con�guration, but with

di�erent superposition constants. The letter \S" denotes the start con�guration. Note the tendency

of the end e�ector to roam closer to the obstacles as the constant approaches zero.

In �gures 8, 9, and 10, the ability of harmonic functions to use more than one goal region is

demonstrated. These examples also help to show that harmonic functions are capable of dealing

with a variety of environments.

Finally, �gures 11, 12 and 13 show the ability of harmonic functions to detect that no path

can be obtained from start to goal. This is a two-goal problem in which certain con�gurations are

isolated from both goals. In this case, it is su�cient to test that the gradient is zero and that the

harmonic function value is 1. Note that in �gure 11, a path is found from start to goal. However,

in �gure 12, there is no path, and the program terminates and noti�es the user that this is the case.
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Figure 5: Path using k = 0:99 (Dirichlet).
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Figure 6: Path using k = 0:5 (blend).
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Figure 7: Path using k = 0:01 (Neumann).
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Figure 8: Two-goal problem: �rst path.
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Figure 9: Two-goal problem: second path.
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Figure 10: Two-goal problem: third path.
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Figure 11: Problem B: A two-goal, two-obstacle workspace.
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Figure 12: A start con�guration for problem B which has no path to a goal.
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Figure 13: Another start con�guration for problem B which has no path to a goal.
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5 Harmonic Control

Harmonic functions can be computed using relaxation over a grid (see [1, 13]). Con�guration space

is digitized and represented in this grid so that obstacles are held at a �xed high potential, while

goal points in con�guration space are held at a low potential. The relaxation only occurs over

points in freespace. Such relaxation methods always converge. After convergence at any point in

the freespace portion of the grid, the value of the harmonic function is the average of the values at

the grid neighbors. Obviously, this implies that within the freespace region there will be no minima

or maxima. These can only occur at goals or obstacles. The above description refers to Dirichlet

boundary conditions, where boundary potentials are �xed, e.g.:

�(x jboundary) = c

Neumann boundary conditions were employed by Tarassenko and Blake [2], and can be computed

(digitally) in a similar fashion, although grid values in this case are re
ected across the boundaries,

rather than �xed, e.g.:

n � r�(x jboundary) = 0

where n is the boundary surface normal. The means of computing harmonic functions are described

in much more detail in [1], [13], and [2], and their theory is more fully described in [4] and [14],

among others.

In this section, harmonic functions are used in conjunction with velocity-based control to im-

plement a robot system which is 
exible in coping with errors in the environment model and in

robot positions. The method relies on a key property of harmonic functions: Namely, that every

streamline of a harmonic function will always reach a desired goal (global minimum) region [9]. This

follows directly from the fact that, unlike most other potential �eld methods, harmonic functions

exhibit no spurious local minima [1].

Velocity-based control schemes have received much recent attention. The generalized damper

and other passive control models have nice stability properties, and are hence quite attractive

[10, 11, 12, 15]. In this paper, we explore velocity based control in conjunction with harmonic

functions. The scheme described here attempts to drive the manipulator around any unexpected

surfaces (and thence to the goal) in response to external forces generated by contact with those

surfaces.

Forces which arise from contact will have a normal component and a friction component. If

the contact force lies within the friction cone, sticking will occur. This is characterized by the

property that sensed forces will be nearly tangent to the streamline being followed. In sliding

contact, the velocity vector will be outside the friction cone, and therefore the force vector will not

be colinear with the velocity. In this paper we will discuss a strategy for trajectory modi�cation

20



that is especially suited for use with harmonic functions. This strategy is called \equipotential-

following". It entails modifying the command velocities of a manipulator in the presence of forces

so that the manipulator tends to follow the equipotential lines of the controlling harmonic function.

The streamline solution represents a c-space trajectory which avoids all modeled obstacles [1].

The equipotential surface (an n� 1 dimensional submanifold of c-space) is everywhere orthogonal

to the streamlines which cross it [9]. In this sense, the equipotential surface is an extrapolation

of the neighboring model geometry. Therefore, we can use the equipotential surface to de�ne an

n�1 dimensional frame for admittance control. Normally, without any sensed forces, the controller

produces velocities which are tangent to a streamline. In a completely modeled environment,

these streamlines will always terminate at a goal. However, if a sensed force is detected, the

controller switches discretely to follow the equipotential surface. The sensed force projected onto

the equipotential surface is a heuristic for searching for alternative streamlines. The controller

e�ectively neutralizes friction and thus reduces the probability of jamming while executing a c-

space trajectory in an uncertain environment.

6 Equipotential Following

This technique has much in common with traditional admittance techniques, such as that described

by Peshkin [12]. In our context, the harmonic function which is used for generating robot paths is

usually referred to as the potential function (see Courant and Hilbert [4]), which is often denoted

by �. Streamlines are generated by following the gradient of this potential function, and follow

constant values of the stream function (usually denoted by  ). The equipotential surfaces of a

harmonic function are always orthogonal to these streamlines.

The presence of contact forces implies that the current streamline is blocked due to an unexpected

obstacle. In order to make progress to a goal con�guration, then, the robot must move itself o�

the current streamline and onto a streamline that is free of obstacles. This suggests the use of

equipotential surfaces as a means of �nding alternative free streamlines.

The method of following equipotential lines results in velocity commands which are tangent to

the harmonic function's equipotential surface at the current robot location. Since the equipotential

surface is orthogonal to the gradient, the latter actually de�nes the vector subspace from which we

must choose a new velocity command. Let � be the potential function, and  be the corresponding

stream function, and let v = cr� be a velocity vector along the streamline (where c is a speed-

limiting scale factor). We wish to determine a new velocity vector, v�, which is tangent to the

equipotential surface. This velocity is therefore constrained by r� � v� = 0. The velocity command

v� is still underconstrained; we must choose a particular direction within the equipotential surface.

If the contact force has a component which is in the subspace de�ned by the equipotential surface,
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then we may use the following to constrain the velocity command:

v� = c(v � (f � v )) (1)

where c is again a speed-limiting scale factor. This vector represents the direction of search along

the equipotential surface for an alternative streamline, as computed from the original command

velocity v and contact force f .

Figure 14 illustrates the e�ect of equation 1 on a sliding contact. In this �gure, the e�ector is

traveling along a streamline (in joint space), and encounters an obstacle (shaded). Its command

velocity would normally be v in order to continue following the streamline. Force f is observed,

consisting of a normal component fn and a friction component ff . The new command velocity

direction is derived e�ectively by projecting f onto the equipotential surface, resulting in v�.

7 Examples

A system has been constructed which simulates velocity control of a 2-link revolute robot arm. The

arm is driven by a harmonic function computed over a con�guration space grid. This harmonic

function is a linear combination of the Neumann and Dirichlet solutions, with a heavy weight

(0.98) on the Dirichlet solution. The Neumann component was used to eliminate any precision

problems (see [2]). In Figures 15 - 19, the left hand pane shows the robot in its Cartesian workspace.

Obstacles are shaded gray, and goals are solid black. In the right hand pane, the robot con�guration

space is shown, along with the con�guration space representation of the obstacles (shaded) and the

goals (black). In this system, the robot is treated according to Salisbury's whole-arm manipulator

concept. That is, the links themselves are e�ectively used as force sensors. All forces are ultimately

represented as torques in joint space.

The �rst example shows a single-goal problem. In Figure 15, the robot is started at a con�g-

uration and allowed to proceed normally to the goal. In Figure 16, an obstacle has been placed

in the rectangular container near the bottom of Cartesian space. Note that this obstacle has not

been mapped into con�guration space, and that the harmonic function being used was computed

in its absence. Thus, many streamlines in the vicinity of this obstacle will travel through it. In this

case, the robot is started at the same con�guration as seen in Figure 15. Here, however, the forces

(actually torques) generated by contact with the new surface prevent the robot from moving further

along its original streamline. Once forces (torques) are sensed, a new velocity vector is computed

which takes the robot along the equipotential surface at its current con�guration, and in a direction

which will reduce or eliminate the torques.

Figure 17 shows a new problem with a chair-like obstacle. This �gure shows free movement

of the robot from its start con�guration to the goal. In Figure 18, an unexpected obstacle has
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Figure 14: Diagram of forces and velocities at a contact.
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Figure 15: Problem 1: A single-goal problem.
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Figure 16: Problem 1, but with a new obstacle, and without harmonic function recomputation.
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been placed along this path. Note that in this trajectory, the link (rather than the end e�ector)

is de
ected. The robot point in con�guration space is then de
ected along equipotential lines to

successively new streamlines, until a free streamline is found which results in free progress to the

goal. In the top right corner of the obstacle, it appears as if link 2 is piercing the obstacle. This is

a graphic e�ect due to discretization error and low resolution in the Cartesian space, rather than a

problem in the control algorithm.

8 Conclusion

In conclusion, harmonic functions exhibit several properties which are useful for robot control:

� lack of spurious minima

� completeness up to discretization

� behavioral variability through superposition

� robust control in the presence of environmental model error

� computation of surface normals as a by-product

In conjunction with the results of [2], this demonstrates that harmonic functions provide a very

attractive mechanism for robot control.

The strategy described in this paper provides a robust means of controlling a manipulator in

the presence of external forces. These forces are a manifestation of unexpected obstacles in the

manipulator workspace. In general, the scheme described here will still result in the manipulator's

progress to the goal con�guration in spite of unexpected errors. Moreover, even some gross errors

in the robot system's world model can be circumvented using this scheme.

The techniques in this paper can also be used to accumulate information about the environment

through force sensing. This strategy cannot overcome the type of singularity generated when the

sensed force is precisely aligned with the streamline tangent. Persistent external forces at certain

con�gurations will most likely represent new, previously unsensed obstacles. Hence, they can be

used to update the Cartesian and con�guration space maps of the environment. For example, Figure

19 shows how the de
ections seen in Figure 18 produced new obstacle points in con�guration space.

This information can subsequently be used to generate a new harmonic function which takes these

new obstacles into account. The harware implementation described by Tarassenko and Blake [2]

can provide this update very quickly.
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Figure 17: Problem 2
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Figure 18: Problem 2 with a new obstacle and resulting robot positions superimposed.
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Even in the case where fast computation of harmonic functions is not possible, one can still drive

the manipulator in parallel with the harmonic function calculation. Since new obstacles essentially

place a high potentials at points in the con�guration space grid, these potentials will result in

wavefronts which will propagate outward from those points until convergence is again achieved.

The authors would like to thank Kamal Souccar, who implemented the 2-link robot simulator.

References

[1] C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using Laplace's Equation. In

Proceedings of the 1990 IEEE International Conference on Robotics and Automation, pages

2102{2106, May 1990.

[2] L. Tarassenko and A. Blake. Analogue computation of collision-free paths. In Proceedings of

the 1991 IEEE International Conference on Robotics and Automation, pages 540{545. IEEE,

April 1991.

[3] Elon Rimon and Daniel E. Koditschek. Exact robot navigation using cost functions: The

case of distinct spherical boundaries in En. In Proceedings of the 1988 IEEE International

Conference on Robotics and Automation, pages 1791{1796. IEEE, April 1988.

[4] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2. John Wiley and Sons,

New York, 1989.

[5] Ruel V. Churchill, James W. Brown, and Roger F. Verhey. Complex Variables and Applications.

McGraw-Hill Book Company, 3rd edition, 1976.

[6] Paul Besl and Ramesh Jain. Intrinsic and extrinsic surface characteristics. In Proceedings of

the 1985 Conference on Computer Vision and Pattern Recognition, page 226. IEEE, June 1985.

[7] John Ross Stenstrom. Finding points of high curvature and critical curves from a volume

model. In Proceedings of the 1985 Conference on Robotics and Automation, page 436. IEEE,

April 1985.

[8] C. I. Connolly. Cumulative generation of octree models from range data. In Proceedings of the

First International Conference on Robotics and Automation, page 25. IEEE, March 1984.

[9] Rolf H. Sabersky, Allan J. Acosta, and Edward G. Hauptmann. Fluid Flow. MacMillan

Publishing Company, 2nd edition, 1971.

29



Figure 19: The mapping which resulted from force sensing of the new obstacle in problem 2. The

new c-space obstacle points are circled.

30



[10] Daniel E. Whitney. Force feedback control of manipulator �ne motions. Journal of Dynamic

Systems, Measurement, and Control, pages 91{97, June 1977.

[11] Daniel E. Whitney. Historical perspective and state of the art in robot force control. Interna-

tional Journal of Robotics Research, 6(1):3{14, Spring 1987.

[12] Michael A. Peshkin. Programmed compliance for error corrective assembly. IEEE Transactions

on Robotics and Automation, 6(4):473{482, August 1990.

[13] Richard L. Burden, J. Douglas Faires, and Albert C. Reynolds. Numerical Analysis. Prindle,

Weber and Schmidt, Boston, 1978.

[14] Ruel V. Churchill and James Ward Brown. Fourier Series and Boundary Value Problems.

McGraw-Hill Book Company, 3rd edition, 1978.

[15] Ambarish Goswami and Michael A. Peshkin. A task-space formulation of passive force control.

In Proceedings of the 1991 IEEE International Symposium on Intelligent Control, pages 95{100.

IEEE, August 1991.

31


