ANALYSIS OF RABIN’S IRREDUCIBILITY TEST
FOR POLYNOMIALS OVER FINITE FIELDS

DANIEL PANARIO, BORIS PITTEL, BRUCE RICHMOND AND ALFREDO
VIOLA

ABSTRACT. We give a precise average-case analysis of Rabin’s
algorithm for testing the irreducibility of polynomials over finite
fields. The main technical contribution of the paper is the study
of the probability that a random polynomial of degree n contains
an irreducible factor of degree dividing several maximal divisors
of the degree n. We then study the expected value and the vari-
ance of the number of operations performed by the algorithm. We
present an exact analysis when n = p; and n = p1ps for py, po
prime numbers, and an asymptotic analysis for the general case.
Our method generalizes to other algorithms that deal with simi-
lar divisor conditions. In particular, we analyze the average-case
number of operations for two variants of Rabin’s algorithm, and
determine the ordering of prime divisors of n that minimizes the
leading factor.

1. INTRODUCTION

Let F, be the finite field with ¢ elements, for ¢ a prime power, and
let f € F,[z] be an irreducible polynomial of degree n. In this case,
the ring of polynomials modulo f, F,[z]/(f), is a finite field with ¢"
elements. The theorem of existence and uniqueness of finite fields en-
sures that F» = F,[z]/(f). This isomorphism allows the construction
of arithmetic in extensions fields via polynomial operations. We are
only required to find irreducible polynomials of any degree n over any
finite field F,.

This paper deals with a probabilistic algorithm for finding irreducible
polynomials due to Rabin [23]. The central idea is to use trial and
error, i.e., to take polynomials at random and test them for irreducibil-
ity. Remarkably enough, this idea was already noted by Galois (][9],
p. 119). Let I, be the number of irreducible polynomials of degree
n over a finite field F,. In Gauss’ posthumous book ([13], p. 611-
612), see also Mignotte [18] Chapter 6, Section 2), it is proved that
L, = 237, n(k)g"*, for pu the Mébius function and in the case of fi-

nite prime fields. This identity holds for any prime power ¢. It follows
1

2 PANARIO, PITTEL, RICHMOND AND VIOLA
([18], p. 238) that
q" — 2q"/2 <nl, <q" (1)

Therefore, a fraction very close to 1/n of the polynomials of degree n
over any finite field F, is irreducible. Thus, on average, we find one
irreducible polynomial of degree n after about n tries. This justifies
the trial and error method.

It remains to choose an irreducibility test. Let f € F,[z] with deg f =
n be a polynomial to be tested for irreducibility. Assume that n =
Hle pi*t with py, ..., py the distinct prime divisors of n, and denote
n; = n/p;, for 1 < i < k. Rabin’s test is based on the following result:
f is irreducible if and only if ged(f, 27" —x) = 1 forall 1 <i < k, and
27" — 2 =0 mod f.

Most of the analyses done in algorithms for polynomials over finite
fields are based on the worst-case behavior. Very little work has been
done in the average-case analysis for these problems, and most of them
are done with techniques based on generating functions and asymptotic
analysis. This paper is another step towards this direction.

In Section 2, we revisit Rabin’s polynomial irreducibility test. The
analysis of Rabin’s algorithm involves the study of the number of poly-
nomials of degree n that have irreducible factors of degree dividing a
maximal divisor of n. In Sections 3 and 4, we give the main techni-
cal contributions of this paper. That is, we study the probability that
a polynomial contains an irreducible factor of degree dividing some
ni,...,n; for 1 < j < k. We first give an exact expression of this
probability when n = p; or n = pypy for py, ps prime numbers. This
explicit formula is complicated for general n. Thus, we provide the as-
ymptotic behavior when n tends to infinity. The average-case analysis
of Rabin’s algorithm follows from these results. We study the expected
value and the variance of the number of operations performed by the
algorithm. These results are expressed as an asymptotic formula in n,
the degree of the polynomial to be tested for irreducibility.

Similar analyses can also be used to study other algorithms with
certain divisor conditions. In Section 5, we analyze some variants of
Rabin’s algorithms found in [10] and [11]. Finally in Section 6 we
conclude by comparing several irreducibility test algorithms.

We assume that arithmetic in I, is given. The cost measure of an
algorithm will be the number of operations in IF,. The algorithms in this
paper use basic polynomial operations like products and ged tests. We
distinguish two approaches for the polynomial arithmetic: the “school”
method, and the “fast” method based on the Fast Fourier Transform
(FFT). Let M(n) = nlognloglogn when considering fast methods,

RABIN’S IRREDUCIBILITY TEST 3

and M (n) = n? otherwise. The cost of multiplying two polynomials of
degree at most n can be taken as 71 M(n), for a constant 7 (for fast
arithmetic, see [5, 24, 25]). The cost of a ged between two polynomials
of degree at most n can be taken as 7o(n)M(n), where

(n) = To classical arithmetic
Ty logn fast arithmetic

(for fast arithmetic see [2], §8.9). For a constant 73, a division with
remainder can be computed with 730 (n) operations in F,.

Finally, we need the computation of h? mod f for polynomials h and
f of degree at most n. This exponentiation can be done by means of the
classical repeated squaring method (see [17], p. 461-462). In this case,
the number of products needed is C;, = |log, ¢] + v(q) — 1, with v(q)
the number of ones in the binary representation of q. Therefore, the
cost of computing h? mod f by this method is 7,C, M (n) operations in
[, for both arithmetics. For an excellent reference book in the area we
refer to [12].

2. RABIN’S IRREDUCIBILITY TEST

The main goal of this paper is to provide a complete analysis of
Rabin’s polynomial irreducibility test and several associated variants.
In this section, we revisit Rabin’s test. Its correctness is based on the
following theorem due to Rabin ([23], p. 275, Lemma 1), that leads to
an immediate algorithm.

Theorem 2.1. Let pq, ..., px be all the prime divisors of n, and denote
ni = n/p;, for 1 < i < k. A polynomial f € F,[x] of degree n is
irreducible in F,[x] if and only if ged (f, 29" —x mod f) =1 for 1 <
i <k, and f divides 29" — x.

Algorithm: Rabin irreducibility test
Input: A monic polynomial f € F,[x] of degree n,

and pq,...,p all the distinct prime divisors of n.
Output: Either “f is irreducible” or “f is reducible”.

for 7:=1 to k do

n; = n/pi;
for i:=1 to k do
[%] g:= ged(f, 29" —x mod f);
if g# 1, then ‘f is reducible’ and STOP;
endfor;

g:=x7" —z mod f;
if ¢g=0, then ‘‘f is irreducible’’

4 PANARIO, PITTEL, RICHMOND AND VIOLA

else ‘‘f is reducible’’.

A well-known result due to Gauss establishes that, for 7 > 1, the poly-
nomial 29 — x € F,[z] is the product of all monic irreducible polyno-
mials in F, [x] whose degree divides i. As a consequence, one would be
tempted to infer that f is irreducible if and only if f divides 29" — .
This fact is not true since f could be the product of irreducible poly-
nomials all of them with degree dividing n. This situation justifies the
need of computing ged (f, 24" —x mod f) for every n; maximal divisor
of n.

The computation of 29 mod f in Rabin’s algorithm is done by
repeated squaring independently for each value nq,...,ng. The cor-
responding ged is also taken separate ly. In Section 5, we analyze
some variants presented in [10] and [11] on the way of computing these
powers.

For later comparison with the average-case result, we now give the
worst-case cost of Rabin’s algorithm. The cost of Rabin’s algorithm
is dominated by the cost of computing the exponentiations. It is
easy to show using the prime number theorem that in the worst-case
the number of operations in F, for performing the exponentiations is
71CynM (n)logloglog n.

3. EXACT ANALYSIS OF TWO IMPORTANT CASES

In practice, it is of interest to have extensions of F,. Blake et al.
[4] and Coppersmith [6] show how to compute discrete logarithms fast
in Fyi27. Odlyzko’s excellent survey [20] analyzes values of n such that
discrete logarithms in Fy» are probably secure. There was some interest
in producing data encryption processor chips for the case n = 593
(see [19], p. 69). As we can see, some cases when the degree n of
the extension is a prime number p; are of practical interest. On the
other hand, the case n = pyp, for primes pq, ps, has also received some
attention. For instance, Agnew et al. [1] presented an implementation
of elliptic curve cryptosystem over Faiss.

In this section we present an exact average-case analysis of Rabin’s
algorithm, when the degree n of the polynomial being tested for irre-
ducibility is a prime p; or the product of two primes p;p,. The analysis
follows from several propositions of independent interest. These propo-
sitions hold for any degree n. However, we present them here for the
particular cases n = p; and n = pyp,, for p; and ps primes.

The proofs on this paper are based on two steps: the symbolic
method to establish counting generating functions of interest, and the

RABIN’S IRREDUCIBILITY TEST 5

extraction of coefficients either directly or via asymptotic analysis. The
use of asymptotic techniques is restricted to the Section 4. Next, we
briefly introduce the symbolic method for the polynomial expressions
of interest here. The reader is pointed out to [8] for an introduction to
this methodology.

Let Z be the collection of all monic irreducible polynomials in T,
and denote by |w| the degree of an element w € Z. Formally, all monic
polynomials with at least one irreducible factor of degree belonging to
a set S, and no irreducible factor of degree belonging to a set 7 can
be written as

[a+w+e®+9 JI Q+w+w+--) -1
w€T, |w|gSUT weZ, |w|eS

= J[a-w'- JI a-w
weT, |w|gT w€Z, |w|gSUT

As usual, we consider a formal variable z, and the substitution w
21l This transformation produces the following generating function:

H (1—z‘“‘)_1— H (1—z““‘)_1

weT, |w|¢T w€Z, |w|gSUT
“TTa-"=T] a-+)"
J€T JjESUT
_ Hje”r(l —27)7 B HjeSuT (1—27)" (2)
1—gqz 1—gqz ’

where we have used the well-known identity (see [8])

I 1\
1—qz_,>1 1—27)

J

In a similar way, we obtain the generating function of polynomials
with no irreducible factors of degree belonging to a set T

H (1 _ Z\w\)—l _ H (1 _ Zj)—fj _ HjeT(l B Z])]‘ (3)

, 1—gz
weZ, |w|gT J€T

3.1. Basic probabilities. We first study the situation when n = p;
with p; a prime number. In this case, given a polynomial f of degree py,
the algorithm executes once the ged [#] for ny = 1. Then, if f does not
have an irreducible factor of degree 1, executes its last step, otherwise it
terminates. The following easy proposition studies the probability that
a random polynomial of degree p; does not contain linear irreducible

(§ PANARIO, PITTEL, RICHMOND AND VIOLA

factors. We give it here for completeness and as an introduction to the
methodology we extensively use in this paper. It should be pointed out
that Knopfmacher and Knopfmacher ([15], Theorem 1) have studied
the probability of a random polynomial having k£ roots, a result that
implies ours.

Proposition 3.1. Let P(q,p1) be the probability that a random monic
polynomial of degree p; over T, contains an irreducible factor of degree

1. Then ‘
a1 £0) ()

i=0
Moreover, when q < p;

Plop) =1- <1_1)q,

q

PRrROOF. We consider Equation (2) when § = {1} and 7 = (. Then,
since I} = ¢, we find after doing the normalization z < z/q that the
desired probability is
A\ ¢
L (1-3)

P(QJpl) — [Zpl] 1 — z 1 — z

The second term is a product of generating functions and thus, a con-
volution argument gives

P(g,p) = ["] <1iz—§2k§;<j> (%))

SR NHICH)

The second assertion follows immediately from the binomial theorem.
|

For the most important applications p; > ¢. In these cases we have
0.63212...=1—¢' < P(q,p1) < 0.75.

Thus, as expected, there is a large probability that the polynomial is
rejected by the first ged.

We now consider the case when n = pyp, with py, ps prime numbers.
In this case, given a polynomial f of degree pipo, the algorithm executes
the ged in line [*] for ny = py. Then, if f does not have an irreducible
factor of degree 1 or ps, it executes again the ged for ny = p;. Since we

RABIN’S IRREDUCIBILITY TEST 7

already know that this polynomial does not have an irreducible factor
of degree 1, this second gcd only discards polynomials that have an
irreducible factor of degree p;. Finally, if the polynomial does not have
an irreducible factor of degree 1, p; or po, it executes the last step.

The following propositions study the probabilities that a random
polynomial of degree p;ps is discarded by the first or second ged test,
respectively.

Proposition 3.2. Let Pi(q,n) be the probability that a random monic
polynomial of degree n = pipy over F, contains an irreducible factor of
degree 1 or py. Then

e SN E (EOG)

Moreover, when py > q

== () @) 00 (EO)

and, if in addition I,, < p; — 1,

1) 1\
=113 (-2

PROOF. The proof is based on Equation (2) with 7 = @ and § =
{1, po}. Then, after normalization, we have

Pugn) = [| — — (l—i)q (1_£)1”

1—2 1—2 qP2

We study the second generating function as a convolution of (1 —
2/q)?/(1 — z) and (1 — (z/q)P?)'»2. Thus, we are interested in

[2P1P2] (;%;; (3) (;)z) (;(—1)’“ (I;:) <Z%>k>
e S (E06E))
-SHE (06

8 PANARIO, PITTEL, RICHMOND AND VIOLA

When py, > ¢, the sum indexed by 7 can be simplified. Indeed, this sum
is 1 when p; = k, and the binomial (1 — 1/¢)?, otherwise. This proves
our second assertion, that is,

nan=1- () () () (E G E))

Finally, if I, < p; —1 the internal sum and the second term simplify,
and we obtain
1) 10\
Pl(q,n):1—<1——> (1——) :
q qPZ

In the following, we study the probability that a polynomial is dis-
carded by the second gcd test when it is not discarded by the first ged
test.

Proposition 3.3. Let Py(q,n) be the probability that a random monic
polynomial of degree n = pipy over F, contains an irreducible factor of

degree py but does not contain an irreducible factor of degree 1 or ps.
Then

Py(g,n) =

P2 g{%J 1\ k [n—ip1i—kp2 1\ @

()G (E (E0E)

Moreover, when q < py < -

Py(g,n) = » | |
(-3 02 (B () @E))- () @)

PROOF. The proof is similar to that of Proposition 3.2 for 7 = {1, ps}
and S = {p;1}. Then, by Equation (2) and after normalization, we have

Pl(Qan) =

oy [=) (=) - () (- ()

1—2 1—2

The first generating function was studied in Proposition 3.2. For the
second one, we consider the convolution of (1—2/q)? (1—(z/q)P?)2 /(1—

RABIN’S IRREDUCIBILITY TEST 9

z) and (1 — (z/q)P*)!». This convolution gives

o (028 (-G ()Y =

1—2 q

S (ETOE) B0 6

The theorem then follows after extracting coefficients and noting that
the case j = 0 cancels with the coefficient given by the generating
function in the first term. For the second assertion, we use the binomial
theorem as in Proposition 3.2. [|

Table 1 shows the probabilities given by Propositions 3.2 and 3.3
for several values of p;,p, and q. We give the proportion of polyno-
mials rejected in the second step with respect to the total number of
polynomials rejected in both steps. It can be seen that most of the
polynomials are rejected by the first ged test, since with probability
greater than 1 — e~ ! = 0.63212... a random polynomial of degree n
has an irreducible factor of degree 1. Moreover, a polynomial is rejected
in step 2 only if it has an irreducible factor of degree p; but not one
of degree 1 or py;. Thus, the proportion of polynomials being rejected
in step 2 is maximized when p; = 2 and p, is large. As it is seen in
Table 1, this ratio is upper bounded by 0.1863.. ..

The limit estimations of Table 1 are done using the simple asymp-
totics given by the next proposition.

Proposition 3.4. Let n = pips.
(1) When py — oo with ps,q fized we have

1* 1\
PI(Q:n) ~ 1_<1_6> (1_qp2> 3

Py(g,n) ~ (1—1>q<1— !)I (1—e7t/ry,

q qr

Moreover, if ¢ — oo then

Pi(g,n) ~ 1—6—1—1/192’
Py(g,n) ~ e TUP (1= et

))

10 PANARIO, PITTEL, RICHMOND AND VIOLA

(2) When ps — oo with py,q fized we have

Pgn) ~ 1- (1—1>q,

q

oo~ (- (-6-2)")

Moreover, if ¢ — oo then

Pi(g,n) ~ 1—et,
Pygn) ~ et (1—e '),

(3) When q — oo with py,py fized we have

PLo({1k n—kp: _1)i
Pgyn) ~ 1—2%—,{{(2 (]—,)>

k=0

P2 —1)i+1 P2 _1)k n—ip1—kpa 1)
Py(q,n) ~ Z(11)2‘ Z (pék)! (Z (j!)>‘

i=1 Pyt k=0

PROOF. (Sketch.) The asymptotic relations (1) and (2) are two special
cases covered by the general Proposition 4.1 proved in Section 4. For
the case (3), it is enough to extract coefficients from the generating
functions

1 e~%e 4"/
poopip2 — [,p1p2 _
=) =) (1 -).
7Zefzp2/p2
Poop1p2 — P12 1 — e #1/P1Y
() = [(1)

3.2. Cost of Rabin’s algorithm. To estimate the average-case cost
of Rabin’s algorithm we need to evaluate both the cost of each step and
the probability that the work of the algorithm will require this step.
The average-case analysis of Rabin’s algorithm is computed combining
the cost of each step with the respective probability in Section 3.1.
Given the degree of the polynomial n = Hlep;"" with pq,...,pg its
distinct prime divisors, the cost of executing for the ith time the ged

test in line [*] of the algorithm is

Ci(g;n) = (nimCy + 75(n)) M (n) (4)

RABIN’S IRREDUCIBILITY TEST

1| po q | rej. both steps | rej. step 2 rej2/rej
21 3 2 .8593750000 | .0625000000 | .0727272727
2|47 2 .8162630149 | .0611702128 | .0749393414
2|00 2 .8125000000 | .0625000000 | .0769230769
21 3|243 .8333333449 | .1450627767 | .1740753296
2147|243 7813931006 | .1409295453 | .1803567823
2| 00| 243 7768721241 | .1439933111 | .1853500810
21 3| o 8333333332 | .1458333333 | .1750000000
2147 oo 7813909432 | .1416695091 | .1813042630
2lo00| o 7768698398 | .1447492810 | .1863237232
5 3 2 .8341484070 | .0255546570 | .0306356240
531 2 7898071046 | .0318712739 | .0403532377
5| oo 2 7933619467 | .0433619467 | .0546559447
5| 3| o 7869961636 | .0505520833 | .0642342182
5131] o 7083666933 | .0645684185 | .0911511215
5|loo| oo .6988057881 | .0666852292 | .0954274140
31| 5 2 7898071046 | .0065593786 | .0083050387

TABLE 1. Probabilities that a polynomial of degree n =

p1p2 be rejected.

for s =1...k, since we have to compute an exponentiation and then a

gcd test. The cost of performing the last step is
Cr11(g;n) = (n11Cy + 73) M (n)

since we have to compute an exponentiation and a division with re-

mainder.

11

(5)

The cost moments of Rabin’s algorithm can be derived from Equa-
tion (4) and (5) and Propositions 3.1, 3.2 and 3.3. Let E(¢,n) and

Var(g,n) denote the expected value and the variance of the cost of
Rabin’s algorithm. Consider first the case when n = p is a prime

number.

Theorem 3.1. Let n = py, a prime number. Then
(1 + s,n)Cymi + 79 + 5, 73) M (1),
(1 + s,n)Cym1 + 2 logn + s, 73) M(n),

) (&)

E(g.n) = {

here

gl

1=0

c-arithmetic,

f-arithmetic;

12 PANARIO, PITTEL, RICHMOND AND VIOLA

and c-arithmetic, f-arithmetic stand for classical and fast arithmetic
respectively. Furthermore, for both arithmetics,

Var(q,n) = s,(1 — 5,)(nCymy + 73)* M (n)>.

PRrOOF. If we denote by Ci(g,n) and Csy(g,n) the costs of executing
each step of Rabin’s algorithm, then we have

E(g:n) = P(g,n)Ci(g;n) + (1 = P(g,n))(Ci(g,n) + Ca(g,n)),

where P(q,n) is that studied in Proposition 3.1, and n = p;. The result
follows after considering n; = 1 and using formulas (4) and (5).

For the variance, we use the well-known formula Var[X]| = E[X?] —
E[X]?, and the previous result. |

We now study the case when n is a product of two prime numbers.
Theorem 3.2. Let n = p1py with p1 and py prime numbers. Then

((p2 + sup1 + Sun)Cymy
+ (1 + sp)72 + Spr3)M(n), c-arithmetic,

Blg.n) = ((p2 + sup1 + Spun)Cymy
(14 sy)m2logn + S,m3)M(n), f-arithmetic;
here
p1 I 1 k [/n—kp2 q -1 i
Sn:ZI_PI(q,n):kz%<k><@> (;(z)(?))’
and
Sp = 1—=Pi(q,n)— Py(q,n) =
A 5] k (n—ipik ‘
P2 j 2 JP1—kp2 2
()G B (E OF)
Sev(t) (@) (@) OGE))

and c-arithmetic, f-arithmetic stand for classical and fast arithmetic
respectively.

Proor. If Ci(q,n) stands for the cost of executing an i—th step of
the algorithm, then we have

E(g,n) = Pi(q,n)Ci(g,n) + Pa(q,n)(Ci(g,n) + Ca(g,n))
+(1 = Pi(g,n) — Pa(q,n))(Ci(g,n) + Ca(q, n) + Cs(q,n)),

with P (g, n) and Py(q,n), n = p1ps, studied in Propositions 3.2 and 3.3.
The result follows after using formulas (4) and (5) with n; = p, and
ng = P1.- L

Analogously to Theorem 3.1, we have the following.

RABIN’S IRREDUCIBILITY TEST 13

Theorem 3.3. Let n = p1py with p1 and py prime numbers. Then

(50(1 = 8p)(M1T1Cy + T2)* + Sy (1 = S,) (nT Cy + 73)°

+28,(1 = 8,) (11710 + 72) (N1 Cy + 73)) M (), c-ar,
(8,(1 = 5,) (11 Cy + T2 logn)? + S, (1 — S,,) (n7Cy + 73)*

+ 25, (1 = 5,) ()17 Cy + 12 logn) (T Cy + 73)) M*(n) f-ar

Var(g,n) =

(Here f-ar, c-ar stand for two types of arithmetic, classical and fast.)
It is important to notice that the standard deviation is very high. This
is clearly seen if we use the asymptotic formulas presented in Proposi-
tion 3.4, since in these cases we have for p; — oo

E(q,n) ~ s.(14p2)TiCop1M(n),
Var(g,n) ~ su(1—s,)(1+ pa)*r7Copi M?(n),
where we used that s, ~ S,. For p, — 0o, we have

E(q,n) ~ (14 Sup1)11CepaM(n),
Var(q,n) ~ Sp(1—S,)r7Con’M?(n).

This high standard deviation is a clear consequence of the fact that
even though the second and third steps are executed with very low
probability, their costs (especially in the third step) are very high with
respect to that of the first step. It can also be seen, as expected, that
the important contribution to the cost of Rabin’s algorithm is due to
the exponentiations performed.

4. ASYMPTOTIC ANALYSIS OF THE ALGORITHM

We now turn to the asymptotic study of the cost of Rabin’s al-
gorithm for a general case of large n, not subject—unless stipulated
otherwise—to any restrictions on its prime factorization. The analysis
of Rabin’s irreducibility test is done in several stages. Let us denote
by “step i”, 1 < i < k, the ged computation in line [x] of the algo-
rithm, and “step k£ + 17, the final division with remainder. We begin
with a sharp asymptotic estimate of the probability that the random
polynomial is not rejected before the step i, Proposition 4.1. Then,
we give the expected value and the variance for the number of opera-
tions performed by Rabin’s algorithm. Finally, we present some other
asymptotic results.

We fix the notation for the rest of the section. The degree n of
the polynomial being tested for irreducibility satisfies n = Hle i,
with py, ..., pg its distinct prime divisors. Given the structure of the
algorithm, there is a step for every prime divisor of n.

14 PANARIO, PITTEL, RICHMOND AND VIOLA

We denote by P; the set of divisors of ny,...,n;_;, where n; =
n/pj,j=1...,i—1. In other words, P; contains the set of all degrees
checked when we start the ith step. We have the initial condition

P = 0.

For any j > 1, we denote by Q; the degrees considered on step j that
were not considered in the previous steps, that is,

Qi = {p™--p ' i (6)
0<e <mj—1; 0<e; <mg, j<s<k}.

Then, for 2 > 2 we have

Pi=U;_}Q;.
According to the definition (6) of Q;, the new degrees considered at any
step j are relatively larger than those considered in the previous steps,
since they must be multiples of pi"* -- -p;"_jl_ '. In particular, the first
step searches for irreducible factors of small degree, most notably linear
factors. This will turn out to be an important remark for our analysis.
It will imply that a big proportion of the polynomials that pass the
first gcd pass all the geds. In other words, in most of the cases, the
first gcd will be the only one that effectively discards polynomials. For
instance, we have seen that when n = pyp,, the proportion of polyno-
mials rejected during the first step is at least 0.63212.... We quantify
these comments in a precise sense in this section. Other conclusions
are drawn in the last section of the paper.

The coming proposition deals with a technical estimation required
in the computation of the probability that a polynomial is rejected
at certain step of the execution of Rabin’s algorithm. Let us denote
by P;(g,n) the probability that a random polynomial is not rejected
before step i. Using Equation (3) with 7 = P;, we obtain

S Pulgn) (o) = —— [[(1- 29"

= —
n>0 1% jep,

We observe that P;(g,n) — P;y1(g,n) is the probability that a ran-
dom polynomial of degree n is rejected in step <. In this case, we use
Equation (2).

Proposition 4.1. For n — oo, uniformly for ¢ > 2 and for 1 < k =
k(n), we have

[Z"] 1 H(l . ZZ)I[_ qn H (1 B q_e)fz . (1 + O(n—l-q-an))’

fGPi EE'P,‘

RABIN’S IRREDUCIBILITY TEST 15

where
log 2
_ M’ Va>o0,
loglogn

and the product factor is at least log™n,¥b > €7, v being the Euler
constant (Zle 1/k=logk+~v+o(1), k = o0).

PROOF. Letd =4, | 0andr = €’ /q. Then thecircleC = {z: |z| = r}
encloses z = 1/¢, and Cauchy’s formula implies

[zn]l —1qz H(l — 291 = Res,—y), (qzzn_ll H(l — %)U)

LeP;

1 1 dz
- 1— YAVY,]
211 J = 1 — g2 416_7!(?) Zntl

Here

—n—1
Res,—1/4 (qzz_lH(l—z)_q H 1—q*

LeP; LeP;

and we need to show that the contribution of the contour integral
is negligible compared to the residue term. First of all, we obtain,
uniformly for |z| <r,

[Ja-+ ff—exp[> 1 +0(ZIM)],

(eP; = teP
since, for n large, r < (¢7'1.5) < 0.75 and
| log(1 — n) +n| < const|n|?, if [n| < 0.75.

(We use the main branch of logarithm here.) Furthermore, using Equa-
tion (1), we see that the remainder term in the above exponent is of
order

> 1
N _ _
;(QT)= = O(1).
Therefore
H (1-29% = exp <— Z Izt + O(l)) , (7)
fGPi fGPi

uniformly for |z| < r. In particular, applying this formula for z = 1/¢
and using the full power of Equation (1), we see that (for n large) the

16 PANARIO, PITTEL, RICHMOND AND VIOLA
residue term equals
N 1
T (1 =a9)" =g exp (‘ZZ“LO(U) ,
fGPi EE'P,‘

uniformly for all 7. How large may the last sum be? It is certainly

bounded above by
1
D(n) = Z 87
dln

since each element of P; is a divisor of n. It is known (for instance,
Theorem 323 in Hardy-Wright [14]) that

D
lim sup (n)

N o
n—oo loglogn ¢

where 7y is the Euler constant. With this estimate at hand, we see that
the residue term is at least of order ¢"log *n, Vb > €.

Let us turn our attention to the integral along the circular contour
{z =re? : 0 € (—m,7n]}. Because of the denominator 1 — ¢z, we need
to consider separately “small” § and the remaining . To determine a
separation threshold, we compute

11—qz| = |1—e" = (1—2¢° cosf + ¥)'/?
= (2(1 —cos®) + (¢’ —1)* +2(e” — 1)(1 — cos 0))1/2.
Recalling that § = 6,, | 0, we see that
I1—gqz| > 0, |0 <0,
1—qz] > lf], 10]=4

where ¢y, ¢o are absolute constants. We call § small if |0] < 6. Consider
the small §’s. With the eye on Equation (7),

Re (— Z IM) < Z It (1 — cos(60))

fGPi EE'P,‘
< Oy pen
s 5 ot
EE'P,‘
Since I, = O((7'¢%), r = ¢7'¢® and |P;| < d(n), the total number of

divisors of n, the last expression is of order

52 Z e < ne™52d(n).
LeP;

RABIN’S IRREDUCIBILITY TEST 17
Now, according to Theorem 317 in Hardy-Wright [14], for every ¢ > 0,
d(n) < 20Flogn/loglogn (0
So let us finally define
§ =n""(logn — (1 + 2¢)log2logn/loglogn).
Then, for n > ngy(e),
i) =)

= (log nexp(—(1 + 2¢) log2logn/ loglog n)d(n))
= O(log® nexp(—clog2logn/loglogn))

(1).

|
S

Therefore

=0(1),

H(l — ze)lf

LeP;

uniformly for |f] < §. So the contribution of these 6’s to the circular
contour integral is of order

n n
I _ 4 q
drn end o nl—(1+2¢)log2/loglogn

(The attentive reader certainly noticed that we could have multiplied
the last bound by exp(—Y_,7l;) < 1.) Let us consider |f| > 6. Using

I, = O((7'¢"), and €® < 1 + ze®, we bound

ZZZIg = (Zﬁ 1+5£6M>

LeP; LeP,

- 0 (Z % + 5e5"d(n)) ,

EE'P,‘

using again |P;| < d(n). The definition of ¢ provides

6ed(n) = O (lognexp(—(1+ 2¢)log2logn/loglogn)d(n))
= O (lognexp(—clog2logn/loglogn))
1

= o(1).

18 PANARIO, PITTEL, RICHMOND AND VIOLA

So this time the contribution to the contour integral is of order
n€Xp(O(2,1/0)) / d
q no 191
€ 10]>6 |9|

_ n log(1/9) exp(O(>_,1/1))
=0 (q exp()

logn — (1 + 2¢) log2logn/loglogn)

o (22O)

nl—(1+3¢)log2/loglogn

In summary, the contour integral is of order

qnn71+(log2+a)/loglogn exp (O (Z l/f)) ’ Va>o0.

LEP;
Recalling the asymptotic expression for the residue term and the fact
that), p 1/¢ is of order loglogn, we arrive at the statement. u

Remark. We observe that the previous proposition holds for any
set & whose elements are divisors of n, not necessarily the set P;.

Proposition 4.1 implies that the probability that Rabin’s algorithm
takes k& + 1 steps (k being the number of distinct primes of n) is as-

ymptotic to:
1 1\"

EEPk_H

where Py is the set of all divisors of n except n itself. Of course,
F(n) is not additive but if we define G(n) by

0 n =1,
Gln) = { log F(n) n>2,

then G(n) is easily seen to be additive. Using

1 N
log F'(n) = - = =N'|=
og F(n) lelog<1 qe), Elg, =N [A,
(<N
and the linearity of expectation, we easily get
lim Eflog F()]—ilfl ot
i, Plog Fn)l =35 loe (1=77).

Notice that in the limit ¢ — oo the sum reduces to

Sh-%
=1

RABIN’S IRREDUCIBILITY TEST 19

So for E(F(n)), the unconditional probability that Rabin’s algorithm
takes all k + 1 steps, we have

liminf E(F(n)) ZeXp< liminf E(log F(n))) ~ exp <_%2)

N—00,q—00 N—00,q—00

(Since n is uniform on [1, N], n — oo in probability as N — oco. So
we can use F'(n) as an asymptotic estimate for the (conditional on n)
probability that the algorithm takes £ + 1 steps, and averaging it over
n uniform on [1, N, we get the limit (as N — oo) of the corresponding
unconditional probability.)

Moreover, if p is a prime, then

s (1)~ 15

We also have G*(p) ~ 1/p?, so

G(p) =

(») G*(p)

Y Y

p

’BIP—‘

G(p)I<1

G(p)>

converge. Thus, by Theorem 5.1 in Elliot [7], G(n) possesses a limit
distribution and the characteristic function v(¢) of the limit distribution
has the representation

o) =] (1 - —) <1+ Zp exp(itG (p)))

p

where the product is taken over all prime numbers. This limit distri-
bution is of pure type and is continuous since

1 1
DRSO
G(p);éop P p

diverges.
We have now the tools to evaluate sharply the expected value E(q,n)
and the variance Var(q,n) of the cost of Rabin’s algorithm.

Theorem 4.1. If we let pp1 = 1, for n — oo, we have

i q
E(gn) ~ Y o

=1

) 7CynM(n). (8)

20 PANARIO, PITTEL, RICHMOND AND VIOLA

PrROOF. The proof is an extension of that of Theorem 3.2. First we
note that

E(Qan) = ZPz(Qan) ZCj(q’n) =+ (1 - ZB((],H)) ZCj(Q7n)
= Z(az‘ — Qit1) Z Ci(g,n) + arq Z Cj(q,n),

where we let

R | ({1

Thus, we have
k+1

E(q,n) = Z a;Ci(q,n).

Proposition 4.1 gives uniformly for 1 <i < k

ai=] (1 - lﬁ)u (1+0(n 1)), (9)

LEP; q

and if we use the formulas (4) and (5) with n; = n/p;, we get

I,
k Hze?- <1 - lf)
E(gn) ~ [P :

i=1 LEPr4+1
k 1 I, 1 I,
+ (Z 11 (1 - ?>) Bn)Mn)+] (1 - ?> 5 M (n).
i=1 LeP; LEPL4+1

Since 73 is constant, 7»(n) = O(logn) and k (the number of prime
factors of n) is at most of order logn/loglogn ([26], p. 83), then the
factors containing 7»(n) and 73 do not contribute to the main term of

the asymptotics, and the theorem follows.
[|

The p-dependent factor is the asymptotic estimate of the expected
number of most expensive operation, i.e. exponentiation. It is natural
to ask which ordering of prime divisors minimizes this number. The
next theorem answers this question for a subset of integers n that
includes squarefree numbers.

RABIN’S IRREDUCIBILITY TEST 21

Theorem 4.2. The ordering of prime divisors that minimizes the p-
dependent factor in Equation (8) is py > py > «-+ > py, provided that
mp 2 Mg 2 -+ 2 My.

PROOF. Suppose on the contrary that, for some 7, p; < p;;1 in the
optimal ordering p = (p1,pa,--. ,pr). Then, according to the condi-
tion on multiplicities, we have m; < m;y 1. As usual, let P; denote
the set of divisors of nq,ns,...,n;_1, that is, the set of divisors of
n/p1,n/pa, ... ,n/pi_1. Alternatively, P; is the set of divisors of n such
that multiplicity of p; is strictly less than m; for at least one j < <.
Let us introduce

P’ = (ph -oo 3 Di-15,Di41,Diy - - - ,pk),

and the corresponding sets ”P;. Clearly, ’P; =Pjforj<iandj>i+1,
and ’P; 41 s the set of divisors of n multiplicity of p; is strictly less than
my for at least one j € {1,...,i—1,i+1}. Notice that [P, 1| < |P;,,],
since m; < m;;1. Let us denote

1\" 1)"
H]:H<1—7) and H}:H(l—?> :

q
LEP; EE'PJ’-

so that II; = H; for j < ¢ and j > 7+ 1. Since p is optimal we must
have that

I, T1I, I, I
1+ i+1 < 9 + 1+1

Pi P+l Dit1 Di

b

that is,

1 , 1
— (Hz‘ - Hi+1) < — (I = M) -
i Pi+1

Since p; < p;41 and II; — II;,; > 0, we must have then
I — I, <TI0 — Iy,
Therefore, we have
1)" 1)"
0 (-5) < T0(1-5) - o)
LEP;iy1 gepZ{_H

Furthermore, let R be the intersection of P;;; and P;H. Then, denoting
e;(¢) the multiplicity of p; in a divisor ¢ of n,

Pix1 —R={ln: e;({) =m;, (j <i); e, () <m,},
and

P — R={ln: e;() =my, (j <i); eip1(£) < mis1}-

22 PANARIO, PITTEL, RICHMOND AND VIOLA

Since m; < m;qq, to each £ = ---pi* .-+ € P41 we can associate ¢/ =
f(O) =-p§iy - € Piyy, with ¢/ > L if ¢; > 0, and ¢/ = (if ¢; = 0.
Setting f(¢) = ¢ for £ € R, we obtain an injective mapping f of P;.q
into P, such that if £ = f(¢), then £ < £. Besides, {{ € Piyi: >
f(0)} # ©. Then, using Lemma 4.1 below, we must have

1 I, 1 If([) 1 I,
(-7) > I (-7m) =1 (-5)

LEP; 41 LEP; 41 ge’pg_‘rl

(as |Pit1] < |Pisql), which contradicts Equation (10).]

Lemma 4.1. The numbers

strictly increase with £.

PROOF. We need to show that

1\ 1\
Iylog <1 — ?> > Ipiqlog <1 — F) ,

that is,
—1
Iy Iy ¢""log (1 - #)
P 041 -1 -
T4 q‘log (1 - q%)
For z > 1,
111_1 Lo Ly 1+ Ly
T lo — — =7 — - « e — R - « e
& x x 22 2 3a?
decreases with x. Therefore, it is enough to show that
Iy Iy
o > oy (11)

Using Equation (1), the inequality (11) holds if
qﬁ _ 2(](/2 N 1
lq* (+1

or equivalently, if
¢? > 200 +1).
The last inequality holds for all ¢ > 7 and ¢ > 2, for ¢ = 5,4 and ¢ > 3,

for g =3 and / > 5, and for ¢ = 2 and ¢/ > 9. MAPLE helps to verify
Equation (11) for all (finitely many) remaining values of ¢ and /. W

RABIN’S IRREDUCIBILITY TEST 23

Remark. For a variation of Rabin’s algorithm, Gao & Panario ([10],
§ 2) had suggested that the above ordering of prime factors might
optimize, asymptotically, the average cost of running the algorithm.
We prove that this is so indeed in Section 5, without any conditions on
the multiplicities m;. Does the ordering p; > --- > p; remain optimal
for Rabin’s algorithm when the condition m; > --- > m,;, is not meet?
Finding an answer appears to be an interesting open problem.

Theorem 4.3. If we let pp1 =1, for n — oo,

1 I,
k+1HZP<1_%) il_Hzp(l_%)
Varlgn) ~ |23 ——— =3 ———

i j

i=1 j=1

I
kir:l Hze?’i (1 - qil) (1 - Hleﬁ (1 N qiz

p?

)")
chgn2M2(n).

=1

PRrROOF. The proof is similar to that of Theorem 3.3 using the formula
Var[X] = E[X?] — E[X]%. Then we have

Var(g,n) = izk;Pz-(q,n) <; Cj(q,n)>2
+ (1 - i:Pz-(q, n)) (kZ: Cj(q, n)) 2 — E*(q,n)
= g(ai — aj41) (; Cj(q,n)>2
+api (ki:i Cy(q, n)>2 — E*(g,n),

where we let

a; = [(2/a)")—— [(1 - 2"

1 - qZ ZE'P,‘

After expanding the squares and simplifying the obtained expressions
we obtain
k+1

Var(g.n) = 3 Cilg.n) (22(1 ~ 4)Cyla.n) (1 - ai)qu,n)) .

=1

24 PANARIO, PITTEL, RICHMOND AND VIOLA

The result follows after using Proposition 4.1, formulas (4), (5) and (9),
and the simplifications introduced in the proof of Theorem 4.1 to dis-
card the terms involving 75(n) and 73. |

This last result shows that the cost of Rabin’s algorithm is dom-
inated by the cost of computing the exponentiations. Since in the
worst case the algorithm performs O(nlogloglognM (n)loggq) opera-
tions, we see that in average the algorithm is a factor of logloglogn
faster. Moreover, both the expected value and the standard deviation
are O(nM(n)loggq). This large deviation is explained by the fact that
even though most of the time only one gecd test is executed, the number
of operations performed by the algorithm when more than one ged is
computed is very high.

5. VARIANTS

The analysis of Rabin’s algorithm can be adapted to other algorithms
with similar divisor conditions. In this section, we briefly show that this
is the case for two variants of Rabin’s method. As we will see, both
variants give different ways of computing the exponentiations inside
the algorithm. However, they use the same divisor construction as in
Rabin’s irreducibility test.

First we comment on an algorithm due to von zur Gathen & Shoup
([11], § 7). Their algorithm initially calculates all the exponentiations
29""" mod f by computing trace maps (Algorithm 5.2 in [11]). Then, it
computes the ged tests as in Rabin’s algorithm. Using fast arithmetic,
their algorithm uses (knlogn + C,)m M (n) operations to perform the
exponentiations. There are at most O(logn/loglogn) prime divisors
of n, thus the total worst-case cost of their algorithm is O(n?log® n +
M (n)logq). The space requirement of the algorithm is O(n) elements
in IF,, as in the other algorithms of this paper.

We note that von zur Gathen & Shoup also give another algorithm
with cost O(n'" + M(n)logq) in time. However, this time is achieved
by using fast matrix multiplication and it has a space requirement of
O(nlogn) elements in F,. Thus, it seems to be of mainly theoretical
interest,.

We now focus on the average-case analysis of von zur Gathen &
Shoup’s algorithm. The proofs are similar to those of Theorems 4.1
and 4.3. We only give results for fast arithmetic.

Corollary 5.1. Let E(q,n) and Var(q,n) denote the expected value
and the variance of the number of operations used by von zur Gathen

RABIN’S IRREDUCIBILITY TEST 25

& Shoup’s algorithm. Then, for n — oo,

E(g,n) ~ (knlogn + Cy)m1 M(n).

Var(qg,n) ~ (i(m‘ -] (1 - %)U

=1 LeP; q
k 1\ L 2
- ZH (1—7> 72 log® nM?(n).
i=1 0eP; q

This variation is interesting in several senses. First, the standard
deviation of the number of operations used by this algorithm is much
smaller than its expected value. The reason is that this algorithm
computes all the exponentiations at the beginning, so the variation is
only due to the distribution of degree factors in a random polynomial.
Moreover, it may seem at first that its behavior is worse than the
original Rabin’s algorithm. However, this depends on the relationship
between C, and n. As we have seen, C, = |log, ¢| + v(¢) — 1, with
v(q) the number of ones in the binary representation of ¢, and so C; =
O(logq). Thus, for example, if C, ~ n, this variation is faster than
Rabin’s algorithm, since it does only one repeating squaring (plus some
trace map computations) to compute the exponentiations. On the
other hand, if C;, = o(logn) then Rabin’s algorithm is faster.

Here is a second variant for the computation of 27" mod f, for 1 <
i < k, mentioned in the remark following Lemma 4.1 (see [10], § 2). The
key idea in this algorithm is to sort the exponents n; in an increasing
order (equivalently, to put p; in the decreasing order), and then to
compute, for suitable 7,

ey —m
ni\ q i+1 i . 441
(z7) = 2" mod f.

The appearance of the increments n;,, — n; provides, via a telescopic
effect, for some reduction of running time in the worst-case analy-
sis. More precisely, they prove that this variant correctly tests for
polynomial irreducibility, and uses O(nM (n)C,) operations in F, in
the worst-case, as compared to O(nM (n)C,logloglogn) for Rabin’s
method. Thus, it behaves better than Rabin’s method in the worst-
case. Gao & Panario’s algorithm uses 7y (n; — n;_1)M(n)C, opera-
tions to compute the 7th modular exponentiation with 2 < 7 < k,
71n1 M (n)C, operations to compute the first modular exponentiation,
whence 71 (n — ng) M (n)C, operations to compute the last one.

26 PANARIO, PITTEL, RICHMOND AND VIOLA

We now give an average-case estimate (for both classical and fast
arithmetic), for the cost of this algorithm, based on Theorems 4.1 and
4.3.

Corollary 5.2. Let E(q,n) and Var(q,n) denote the expected value
and the variance of the number of operations used by Gao € Panario’s
algorithm. Then, if we let pryq1 =1 and po = oo, for n — o,

Blg,n) ~ Z 11 (1__>U (L_i> 1 ConM(n)(12)

i=0 LEP; 11 Piv1 Di
k1 . .
Var(q,n (221_[(1——) (——)
i—2 (CP: b Di1
: N /1 1
S-T0-2)) 6-5)
=2 = q Pj Pj—1
k+1) 1 2
I 1\“\ /1 1
S0 (-n (-0 G-
1=2 Ze'Pz q eefpz q pl p171
T2 Cin’ M?(n).

Although this variation does not change the fact that both the ex-
pected value and the standard deviation are O(CynM(n)), the con-
stants are much smaller than in the original algorithm. Furthermore,
it shows again that the main contribution to the cost is originated by
the few times the algorithm has to execute the last step.

As in the case of Rabin’s algorithm, putting n; in increasing order, we
can expect that the current variant will require, on average, a minimal
number of operations. For example, as can be seen in Table 1, for

= 2 and n = 5 x 31 = 155, it is better to choose p; = 31 and
pe = 5 than p; = 5 and p, = 31, since in the first case over 99% of the
polynomials rejected in the first two steps are rejected in the first step,
and this number is less than 96% in the second case. The reason is
that in the first case, a polynomial is rejected in the first step if it has
an irreducible factor of degree 1 or 5, while in the second case if it has
an irreducible factor of degree 1 or 31. This variation tests the smaller
degrees as early as possible, and so optimizes these probabilities.

Let us now show that the ordering p; > ps > -+ > pp minimizes
the p-dependent factor in Equation (12) for arbitrary multiplicities
my, Ma, ..., my. If not, in the optimal ordering p = (p1,...,px) we

must have p; < p;1 for some 7. Then, 1 <4, and 7+ 1 < k. As before,

RABIN’S IRREDUCIBILITY TEST 27

we introduce p' = (p1, ... , Die1, Pit1, Pis - - - » Dk), the corresponding sets
73;-, and the products H;. Since p is optimal we must have

1 1 1 1 1 1
II; <—— >+Hi+1< __>+Hi+2< -)
bi Di Pi+1 Di DPi+2 Di+1

1 1 / 1 1 1 1
Dit1 Di—1 bi Dita Div2 Di
or

IL, 1 1 IL, 11, / 1 1 IL,
i + Hi+1 (i _) i i+2 S 7 + HZ'+1 (_ _) _ z+2.
i Pi+1 Di Pi+1 Pi+1 Di Pi+1 Di

Grouping terms containing I1; and II;, , respectively, and canceling the

positive term &+ — —— we have

Di Pit+1’

I; =1 < 11y — 1o,

that is,
L Lin < I, (1 B Hf+2>
IT; IT; i+1
Here
I, 1)"
i 10 =
! p1-pi—1lf 1
pit1tl
so that
L I
I1; 1_[;+1

Furthermore, observe that Q; 1 = P;y1 \ P; consists of the divisors ¢
of n such that e;({) = m; for j < i and ¢;(¢) < m;, cf. Equation (6).
Likewise, Q; ., := Pi12 \ Pi;; consists of the divisors ¢ of n such that
e;(l) = mj for j < i and j =i+ 1, and ¢;(¢) < m,. Consequently,
Qi1 D Qs (1) Therefore

i 1\" 1\ Ty
- 1-—) < 1— =) ==u2
() < I (y) =0

i qt »
LeQ;11 teQ; vr

a contradiction. So the optimal ordering is p; > py > -+ > pp. (We
observe that we do not need Lemma 4.1 in this proof.)

28 PANARIO, PITTEL, RICHMOND AND VIOLA

6. CONCLUSIONS

This paper analyzes Rabin’s algorithm for testing the irreducibility
of polynomials over finite fields and some of its variants. The cor-
rectness of the algorithm is based on Theorem 2.1. However, a direct
implementation as suggested by the theorem does not lead to an effi-
cient algorithm. Indeed, first we note the presence of redundancies in
the computations. Since in each gcd we are checking the appearance
of irreducible factors of degrees dividing a maximal divisor of n, it is
possible that two gcds check some common degrees. For instance, all
geds check the linear factors. (Of course, this fact is intrinsic to the
Theorem 2.1). On the other hand, in most of the cases only the first
ged test is performed. The polynomials that survive the first ged test
are likely to survive all geds. Thus, the effect of redundancies is not
crucial.

A much more important weakness of these algorithms is the large
computation involved in the exponentiations, especially the first one.
We indicate that the bottleneck of all algorithms discussed in this pa-
per is the computation of exponentiations modulo a polynomial. The
variance of the number of operations performed by most of these al-
gorithms is very high, and for several cases the standard deviation is
actually higher than the expected value. It would be very interesting
to find an efficient way to perform the exponentiations, since it is a
standard ingredient of a broad variety of algebraic algorithms.

A different probabilistic algorithm for testing the irreducibility of
polynomials over finite fields is due to Ben-Or [3]. A detailed analysis of
Ben-Or’s algorithm is given in [21]. It involves the study of the expected
smallest factor degree of a random polynomial over F,. The expected
number of operations performed by this algorithm is O(C, lognM (n)),
and this average is by factor logn/n lower than Rabin’s. The main
reason is that Ben-Or’s algorithm quickly detects irreducible factors of
small degrees, thus performing much less computations than Rabin’s.
For example, to test for linear irreducible factors, Ben-Or’s method
computes ¢ mod f, while Rabin’s executes the much more expensive
exponentiation z¢"'" mod f, for some prime factor p; of n. The effi-
ciency of Ben-Or’s algorithm is due to distribution of degree factors in
a random polynomial, that leads to expect very often irreducible fac-
tors of small degree [16]. However the variance of Ben-Or’s algorithm
is also very high (O(CyndM (n))), a fact that shows again the impact of
the cost of performing the exponentiations.

RABIN’S IRREDUCIBILITY TEST 29

Acknowledgments. Most of the work of the first author was done while
he was with the Department of Computer Science of the University
of Toronto. Part of this work was done while the fourth author was
visiting the University of Waterloo. For the invitation, support and
hospitality, he would like to thank Ian Munro and the Department
of Computer Science. The research of Boris Pittel was supported in
part by the NSF Grant DMS98-03410. The work of Alfredo Viola was
supported in part by Proyecto BID-CONICYT 140/94, and Proyecto
BID Fondo Clemente Estable 2078/96. An extended abstract of a pre-
liminary version of this paper appeared in Latin American Theoretical
INformatics (LATIN’98), Campinas, Brazil, April 20-24, 1998 [22].

REFERENCES

[1] G.B. AGNEW, R.C. MULLIN, AND S.A. VANSTONE. An implementation of el-
liptic curve cryptosystem over Fy1s5. IEEE J. Selected Areas Commun., 11:804—
813, 1993.

[2] A.V. AHo, J.E. HOPCROFT, AND J.D. ULLMAN. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading MA, 1974.

[3] M. BEN-OR. Probabilistic algorithms in finite fields. In Proc. 22nd IEEE
Symp. Foundations Computer Science, pages 394-398, 1981.

[4] I.F. BLAKE, R. Fuisi-HARA, R.C. MULLIN, AND S.A. VANSTONE. Comput-
ing discrete logarithms in finite fields of characteristic two. SIAM J. Alg. Disc.
Meth., 5:276-285, 1984.

[5] D.G. CANTOR AND E. KALTOFEN. On fast multiplication of polynomials over
arbitrary algebras. Acta. Inform., 28:693-701, 1991.

[6] D. CoPPERSMITH. Fast evaluation of logarithms in fields of characteristic two.
IEEFE Trans. Info. Theory, 30:587-594, 1984.

[7] P.D.T.A. ELLIOT. Probabilistic Number Theory I. Springer Verlag, 1979.

[8] P. FLAJOLET, X. GOURDON, AND D. PANARIO. The complete analysis of
a polynomial factorization algorithm over finite fields. To appear in J. of Al-
gorithms. [Extended abstract in Proc. 23rd ICALP Symp., Lecture Notes in
Computer Science, vol. 1099, p. 232-243, 1996.] Full version in technical report
3370, INRIA, March 1998.

[9] E. GALots. Sur la théorie des nombres. In R. Bourgne and J.P. Arza, editors,
Ecrits et mémoires d’Evariste Galois, pages 112-128. Gauthier-Villars, 1830.

[10] S. GAO AND D. PANARIO. Tests and constructions of irreducible polynomials
over finite fields. In F. Cucker and M. Shub, editors, Foundations of Compu-
tational Mathematics, pages 346-361. Springer Verlag, 1997.

[11] J. vON zUR GATHEN AND V. SHOUP. Computing Frobenius maps and factor-
ing polynomials. Comput complezity, 2:187-224, 1992.

[12] J. VON ZUR GATHEN AND J. GERHARD. Modern Computer Algebra. Cam-
bridge University Press, 1999.

[13] C.F. Gauss. Untersuchungen uber Hohere Mathematik. Chelsea, New York,
1889.

[14] G.H. HARDY AND E.M. WRIGHT. An Introduction to the Theory of Numbers.
Clarendon Press, Oxford, 1962.

30

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

PANARIO, PITTEL, RICHMOND AND VIOLA

A. KNOPFMACHER AND J. KNOPFMACHER. Counting polynomials with a
given number of zeros in a finite field. Linear and Multilinear Algebra, 26:287—
292, 1990.

J. KNOPFMACHER AND A. KNOPFMACHER. Counting irreducible factors
of polynomials over a finite field. SIAM Journal on Discrete Mathematics,
112:103-118, 1993.

D.E. KNUTH. The art of computer programming, vol.2: seminumerical algo-
rithms. Addison-Wesley, Reading MA, 3 edition, 1997.

M. MIGNOTTE. Mathematics for Computer Algebra. Springer-Verlag, New
York, 1992.

K.S. McCuURLEY. The discrete logarithm problem. In Proc. of Symposia in
Applied Mathematics, pages 49-74. American Mathematical Society, 1990.

A. OpLyzkoO. Discrete logarithms and their cryptographic significance. In Ad-
vances in Cryptology, Proceedings of Eurocrypt 1984, volume 209 of Lecture
Notes in Computer Science, pages 224-314. Springer-Verlag, 1985.

D. PANARIO AND B. RICHMOND. Analysis of Ben-Or’s polynomial irreducibil-
ity test. Random Struct. Alg., 13:439-456, 1998.

D. PANARIO AND A. VIOLA. Average-case analysis of Rabin’s polynomial
irreducibility test. In C. L. Lucchesi and A. V. Moura, editors, Latin American
Theoretical INformatics, volume 1380 of Lecture Notes in Computer Science,
pages 1-10. Springer-Verlag, 1998. Proceedings of LATIN’98, Campinas, April
1998.

M.O. RABIN. Probabilistic algorithms in finite fields. SIAM J. Comp., 9:273—
280, 1980.

A. SCHONHAGE. Schnelle Multiplikation von Polynomen tiber Koérpern der
Charakteristik 2. Acta Inf., 7:395-398, 1977.

A. SCHONHAGE AND V. STRASSEN. Schnelle Multiplikation groBer Zahlen.
Computing, 7:281-292, 1971.

G. TENENBAUM. Introduction to Analytic and Probabilistic Number Theory.
Cambridge Studies in Advanced Mathematics 46, Cambridge University Press,
New York, 1995.

SCHOOL OF MATHEMATICS AND STATISTICS, CARLETON UNIVERSITY, K1S
5B6, OTTAWA, CANADA, daniel@math.carleton.ca

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 231 W 18TH Av-
ENUE, CoLUMBUS OH 43210-1174, USA, bgp@math.ohio-state.edu

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WA-
TERLOO, N2L 3G1, WATERLOO, CANADA, lbrichmond@watdragon.uwaterloo.ca

INSTITUTO DE COMPUTACION, UNIVERSIDAD DE LA REPUBLICA, CASILLA DE
CORREO 16120, DISTRITO 6, MONTEVIDEO, URUGUAY, viola@fing.edu.uy

