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How many random edges make a dense graph Hamiltonian?

Tom Bohman∗ Alan Frieze† Ryan Martin‡

Department of Mathematical Sciences,
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Pittsburgh PA 15213.

Abstract

This paper investigates the number of random edges required to add to an arbitrary dense
graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n)
random edges is both necessary and sufficient to ensure this for all such dense graphs. If,
however, the original graph contains no large independent set, then many fewer random
edges are required. We prove a similar result for directed graphs.

1 Introduction

In the classical model of a random graph (Erdős and Rényi [3]) we add random
edges to an empty graph, all at once or one at a time, and then ask for the
probability that certain structures occur. At the present time, this model and
its variants, have generated a vast number of research papers and at least two
excellent books, Bollobás [1] and Janson,  Luczak and Ruciński [5]. It is also of
interest to consider random graphs generated in other ways. For example there
is a well established theory of considering random subgraphs of special graphs,
such as the n-cube. In this paper we take a slightly different line. We start with
a graph H chosen arbitrarily from some class of graphs and then consider adding
a random set of edges R. We then ask if the random graph G = H + R has
a certain property. This for example would model graphs which were basically
deterministically produced, but for which there is some uncertainty about the
complete structure. In any case, we feel that there is the opportunity here for
asking interesting and natural questions.

As an example we consider the following scenario: Let 0 < d < 1 be a fixed
positive constant. We let G(n, d) denote the set of graphs with vertex set [n]
which have minimum degree δ ≥ dn. We choose H arbitrarily from G(n, d) and
add a random set of m edges R to create the random graph G. We prove two
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theorems about the number of edges needed to have G Hamiltonian whp.1 Since
d ≥ 1/2 implies that H itself is Hamiltonian (Dirac’s Theorem), this could be
considered to be a probabilistic generalisation of this theorem to the case where
d < 1/2. We henceforth assume d < 1/2. Also, let

θ = ln d−1 ≥ .69.

Theorem 1. Suppose 0 < d ≤ 1/2 is constant, H ∈ G(n, d). Let G = H + R
where |R| = m is chosen randomly from E = [n](2) \ E(H).

(a) If m ≥ (30θ + 13)n then G is Hamiltonian whp.

(b) For d ≤ 1/10 there exist graphs H ∈ G(n, d) such that if m < θn/3 then
whp G is not Hamiltonian.

So it seems that we have to add Θ(n) random edges in order to make G Hamilto-
nian whp. Since a random member of G(n, d) is already likely to be Hamiltonian,
this is a little disappointing. Why should we need so many edges in the worst-
case? It turns out that this is due to the existence of a large independent set. Let
α = α(H) be the independence number of H .

Theorem 2. Suppose H ∈ G(n, d) and 1 ≤ α < d2n/2 and so d > n−1/2 (d
need not be constant in this theorem). Let G = H + R where |R| = m is chosen
randomly from E. If

md3

ln d−1
→ ∞ (1)

then G is Hamiltonian whp.

Note that if d is constant then Theorem 2 implies that m → ∞ is sufficient.

We have also considered a similar problem in relation to adding random arcs to
a dense digraph. For a digraph D we denote its arc-set by A(D). We denote
its minimum out-degree by δ+ and its minimum in-degree by δ− and then we let
δ = min{δ+, δ−}. Let 0 < d < 1 be a fixed positive constant. We let D(n, d)
denote the set of digraphs with vertex set [n] which have δ ≥ dn.

Theorem 3. Suppose 0 < d < 1/2 is constant and H ∈ D(n, d). Let D = H + R
where |R| = m is chosen randomly from A = [n]2 \ E(H).

(a) If m ≥ (d−1(15 + 6θ) + 5d−2)n then D is Hamiltonian whp.

(b) For d ≤ 1/10 there exist digraphs H ∈ D(d) such that if m < θn/3 then whp
D is not Hamiltonian.

If δ ≥ n/2 then H itself is Hamiltonian, Ghouila-Houri [4].

Theorem 1 is proven in the next section, Theorem 2 is proven in Section 3 and
Theorem 3 is proved in Section 4.

1A sequence of events En is said to occur “with high probability” (whp) if limn→∞ Pr(En) = 1
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2 The worst-case for graphs

We will assume from now on that m is exactly ⌈30θn⌉+ 13n. We let R = R1 ∪R2

where |R1| = ⌈30θn⌉. Then let G1 = H + R1.

We first show that

Lemma 1. G1 is connected whp.

Proof Let N =
(

n
2

)

. If u, v ∈ [n] then either they are at distance one or two
in H or

Pr(distG1
(u, v) > 3) ≤

(

1 −
|R1|

N

)d2n2

≤ e−60θd2n.

Hence,
Pr(diam(G) > 3) ≤ n2e−60θd2n = o(1).

✷

Given a longest path P in a graph Γ with end-vertices x0, y and an edge {y, v}
where v is an internal vertex of P , we obtain a new longest path P ′ = x0..vy..w
where w is the neighbor of v on P between v and y. We say that P ′ is obtained
from P by a rotation with x0 fixed.

Let ENDΓ(x0, P ) be the set of end-vertices of longest paths of Γ which can be
obtained from P by a sequence of rotations keeping x0 as a fixed end-vertex.
Let ENDΓ(P ) = {x0} ∪ ENDΓ(x0, P ). Note that if Γ is connected and non-
Hamiltonian then there is no edge {x0, y} where y ∈ ENDΓ(x0, P ).

It follows from Pósa [6] that

|NΓ(ENDΓ(P ))| < 2|ENDΓ(P )|, (2)

where for a graph Γ and a set S ⊆ V (Γ)

NΓ(S) = {w 6∈ S : ∃v ∈ S such that vw ∈ E(Γ)}.

Lemma 2. Whp
|NG1

(S)| ≥ 3|S| (3)

for all S ⊆ [n], |S| ≤ n/5.

Proof Now |NH(S)| ≥ 3|S| for all S ⊆ [n], |S| ≤ dn/3. So,

Pr(∃|S| ≤ n/5 : |NG1
(S)| < 3|S|) ≤

n/5
∑

k=dn/3

(

n

k

)(

n

3k

)

(

1 −
m

N

)k(n−4k)

≤

n/5
∑

k=dn/3

(

n4e4

27k4
e−12θ

)k

= o(1).
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✷

It follows from Lemma 2 that for any longest path P in a graph Γ that contains
G1 as a subgraph we have n/5 ≤ |ENDΓ(P )| ≤ |P |.

Now let R2 be obtained from a random sequence e1, e2, . . . of edges chosen from E
with replacement.

Let P0 be a longest path in G1 of length λ0 ≥ dn. Now consider the following
process: At a general stage we will have a path Pi of length at least λ0 + i. We
will have used a set Si ⊆ R2 of size Yi to go from Pi−1 to Pi, for i ≥ 1. Here S1 =
{e1, e2, . . . , eY1

}, S2 = {eY1
, eY1+1, . . . , eY1+Y2

} and so on. Let Zi = Y1+Y2+ · · ·+Yi

and let Γi = G1 + {e1, e2, . . . , eZi
}.

In order to see how the Yi are determined, let Pi be a longest path in Γi and let
ENDΓi

(Pi) be as defined above and note that by Lemma 2, we can assume that
|ENDΓi

(Pi)| ≥ n/5. We now add edges eZi+1, eZi+2, . . . in turn until we find an
edge eZi+k = {a, b} where a ∈ ENDΓi

(Pi) and b ∈ ENDΓi
(a, Pi). Since Γi is

connected the addition of {a, b} will increase the length of the longest path or
close a Hamilton cycle. We let Yi+1 = k in this case. Finally, once we have formed
a Hamilton cycle, at stage r say, we let Yr+1 = · · · = Yn = 0.

Now the random variables Y1, Y2, . . . , Yn are independent random variables which
are either geometric with probability of success at least 2

25
or are zero valued. Thus

E(Zn) ≤
25n

2
.

Since the variance of Zn is O(n) it is easy to show by an application of Chebychev’s
inequality that Zn ≤ 13n whp and this completes the proof of (a).

Remark 1. The calculations above go through quite happily for δ(H) ≥ n3/4, say.
For this degree bound the number of additional edges required in the worst-case is
Ω(n lnn). Since only 1

2
n lnn random edges are required for Hamiltonicity when we

start with the empty graph, there is no point in considering smaller values of d,
unless we can improve the constant factor.

(b) Let m = cn for some constant c and let H be the complete bipartite graph
KA,B where |A| = dn and |B| = (1−d)n. Let I be the set of vertices of B which are
not incident with an edge in R. If |I| > |A| then G is not Hamiltonian. Instead of
choosing m random edges for R, we choose each possible edge independently with
probability p = 2m

(d2+(1−d)2)n2 . (We can use monotonicity, see for example Bollobás

[1] II.1 to justify this simplification). Then

E(|I|) = (1 − d)n(1 − p)(1−d)n−1 ∼ (1 − d) exp

{

−
2(1 − d)m

(d2 + (1 − d)2)n

}

n.

It follows from the Chebychev inequality that |I| is concentrated around its mean
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and so G will be non-Hamiltonian whp if c satisfies

c <
1

2(1 − d)
(d2 + (1 − d)2) ln(d−1 − 1).

This verifies (b). ✷

3 Graphs with small independence number

Proof of Theorem 2
We will first show that we can decompose H into a few large cycles.

Lemma 3. Suppose that G has minimum degree dn where d ≤ 1/2 and that
α(G) < d2n/2. Let k0 = ⌊2

d
⌋. Then the vertices of G can be partitioned into ≤ k0

vertex disjoint cycles.

Proof Let C1 be the largest cycle in H . |C1| ≥ dn+ 1 and we now show that
the graph H \ C1 has minimum degree ≥ dn− α.

To see this, let C1 = v1, . . . , vc, vc+1 = v1. Let w ∈ V (H \ C1). Because C1 is
maximum sized, no such w is adjacent to both vi and vi+1. Also, if w ∼ vi and
w ∼ vj with i < j and vi−1 ∼ vj−1, then

w, vj, . . . , vc, v1, . . . , vi−1, vj−1, . . . , vi, w

is a larger cycle. So the predecessors of N(w) in C1 must form an independent set
and |N(w) ∩ C1| ≤ α. Similar arguments are to be found in [2].

We can repeat the above argument to create disjoint cycles C1, . . . , Cr where |C1| ≥
|C2| ≥ · · · ≥ |Cr| and Cj is a maximum sized cycle in the graph Hj−1 = H \
(C1 ∪ · · · ∪ Cj−1) for j = 1, 2, . . . , r. Now Hk has minimum degree at least dn−kα
and at most n− dn− 1 − (dn− α + 1) − · · · − (dn− (k − 1)α + 1) = n− k(dn +
1 − (k − 1)α/2) vertices. Since d2n > 2α, Hk0, if it existed, would have minimum
degree at least 2 and a negative number of vertices. ✷

Let C1, . . . , Cr be the cycles given by Lemma 3.

In order to simplify the analysis, we assume the edges of R are chosen from E by
including each e ∈ E independently with probability m

|E|
. Because Hamiltonicity is

a monotone property, showing that G is Hamiltonian whp in this model implies the
theorem. We get a further simplification in the analysis if we choose these random
edges in rounds: set R = R1∪R2∪· · ·∪Rr where each edge set Ri is independently
chosen by including e ∈ E with probability p, where 1 − (1 − p)r = m

|E|
. Each Ri

will be used to either extend a path or close a cycle and will only be used for one
such attempt. In this way each such attempt is independent of the previous. To
this end let Gt = H ∪

⋃t
s=1Rt for t = 0, 1, . . . , r. Thus G0 = H and Gr = G.
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Let e = {x, y} be an edge of Cr and let Q be the path Cr − e. In each phase
of our procedure, we have a current path P with endpoints x, y together with a
collection of vertex disjoint cycles A1, A2, . . . , As which cover V . Initially P = Q,
s = r − 1 and Ai = Ci, i = 1, 2, . . . , r − 1.

Suppose a path P and collection of edge disjoint cycles have been constructed in
Gt−1 (initially t = 1). Consider the set Z = ENDGt−1

(x, P ) created from rotations
with x as a fixed endpoint, as in Section 2. We identify the following possibilities:

Case 1: There exists z1 ∈ Z, z2 /∈ P such that f = (z1, z2) is an edge of H .
Let Q be the corresponding path with endpoints x, z1 which goes through V (P ).
Now suppose that z2 ∈ Ci and let f ′ = (z2, z3) be an edge of Ci incident with z2.
Now replace P by the path Q, f,Q′ where Q′ = Ci − f . This construction reduces
the number of cycles by one.

Case 2: |V (P )| ≤ n/2 and z ∈ Z implies that NGt−1
(z) ⊆ V (P ).

It follows from (2) that |Z| ≥ dn/3. Now add the next set Rt of random edges.
Since |V (P )| ≤ n/2, the probability that no edge in Rt joins z1 ∈ Z to z2 ∈
V \ V (P ) is at most (1 − p)(dn/3)(n/2). If there is no such edge, we fail, otherwise
we can use (z1, z2) to proceed as in Case 1. We also replace t by t + 1.

Case 3: |V (P )| > n/2 and z ∈ Z implies that NGt−1
(z) ⊆ V (P ).

Now we close P to a cycle. For each z ∈ Z let Az = ENDGt−1
(z, Qz) where Qz is

as defined in Case 1. Each Az is of size at least dn/3. Add in the next set Rt of
random edges. The probability that Rt contains no edge of the form (z, z′) where

z ∈ Z and z′ ∈ Az is at most (1 − p)d
2n2/10. If there is no such edge, we fail.

Otherwise, we have constructed a cycle C through the set V (P ) in the graph Gt.
If C is Hamiltonian we stop. Otherwise, we choose a remaining cycle C ′, distinct
from C and replace P by C ′− e where e is any edge of C ′. Now |V (P )| < n/2 and
we can proceed to Case 1 or Case 2.

After at most r executions of each of the above three cases, we either fail or
produce a Hamilton cycle. The probability of failure is bounded by

k0((1 − p)(dn/3)(n/2) + (1 − p)d
2n2/10) ≤ 2d−1





(

1 −
m

|E|

) dn
2

6r

+

(

1 −
m

|E|

) d
2
n
2

10r





≤ 4d−1e−md3/10

= o(1)

provided (1) holds. ✷

An observation: We do not actually need the condition that α(H) ≤ d2n/2 to
complete this proof. The weaker condition that d2n/2 bounds the independence
number of the neighborhood of each vertex is enough.

6



4 Directed graphs

For a digraph D = ([n], A) we let BD be the bipartite graph ([1, n], [n + 1, 2n], E)
such that BD contains an edge (x, y) for every arc (x, y−n) ∈ A. Perfect matchings
of BD correspond to cycle covers of D i.e. sets of vertex disjoint directed cycles
which contain all vertices of D.

We divide our arcs R into two subsets: R = R1∪R2, where each Ri is independently
randomly chosen from [n]2 \ A(H). Here

|Ri| = ρin where ρ1 = d−1(15 + 6θ) and ρ2 = 5d−2.

Lemma 4. Whp H1 = H + R1 has a cycle cover Σ1.

Proof We apply Hall’s theorem to show that BH1
has a perfect matching

whp. If BH1
does not have a perfect matching then there exists a witness K ⊆

[1, n], |K| ≤ n/2 (or L ⊆ [n+ 1, 2n], |L| ≤ n/2) such that its neighbor set N(K) in
BH1

satisfies |N(K)| ≤ |K| − 1 (resp. |N(L)| ≤ |L| − 1). Clearly any such witness
must be of size at least dn.

Since having a perfect matching is a monotone increasing property, we can assume
that the arcs of R1 are chosen independently with p1 = ρ1

n
.

The probability that BH1
does not contain a perfect matching is therefore bounded

by

2

n/2
∑

k=dn

(

n

k

)(

n

k − 1

)

(1 − p1)
k(n−k) ≤ 2

n/2
∑

k=dn

(

n2e2

k2
· e−ρ1/2

)k

= o(1).

✷

We also need to know that there are many arcs joining large sets. For S ⊆ [n]
let N+(S) = {t /∈ S : ∃s ∈ S such that (s, t) is an arc of H1}. Define N−(S)
similarly.

Lemma 5. Whp, for all disjoint S, T ⊆ [n] with |S|, |T | ≥ dn/2, |N−(S) ∩
T |, |N+(S) ∩ T | ≥ |T |/2.

Proof Let E denote the event {∃ disjoint S, T ⊆ [n] : |S|, |T | ≥ dn/2 and
|N+(S) ∩ T | < |T |/2}. Now fix S, T with |S| = s, |T | = t. If |N+(S) ∩ T | < |T |/2
then there exists T ′ ⊆ T of size |T |/2 such that there are no arcs from S to T ′ in
H1. The probability of this is at most

2t(1 − p1)
ts/2 ≤

(

2e−ρ1s/(2n)
)t
.
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Thus

Pr(E) ≤

(1−d/2)n
∑

s=dn/2

n−s
∑

t=dn/2

(

n

s

)(

n

t

)

(

2e−ρ1s/(2n)
)t

≤

(1−d/2)n
∑

s=dn/2

n−s
∑

t=dn/2

(ne

s

)s
(

2ne1−ρ1s/(2n)

t

)t

≤

(1−d/2)n
∑

s=dn/2

n−s
∑

t=dn/2

(ne

s

)s

e−ρ1st/(3n)

≤ n2e−ρ1dn2/24

= o(1).

The proof for N−(S) ∩ T is identical. ✷

Corollary 4. H1 is strongly connected whp.

Proof If H1 is not strongly connected then there exists S ⊆ [n], |S| ≤ n/2
such that either N+(S) = ∅ or N−(S) = ∅. But this would contradict Lemma 5
with T = S. ✷

Assume that H1 is strongly connected and satifies the condition of Lemma 5.

We now describe a procedure for converting the cycle cover Σ1 to a Hamilton
cycle. We start with an arbitrary cycle C for which there is an arc (y, z) with
y ∈ C, z ∈ C ′ 6= C. Such an arc must exist because H1 is strongly connected. Let
(y, x) be the arc of C leaving y and (y′, z) be the arc of C ′ entering z. Now delete
arcs (y, x), (y′, z) from Σ1 and add the arc (y, z). This yields a path P from x to
y′ plus a collection of disjoint cycles which covers [n]. Call this a near cycle cover
(NCC).

Given an NCC we first try to perform an out path extension. We can do this if
there is an arc e joining the terminal endpoint of the path P to a vertex v of one
of the cycles, C ′ say. By adding the arc e and deleting the arc of C ′ entering v we
create an NCC with one fewer cycle. Note that this construction is the same as
that of the previous paragraph, except that we do not invoke strong connectivity.
We also try to perform an analogous in path extension by checking if there is an
arc (w, s) where s is the start vertex of P and w /∈ P . If such an arc exists, we
may extend the path P by adding a path section at its beginning.

We continue with these path extensions until the NCC Σ2 that we have no longer
admits one. Let Q = (u0, u1, . . . , uk) be the path of Σ2 and define the successor
function σ by σ(ui) = ui+1 for i < k. Now k ≥ dn since δ ≥ dn and there are no
out path extensions available. All of uk’s out neighbors are in Q. Let

S = {ui−1 : i ≤ k − dn/2, (uk, ui) is an arc of H1}, T = {uk−dn/2, . . . , uk}.

8



Clearly |S| ≥ dn/2. Let T ′ = N+(S) ∩ T so that |T ′| ≥ dn/2 by Lemma 5. For
v ∈ T ′ choose λ(v) ∈ S such that (λ(v), v), (uk, σλ(v)) are both arcs of H1. For
each such v ∈ T ′ consider the path

Qv = Q + (uk, σλ(v)) − (λ(v), σλ(v)) + (λ(v), v) − (σ−1(v), v).

Note that Qv has the same vertex set as Q and has endpoints u0, σ
−1(v) — see

Figure 1.

Figure 1

PSfrag replacements
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u0

uk

uk

v

v

λ(v)

λ(v)

σλ(v)

σλ(v)

σ−1(v)

σ−1(v)

For each v ∈ T ′ we see if there is an out path extension available for Qv. Suppose
no such out extension exists. By an analogous procedure to the creation of Qv, we
can, for each v ∈ T ′, construct a set Qv of ≥ dn/2 paths each with a distinct start
vertex and all with the same end vertex σ−1(v), and all covering the vertices of Q,
the start vertices are distinct within Qv that is. (There are no in path extensions
available into u0 and we just look at the arcs that enter u0).

If there is an in path extension available for a v ∈ T ′, Q′ ∈ Qv then we carry it
out.

Now suppose that we fail in all of these attempts at path extension. We generate
a sequence of random arcs e1, e2, . . . , part of R2. Each ei is chosen uniformly from
the arcs not in H1, with replacement. We continue until we find an arc which closes
a path in some Qv, v ∈ T ′ to a cycle C∗ say. Note that each ei has probability at
least d2/4 of achieving this.

Now note that the sequence, starting with a cycle cover, replacing two cycles by a
path, doing path extensions, using random arcs to close a path to C∗, produces a
new cycle cover with one less cycle. Thus eventually a Hamilton cycle is produced.
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The number of random edges required can be bounded by the sum Z = Z1 +
Z2 + · · · + Zn where the Zi are independent geometric random variables with
probability of success d2/4. Thus E(Z) = 4d−2n and whp Z < 5d−2n. We could
use the Chebychev inequality for example to prove the latter claim. Thus if we
add 5d−2n random edges to H1 then we will create a Hamilton cycle whp. This
completes the proof of part (a) of Theorem 3.

For part (b) we can start with KA,B of Theorem 1(b) and then replace each edge

by an arc in both directions to create H = ~KA,B. Once again we let I be the set
of vertices of B which are not incident with an arc in R. If |I| > |A| then D is
not Hamiltonian. Instead of choosing m = cn random arcs for R, we choose each
possible arc independently with probability p = m

(d2+(1−d)2)n2 . Then

E(|I|) = (1 − d)n(1 − p)2(1−d)n−2 ∼ (1 − d) exp

{

−
2(1 − d)m

(d2 + (1 − d)2)n

}

n.

It follows from the Chebychev inequality that |I| is concentrated around its mean
and so G will be non-Hamiltonian whp if c satisfies

c <
1

2(1 − d)
(d2 + (1 − d)2) ln(d−1 − 1).

This verifies (b).

Acknowledgement We thank the referees for a careful reading which has revealed
several small errors and led to the simplified proof of Theorem 1(a).

References

[1] B. Bollobás, Random Graphs, Academic Press, 1985.
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[3] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst.
Hungar. Acad. Sci. 5 (1960) 17-61. Discrete Mathematics 45 (1983) 301-305.

[4] A. Ghouila-Houri, Une condition suffisante d’existance d’un circuit hamil-
tonien, Comptes Rendus Academie Scientifique Paris 25 (1960) 495-497.
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