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Abstract. Szemerédi’s Regularity Lemma proved to be a powerful tool in the area of
extremal graph theory [5]. Many of its applications are based on the following technical
fact: If G is a k-partite graph with V (G) =

⋃k
i=1 Vi, |Vi| = n for all i ∈ [k], and all pairs

{Vi, Vj}, 1 ≤ i < j ≤ k, are ε-regular of density d, then G contains d(k
2)nk(1 + f(ε))

cliques K
(2)
k , where f(ε) → 0 as ε → 0.

The aim of this paper is to establish the analogous statement for 3-uniform hyper-
graphs. Our result, which we refer to as The Counting Lemma, together with Theorem
3.5 of [2], a Regularity Lemma for Hypergraphs, can be applied in various situations as
Szemerédi’s Regularity Lemma is for graphs. Some of these applications are discussed
in the papers [3], [4] and [7], as well as in upcoming papers of the authors and others.
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1. Introduction

Extremal set theory is a well studied and broad subject within the field of combinatorial
mathematics. Problems from this discipline, in the most general sense, are concerned with
the determination of thresholds on quantitative properties one set system should have in
order to contain another set system as a subsystem.

While containment problems are often difficult in a deterministic setting, one can
consider the same problems in a random setting, often with some advantages. Here, we
consider a random set system as a hypergraph whose edges were randomly generated
from a base set. One nice feature of a random set system is that as a consequence of the
edges being randomly generated, one can expect a fairly even distribution of the edges.
With an even distribution of the edges of a random set system likely, one is afforded
tools for trying to determine if the random set system contains a given subsystem. As
a drawback, however, a random set system is not a concrete set system, but rather a
probability space. Hence, all conclusions made on the containment of a given subsystem
in our random set system can only be in terms of certain probabilities.

In the deterministic setting, one has the possibility of conclusively deciding whether
or not a concrete set system contains a given subsystem. However, one is not guaranteed
the even distribution of edges that in the random setting played a helpful role in deciding
containment. If the set systems under consideration are graphs, one successful approach
for the problem of graph containment in the deterministic setting has been the use of a
powerful lemma of Szemerédi which in some sense combines the deterministic and random
settings.

1.1. Szemerédi’s Regularity Lemma.
In the course of proving his celebrated Density Theorem, E. Szemerédi established a

lemma which decomposes the edge set of any graph into “random like pieces” (cf., [12],
[5]). He later established a more applicable version, the well known Regularity Lemma,
in [11]. We give a precise account in what follows.

For a graph G = (V, E) and two disjoint sets A, B ⊂ V , we denote by E(A, B)
the set of edges {a, b} ∈ G with a ∈ A and b ∈ B and put e(A, B) = |E(A, B)|.
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We also set d(A, B) = d(GAB) = e(A, B)/|A||B| for the density of the bipartite graph
GAB = (A ∪B, E(A, B)).

Let ε > 0 be given. We say that a pair A, B is ε-regular if |d(A, B) − d(A′, B′)| < ε
holds whenever A′ ⊂ A, B′ ⊂ B, and |A′| > ε|A|, |B′| > ε|B|. We call a partition
V = V0 ∪ V1 ∪ · · · ∪ Vt an equitable partition if it satisfies |V1| = |V2| = · · · = |Vt| and

|V0| < t; we call an equitable partition ε-regular if all but ε
(

t
2

)
pairs Vi, Vj are ε-regular.

Theorem 1.1.1. Szemerédi’s Regularity Lemma. Let ε > 0 be given and let k be
a positive integer. There exist positive integers N = N(ε, k) and K = K(ε, k) such that
any graph G = (V, E) with |V | = n ≥ N vertices admits an ε-regular equitable partition
V = V0 ∪ V1 ∪ · · · ∪ Vt with t satisfying k ≤ t ≤ K.

Szemerédi’s Lemma is a powerful tool in the area of extremal graph theory. One of
its most important consequences is that it can help decide if a graph contains a fixed
subgraph. Suppose that a (large) graph G is given along with an ε-regular partition
V = V0 ∪ V1 . . .∪ Vt, and let H be a fixed graph. If enough of the ε-regular pairs {Vi, Vj}
are dense enough with respect to ε, we may build a copy of H within this collection of
bipartite graphs E(Vi, Vj). This observation is due to the following fact which may be
appropriately called the Counting Fact for Graphs.

Fact 1.1.2. The Counting Fact for Graphs. Suppose G is a k-partite graph with
V (G) =

⋃k
i=1 Vi, |Vi| = n for all i ∈ [k], and all pairs {Vi, Vj}, 1 ≤ i < j ≤ k, are

ε-regular of density d. Then G contains d(k
2)nk(1 + f(ε)) cliques K

(2)
k , where f(ε) → 0 as

ε → 0.

In the following two theorems, we provide examples of when combining Szemerédi’s
Regularity Lemma with Fact 1.1.2 was useful in containment problems. (in the proceeding
two examples, the reader is not expected to see the connection between the examples and
Fact 1.1.2)

One of the first applications of Fact 1.1.2 (applied when k = 3) was the following result
of Ruzsa and Szemerédi [10].

Theorem 1.1.3. Ruzsa, Szemerédi (1976). For every ε > 0, there exists n0 = n0(ε)
such that if Hn is a 3-uniform hypergraph on n ≥ n0 vertices not containing 6 points with
3 or more triples, then |Hn| < εn2.

In the next example, for a fixed graph F , we denote by Fn(F ) the number of distinct
labeled graphs G on n vertices not containing F as a subgraph. We denote by ex(n, F )
the largest number of edges of any graph G on n vertices not containing F as a subgraph.

Theorem 1.1.4. Erdős, Frankl, Rödl (1986). If F is any graph with χ(F ) > 2, then

Fn(F ) = 2ex(n,F )(1+o(1))

where o(1) → 0 as n →∞.

For more on Theorem 1.1.4, see [1].
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1.2. This Paper and its Itinerary.
The aim of this paper is to establish a similar technique for 3-uniform hypergraphs.

More specifically, using the Hypergraph Regularity Lemma from [2] for 3-uniform hyper-
graphs, one is guaranteed a decomposition of the triples of a hypergraph H analogous
to the decomposition of pairs in Szemerédi’s Regularity Lemma for graphs (cf., Theorem
1.1.1). Within the partition obtained from The Hypergraph Regularity Lemma, if there
is a sufficient number of “dense and regular” pieces, we show a statement analogous to

Fact 1.1.2, that the hypergraph H contains a specific number of cliques K
(3)
k in those

pieces. We refer to our main theorem as The Counting Lemma.
In Theorem 3.1.1 of Section 3, we provide a statement for 3-uniform hypergraphs

analogous to Fact 1.1.2. We refer to Theorem 3.1.1 as The Counting Lemma. Since its
statement is quite complicated, we defer all discussion of it until Section 3, by which
time all relevant concepts are defined. In Section 2, we give an exposition of background
concepts needed for the remainder of this paper. Over Sections 4-8, we give the proof
of Theorem 3.1.1. Note that in Section 6, we needed to develop a regularity lemma,
Theorem 6.2.1, which naturally extends Theorem 3.4 of [2].

1.3. Why the Hypergraph Regularity Lemma of [2] is technical.
One can conclude that the Hypergraph Regularity Lemma must be structurally more

complicated than that in Theorem 1.1.1. Indeed, for a hypergraph H = (V, E) and
three disjoint sets A, B, C ⊂ V , we denote by E(A, B, C) the set of triples {a, b, c} ∈ H
with a ∈ A, b ∈ B, and c ∈ C, and put e(A, B, C) = |E(A, B, C)|. We also set
d(A, B, C) = d(HABC) = e(A, B, C)/|A||B||C| for the density of the hypergraphHABC =
(A ∪ B ∪ C, E(A, B, C)). For a given ε > 0, we say the triple A, B, C is ε-regular if for
any A′, B′, C ′, A′ ⊂ A, B′ ⊂ B, C ′ ⊂ C, |A′| > ε|A|, |B′| > ε|B|, |C ′| > ε|C|,

|d(A′, B′, C ′)− d(A, B, C)| < ε.

Following the original proof of Theorem 1.1.1, one can prove a statement for hypergraphs
analogous to Theorem 1.1.1. That is, one can prove a statement establishing that every
3-uniform hypergraph (in fact, r-uniform hypergraph) admits an equitable partition V =

V0∪V1∪ . . .∪Vt with all but ε
(

t
3

)
triples Vi, Vj, Vk ε-regular, 1 ≤ i < j < k ≤ t. However,

no statement like Fact 1.1.2 can be obtained, as the following example illustrates.

Example 1.3.1. For every ε > 0, there exists a 3-uniform 4-partite hypergraph H with
partite sets V1, V2, V3, V4, such that every triple of partite sets Vi, Vj, Vk, 1 ≤ i < j <

k ≤ 4, is both dense and ε-regular, but still H contains no copies of the clique K
(3)
4 .

Indeed, let ε > 0 be given. Suppose V1, V2, V3, V4 are four pairwise disjoint sets,
each of cardinality n. We construct a random 3-uniform 4-partite hypergraph H with
vertex set V = V (H) = V1 ∪ V2 ∪ V3 ∪ V4 and edge set given as follows: For all pairs
i, j, 1 ≤ i < j ≤ 4, consider the following random coloring of the edges K(Vi, Vj) =
{{vi, vj} : vi ∈ Vi, vj ∈ Vj}: for each edge {vi, vj} ∈ K(Vi, Vj), independently and uni-
formly at random color the edge {vi, vj} red with probability 1

2
or blue with probability

1
2
. Then for 1 ≤ i < j < k ≤ 4, vi ∈ Vi, vj ∈ Vj, vk ∈ Vk, {vi, vj, vk} ∈ H if and only

if edges {vi, vj} and {vi, vk} receive different colors. One can show that with probability
tending to 1 with n tending to ∞, H satisfies the following two properties:
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1. For any i, j, k, 1 ≤ i < j < k ≤ 4,

|d(Vi, Vj, Vk)−
1

2
| < ε.

2. All triples Vi, Vj, Vk are ε-regular, 1 ≤ i < j < k ≤ 4.

However, it follows by the construction above thatH contains no copies of K
(3)
4 . Indeed,

assume {v1, v2, v3, v4} spans a copy of K
(3)
4 in H, where for each i, 1 ≤ i ≤ 4, vi ∈ Vi. It

follows by the Pigeon Hole Principle that there exist j, k, 2 ≤ j < k ≤ 4, such that edges
{v1, vj} and {v1, vk} are colored by the same color. This is, however, a contradiction. 2

Acknowledgement. We thank Dwight Duffus and Ronald Gould for many helpful com-
ments which improved this manuscript. We also thank Yulia Dementieva for her helpful
comments with certain sections of this manuscript.

2. Definitions, Notation, and Auxiliary Facts

We begin this section by providing some background material. We start by giving
some very basic definitions and notation which appear pervasively throughout the paper.

For a natural number n, we use the notation [n] to denote the set {1, . . . , n}. If X
is any finite set and l is any natural number so that l ≤ |X|, we denote by [X]l the set
{L ⊆ X : |L| = l}. For simplicity, [n]l denotes [[n]]l. Let X and Y be two sets, X∩Y = ∅.
We abuse the cartesian product notation × by defining X×Y = {{x, y} : x ∈ X, y ∈ Y }.

2.1. Graphs and Cylinders.
In this subsection, we provide definitions and notation pertaining to graphs. A graph

G on a finite vertex set V = {v1, . . . , vn} is defined as a family G ⊆ [V ]2. If G = [V ]2,
we call G a clique of size n, and in particular, if n = 3, we call G a triangle. When we
do not specify a vertex set, we denote a clique of size n by K(2)

n .
Let k be a natural number, k ≤ n. We often specify that the graph G is k-partite with

k-partition (V1, . . . , Vk). As usual, this means that there exists a partition of the vertex
set V of G, V = V1∪. . .∪Vk, where for any i ∈ [k], G∩[Vi]

2 = ∅. Often, we consider special
bipartite (that is, 2-partite) subgraphs of a graph G. For nonempty disjoint subsets A ⊆
V (G) and B ⊆ V (G), we denote by G[A, B] that subgraph {{a, b} ∈ G : a ∈ A, b ∈ B}.

Definition 2.1.1. We refer to any k-partite graph G with k-partition (V1, . . . , Vk) as a k-
partite cylinder, and write G as G =

⋃
1≤i<j≤k Gij where Gij = G[Vi, Vj] = {{vi, vj} ∈ G :

vi ∈ Vi, vj ∈ Vj}. If B ⊆ [k], |B| = b, then the b-partite cylinder G(B) =
⋃
{i,j}∈[B]2 Gij is

referred to as the B-cylinder of G, and if b = 3, the B-cylinder G(B) is referred to as a
triad. Note that if B = [k], G(B) = G.

We note that a cylinder is a graph whose vertex set is given with a fixed k-partition.

Definition 2.1.2. Suppose G ⊆ [V ]2 is a graph with vertex set V = V (G), and let
X, Y ⊆ V be two nonempty disjoint subsets of V . We define the density of the pair X, Y
with respect to G, denoted dG(X, Y ), as
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dG(X, Y ) =
|G[X,Y ]|
|X||Y |

.

Definition 2.1.3. Suppose G ⊆ [V ]2 is a graph with vertex set V = V (G), and let ε > 0
be given. Let X, Y ⊆ V be two nonempty disjoint subsets of V . We say that the pair
X, Y is ε-regular if whenever X ′ ⊆ X, |X ′| > ε|X| and Y ′ ⊆ Y , |Y ′| > ε|Y |, then

|dG(X ′, Y ′)− dG(X, Y )| < ε. (1)

We use the following slight alteration of the concept of ε-regularity. For positive λ and
ε given, we say that the graph G[X,Y ] is a (λ, ε, 2)-cylinder provided that whenever
X ′ ⊆ X, |X ′| > ε|X| and Y ′ ⊆ Y , |Y ′| > ε|Y |, then

1

λ
(1− ε) < dG(X ′, Y ′) <

1

λ
(1 + ε).

More generally, we give the following definition.

Definition 2.1.4. Suppose G =
⋃

1≤i<j≤k Gij is a k-partite cylinder with k-partition
(V1, . . . , Vk) and let λ > 0, ε > 0 be given. We call G a (λ, ε, k)-cylinder provided all
pairs Vi, Vj, 1 ≤ i < j ≤ k, induce Gij satisfying that whenever V ′

i ⊆ Vi, |V ′
i | > ε|Vi|,

and V ′
j ⊆ Vj, |V ′

j | > ε|Vj| then

1

λ
(1− ε) < dGij(V ′

i , V
′
j ) <

1

λ
(1 + ε).

In other words, each Gij is a (λ, ε, 2)-cylinder. Note that for B ⊆ [k], |B| = b, the
B-cylinder G(B) =

⋃
{i,j}∈[B]2 Gij is a (λ, ε, b)-cylinder whenever G =

⋃
1≤i<j≤k Gij is a

(λ, ε, k)-cylinder. We refer to the B-cylinder G(B) as the (λ, ε, B)-cylinder of G.

We now compare the two notions of regularity above. A (λ, ε, 2)-cylinder Gij is ε-
regular with density d = dGij(Vi, Vj) satisfying

|d− 1

λ
| < ε

λ
.

On the other hand, in a graph G, an ε-regular pair X, Y with density dG(X, Y ) satisfying
1
λ
− ε < dG(X, Y ) < 1

λ
+ ε is a (λ, 2ελ, 2)-cylinder.

Suppose G is a k-partite cylinder with k-partition (V1, . . . , Vk). For a vertex v ∈ V , and
j ∈ [k], we denote by Nj(v) the j-neighborhood of v, that is, Nj(v) = {w ∈ Vj : {v, w} ∈ G}.
We now state the following simple fact about (λ, ε, k)-cylinders concerning neighborhood
sizes.

Fact 2.1.5. Suppose G =
⋃

1≤i<j≤k Gij is a (λ, ε, k)-cylinder with k-partition (V1, . . . , Vk),
|V1| = . . . = |Vk| = m. Fix i ∈ [k]. All but 2kεm vertices vi ∈ Vi satisfy that for all
j ∈ [k], j 6= i,

m

λ
(1− ε) < |Nj(vi)| <

m

λ
(1 + ε).



REGULARITY PROPERTIES FOR TRIPLE SYSTEMS 7

For future reference, we also make the following remarks. Sometimes we consider
the situation when two k-partite cylinders G and F are simultaneously defined on the
same vertex set V with k-partition (V1, . . . , Vk). In such situations, we still want to
denote the j-neighbors in each cylinder. We denote by NG,j(v) the j-neighborhood of
the vertex v in the cylinder G, that is, NG,j(v) = {w ∈ Vj : {v, w} ∈ G}. Similarly,
NF,j(v) = {w ∈ Vj : {v, w} ∈ F}.

We now define an auxiliary set system pertaining to a k-partite cylinder G.

Definition 2.1.6. For a k-partite cylinder G, we denote by K(2)
j (G), 1 ≤ j ≤ k, that

j-uniform hypergraph whose edges are precisely those j-element subsets of V (G) which

span cliques of order j in G. Note that the quantity |K(2)
j (G)| counts the total number

of cliques in G of order j, that is, |K(2)
j (G)| = |{X ⊆ V (G) : |X| = j, [X]2 ⊆ G}|.

For a (λ, ε, k)-cylinder G, the quantity |Kj(G)| is easy to estimate, as the following fact
shows.

Fact 2.1.7. For any positive integers k, λ, and suitably small positive reals ε, there exists
a function θk,λ(ε), θk,λ(ε) → 0 as ε → 0, such that whenever G is a (λ, ε, k)-cylinder with
k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m, then

(1− θk,λ(ε))
mk

λ(k
2)

< |K(2)
k (G)| < (1 + θk,λ(ε))

mk

λ(k
2)

.

The proof of Fact 2.1.7 is an easy exercise.

2.2. 3-Uniform Hypergraphs and 3-cylinders.
In this subsection, we provide definitions and notation concerning 3-uniform hyper-

graphs. A 3-uniform hypergraph H, otherwise called a triple system, on a finite vertex
set V = {v1, . . . , vn} is defined as a family H ⊆ [V ]3. If H = [V ]3, we call H a clique of
size n. Similar to graphs, when we don’t specify a vertex set, we denote a hypergraph
clique of size n by K(3)

n .
Let k be a natural number, k ≤ n. As in the case of graphs, we often specify that the

hypergraph H is k-partite with given k-partition (V1, . . . , Vk). Again, this means that
there exists a partition of the vertex set V of H, V = V1 ∪ . . . ∪ Vk, where for any pair
{i, j} ∈ [k]2, H ∩ [Vi ∪ Vj]

3 = ∅.

Definition 2.2.1. We refer to any k-partite, 3-uniform hypergraph H with k-partition
(V1, . . . , Vk) as a k-partite 3-cylinder. For B ⊆ [k], we define the B-3-cylinder of H as
that subhypergraph H(B) of H induced on

⋃
i∈B Vi. Note that if B = [k],H(B) = H.

Definition 2.2.2. Suppose that G is a k-partite cylinder given with k-partition (V1, . . . , Vk),

and H is a k-partite 3-cylinder. We say that G underlies the 3-cylinder H if H ⊆ K(2)
3 (G).

As in Definition 2.1.6, we define an auxiliary set system pertaining to the 3-cylinder H.

Definition 2.2.3. IfH is a k-partite 3-cylinder, then for 1 ≤ j ≤ k, K(3)
j (H) denotes that

j-uniform hypergraph whose edges are precisely those j-element subsets of V (H) which
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span a clique of order j in H. Note that the quantity |K(3)
j (H)| counts the total number

of cliques in H of order j, that is, |K(3)
j (H)| = |{X ⊆ V (H) : |X| = j, [X]3 ⊆ H}|.

Definition 2.2.4. Let H be a k-partite 3-cylinder with underlying k-partite cylinder
G =

⋃
1≤i<j≤k Gij, and let B ⊆ [k], |B| = b. For the B-cylinder G(B), we define the

density dH(G(B)) of H with respect to the B-cylinder G(B) as

dH(G(B)) =


|K(2)

b
(G(B))∩K(3)

b
(H(B))|

|K(2)
b

(G(B))|
if |K(2)

b (G(B))| > 0

0 otherwise.
(2)

In other words, the density counts the proportion of copies of K
(2)
b in G(B) which underlie

copies of K
(3)
b in H(B).

More generally, let Q ⊆ G(B), B ⊆ [k], |B| = b, where Q =
⋃
{i,j}∈[B]2 Qij. One can

define the density dH(Q) of H with respect to Q as

dH(Q) =


|K(3)

b
(H)∩K(2)

b
(Q)|

|K(2)
b

(Q)|
if |K(2)

b (Q)| > 0

0 otherwise.
(3)

For our purposes, we need an extension of the definition above, and consider a simulta-
neous density of H with respect to a fixed r-tuple of b-partite cylinders (Q(1), . . . , Q(r)).

Definition 2.2.5. Let H be a k-partite 3-cylinder with underlying k-partite cylinder
G =

⋃
1≤i<j≤k Gij, and let B ⊂ [k], |B| = b. Let

−→
Q =

−→
Q B = (Q(1), . . . , Q(r)) be an r-

tuple of B-cylinders Q(s) =
⋃
{i,j}∈[B]2 Qij(s) satisfying that for every s ∈ [r], {i, j} ∈ [B]2,

Qij(s) ⊆ Gij. We define the density dH(
−→
Q ) of

−→
Q as

dH(
−→
Q ) =


|K(3)

b
(H)∩

⋃r

s=1
K(2)

b
(Q(s))|

|
⋃r

s=1
K(2)

b
(Q(s))|

if |⋃r
s=1K

(2)
b (Q(s))| > 0

0 otherwise.
(4)

We now give a definition which provides a notion of regularity for 3-cylinders.

Definition 2.2.6. LetH be a k-partite 3-cylinder with underlying cylinder G =
⋃

1≤i<j≤k Gij.
Let B ⊆ [k], |B| = b, r and δ > 0 be given. We say that the B-3-cylinder H(B) is (δ, r)-
regular with respect to G(B) if the following regularity condition is satisfied: suppose
−→
Q =

−→
Q B = (Q(1), . . . , Q(r)) is an r-tuple of B-cylinders Q(s) =

⋃
{i,j}∈[B]2 Qij(s) satis-

fying that for all s ∈ [r], and all {i, j} ∈ [B]2, Qij(s) ⊆ Gij. Then |⋃r
s=1 K

(2)
b (Q(s))| >

δ|K(2)
b (G(B))| implies

dH(
−→
Q ) > dH(G(B))− δ. (5)

If, moreover, it is specified that H(B) is (δ, r)-regular with respect to G(B) with density
dH(G(B)) ≥ α−δ for some α, then we say that the B-3-cylinder H(B) is (α, δ, r)-regular
with respect to G(B). If the regularity condition fails to be satisfied for any α, we say
that H(B) is (δ, r)-irregular with respect to G(B).
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Note that this is a weaker definition of regularity since only a lower bound on the
density of

−→
Q is guaranteed. The more standard notion of ε-regularity which replaces (5)

with

|dH(
−→
Q )− dH(G(B))| < δ

and corresponds to Szemerédi’s definition of an ε-regular pair was introduced in [2].
Since most of this paper deals with this weaker concept, we decided to alter the standard
vocabulary. However, we also require the stronger notion, and so conclude this section
with this definition.

Definition 2.2.7. Let H be a 3-partite 3-cylinder with underlying cylinder G = G12 ∪
G23 ∪G13. Let r and δ > 0 be given. We say that H is (δ, r)-fully regular with respect to

G if the following regularity condition is satisfied: suppose
−→
Q = (Q(1), . . . , Q(r)) is an

r-tuple of triads Q(s) =
⋃
{i,j}∈[3]2 Qij(s), where for all s ∈ [r], {i, j} ∈ [3]2, Qij(s) ⊆ Gij.

Then |⋃r
s=1 K

(2)
3 (Q(s))| > δ|K(2)

3 (G)| implies

|dH(
−→
Q )− dH(G)| < δ. (6)

If, moreover, it is specified that H is (δ, r)-fully regular with respect to G with density
dH(G) ∈ (α−δ, α+δ) for some α, then we say that H is (α, δ, r)-fully regular with respect
to G.

Note that (δ, r)-full regularity implies (δ, r)-regularity, but not conversely.

3. The Counting Lemma

In this section, we present and comment on the main theorem of this work, The
Counting Lemma.

3.1. The Statement of the Counting Lemma.
Before we state our theorem, we establish an appropriate context. Since we later alter

this context, we refer to the following as Setup 1.
Setup 1:

For a given integer k ≥ 3, for a given set {αB : B ∈ [k]3} of positive reals and for
given constants δ, λ, r and ε, suppose H is a triple system and G is an underlying graph
satisfying the following:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) G is an underlying (λ, ε, k)-cylinder of H.

(iii) for all B ∈ [k]3, H(B) is (αB, δ, r)-fully regular with respect to the triad G(B)
(cf., Definition 2.2.7).

The aim of this paper is to establish the following theorem.

Theorem 3.1.1. The Counting Lemma. For all integers k ≥ 4, sets {αB : B ∈ [k]3}
of positive reals and β > 0, there exists a positive constant δ so that for all integers
λ ≥ 1

δ
, there exist r, ε such that the following holds: with parameters k, {αB : B ∈ [k]3},
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δ, λ, r and ε, suppose H is a triple system and G is an underlying graph which satisfy
the hypothesis of Setup 1. Then

ΠB∈[k]3αB

λ(k
2)

mk(1− β) ≤
∣∣∣K(3)

k (H)
∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

mk(1 + β). (7)

As mentioned in the Introduction, unlike Fact 1.1.2, the proof of Theorem 3.1.1 is com-
plicated. Sections 4-8 are devoted to proving this theorem.

In proving Theorem 3.1.1, we use the following hierarchy governing the sizes of the
constants min{αB : B ∈ [k]3}, δ, λ, r, ε, m:

min{αB : B ∈ [k]3} � δ ≥ 1

λ
� 1

r
� ε � 1

m
. (8)

In Theorem 3.1.1, we make the assumption that δ ≥ 1
λ
, thus providing a well arranged

(linearly ordered) hierarchy on the constants. However, for the other extreme that δ � 1
λ
,

Theorem 3.1.1 remains true and its proof becomes considerably simpler. Unfortunately,
The Hypergraph Regularity Lemma of [2], the tool which in application provides an
environment satisfying the conditions of Setup 1, does not us allow us to make the
assumption that δ � 1

λ
. The reason for this unfortunate outcome is similar to why in

the context of Theorem 1.1.1 one may assume ε ≥ 1
t
; one may simply set t0 ≥ 1

ε
.

For the remainder of this paper, the reader may assume the constants with which we
work always satisfy the hierarchy given in (8). While we carefully specify the sizes of
the promised constants δ, r and ε in all of our proofs, we make no effort to estimate the
size of the integer m seen in (8). We state here that in this entire paper, we assume the
integer m is large enough for any argument we make, and indeed, the value 1

m
may be

assumed to be “infinitely smaller” than any other constant considered.

3.2. Strategy for Proving the Counting Lemma.
We found it advantageous to focus on the lower bound of (7) for most of this paper. To

that end, we formulate a theorem which exclusively discusses this lower bound. Before
doing so, however, we discuss the weaker environment in which we work.
Setup 2:

For a given integer k ≥ 3, for a given set {αB : B ∈ [k]3} of positive reals and for
given constants δ, λ, r and ε, suppose H is a triple system and G is an underlying graph
satisfying the following:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) G is an underlying (λ, ε, k)-cylinder of H.

(iii) For all B ∈ [k]3, H(B) is (αB, δ, r)-regular with respect to the triad G(B) (cf.,
Definition 2.2.6).

If moreover, the following also holds:

(iii′). All the constants αB in the set {αB : B ∈ [k]3} are the same, (i.e. αB = α for all
B ∈ [k]3).

then we refer to this special case of Setup 2 as Setup 2′.
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Theorem 3.2.1. For all integers k ≥ 4, sets {αB : B ∈ [k]3} of positive reals and β > 0,
there exists a positive constant δ so that for all integers λ ≥ 1

δ
, there exist r, ε such that

the following holds: with parameters k, {αB : B ∈ [k]3}, δ, λ, r and ε, suppose H is a
triple system and G is an underlying graph which satisfy the hypothesis of Setup 2. Then∣∣∣K(3)

k (H)
∣∣∣ ≥ ΠB∈[k]3αB

λ(k
2)

mk(1− β). (9)

We show that (perhaps surprisingly), the upper bound in (7) of Theorem 3.1.1 follows
from the lower bound in (7) of Theorem 3.1.1. In other words, Theorem 3.2.1 implies
Theorem 3.1.1. We show this implication in Section 8.

To prove Theorem 3.2.1, it suffices to prove the following weaker statement D(k), for
all integers k ≥ 4.

Statement 3.2.2 (D(k)). For all positive α and positive β, there exists a positive con-
stant δ so that for all integers λ ≥ 1

δ
, there exist r, ε such that the following holds: with

constants k, α, δ, λ, r, and ε, suppose H is a k-partite 3-cylinder and G is a k-partite
cylinder satisfying the hypothesis of Setup 2′. Then

∣∣∣K(3)
k (H)

∣∣∣ ≥ α(k
3)

λ(k
2)

mk(1− β).

At the end of this section we prove the following claim.

Claim 3.2.3. D(k), for all k ≥ 4, implies Theorem 3.2.1.

Thus, by Claim 3.2.3, to prove Theorem 3.2.1, it is enough to prove D(k) for all k ≥ 4.
The statement D(k) is proved using induction on k. In our induction scheme, we need
to prove the following stronger statement R(k), where k ≥ 3.

Statement 3.2.4 (R(k)). For all nonnegative α and positive δk, there exists a positive
constant δ so that for all integers λ ≥ 1

δ
, for all integers rk ≥ 1, there exist r, ε such that

the following holds: with constants k, α, δ, λ, r, and ε, suppose H is a k-partite 3-cylinder
and G is a k-partite cylinder satisfying the hypothesis of Setup 2′. Then H = H([k]) is

(α(k
3), δk, rk)-regular with respect to G = G([k]) (cf., Definition 2.2.6).

In other words, the statement R(k) guarantees an “arbitrarily uniform distribution” of

the cliques K
(3)
k provided all

(
k
3

)
corresponding triads are sufficiently regular.

We proceed according to the following scheme:

R(3) ⇒ D(4) ⇒ R(4) ⇒ D(5) ⇒ . . . ⇒ R(k − 1) ⇒ D(k) ⇒ R(k) ⇒ . . .
(10)

The scheme above establishes the validity of the statement D(k), for all k ≥ 4. We
now outline our strategy for proving the induction scheme in (10). Note that the state-
ment R(3) holds by definition. Note also that the first implication, R(3) ⇒ D(4), was
essentially proved in [2]. We break the inductive step into the following two implications:
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(1) R(k − 1) ⇒ D(k).
(2) D(k) ⇒ R(k).

In Section 5, we prove the implication R(k − 1) ⇒ D(k) from implication (1). We
note that our proof of the implication R(k− 1) ⇒ D(k) in Section 5 follows largely from
principles we establish in the upcoming Section 4. We show the implication D(k) ⇒ R(k)
from implication (2) in Section 7. We note that explicit in our proof of D(k) ⇒ R(k) is
the use of our Regularity Lemma, which we present in the upcoming Section 6.

3.3. Proof of Claim 3.2.3.
We conclude this section now with a proof for Claim 3.2.3.

Proof of Claim 3.2.3.
We begin our proof of Claim 3.2.3 by stating the following fact.

Fact 3.3.1. Let α, δ, ε be given positive reals with δ < α
4

and let λ and r be given positive
integers. Let α′ be a given positive real satisfying α′ ≤ α, and let 3-partite triple system
H and underlying graph G satisfy the hypothesis of Setup 2 with constants k = 3, α, δ,
λ, r and ε. Then there exists a family

H̃ = {H1, . . . ,Hp}
of 3-partite triple systems with the following properties:

(i) p = b α
α′
c,

(ii) Hi ∩Hj = ∅ for all {i, j} ∈ [p]2, and
⋃

i∈[p]Hi ⊆ H,
(iii) for each i ∈ [p], Hi is (α′, 2δ, r)-regular with respect to the underlying (λ, ε, 3)-

cylinder G.

The proof of Fact 3.3.1 is found in [6] and [3]. The proof of a similar statement for graphs
is given in [2].

The idea of the proof of Claim 3.2.3 is simple. Using Fact 3.3.1, we decompose each
of the 3-partite 3-cylinders H(B), B ∈ [k]3, into roughly αB

α
3-partite 3-cylinders, each

of density α. For each combination of these sparser “sub-3-cylinders” of H(B) over all

B ∈ [k]3, we use D(k) to claim each resulting k-partite 3-cylinder has α(
k
3)

λ(
k
2)

mk copies of

K
(3)
k . Summing over all ΠB∈[k]3

αB

α
combinations, we get the required lower bound. We

now formally prove Claim 3.2.3.
Let k ≥ 4 be a given integer, let {αB : B ∈ [k]3} be a given set of positive reals, and

let β > 0 be given. We need to define the promised constant δ > 0. Before doing so, we
define auxiliary positive constants α and β′ to satisfy

(1− β′)ΠB∈[k]3

(
1− α

αB

)
> 1− β. (11)

Now, for the constants k ≥ 4, α and β′ above, let

δ =
δD(k)(k, α, β′)

2
(12)

where δD(k)(k, α, β′) is guaranteed to exist by the statement D(k).
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Let λ > 1
δ

be a given integer. For the constants k ≥ 4, α, β′, δ, λ, let

r = rD(k)(k, α, β′, δ, λ), (13)

ε = εD(k)(k, α, β′, δ, λ) (14)

be those constants guaranteed to exist by the statement D(k).
With the given parameters k, {αB : B ∈ [k]3}, δ from (12), the given integer λ > 1

δ
,

and r and ε from (13) and (14) respectively, suppose H is a k-partite triple system and
G is an underlying graph of H satisfying the hypothesis of Setup 2. Our goal is to show

∣∣∣K(3)
k (H)

∣∣∣ ≥ ΠB∈[k]3αB

λ(k
2)

mk(1− β). (15)

We begin by applying Fact 3.3.1 to each 3-partite 3-cylinder H(B) with underlying

(λ, ε, 3)-cylinder G(B), B ∈ [k]3. Thus, for each B ∈ [k]3, we obtain a family H̃(B) =
{Hi(B)}, 1 ≤ i ≤ bαB

α
c of 3-partite 3-cylinders, where:

a. Hi(B) ∩Hj(B) = ∅, for all i, j, 1 ≤ i < j ≤ bαB

α
c, and

⋃
1≤i≤bαB

α
cHi(B) ⊆ H(B),

b. for each i, 1 ≤ i ≤ bαB

α
c, Hi(B) is (α, 2δ, r)-regular with respect to the (λ, ε, 3)-

cylinder G(B).

For each of the ΠB∈[k]3bαB

α
c choices of iB, 1 ≤ iB ≤ bαB

α
c, consider a vector

−→
i =

(iB; B ∈ [k]3). Let I be the set of all of these vectors (note that |I| = ΠB∈[k]3bαB

α
c).

Let k-partite 3-cylinder H−→
i =

⋃
B∈[k]3 HiB(B). For all

−→
i ∈ I, H−→

i and G satisfy the
conditions of the hypothesis in Setup 2 ′ with the constants k, α, 2δ, λ, r and ε, where
δ satisfies (12), and r and ε satisfy (13) and (14) respectively. Therefore, we may apply

statement D(k) to each k-partite 3-cylinder H−→
i and G,

−→
i ∈ I, to conclude

|K(3)
k (H−→

i )| ≥ α(k
3)

λ(k
2)

mk(1− β′). (16)

We therefore conclude

|K(3)
k (H)| ≥

∣∣∣∣∣∣
⋃
−→
i ∈I

K(3)
k (H−→

i )

∣∣∣∣∣∣ ,
=

∑
−→
i ∈I

|K(3)
k (H−→

i )|. (17)

Employing the bound from (16) in (17) yields

|K(3)
k (H)| ≥ α(k

3)

λ(k
2)

mk(1− β′)|I|. (18)
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Since |I| = ΠB∈[k]3bαB

α
c, we have from (18) that

|K(3)
k (H)| ≥ α(k

3)

λ(k
2)

mk(1− β′)ΠB∈[k]3b
αB

α
c,

=
ΠB∈[k]3

(
bαB

α
cα
)

λ(k
2)

mk(1− β′),

≥
ΠB∈[k]3(αB − α)

λ(k
2)

mk(1− β′),

=
ΠB∈[k]3αB

λ(k
2)

mk(1− β′)ΠB∈[k]3

(
1− α

αB

)
. (19)

By our choice of the auxiliary constants α, β′ in (11), we infer from (19) that

|K(3)
k (H)| ≥

ΠB∈[k]3αB

λ(k
2)

mk(1− β).

Hence, (15) is proved, thus proving Claim 3.2.3. 2

4. Background Material for the Proof of R(k − 1) ⇒ D(k)

In this section, we present definitions and technical facts, without proof, needed in
Section 5.3 for the proof of Lemma 5.1.1. The proofs of these facts are along technical
albeit standard lines. The reader interested in the proofs of these facts is encouraged to
see [6].

4.1. Basic Facts.
We begin with the following fact from [2].

Fact 4.1.1. Let M , k, λ be given integers, and let ε > 0, σ ∈ (0, 1] be given real
numbers. Suppose G =

⋃
0≤i<j≤k Gij is a (k + 1)-partite cylinder with (k + 1)-partition

(W0, W1, . . . , Wk), |W1| = . . . = |Wk| = M , and |W0| = σM . Suppose that for all j ∈ [k],
G satisfies these conditions:

(i) G0j induced on W0 ∪Wj satisfies that whenever W ′
0 ⊆ W0 and W ′

j ⊆ Wj, |W ′
0| ≥

εM and |W ′
j| ≥ εM , then

dG0j

(
W ′

0, W
′
j

)
∈
(

1

λ
(1− ε),

1

λ
(1 + ε)

)
.

(ii) For all x ∈ W0, |Nj(x)| ≤ M
λ

(1 + ε).

Then the following property holds: there exists an integer M0 = M0(σ, k, ε) such that
for all M ≥ M0, there exist b ≥ σ/kε vertices {x1, . . . , xb} ⊆ W0 satisfying |Nj(xu) ∩
Nj(xv)| ≤ M

λ2 (1 + ε)2, for all
(

b
2

)
pairs {u, v} ∈ [b]2 and all j ∈ [k].

We make the following remark about Fact 4.1.1. Suppose that G is a (λ, ε, k + 1)-
cylinder with (k + 1)-partition (V0, V1, . . . , Vk), |V0| = |V1| = . . . = |Vk| = M . Let

V ′
0 =

{
v ∈ V0 : |Ni(v)| > M

λ
(1 + ε), for some i ∈ [k]

}
.
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By Fact 2.1.5, |V ′
0 | < kεM . Putting W0 = V0 \V ′

0 , Wi = Vi for all i ∈ [k], and σ = 1− kε,
we have that the (k + 1)-partite cylinder G1, induced from G on the (k + 1)-partition
(W0, W1, . . . , Wk), satisfies the hypothesis of Fact 4.1.1

A consequence of Fact 4.1.1 which is used frequently in Section 5 is stated in the
following fact.

Fact 4.1.2. Let k, r, λ be given integers, and let ε > 0, and σ ∈ (0, 1] be given real
numbers. Suppose G =

⋃
0≤i<j≤k Gij is a (k + 1)-partite cylinder with (k + 1)-partition

(W0, W1, . . . , Wk), |W1| = . . . = |Wk| = M , and |W0| = σM , where M is assumed to be
sufficiently large. Suppose that for all j ∈ [k], G satisfies these conditions:

(i) G0j induced on W0 ∪Wj satisfies that whenever W ′
0 ⊆ W0 and W ′

j ⊆ Wj, |W ′
0| ≥

εM and |W ′
j| ≥ εM , then

dG0j

(
W ′

0, W
′
j

)
∈
(

1

λ
(1− ε),

1

λ
(1 + ε)

)
.

(ii) For all x ∈ W0, |Nj(x)| ≤ M
λ

(1 + ε).

Then there exist pairwise disjoint r-element subsets S1, . . . , Sq, q = dσM
r

(1 − rkε/σ)e,
satisfying:

(a) for each i ∈ [q], Si = {x(i)
1 , ..., x(i)

r } ⊆ W0,
(b) for each i ∈ [q], for all {u, v} ∈ [r]2, and for all j ∈ [k],

|Nj(x
(i)
u ) ∩Nj(x

(i)
v )| ≤ M

λ2
(1 + ε)2.

4.2. Regular Couples.
We now define a notion of (δ, r)-regularity for cylinders.

Definition 4.2.1. Let γ, δ be positive reals, let r be a positive integer, and let F be a
bipartite graph with bipartition (U, V ). We say that F is (γ, δ, r)-regular if the following
property holds: For any r-tuple of pairs of subsets ({Uj, Vj})r

j=1, Uj ⊆ U , Vj ⊆ V ,
1 ≤ j ≤ r, satisfying

|
r⋃

j=1

(Uj × Vj)| > δ|U ||V |,

then

|F ∩ ⋃r
j=1(Uj × Vj)|

|⋃r
j=1(Uj × Vj)|

> γ. (20)

Note that it follows directly from the definition that if F is (γ, δ, r)-regular, then F
is also (γ, δ′, r′)-regular for any δ′ ≥ δ and positive integer r′ ≤ r. We use this fact
repeatedly in later sections.

We proceed with the following easy fact.

Fact 4.2.2. Let γ, δ, and r be given, and suppose F is a bipartite graph with bipartition
(U, V ). If F is (γ, δ, r)-regular, then all but less than δ|U | vertices u ∈ U satisfy

|N(u)| > γ|V |.
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When we encounter (γ, δ, r)-regular bipartite graphs, they actually are subgraphs of
other highly regular bipartite graphs. This situation prompts the following definition.

Definition 4.2.3. Let γ, δ, ε be given positive reals, let r, λ be given positive integers,
and let F , G be two given bipartite graphs, each with bipartition (U, V ). We call the
ordered pair of graphs (F, G) a (γ, δ, r, λ, ε)-regular couple provided

(i) F ⊆ G,
(ii) F is (γ, δ, r)-regular,

(iii) G is a (λ, ε, 2)-cylinder.

Note that in the definition above, F being (γ, δ, r)-regular only ensures a lower bound
of γ on the density described in (20). With G being a (λ, ε, k)-cylinder, Definition 2.1.4
ensures that the density of bipartite subgraphs of G on subsets U ′ ⊆ U , |U ′| > ε|U |,
V ′ ⊆ V , |V ′| > ε|V |, is roughly 1

λ
.

The following important fact relates to Fact 2.1.7.

Fact 4.2.4. For all integers k ≥ 3 and all positive α, β, there exists δ > 0 so that for all
integers λ ≥ 1

δ
, there exist r, ε so that the following property holds: Suppose

(i) G =
⋃

1≤i<j≤k Gij is a (λ, ε, k)-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . =
|Vk| = m.

(ii) F =
⋃

1≤i<j≤k F ij is a k-partite cylinder defined on the same k-partition (V1, . . . , Vk).

(iii) For all i, j, 1 ≤ i < j ≤ k, (F ij, Gij) is a (α−2δ
λ

, δ, r, λ, ε)-regular couple.

Then F satisfies ∣∣∣K(2)
k (F )

∣∣∣ ≥ (
α

λ
)(

k
2)mk(1− β).

4.3. Link Graphs.
For our final fact, we need the following definition.

Definition 4.3.1. Let H be a k-partite 3-cylinder with k-partition (V1, . . . , Vk), and let
G =

⋃
1≤i<j≤k Gij be an underlying k-partite cylinder. Let i, j, 1 < i < j ≤ k, be integers

and let x ∈ V1. We define the {i, j}-link graph of x, Lij
x , as

Lij
x =

{
{y, z} ∈ Gij : y ∈ NG,i(x), z ∈ NG,j(x), {x, y, z} ∈ H

}
. (21)

We further define the link graph of x, Lx, as

Lx =
⋃

1<i<j≤k

Lij
x .

Before continuing with our next fact, we describe some notation we need. Suppose
G =

⋃
1≤i<j≤k Gij is a k-partite cylinder with k-partition (V1, . . . , Vk), and let x ∈ V1.

For fixed i, j, 1 < i < j ≤ k, define

Gij(x, G) =
{
{x, y} ∈ Gij : x ∈ NG,i(x), y ∈ NG,j(x)

}
= Gij[NG,i(v), NG,j(v)].

We conclude this section by stating that any (α, δ, r)-regular hypergraph H with un-
derlying (λ, ε, k)-cylinder G =

⋃
1≤i<j≤k Gij (on partite sets (V1, . . . , Vk)) satisfies that

for all i, j, 1 < i < j ≤ k, and most vertices x ∈ V1, the {i, j}-link graph Lij
x is

(α−2
√

δ
λ

,
√

δ, r)-regular. We now present this crucial fact.
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Fact 4.3.2. For all positive reals α, δ, α > 2δ, and for all positive integers k, λ, and r,
there exists ε > 0 so that the following property holds: suppose

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) G =

⋃
1≤i<j≤k Gij is an underlying (λ, ε, k)-cylinder of H.

(iii) For all i, j, 1 < i < j ≤ k, H({1, i, j}) is (α, δ, r)-regular with respect to
G({1, i, j}).

Then

(a) all but 4ε(k − 1)m vertices
v ∈ V1 satisfy that for each i ∈ {2, . . . , k},

m

λ
(1− ε) ≤ |NG,i(v)| ≤ m

λ
(1 + ε),

(b) all but 2
(

k−1
2

)√
δm vertices

v ∈ V1 satisfy that for each i, j, 1 < i < j ≤ k, (Lij
x , Gij(x, G)) is an

(α−2
√

δ
λ

,
√

δ, r, λ, 2λε)-regular couple.

5. R(k − 1) ⇒ D(k)

The objective of this section is to prove that R(k − 1) ⇒ D(k). To that end, we
give an auxiliary statement in Lemma 5.1.1 that implies R(k − 1) ⇒ D(k). In Claim
5.1.2, we prove the sufficiency of Lemma 5.1.1 for the implication R(k − 1) ⇒ D(k).
Afterwards, we verify Lemma 5.1.1. Note that our proof of Lemma 5.1.1 largely follows
from principles given in the previous section.

5.1. Lemma 5.1.1 and R(k − 1) ⇒ D(k).
We now state Lemma 5.1.1.

Lemma 5.1.1. For all integers k ≥ 4, for all α > 0 and β > 0, there exists a positive
constant δ so that for all integers λ ≥ 1

δ
, there exist r, ε such that the following holds:

suppose

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) G is an underlying (λ, ε, k)-cylinder of H.

(iii) For all B ∈ ([k]3 ∪ [k]k−1), |B| = b ∈ {3, k − 1}, H(B) is (α(b
3), δ, r)-regular with

respect to G(B).

Then ∣∣∣K(3)
k (H)

∣∣∣ ≥ α(k
3)

λ(k
2)

mk(1− β).

We now prove in Claim 5.1.2 that in order to show the implication R(k − 1) ⇒ D(k),
it is enough to show Lemma 5.1.1.

Claim 5.1.2. For k ≥ 4, Lemma 5.1.1 implies the implication R(k − 1) ⇒ D(k).

Before proceeding to the proof of Claim 5.1.2, we first discuss the main ideas behind
the proof of Claim 5.1.2. Fix k ≥ 4, and assume both Lemma 5.1.1 and the statement
R(k − 1) are true. Our goal is to show that the statement D(k) is true for the fixed
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integer k ≥ 4. Before formally disclosing the constants δ, r, and ε guaranteed to exist by
statement D(k), we reveal our strategy for proving D(k).

Note that in the hypothesis of D(k), we assume that all H(B), B ∈ [k]3, are sufficiently
(α, δ, r)-regular. The statement R(k − 1) being true ensures us that having all H(B)
sufficiently regular guarantees that all (k − 1)-partite 3-cylinders H(C), C ∈ [k]k−1, are
arbitrarily regular. Lemma 5.1.1 being true ensures us that with both the triads H(B)
and the (k − 1)-partite 3-cylinders H(C) sufficiently regular, H must contain at least

α(
k
3)

λ(
k
2)

mk(1 − β) copies of K
(3)
k , thus establishing D(k). With this strategy revealed, we

formally disclose the constants.

5.2. Proof of Claim 5.1.2.
With k ≥ 4 already given, let α, β > 0 be given. Our first goal is to define the constants

guaranteed by the statement D(k), starting with the promised constant δ.
Definitions of the Constants:

We first define the constant δ promised by the statement D(k). Recall that we assume
that Lemma 5.1.1 is true for the fixed integer k ≥ 4. Choose the constants α and β as
they are given above. Lemma 5.1.1 guarantees a constant δL = δL(α, β). Recall we also
assume that the statement R(k − 1) is true for the fixed integer k ≥ 4. Choose α as
it was given above, and let δk−1 = δL. The statement R(k − 1) guarantees a constant
δR = δR(α, δL). Note that δR ≤ δL. Set δ = δR. Thus, we have produced the constant δ
promised by the statement D(k).

Let λ ≥ 1
δ

be given. Our next goal is to produce the constants r and ε promised by the
statement D(k). Again, recall that we assume Lemma 5.1.1 and the statement R(k− 1)
are true for the fixed integer k ≥ 4.

For the constants α and β given above, δ = δR, and λ ≥ 1
δ

chosen above, Lemma 5.1.1
guarantees constants rL = rL(α, β, δ, λ) and εL = εL(α, β, δ, λ).

Set rk−1 = rL. With constants α, δk−1 = δL, δ, λ, rk−1 = rL determined above, the
statement R(k−1) guarantees constants rR = rR(α, δL, δ, λ, rL) and εR = εR(α, δL, δ, λ, rL).
Set

r = max{rL, rR} (22)

and

ε = min{εL, εR}. (23)

Thus, we have determined the constants guaranteed by the statement D(k). We now
prove that D(k) is true with the constants δ, r and ε defined above.
Proof of Claim 5.1.2.

As in the hypothesis of statement D(k), suppose that k ≥ 4, α and β > 0 are given
constants. Let the constant δ be given in the Definitions of the Constants. Let λ > 1

δ
be a given integer, and suppose constants r and ε are given in the Definitions of the
Constants. Suppose triple system H and underlying graph G satisfy the following setup
with constants k, α, δ, λ, r and ε:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) Let G be an underlying (λ, ε, k)-cylinder of H.
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(iii) For all B ∈ [k]3, H(B) is (α, δ, r)-regular with respect to the triad G(B).

In order to prove the statement D(k) is true, we must show

∣∣∣K(3)
k (H)

∣∣∣ ≥ α(k
3)

λ(k
2)

mk(1− β).

Let C ∈ [k]k−1, and consider the restricted (k−1)-partite 3-cylinder H(C) with under-
lying restricted (λ, ε, k−1)-cylinder G(C). We first prepare the (k−1)-partite 3-cylinder
H(C) with underlying (λ, ε, k − 1)-cylinder G(C) for the statement R(k − 1). Specif-
ically, note that all triads H(B) of H(C), B ∈ [C]3, are (α, δ, r)-regular, where δ, r,
and ε satisfy the following: with δk−1 = δL, we have δ = δR(α, δL). With λ ≥ 1

δ
, we

have r ≥ rR and ε ≤ εR. Thus, all triads H(B) of H(C) are (α, δR, rR)-regular with
respect to the (λ, εR, 3)-cylinder G(B), where δR, rR, and εR, are parameters which ver-
ify the applicability of statement R(k − 1) for the choices α, δk−1 = δL, λ ≥ 1

δ
, and

rk−1 = rL. The statement R(k − 1) guarantees that the (k − 1)-partite 3-cylinder H(C)

is (α(k−1
3 ), δL, rL)-regular with respect to the (λ, ε, k − 1)-cylinder G(C). This property

holds for all C ∈ [k]k−1.
Now we prepare the k-partite 3-cylinder H with underlying (λ, ε, k)-cylinder G for

Lemma 5.1.1. By assumption, all triads H(B), B ∈ [k]3, are (α, δ, r)-regular with respect
to G(B), so in particular, with δ = δR ≤ δL and r ≥ rL, rR, all triads H(B) are both
(α, δR, rR)-regular and (α, δL, rL)-regular with respect to G(B). By the application of
R(k−1) above, since all triads H(B) are (α, δR, rR)-regular, we also conclude that for all

C ∈ [k]k−1, the (k − 1)-partite 3-cylinder H(C) is (α(k−1
3 ), δL, rL)-regular with respect to

the (λ, εL, k−1)-cylinder G(C). Since all triads H(B) are (α, δL, rL)-regular, as well as all

(k − 1)-partite 3-cylinders H(C) are (α(k−1
3 ), δL, rL)-regular, where δL, rL, and εL verify

the applicability of Lemma 5.1.1 for the choices α, β, and λ, we have the hypothesis of
Lemma 5.1.1 satisfied. By that lemma,

∣∣∣K(3)
k (H)

∣∣∣ ≥ α(k
3)

λ(k
2)

mk(1− β).

Thus the statement D(k) is true for the fixed integer k ≥ 4. 2

5.3. Proof of Lemma 5.1.1.
We conclude this section by proving Lemma 5.1.1. We begin by defining the constants

involved.
Definitions of the Constants:

Let k ≥ 3 be an arbitrary integer, and α, β be arbitrary positive constants. Before
precisely defining the constants δ, r and ε guaranteed to exist by Lemma 5.1.1, we
first informally introduce these and other constants, and emphasize the hierarchy which
governs their relative sizes. With α, β given, we first define constants γ, δ1, δ2, and δ so
that

α � γ � min{δ1, δ
2
2} = δ.
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For λ ≥ 1
δ
, we next define constants r1, r2, r, ε1, ε2, ε3, and ε so that

1

λ
� min{ 1

r1

,
1

r2

} =
1

r
� min{ ε1

2λ
, ε2, ε3} = ε.

We now define these constants formally, however, for quick reference, one may think of
the following hierarchy,

α � γ �
√

δ � δ >
1

λ
� 1

r
� ε,

as it is this hierarchy which justifies all of our calculations in the proof of Lemma 5.1.1.
With α, β given positive constants, we first define an auxiliary positive constant β to

satisfy

1− β > (1− β)1/6. (24)

Further define auxiliary positive constant γ to satisfy both

√
γ ≤ α(k−1

2 )(1− β)

4 · 8k−1
, (25)

1−√γ > (1− β)1/6. (26)

We now produce the constant δ promised in Lemma 5.1.1. Let δ1 > 0 satisfy

1− 2δ1

α(k−1
3 )

> (1− β)1/6, (27)

1− 5
√

δ1

(
k − 1

2

)
> (1− β)1/6, (28)

2δ1 <
γ(1−√γ)(1− β)α(k−1

2 )

2k
. (29)

We want to ensure that our choice of δ is sufficient for an application of Fact 4.2.4. For
the constants α, β, and k − 1 from above, let

δ2 = δ2(α, β, k − 1) (30)

be the constant guaranteed by Fact 4.2.4. Set

δ = min{δ1, δ
2
2}. (31)

Let λ ≥ 1
δ

= max{ 1
δ1

, 1
δ2
2
} be a given integer. Fact 4.2.4 guarantees the existence of

constants

ε1 = ε1(α, β, k − 1, δ, λ), (32)

r1 = r1(α, β, k − 1, δ, λ). (33)

Let

r2 = dγλk−1e (34)

and

r = max{r1, r2}. (35)
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Finally, we define the constant ε guaranteed by Lemma 5.1.1. In order to define ε, we
need to first define additional constants ε2 and ε3. We want to ensure that our choice of
ε will be sufficient for an application of Fact 4.3.2. With constants k, α, δ, λ, and r set
above, let

ε2 = ε2(α, δ, k, λ, r) (36)

be that constant guaranteed by Fact 4.3.2.
Recall the function θk,λ(ε) defined in Fact 2.1.7. This function has the property that

for λ fixed, θk,λ(ε) → 0 as ε → 0. Let ε3 be a positive constant satisfying each of the
inequalities below

ε3 <

√
δ

2
, (37)

θk−1,λ(2λ
2ε3) < 1, (38)

(1− ε3)
k−1 > (1− β)1/6, (39)

1− (k − 1)rε3

1− 4
√

δ
(

k−1
2

) > (1− β)1/6. (40)

Having defined the constants ε1, ε2, and ε3, set

ε = min{ ε1

2λ
, ε2, ε3}. (41)

Note that the constants α, γ, λ, r, and ε defined above do indeed satisfy the following
hierarchy

α � γ �
√

δ � δ >
1

λ
� 1

r
� ε.

We see that the first 2 inequalities follow from (25) and (29), (31). We see in (35) that
r � λ, and the last inequality follows from (40) and (41).

Having defined all the promised constants, we proceed with the proof of Lemma 5.1.1.
Proof of Lemma 5.1.1.

Let α, β > 0 and integer k ≥ 4 be given. Let δ be given in (31). Let integer λ > 1
δ

be given. Let r, ε be given in (35) and (41) respectively. Let H be a k-partite 3-cylinder
with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m, and let G =

⋃
1≤i<j≤k Gij be

an underlying (λ, ε, k)-cylinder of H. Suppose further that for all B ∈ ([k]3 ∪ [k]k−1),

|B| = b ∈ {3, k − 1}, H(B) is (α(b
3), δ, r)-regular with respect to G(B). Our goal is to

show that H satisfies ∣∣∣K(3)
k (H)

∣∣∣ ≥ α(k
3)

λ(k
2)

mk(1− β).

We first state a definition.

Definition 5.3.1. Let v ∈ V1 be a vertex from the vertex set V1. We say that v is a good
vertex provided that v satisfies the following conditions:

(i) For all i, 1 < i ≤ k,
m

λ
(1− ε) < |NG,i(v)| < m

λ
(1 + ε). (42)
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(ii) For all i, j, 1 < i < j ≤ k, the pair of graphs (Lij
v , Gij(v, G)), the {i, j}-link graph

of v and the subgraph of Gij induced on the sets NG,i(v) and NG,j(v), form an

(α−2
√

δ
λ

,
√

δ, r, λ, 2λε)-regular couple.

Set
V ′

1 = {v ∈ V1 : v is a good vertex}.
We prove the following claim.

Claim 5.3.2.

|V ′
1 | ≥

(
1− 4

√
δ

(
k − 1

2

))
m.

Proof of Claim 5.3.2.
We would like to apply Fact 4.3.2 to G to infer that the size of V ′

1 is approximately
the size of V1. First, we note that the hypothesis of Fact 4.3.2 is satisfied by H and G.

Indeed, by assumption, H and G satisfy that all
(

k
3

)
triads are (α, δ, r)-regular, and that

G is a (λ, ε, k)-cylinder with ε ≤ ε2. Since ε2 is set in (36) to verify the applicability of
Fact 4.3.2 for the parameters k, α, δ, λ, and r, and since ε ≤ ε2, then ε also verifies the
applicability of Fact 4.3.2 for the same parameters. Statement (a) of Fact 4.3.2 tells us
that all but 4(k − 1)εm vertices satisfy (42) for all i, 1 ≤ i ≤ k. Statement (b) of Fact

4.3.2 tells us that for fixed i, j, 1 < i < j ≤ k, all but 2
(

k−1
2

)√
δm vertices x ∈ V1 satisfy

that (Lij
x , Gij(x, G)) is an (α−2

√
δ

λ
,
√

δ, r, λ, 2λε)-regular couple. Thus, we have

|V ′
1 | >

(
1−

(
k − 1

2

)
2
√

δ − 4(k − 1)ε

)
m,

>

(
1− 4

√
δ

(
k − 1

2

))
m,

where the last inequality follows from the fact that we chose ε in (37) and (41) to satisfy

ε <
√

δ
2

. 2

For convenience, set

σ = 1− 4
√

δ

(
k − 1

2

)
(43)

so that we may simply say |V ′
1 | > σm.

We now pause to reveal our strategy for the proof of Lemma 5.1.1. Our main technique

in this proof is counting copies of K
(2)
k−1 in the link graphs Lv of good vertices v ∈ V ′

1 . It

follows from the definition of the link graph Lv that any copy of K
(2)
k−1 ⊂ Lv corresponds

to a copy of K
(3)
k ⊂ H. Hence, obtaining a lower bound on the total number of copies of

K
(2)
k−1 contained within the link graphs Lv, v ∈ V ′

1 , implies a lower bound on the number

of copies of K
(3)
k contained within H. This lower bound will match the one promised by

Lemma 5.1.1.
We consider good vertices in our argument outlined above for the following rea-

son. A good vertex v satisfies that for all i, j, 1 < i < j ≤ k, (Lij
v , Gij(v, G)) is a
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(α−2
√

δ
λ

,
√

δ, r, λ, 2λε)-regular couple, and therefore (as we prove in Claim 5.3.4) satisfies
the hypothesis of Fact 4.2.4. Fact 4.2.4 then provides a lower bound on the number of

copies of K
(2)
k−1 contained within Lv.

We proceed by proving the following claim which will be useful in the strategy above.

Claim 5.3.3. There exists a family S = {S1, . . . , Sq} of pairwise disjoint, r2-element
subsets of V ′

1 which satisfies:

(i) q ≥ σm
r2

(1− (k−1)r2ε
σ

), where σ is given in (43) ,

(ii) for each i ∈ [q], Si = {v(i)
1 , v

(i)
2 , . . . , v(i)

r2
} ⊂ V ′

1 ,
(iii) for each i ∈ [q], for each {x, y} ∈ [r2]

2, for all j, 1 < j ≤ k,

|NG,j(v
(i)
x ) ∩NG,j(v

(i)
y )| ≤ m

λ2
(1 + ε)2. (44)

Proof of Claim 5.3.3.
We apply Fact 4.1.2 to the subgraph G̃ of G induced on the sets V ′

1 , V2, . . . , Vk. Fact
4.1.2 would guarantee the existence of a family S described precisely in Claim 5.3.3, so
we need only check that the hypothesis of Fact 4.1.2 is met. To that effect, given the
notation used in Fact 4.1.2, set V ′

1 = W0, V2 = W1, . . . , Vk = Wk−1, m = M , and let σ be

given as in (43). Under this translation of notation, we write G̃ =
⋃

0≤i<j≤k−1 G̃ij, where

for all i, j, 0 < i < j ≤ k−1, G̃ij = G[Wi, Wj] = G[Vi+1, Vj+1], and for 0 = i < j ≤ k−1,

G̃0j = G[W0, Wj] = G[V ′
1 , Vj+1]. The condition of Fact 4.1.2 in (i) requires that for every

j ∈ [k − 1], the graph G̃0j satisfies that for every W ′
0 ⊆ W0, |W ′

0| ≥ εM and for every
W ′

j ⊆ Wj, |W ′
j| ≥ εM , then

d
G̃0j

(
W ′

0, W
′
j

)
∈
(

1

λ
(1− ε),

1

λ
(1 + ε)

)
.

However, this condition is easily satisfied by the fact that G is a (λ, ε, k) cylinder. The
condition of Fact 4.1.2 (ii) requires that all v ∈ W0 = V ′

1 satisfy that for all j ∈ [k − 1],

|N
G̃,j

(v)| ≤ M

λ
(1 + ε).

However, this is satisfied by the fact that all v ∈ V ′
1 satisfy the property in (42) of

Definition 5.3.1. Thus, we may apply Fact 4.1.2, and hence obtain a family S described
precisely in Claim 5.3.3 above. 2

Let S = {S1, . . . , Sq} be that collection guaranteed by Claim 5.3.3 above satisfying
(i), (ii), and (iii) in the statement of Claim 5.3.3. From the collection S, consider the

set S1 = {v(1)
1 , v

(1)
2 , . . . , v(1)

r2
} ∈ S. For convenience of notation, we drop the superscripts

to obtain S1 = {v1, v2, . . . , vr2}. For µ ∈ [r2], fix vertex v = vµ ∈ S1, and consider the

link graph Lv =
⋃

1<i<j≤k Lij
v . We conclude a lower bound on |K(2)

k−1(Lv)| in the following
claim.

Claim 5.3.4. For the fixed vertex v ∈ S1,

|K(2)
k−1(Lv)| ≥

(
α

λ

)(k−1
2 ) (m

λ
(1− ε)

)k−1

(1− β). (45)
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Proof of Claim 5.3.4.
We apply Fact 4.2.4 to the pair of graphs Lv =

⋃
1<i<j≤k Lij

v and
⋃

1<i<j≤k Gij(v, G).
Note that the hypothesis of Fact 4.2.4 is met with this pair of graphs. Indeed, the graph⋃

1<i<j≤k Gij(v, G) is a (λ, 2λε, k−1)-cylinder with (k−1)-partition (NG,2(v), . . . , NG,3(v)),
where by virtue of v ∈ V ′

1 being a good vertex, the inequality |NG,i(v)| > m
λ
(1− ε) from

(42) is satisfied for all i, 1 < i ≤ k. The graph Lv =
⋃

1<i<j≤k Lij
v is a (k − 1)-partite

cylinder defined on the same (k − 1)-partition, where for all i, j, 1 < i < j ≤ k,
Lij

v ⊆ Gij(v, G). Since by virtue of v ∈ V ′
1 being a good vertex, the pair (Lij

v , Gij(v, G))

is a (α−2
√

δ
λ

,
√

δ, r, λ, 2λε)-regular couple for all i, j, 1 < i < j ≤ k (cf., Definition 4.2.3).
The only condition left to check before applying Fact 4.2.4 is that the constants δ, r, and
ε are appropriate to invoke Fact 4.2.4.

Recall δ2 = δ2(α, β, k − 1) was that constant set in (30) to verify the applicability of
Fact 4.2.4 for the parameters α, β, and k − 1. Similarly, r1 = r1(α, β, k − 1, δ, λ) and
ε1 = ε1(α, β, k − 1, δ, λ) were those constants set in (33) and (32) respectively to verify
the applicability of Fact 4.2.4 for the parameters α, β, k − 1, δ, and λ, λ ≥ 1

δ
. Since√

δ ≤ δ2 in (31), r ≥ r1 in (35), and ε ≤ ε1
2λ

in (41), we have that
√

δ, r, and 2λε verifies
the applicability of Fact 4.2.4 for the same parameters.

Therefore, we apply Fact 4.2.4 to the graphs Lv and
⋃

1<i<j≤k Gij(v, G). Since the size
of each partite set NG,j(v), 1 < j ≤ k, of these graphs Lv,

⋃
1<i<j≤k Gij(v, G) satisfies

|NG,j(v)| > m

λ
(1− ε),

we apply Fact 4.2.4 to the graphs Lv and
⋃

1<i<j≤k Gij(v, G) to conclude

|K(2)
k−1(Lv)| ≥

(
α

λ

)(k−1
2 ) (m

λ
(1− ε)

)k−1

(1− β).

2

We now use (45) to prove the following claim. Recall the collection S = {S1, . . . , Sq}
guaranteed by Claim 5.3.3, where for convenience, we put S1 = {v1, . . . , vr2}. The
following claim asserts that the number of (k − 1)-cliques with all edges belonging to a
link graph of some vertex vµ in S1, 1 ≤ µ ≤ r2, is a large portion of all the (k−1)-cliques
in the (k − 1)-partite subgraph of G spanned by the sets V2, . . . , Vk.

Claim 5.3.5. Let B = {2, . . . , k} so that G(B) =
⋃

1<i<j≤k Gij. Then

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| > δ|K(2)

k−1(G(B))|. (46)

Proof of Claim 5.3.5.
We apply inclusion-exclusion to |⋃r2

µ=1K
(2)
k−1(Lvµ)| to obtain

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| ≥

r2∑
µ=1

|K(2)
k−1(Lvµ)| −

∑
{µ,ν}∈[r2]2

|K(2)
k−1(Lvµ) ∩ K(2)

k−1(Lvν )|. (47)
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To provide an upper bound for the second order term above, we first recall that for all
{µ, ν} ∈ [r2]

2, the vertices vµ, vν ∈ S1 satisfy the property in (44). That property tells
us that for all j, 1 < j ≤ k,

|NG,j(vµ) ∩NG,j(vν)| ≤
m

λ2
(1 + ε)2.

It follows then from (44) and Fact 2.1.7 that for each {µ, ν} ∈ [r2]
2,

|K(2)
k−1(Lvµ) ∩ K(2)

k−1(Lvν )| < (1 + θk−1,λ(2λ
2ε))

1

λ(k−1
2 )

(
m

λ2
(1 + ε)2

)k−1

,

<
2

λ(k−1
2 )

(
m

λ2
(1 + ε)2

)k−1

, (48)

where the last inequality follows from the fact that we chose ε in (38) and (41) to satisfy
θk−1,λ(2λ

2ε) < 1. Applying (45) and (48) to the right hand side of (47), we obtain the

following further lower bound on |⋃r2
µ=1K

(2)
k−1(Lvµ)|:

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| ≥ r2

(
α

λ

)(k−1
2 ) (m

λ
(1− ε)

)k−1

(1− β)− (49)

(
r2

2

)
2

λ(k−1
2 )

(
m

λ2
(1 + ε)2

)k−1

, (50)

≥ mk−1

λ(k−1
2 )

P (r2), (51)

where

P (r2) =

r2
α(k−1

2 )

λk−1
(1− ε)k−1(1− β)− r2

2

(
1 + ε

λ

)2(k−1)
 .

We now use our value for r2 given in (34) and begin by making the following estimations
of r2.

Note that it trivially follows that r2 ≥ γλk−1. It also trivially follows that

r2 ≤ γλk−1 + 1 = γλk−1(1 +
1

γλk−1
). (52)

From our hypothesis that λ ≥ 1
δ
, we easily infer that δk−1 ≥ 1

λk−1 . Using this lower bound

on δk−1 in the right hand side of (52), we see

r2 ≤ γλk−1(1 +
δk−1

γ
).

However, it follows from (29) and (31) that δ ≤ γ, thus we have

γλk−1(1 +
δk−1

γ
) ≤ γλk−1(1 +

δk−2γ

γ
) ≤ γλk−1(1 + δ),

where the last inequality follows from the fact that k ≥ 3. In sum,

γλk−1 ≤ r2 = dγλk−1e ≤ γλk−1(1 + δ). (53)
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With γ defined in (25), (26), we substitute the bounds on r2 given in (53) into the

expression in (51) to obtain a further lower bound on |⋃r2
µ=1K

(2)
k−1(Lvµ)|. This substitution

yields

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| ≥ mk−1

λ(k−1
2 )

[
γα(k−1

2 )(1− ε)k−1(1− β)− γ2(1 + δ)2(1 + ε)2(k−1)
]
,

the right hand side of which we equivalently write as

mk−1

λ(k−1
2 )

γ
[
α(k−1

2 )(1− ε)k−1(1− β)−√γ
√

γ(1 + δ)2(1 + ε)2(k−1)
]
. (54)

Recall from (25) that γ satisfies

√
γ ≤ α(k−1

2 )(1− β)

4 · 8k−1
.

Since δ < 1 and ε < 1/2, we easily have that

√
γ ≤ α(k−1

2 )(1− β)(1− ε)k−1

(1 + δ)2(1 + ε)2(k−1)
. (55)

Substituting (55) into one of the factors of
√

γ in (54) yields

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| ≥ mk−1

λ(k−1
2 )

γ(1−√γ)α(k−1
2 )(1− β)(1− ε)k−1. (56)

Recall that by our choice of δ in (29) and (31), we have

2δ <
γ(1−√γ)α(k−1

2 )(1− β)

2k
.

Since ε < 1/2, we easily have that

2δ < γ(1−√γ)α(k−1
2 )(1− β)(1− ε)k−1. (57)

Hence, we have from (56) and (57) that

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| ≥ 2δ

mk−1

λ(k−1
2 )

. (58)

On the other hand, it follows from Fact 2.1.7 that

|K(2)
k−1(G(B))| < (1 + θk−1,λ(ε))

mk−1

λ(k−1
2 )

. (59)

Since θk−1,λ(ε) decreases as ε decreases, we infer by (38) and (41) that

θk−1,λ(ε) < θk−1,λ(2λ
2ε) < 1. (60)

Combining (58), (59), and (60), we infer that

|
r2⋃

µ=1

K(2)
k−1(Lvµ)| > δ|K(2)

k−1(G(B))|.

Thus Claim 5.3.5 is proved. 2
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We use Claim 5.3.5 to invoke the (α(k−1
3 ), δ, r)-regularity of the (k−1)-partite 3-cylinder

H(B) (recall B = {2, . . . , k}). Viewing (Lv1 , . . . , Lvr2
) as an r2-tuple of (k − 1)-partite

cylinders satisfying (46) and recalling that r2 ≤ r, the (α(k−1
3 ), δ, r)-regularity of H(B)

implies

|K(3)
k−1(H(B)) ∩

r2⋃
µ=1

K(2)
k−1(Lvµ)| > (α(k−1

3 ) − 2δ)|
r2⋃

µ=1

K(2)
k−1(Lvµ)|.

Using the bound in (56) in the right hand side of the above inequality yields

|K(3)
k−1(H(B)) ∩

r2⋃
µ=1

K(2)
k−1(Lvµ)| >

(α(k−1
3 ) − 2δ)γ(1−√γ)α(k−1

2 )(1− β)(1− ε)k−1 mk−1

λ(k−1
2 )

. (61)

In view of (24), (26), (39), and (41), we have

(1−√γ)(1− β)(1− ε)k−1 > (1− β)
1
2 , (62)

and also, in view of (27) and (31),

(α(k−1
3 ) − 2δ)α(k−1

2 ) = α(k
3)
(

1− 2δ

α(k−1
3 )

)
> α(k

3)(1− β)
1
6 . (63)

Thus it follows from (61), (62), and (63) that

|K(3)
k−1(H(B)) ∩

r2⋃
µ=1

K(2)
k−1(Lvµ)| > α(k

3)γ(1− β)
2
3

mk−1

λ(k−1
2 )

. (64)

We now conclude our argument for the proof of Lemma 5.1.1. It follows from the
definition of link graph Lvµ , 1 ≤ µ ≤ r2, that for all

{w2, . . . , wk} ∈

K(3)
k−1(H(B)) ∩

r2⋃
µ=1

K(2)
k−1(Lvµ)

 ,

the set {vµ, w2, . . . , wk} ∈ K(3)
k (H). Using this fact and repeating the argument for (64)

above for all sets Si ∈ S, 1 ≤ i ≤ q, we obtain∣∣∣K(3)
k (H)

∣∣∣ ≥
q∑

i=1

|K(3)
k−1(H(B)) ∩

r2⋃
µ=1

K(2)
k−1(Lvµ)|,

> qα(k
3)γ(1− β)

2
3

mk−1

λ(k−1
2 )

. (65)

Recall q = (1− (k−1)r2ε
σ

)σm
r2

. In light of the fact that r2 ≤ γλ(k−1
2 )(1 + δ), and due to (40)

and (43), we have

q = (1− (k − 1)r2ε

σ
)
σm

r2

≥ (1− β)
1
6

σm

γλk−1(1 + δ)
. (66)
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Combining the lower bound for q in (66) with the inequality in (65) implies∣∣∣K(3)
k (H)

∣∣∣ > σ

1 + δ
α(k

3)(1− β)
5
6

mk

λ(k
2)

. (67)

Recall from (43) that σ = 1− 4
√

δ
(

k−1
2

)
, and thus

σ

1 + δ
≥ 1− 5

√
δ

(
k − 1

2

)
.

Recall from our choice of δ in (28) and (31) that

1− 5
√

δ

(
k − 1

2

)
> (1− β)

1
6 . (68)

Using the inequality in (68), we may bound the quantity in the right hand side of (67)
further from below to imply

∣∣∣K(3)
k (H)

∣∣∣ > α(k
3)

λ(k
2)

mk(1− β),

thus Lemma 5.1.1 is proved. 2

6. The Regularity Lemma

Our next goal is to prove the implication D(k) ⇒ R(k). However, much of our proof
of this implication involves the use of a regularity lemma. In this section, we state a
regularity lemma for 3-uniform hypergraphs which slightly extends Theorem 3.5 in [2].
The proof of this lemma follows the same lines as that of Theorem 3.5, and we do not
include it here. First, we state a number of supporting definitions which are analogous
to those found in [2].

6.1. Definitions for the Regularity Lemma.

Definition 6.1.1. Let t be an integer and let V =
⋃k

i=1 Vi, |V1| = . . . = |Vk| = N , be a
partition of a kN element set V . We define an equitable refinement of V =

⋃k
i=1 Vi as a

partition V = W = W0 ∪
⋃

1≤i≤k

⋃
1≤xi≤t Wxi

, where

(i) for any i ∈ [k],
⋃

1≤xi≤t Wxi
⊆ Vi,

(ii) for each i, 1 ≤ i ≤ k, for each xi, 1 ≤ xi ≤ t, |Wxi
| = bN

t
c = m,

(iii) |W0| < kt.

Note that W0 = ∅ if t divides N . We use⋃
1≤i≤k

⋃
1≤xi≤t

xi = {11, . . . , t1, 21, . . . , t2, . . . , t1, . . . , tk}

as double-indices.

Definition 6.1.2. Let k, λ, l, t be positive integers, ε, ε1, ε2 be positive reals. Suppose
G =

⋃
1≤i<j≤k Gij is a (λ, ε, k)-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| =

N . We define a (λl, kt, ε1, ε2)-partition P of V (G) = V1 ∪ . . . ∪ Vk as a partition V =
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W = W0∪
⋃

1≤i≤k

⋃
1≤xi≤t Wxi

of V (G), together with a system of bipartite graphs P
xiyj
αxiyj

,
1 ≤ i < j ≤ k, 1 ≤ xi, yj ≤ t, 1 ≤ αxiyj

≤ lxiyj
≤ l, such that:

(0) W = W0 ∪
⋃

1≤i≤k

⋃
1≤xi≤t Wxi

is an equitable refinement of V = V1 ∪ . . . ∪ Vk.
(i) For all i, j, 1 ≤ i < j ≤ k, for all xi, yj, 1 ≤ xi, yj ≤ t,⋃

1≤αxiyj≤lxiyj

P xiyj
αxiyj

⊆ G[Wxi
, Wyj

],

=
{
{vxi

, vyj
} ∈ G : vxi

∈ Wxi
, vyj

∈ Wyj

}
.

(ii) All but ε1

(
kt
2

)
m2/λ pairs {vxi

, vyj
} ∈ G, vxi

∈ Wxi
, vyj

∈ Wyj
, are edges of ε2

2λl
-

regular bipartite graphs P
xiyj
αxiyj

, 1 ≤ i < j ≤ k, 1 ≤ xi, yj ≤ t, 1 ≤ αxy ≤ lxy ≤ l,
satisfying

1

λl
− ε2

2λl
< d

P
xiyj
αxiyj

(Wxi
, Wyj

) <
1

λl
+

ε2

2λl
. (69)

Note the following about Definition 6.1.2.

• In statement (0) of Definition 6.1.2, if it is further assumed that t divides N , then
we have that W0 = ∅, where W0 is that residual class of vertices described in
Definition 6.1.1.

• Note that since |G| ∼
(

k
2

)
N2

λ
≤
(

kt
2

)
m2

λ
, statement (ii) of Definition 6.1.2 says

that all but an ε1-portion of the edges of G belong to ε2
2λl

-regular graphs P xy
αxy

of

density satisfying (69).

• Note that the ε2
2λl

-regular bipartite graphs P
xiyj
αxiyj

each with density satisfying (69)
are (λl, ε2, 2)-cylinders. For the remainder of this paper, we refer to such bipartite
graphs P

xiyj
αxiyj

specifically as being (λl, ε2, 2)-cylinders.

We now state a definition relating to Definition 2.2.7.

Definition 6.1.3. Let positive integers k, λ, l, t, r and positive reals δ, ε , ε1, ε2 be
given. Suppose

(i) G =
⋃

1≤i<j≤k Gij is a (λ, ε, k)-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . =
|Vk| = N .

(ii) H is a k-partite 3-cylinder with underlying k-partite cylinder G =
⋃

1≤i<j≤k Gij.
(iii) P is a (λl, kt, ε1, ε2)-partition of G with equitable refinement W0∪

⋃
1≤i≤k

⋃
1≤xi≤t Wxi

.

We say that the (λl, kt, ε1, ε2)- partition P of G is (δ, r)-regular with respect to H if

∑
{|K(2)

3 (P3)| : P3 is not a (δ, r)-fully regular triad of P} < δ

(
kN

λ

)3

. (70)

Suppose P3 = P xhyi
α ∪ P

xhzj

β ∪ P
yizj
γ , 1 ≤ h < i < j ≤ k, α ∈ [lxhyi

], β ∈ [lxhzj
], γ ∈ [lyizj

],
is a triad of the partition P defined on Wxh

, Wyi
, Wzj

. For the triad P3, set
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µP3 =
|K(2)

3 (P3)|
m3

.

We may equivalently write the inequality in (70) with the notation above as

∑
{µP3 : P3 is not a (δ, r)-fully regular triad of P} < δ

(
kN

mλ

)3

. (71)

6.2. Statement of the Regularity Lemma.
We now state our regularity lemma.

Theorem 6.2.1. For all constants ε1, δ, positive integers k, λ, l0, t0, k ≥ 3, integer valued
functions r(t, l), and functions ε2(l), there exist ε > 0 and integers T0, L0, N0 so that if

(i) G is a (λ, ε, k)-cylinder with k partition (V1, . . . , Vk), |V1| = . . . = |Vk| = N ≥ N0,
(ii) H is a k-partite 3-cylinder with G underlying H,

then H admits a (δ, r(t, l))-regular (λl, kt, ε1, ε2(l)) partition P, where l0 ≤ l ≤ L0, t0 ≤
t ≤ T0.

Note that in Theorem 6.2.1, the numbers ε, T0, L0, N0 do not only depend on ε, δ, k,
λ, l0, and t0, but also functions r(t, l), and ε2(l).

We mention that there is only one slight difference between Theorem 6.2.1 and the
original Theorem 3.5 of Frankl and Rödl in [2]. Indeed, recall in Definition 6.1.2 and
Theorem 6.2.1 the k-partite graph G =

⋃
1≤i<j≤k Gij had each Gij, 1 ≤ i < j ≤ k, a

(λ, ε, 2)-cylinder. In Theorem 3.5 of [2], essentially speaking, the graph G was G = KkN .
To be precisely compatible with Definition 6.1.2, Theorem 3.5 of [2] could be formulated
with G =

⋃
1≤i<j≤k K[Vi, Vj], where K[Vi, Vj] denotes the complete bipartite graph on

Vi ∪ Vj, 1 ≤ i < j ≤ k. In this way, we see each K[Vi, Vj], 1 ≤ i < j ≤ k, is a
(1, ε, 2)-cylinder and hence the easy generalization from Theorem 3.5 in [2] to Theorem
6.2.1.

It is also possible to prove a slight generalization of Theorem 6.2.1 above. The following
statement is analogous to that of Theorem 3.11 in [2], and its proof is also along the same
lines as Theorem 3.5 in [2].

Theorem 6.2.2. For all constants ε1, δ, positive integers s, k, λ, l0, t0, k ≥ 3, integer
valued functions r(t, l), and functions ε2(l), there exists ε > 0 and integers T0, L0, N0 so
that if

(i) G is a (λ, ε, k)-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = N ≥ N0,
(ii) {H1, . . . ,Hs} is any family of k-partite 3-cylinders satisfying that for each i ∈ [s],

G underlies Hi,

then there exists a (λl, kt, ε1, ε2(l)) partition P which is (δ, r(t, l))-regular with respect to
each Hi, where l0 ≤ l ≤ L0, t0 ≤ t ≤ T0.

7. D(k) =⇒ R(k)

In this section, we prove the implication D(k) ⇒ R(k). Our proof is handled through
the upcoming Lemma 7.1.1.
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7.1. Lemma 7.1.1.
We recall the familiar Setup 2’, and for convenience, we restate this setup. For an

integer k ≥ 3, H is as usual a k-partite 3-cylinder, and G =
⋃

1≤i<j≤k Gij is an underlying
k-partite cylinder of H. In particular, for specified constants k, α, δ, λ, r, ε and N , H
and G satisfy the following Setup:
Setup:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = N ,
(ii) G =

⋃
1≤i<j≤k Gij is a (λ, ε, k)-cylinder underlying H,

(iii) for all B ∈ [k]3, H(B) is (α, δ, r)-regular with respect to G(B).

We prove the following lemma.

Lemma 7.1.1. For every integer k ≥ 4, the statement D(k) implies the statement R(k).

Before giving any formal proofs, we first discuss our strategy for verifying Lemma
7.1.1. For the moment, let us suppose that given constants k ≥ 4, α, δk, a constant δ > 0
has been disclosed, and given an integer λ ≥ 1

δ
and an integer rk ≥ 1, constants r, ε,

and N0 have been disclosed. Suppose 3-cylinder H and underlying cylinder G satisfy the
conditions of the Setup with the constants k, α, δ, λ, r, ε, and N , N ≥ N0. To say that

H is (α(k
3), δk, rk)-regular with respect to G means the following (cf., Definition 2.2.6): let

−→
Q = (Q(s)), 1 ≤ s ≤ rk, be an rk-tuple, where for all s ∈ [rk], Q(s) =

⋃
1≤i<j≤kQ

ij(s),

and for all {i, j} ∈ [k]2, s ∈ [rk], Qij(s) ⊆ Gij. If
−→
Q satisfies

|
rk⋃

s=1

K(2)
k (Q(s))| > δk|K(2)

k (G)|,

then
−→
Q also satisfies dH(

−→
Q ) > α(k

3) − 2δk, or equivalently,

|K(3)
k (H) ∩

rk⋃
s=1

K(2)
k (Q(s))| > (α(k

3) − 2δk)|
rk⋃

s=1

K(2)
k (Q(s))|. (72)

Therefore, to prove Lemma 7.1.1, we need only show that for any such
−→
Q , the inequality

in (72) is indeed satisfied.
While the proof of Lemma 7.1.1 is complicated in its technical details, the idea behind

it is simple. We now give an outline for the proof of Lemma 7.1.1 for the case that rk = 1.
Suppose that 3-cylinder H and underlying cylinder G satisfy the conditions of the Setup
with constants k, α, δ, λ, r, ε and N . Suppose Q =

⋃
1≤i<j≤kQ

ij is given so that for all

{i, j} ∈ [k]2, Qij ⊆ Gij, and |K(2)
k (Q))| > δk|K(2)

k (G)|. We show

|K(3)
k (H) ∩ K(2)

k (Q)| > (α(k
3) − 2δk)|

rk⋃
s=1

K(2)
k (Q(s))|. (73)

We begin by restricting the hypergraph H to HQ = H∩K(2)
3 (Q). We use our Regularity

Lemma, Theorem 6.2.1, to obtain a (λl, kt, ε1, ε2(l)) partition P0 of the hypergraph HQ

which is (δ, r(t, l))-regular with respect to underlying cylinder G, where W = W0 ∪⋃
1≤i≤k

⋃
1≤xi≤t Wxi

is the equitable refinement of V = V1 ∪ . . . ∪ Vk associated with P0,
and P

xiyj
αxiyj

, 1 ≤ i < j ≤ k, 1 ≤ xi, yj ≤ t, 1 ≤ αxiyj
≤ lxiyj

≤ l is the system of bipartite
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graphs associated with P0. We consider k-partite small cylinders Ck =
⋃
{xi,yj}∈[B]2 P

xiyj
αxiyj

within the partition P0, where the sets B satisfy B ⊆ ⋃
1≤i≤k

⋃
1≤xi≤t xi, |B| = k, and for

each pair {xi, yj} ∈ [B]2, i 6= j. Our goal is to apply the statement D(k) to “appropriate”
small k-partite cylinders Ck. To that end, we characterize a class of k-partite small
cylinders Ck, the class Πk of perfect cylinders. Perfect cylinders are those small k-partite
cylinders Ck for which the statement D(k) applies (i.e. all triads of Ck are “dense
and regular”, and all bipartite graphs P

xiyj
αxiyj

of Ck are “dense and regular”). We show

that very few copies of K
(2)
k from K(2)

k (Q) belong to non perfect cylinders (we call these

cylinders defective cylinders). Since nearly all copies of K
(2)
k from K(2)

k (Q) belong to
perfect cylinders Ck ∈ Πk, we conclude a lower bound on the number of perfect cylinders
|Πk|. We apply the statement D(k) to each perfect cylinder Ck ∈ Πk to conclude a lower

bound on |K(3)
k (HQ) ∩ K(2)

k (Ck)|. We then sum this number over all such perfect Ck (we
can estimate |Πk|) to obtain the inequality in (73).

However, in order to make our plan precise, we need to disclose the constants promised
by Lemma 7.1.1. In what follows, we define these constants and then return to prove
(72) in the upcoming Proposition 7.2.4.

7.2. Proving Lemma 7.1.1. .
We now begin with the definitions of the constants involved in Lemma 7.1.1. However,

the Reader may feel free to skip through the tedious definitions and observe that, similarly
to Lemma 5.1.1, we commit ourselves to the following hierarchy

α, δk � δ >
1

λ
� 1

r
� ε � 1

N0

.

We mention that it is necessary for

r ≥ rk (74)

We explain the reason for this (subtle) requirement later in context.
Definitions of the Constants in Lemma 7.1.1

In order to start with the formal definitions, observe that the statement R(k) compactly
stated says “∀α, δk, ∃δ : ∀λ ≥ 1

δ
,∀rk ≥ 1, ∃r, ε, N0 so that . . . ”. Let k ≥ 4, and let α, δk

be two given positive reals. Note that we may assume that 2δk < α(k
3), since otherwise

Lemma 7.1.1 would be trivial. With α, and δk given, we first define the promised constant
δ.
Definition of δ

In the definition of δ, we invoke the statement D(k), which recall compactly stated says
“∀α, β, ∃δD(k) = δD(k)(α, β) : ∀λ ≥ 1

δ
, ∃rD(k) = rD(k)(α, β, δ, λ), εD(k) = εD(k)(α, β, δ, λ) so

that . . . ”. Apply the parameters α
2
, and β = δk to the statement D(k), where α, δk, k are

fixed above. Let

δD(k) = δD(k)(
α

2
, δk) (75)
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be that value guaranteed by statement D(k). Set δ > 0 to be small enough so that each
of the following inequalities are satisfied:

δ <
α

4
, (76)

δ ≤ δD(K), (77)

α(k
3)
(
1− 12

√
δk3

δk

)
(1− 2δ

α
)(

k
3)(1− δk)

1 + δ
> α(k

3) − 2δk. (78)

Thus, we have defined the promised constant δ. Note that with δ fixed, it follows that

δ ≤ δD(k)(
α

2
, δk) ≤ δD(k)(α− 2δ, δk). (79)

Let λ ≥ 1
δ
, rk ≥ 1 be given integers. Our next goal is to produce the promised constants

r, ε, and N0.
Definitions of r, ε, and N0

The definitions of the constants r, ε, and N0 depend on the output of two previous
statements, the statement D(k) and our Regularity Theorem, Theorem 6.2.1. As a result,
we are only momentarily able to define these constants (cf., (97) for the definition of r,
(90) for the definition of ε and (93) for the definition of N0).

First, we consider the statement D(k). Recall that with α and δk given, we have
defined δ and subsequently have λ ≥ 1

δ
and rk ≥ 1 arbitrarily given. Let l be an integer

variable. For the parameters α− 2δ, β = δk, δ, λl let

rD(k)(l) = rD(k)(α− 2δ, δk, δ, λl), (80)

εD(k)(l) = εD(k)(α− 2δ, δk, δ, λl) (81)

be guaranteed by the statement D(k). We specify the value l seen in (80) and (81) only
after an application of the Regularity Theorem, Theorem 6.2.1.

Recall the Regularity Theorem, as it is stated in Section 6. We may more com-
pactly write Theorem 6.2.1 as the following “∀ε1, δ, ∀k, λ, l0, t0 : k ≥ 3, ∀r(t, l), ε2(l),
∃ε, T0, L0, N0, so that . . . ”. We now describe the input for Theorem 6.2.1. Let δ be given
in (76)-(78), let k ≥ 4 be given in the beginning of the Definitions of the Constants in
Lemma 7.1.1, and let λ ≥ 1

δ
be given as above. Since δ, k, and λ were already chosen,

we now define the remaining constants:

ε1 =

√
δ

λ(k
2)

, (82)

l0 = d1
δ
e, (83)

t0 = 1. (84)

Now we must produce the input functions r(t, l) and ε2(l). Recall the definition of rD(k)(l)
in (80). For arbitrary positive integers l and t, set

r(t, l) = max{2rkt
3l3, rD(k)(l)}. (85)
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Recall Fact 2.1.7. For the definition of the function ε2(l), we need this fact, as well
as the following two consequences of it. We state these easy consequences of Fact 2.1.7
without proof.

Fact 7.2.1. For any positive integers k, λ, and suitably small positive reals ε, there exists
a function θ′k,λ(ε), θ′k,λ(ε) → 0 as ε → 0, such that whenever G is a (λ, ε, k)-cylinder with
k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m, the following holds.

For each i, j, 1 ≤ i < j ≤ k, all but 2kεm2 edges e = {vi, vj} ∈ G, vi ∈ Vi,
vj ∈ Vj, satisfy

(1− θ′k,λ(ε))
mk−2

λ(k
2)−1

< |{Y ∈ K(2)
k (G) : vi, vj ∈ Y }| < (1 + θ′k,λ(ε))

mk−2

λ(k
2)−1

.

Fact 7.2.2. For any positive integers k, λ, and suitably small positive reals ε, there exists
a function θ

′′
k,λ(ε), θ

′′
k,λ(ε) → 0 as ε → 0, such that whenever G is a (λ, ε, k)-cylinder with

k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m, the following holds.

For each i1, i2, i3, 1 ≤ i1 < i2 < i3 ≤ k, all but 6kεm3 triangles t =

{vi1 , vi2 , vi3} ∈ K
(2)
3 (G), vi1 ∈ Vi1, vi2 ∈ Vi2, vi3 ∈ Vi3 satisfy

(1− θ
′′

k,λ(ε))
mk−3

λ(k
2)−3

< |{Y ∈ K(2)
k (G) : vi1 , vi2 , vi3 ∈ Y }|,

< (1 + θ
′′

k,λ(ε))
mk−3

λ(k
2)−3

.

The definition of the function ε2(l) depends on functions θk,λl(ε), θ′k,λl(ε), θ
′′
k,λl(ε) defined

in Facts 2.1.7, 7.2.1, 7.2.2. Note that these functions all tend to zero as their argument ε
tends to zero. For an arbitrary positive integer l, let ε2(l) be a positive quantity satisfying
each of the following inequalities

ε2(l) ≤ εD(k)(l), (86)

θ3,λl(ε2(l)) <
1

10
, (87)

θk,λl(ε2(l)), θ
′
k,λl(ε2(l)), θ

′′

k,λl(ε2(l)) < 1/2, (88)

θk,λl(ε2(l)) < δ. (89)

For the input values ε1, δ, λ, l0, t0, r(t, l), and ε2(l) given above, let

ε = ε(ε1, δ, λ, l0, t0, r(t, l), ε2(l)), (90)

T0 = T0(ε1, δ, λ, l0, t0, r(t, l), ε2(l)), (91)

L0 = L0(ε1, δ, λ, l0, t0, r(t, l), ε2(l)), (92)

N0 = N0(ε1, δ, λ, l0, t0, r(t, l), ε2(l)) (93)
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be the constants guaranteed by Theorem 6.2.1. Note that we may assume without loss
of generality that ε from (90) satisfies

ε <

√
δ

6kλ(k
2)

, (94)

θk,λ(ε), θ
′
k,λ(ε), θ

′′

k,λ(ε) <
1

2
, (95)

θ3,λ(ε) <
1

2
. (96)

We stress here that the values ε, T0, L0, and N0 are now fixed constants. We define the

constant r as

r = r(T0, L0) (97)

where the function r(t, l) is given in (85). Having defined the constants above, we now
proceed to the proof of Lemma 7.1.1.
Proof of Lemma 7.1.1.

Given α and δk, let δ be given in (76), (77) and (78). Given integers λ ≥ 1
δ

and rk ≥ 1
let r, ε, and N0 be given in (97), (90), and (93) respectively, and let N ≥ N0. We may
think of the constants satisfying the following hierarchy:

α � δk � δ >
1

λ
� 1

r
� ε. (98)

We make the following remark describing a small simplifying assumption we make in
our proof.

Remark 7.2.3. To simplify some of the details in this proof, we assume that (T0)! divides
N , where T0 is given in (91). This assumption is not essential for the proof of Lemma
7.1.1, but it is more convenient to assume it. We make further notes on this assumption
later in context. This concludes our remark. 2

Let H be a k-partite 3-cylinder and G a k-partite underlying cylinder of H satisfying
the conditions of the Setup in the beginning of the section with the constants k, α, δ, λ,
r, ε and N . That is, suppose

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = N ,
(ii) G =

⋃
1≤i<j≤k Gij is a (λ, ε, k)-cylinder underlying H,

(iii) for all B ∈ [k]3, H(B) is (α, δ, r)-regular with respect to G(B).

Our goal is to show that H is (α(k
3), δk, rk)-regular with respect to G.

Recall that directly after the statement of Lemma 7.1.1, we discussed what it meant for

H to be (α(k
3), δk, rk)-regular with respect to G; we said we need only show the inequality

in (72). More precisely, suppose
−→
Q = (Q(s)), 1 ≤ s ≤ rk, is an rk-tuple, where for all

s ∈ [rk], Q(s) =
⋃

1≤i<j≤kQ
ij(s), and for all {i, j} ∈ [k]2, s ∈ [rk], Qij(s) ⊆ Gij. We show
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that if

|
rk⋃

s=1

K(2)
k (Q(s))| > δk|K(2)

k (G)|, (99)

then

dH(
−→
Q ) > α(k

3) − 2δk,

or equivalently,

|K(3)
k (H) ∩

rk⋃
s=1

K(2)
k (Q(s))| > (α(k

3) − 2δk)|
rk⋃

s=1

K(2)
k (Q(s))|. (100)

To this effect, assume
−→
Q = (Q(s)), 1 ≤ s ≤ rk, where for all s ∈ [rk], Q(s) =⋃

1≤i<j≤kQ
ij(s), and for all {i, j} ∈ [k]2, s ∈ [rk], Qij(s) ⊆ Gij. Assume further that

−→
Q satisfies (99). Thus, in view of the discussion above, we will have proved Lemma 7.1.1
once we have established (100). This is the subject of the following Proposition 7.2.4.

Proposition 7.2.4.

|K(3)
k (H) ∩

rk⋃
s=1

K(2)
k (Q(s))| > (α(k

3) − 2δk)|
rk⋃

s=1

K(2)
k (Q(s))|.

7.3. Itinerary for the Proof of Proposition 7.2.4.
The proof of this proposition depends largely on one single fact which we prove in

the upcoming Lemma 7.3.14. However, we will not be able to state Lemma 7.3.14 until
we establish some definitions and notation. Therefore, the following material is used
to describe the situation discussed in Lemma 7.3.14. We break this material into the
following parts.

A. Applying the Regularity Lemma: Here we apply Theorem 6.2.1 to the hy-

pergraph HQ = H ∩ ⋃rk
s=1K

(2)
3 (Q(s)) with underlying cylinder G to obtain a

(λl, kt, ε1, ε2)-partition P0. Note that as a consequence of this application, we
disclose specific values of l and t, l0 ≤ l ≤ L0, t0 ≤ t ≤ T0, where l0, L0, t0 and
T0 are given in (83), (92), (84) and (91) respectively.

B. Big and Small Cylinders: Here we define structures from the partition P0 over
which we work.

C. Defective and Perfect Cylinders: Here we define special classes of small
cylinders.

When we fill in the above outline with details, we then state Lemma 7.3.14. After stating
Lemma 7.3.14, we proceed directly to the proof of Proposition 7.2.4 in Subsection 7.4.
After concluding the proof of Proposition 7.2.4, we begin the task of proving Lemma
7.3.14 in Subsection 7.5.

To begin, restrict H to the k-partite 3-cylinder HQ defined by

HQ = H ∩
rk⋃

s=1

K(2)
3 (Q(s)) ⊂ H. (101)

Clearly, these are the triples of H with which (100) is concerned.



REGULARITY PROPERTIES FOR TRIPLE SYSTEMS 37

We make the following remark about the hypergraph HQ with respect to the require-
ment we mentioned in (74).

Remark 7.3.1. We note that here we use the fact that r ≥ rk specified in (74). It is this
condition which guarantees that the 3-cylinder HQ is nonempty. Indeed, we are given
an rk-tuple

−→
Q = (Q(s)), satisfying (99). It is not hard to show that for any B ∈ [k]3,

|(⋃rk
s=1K

(2)
3 (Q(s)))∩K(2)

3 (G(B))| > δ|K(2)
3 (G(B))|. Therefore, with r ≥ rk, it follows from

the (α, δ, r)-regularity of the triad G(B) that |HQ(B)| = |H(B) ∩ ⋃rk
s=1K

(2)
3 (Q(s))| >

(α− 2δ)|(⋃rk
s=1K

(2)
3 (Q(s)))∩K(2)

3 (G(B))| > (α− 2δ)δ|K(2)
3 (G(B))| > (α−2δ)δ

2
N3

λ3 where the
last inequality follows from the fact that G(B) is a (λ, ε, 3)-cylinder and since in Fact
2.1.7, we have that θ3,λ(ε) < 1

2
from (96). Provided that N is sufficiently large, we thus

conclude that |HQ(B)| is positive for all B ∈ [k]3. This concludes our remark. 2 2

A. Applying the Regularity Theorem:
We now appeal to the Regularity Lemma, Theorem 6.2.1. We apply Theorem 6.2.1 to

the k-partite 3-cylinderHQ given above with the underlying (λ, ε, k)-cylinder
⋃

1≤i<j≤k Gij.
Using parameters

ε1, δ, λ, l0, t0, r(t, l), ε2(l) (102)

given by (82)-(89) and λ ≥ 1
δ

given at the beginning of the Definitions of the Constants,
Theorem 6.2.1 guarantees constants

ε, L0, T0, N0 (103)

which were disclosed in (90)-(93) in the Definitions of the Constants. For HQ and G
defined above, the application of the Regularity Lemma also gives a (λl, kt, ε1, ε2(l))-
partition P0 which is (δ, r(t, l))-fully regular with respect to HQ, where l0 ≤ l ≤ L0, t0 ≤
t ≤ T0. We emphasize to the Reader the following subtle point. All the parameters seen
in (102) and (103) were already defined in the Definitions of the Constants. Moreover,
they did not depend on the choice of the hypergraph HQ, nor did they depend on the
choice of graph G, so they could be disclosed without reference to specific hypergraphs
or graphs. Now that we have a specific hypergraph HQ and underlying graph G, we
also obtain a concrete partition P0 of the specific hypergraph HQ and G. Therefore, the
only thing new here is the partition P0, and specific constant values l and t satisfying
l0 ≤ l ≤ L0 and t0 ≤ t ≤ T0. Since after the application of Theorem 6.2.1 above, the
values l, t become fixed constants, consequently, r(t, l), ε2(l), are fixed constants. We set
r1 = r(t, l), recall from (97) that we set r = r(T0, L0), and observe that

rk ≤ r1 ≤ r (104)

holds. We also set ε2 = ε2(l).
Now we are able to summarize all the constants used in Section 7. Together with

previously defined constants, we note that our set of fixed constants now consists of

k, α, δk, δ, λ, rk
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given at the beginning of the Definitions of the Constants (specifically, δ given in (77)-
(78)),

ε1, l0, t0

given as input for the Regularity Lemma in (82)-(84),

ε, L0, T0, N0, l, t

given as output of the Regularity Lemma in (90)-(93) (l and t just obtained in the most
recent application of the Regularity Lemma), and consequently

r, r1, ε2

given by (97), r1 = r(t, l), and ε2 = ε2(l). We think of these constants satisfying the
following hierarchy

α � δk � δ >
1

λ
� ε1,

1

(lλ)k
� ε2 �

1

T0

� ε � 1

N
. (105)

Note that the hierarchy above updates the one given in (98).
Throughout the remainder of Section 7, we denote by P0 that (λl, kt, ε1, ε2)-partition

which is (δ, r1)-fully regular with respect to HQ. We use the following notation to char-
acterize P0.

Let Wxi
, 1 ≤ i ≤ k, 1 ≤ xi ≤ t denote the vertex classes of P0 so that W =⋃

1≤i≤k

⋃
1≤xi≤t Wxi

is an equitable refinement of V = V1 ∪ . . . ∪ Vk, that is, so that:

(i) For all i, 1 ≤ i ≤ k, and all xi, 1 ≤ xi ≤ t, |Wxi
| = mP0 = m.

(ii) For all i ∈ [k],
⋃

1≤xi≤t Wxi
= Vi.

Note that it follows from our assumption that (T0)! divides N that mt = N holds. Hence,
we now see that this auxiliary divisibility assumption made above was so that the garbage
class of vertices W0 (cf., Definition 6.1.1) would satisfy W0 = ∅.

Further, we let P
xiyj
αxiyj

, 1 ≤ i ≤ k, 1 ≤ xi, yj ≤ t, 1 ≤ αxiyj
≤ lxiyj

≤ l, denote the
system of bipartite graphs of P0 such that:

(iii) For all i, j, 1 ≤ i < j ≤ k, for all xi, yj, 1 ≤ xi, yj ≤ t,⋃
1≤αxiyj≤lxiyj≤l

P xiyj
αxiyj

⊆ G[Wxi
, Wyj

]

= {{vxi
, vyj

} ∈ G : vxi
∈ Wxi

, vyj
∈ Wyj

}.

(iv) All but ε1t
2
(

k
2

)
m2/λ pairs {vxi

, vyj
} ∈ G, vxi

∈ Wxi
, vyj

∈ Wyj
, are edges of

(λl, ε2, 2)-cylinders P
xiyj
αxiyj

, 1 ≤ i < j ≤ k, 1 ≤ xi, yj ≤ t, 1 ≤ αxiyj
≤ lxiyj

≤ l.

We now proceed to Part B. Before doing so, we make the following brief comment.
Note that Lemma 7.1.1 is used to show the implication D(k) =⇒ R(k), which is a state-
ment for k ≥ 4, and we fixed k ≥ 4 in the Definitions of the Constants. It is this reason
why in what follows, we distinguish between triads and k-partite cylinders.

B. Big and Small Cylinders
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Definition 7.3.2. For B ⊆ [k], |B| = b, we refer to the B-cylinder G(B) =
⋃
{i,j}∈[B]2G

ij

as the big B-cylinder, or more generally, as a b-partite big cylinder. In the frequently
occurring case that b = 3, we refer to this cylinder as a big triad.

Analogous to Definition 7.3.2, we define “small” cylinders with partite sets Wxi
, 1 ≤

i ≤ k, 1 ≤ xi ≤ t, where Wxi
is given as a class of the equitable refinement described

above. More formally, let (V1, . . . , Vk) be the k-partition of H, and let Wxi
, 1 ≤ i ≤ k,

1 ≤ xi ≤ t denote the vertex classes of the equitable refinement of V = V1 ∪ . . . ∪ Vk

described above associated with the fixed partition P0. For convenience, we use the
following definition.

Definition 7.3.3. We call any set B ⊆ ⋃
1≤i≤k

⋃
1≤xi≤t xi transversal if it satisfies the

following conditions:

(i) 2 ≤ |B| ≤ k.
(ii) For all {xi, yj} ∈ [B]2, i 6= j.

We are now ready for the following definition. Note that in what follows, with the
notation sB, sb used, we think of the “s” as standing for “small”.

Definition 7.3.4. Let sB be transversal, where |sB| = sb ≤ k. We call the sb-partite
cylinder

⋃
{xi,yj}∈[sB]2 P

xiyj
αxiyj

of P0, 1 ≤ αxiyj
≤ lxiyj

≤ l, the small sB-cylinder, or more
generally, a small cylinder. In the frequently occurring case that sb = 3, we refer to this
cylinder as a small triad.

Note that a small cylinder is uniquely determined by the choice of the transversal
set sB, and choice of integers αxiyj

, 1 ≤ αxiyj
≤ lxiyj

for all {xi, yj} ∈ [sB]2. Thus,
if a small cylinder is k-partite, we may write it as Ck = Ck(

sB, (αxiyj
){xi,yj}∈[sB]2) =⋃

{xi,yj}∈[sB]2P
xiyj
αxiyj

, for the choice of the transversal set sB, |sB| =s b = k, and choice of

integers αxiyj
, 1 ≤ αxiyj

≤ lxiyj
, for all {xi, yj} ∈ [sB]2. If the small cylinder is 3-partite,

that is, a small triad, then we write the cylinder as C3 = C3({xh, yi, zj}, (αxhyi
, αxhzj

, αyizj
)) =

P xhyi
αxhyi

∪P
xhzj
αxhzj

∪P
yizj
αyizj

where {xh, yi, zj} is transversal, 1 ≤ αxhyi
≤ lxhyi

, 1 ≤ αxhzj
≤ lxhzj

,

1 ≤ αyizj
≤ lyizj

.
In what follows, any k-partite small cylinder Ck of P0 is of the form

Ck = Ck(
sB, (αxiyj

){xi,yj}∈[sB]2) =
⋃
{xi,yj}∈[sB]2

P xiyj
αxiyj

,

where sB is a transversal set, |sB| =s b = k, and αxiyj
are integers such that 1 ≤ αxiyj

≤
lxiyj

for all {xi, yj} ∈ [sB]2. Similarly, any small triad C3 of P0 is of the form

C3 = C3({xh, yi, zj}, (αxhyi
, αxhzj

, αyizj
)) = P xhyi

αxhyi
∪ P xhzj

αxhzj
∪ P yizj

αyizj
,

where {xh, yi, zj} is transversal, 1 ≤ αxhyi
≤ lxhyi

, 1 ≤ αxhzj
≤ lxhzj

, 1 ≤ αyizj
≤ lyizj

.

C. Defective and Perfect Cylinders
Here we consider 2-defective cylinders and several kinds of 3-defective cylinders. We

note here that defective cylinders are always small cylinders. We begin with the following
definition.
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Definition 7.3.5. We say that the k-partite small cylinder Ck =
⋃
{xi,yj}∈[sB]2 P

xiyj
αxiyj

is a 2-defective cylinder if for some {xi, yj} ∈ [sB]2, the bipartite graph P
xiyj
αxiyj

is not a
(λl, ε2, 2)-cylinder.

For some of the definitions which follow, it is necessary to have the following notion.

Definition 7.3.6. Let C3 be a small triad. We define the 3-partite 3-cylinder HQ
C3

to be
that subhypergraph of HQ induced on the underlying triangles of C3, that is,

HQ
C3

= HQ ∩ K(2)
3 (C3).

We now describe specific classes of small triads C3 which are in some way “defective”.

Definition 7.3.7. Let C3 = P xhyi
αxhyi

∪ P
xhzj
αxhzj

∪ P
yizj
αyizj

be a small (λl, ε2, 3)-cylinder of P0.

We say that C3 is a regular-defective triad provided it satisfies that HQ
C3

is not (δ, r1)-fully
regular with respect to C3.

We easily extend the notion of regular-defective from small triads C3 to k-partite small
cylinders Ck.

Definition 7.3.8. Suppose that Ck =
⋃
{xi,yj}∈[sB]2 P

xiyj
αxiyj

is a (λl, ε2, k)-cylinder of P0.
We say that Ck is a regular-defective cylinder if one of the small triads C3 of Ck is a
regular-defective triad, that is, for some {xh, yi, zj} ∈ [sB]3, C3 = P xhyi

αxhyi
∪ P

xhzj
αxhzj

∪ P
yizj
αyizj

is a regular-defective triad.

In addition to the class of regular-defective triads C3, we are also interested in the
following class of small triads, also “defective” in some way, and disjoint from the class
of regular-defective triads described above.

Definition 7.3.9. Let C3 = P xhyi
αxhyi

∪ P
xhzj
αxhzj

∪ P
yizj
αyizj

be a small (λl, ε2, 3)-cylinder of P0.

We say that C3 is a dense-defective triad provided

(i) C3 is not regular-defective, but
(ii) C3 satisfies that dHQ(C3) ≤ α− 3δ.

We now easily extend the notion of dense-defective from small triads C3 to k-partite
small cylinders Ck.

Definition 7.3.10. Suppose that Ck =
⋃
{xi,yj}∈[sB]2P

xiyj
αxiyj

is a (λl, ε2, k)-cylinder of P0.
We say that Ck is a dense-defective cylinder if

a. Ck is not a regular-defective cylinder, but
b. one of the small triads C3 of Ck is dense-defective, that is, for some {xh, yi, zj} ∈

[sB]3 C3 = P xhyi
αxhyi

∪ P
xhzj
αxhzj

∪ P
yizj
αyizj

is a dense-defective triad.

Putting together the definitions in Definition 7.3.8 and Definition 7.3.10, we define
3-defective cylinders.

Definition 7.3.11. Suppose Ck =
⋃
{xi,yj}∈[sB]2P

xiyj
αxiyj

is a k-partite small cylinder of P0.
We call the k-partite small cylinder Ck a 3-defective cylinder if it is either a regular-
defective cylinder or a dense-defective cylinder.
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We now come to two classes of cylinders with which the remainder of the paper is
concerned.

Definition 7.3.12. Suppose Ck =
⋃
{xi,yj}∈[sB]2P

xiyj
αxiyj

is a k-partite small cylinder of P0.
We call the k-partite small cylinder Ck a defective-cylinder if it is either a 2-defective
cylinder or a 3-defective cylinder.

Now that we have described many different ways in which a k-partite small cylinder or
a small triad can be defective, we identify a class of k-partite small cylinders which are
not defective in the ways we saw above.

Definition 7.3.13. Suppose Ck =
⋃
{xi,yj}∈[sB]2P

xiyj
αxiyj

is a k-partite small cylinder of P0.
We call the k-partite small cylinder Ck a perfect cylinder if it is not a defective cylinder.

Note that a perfect cylinder Ck =
⋃
{xi,yj}∈[sB]2P

xiyj
αxiyj

satisfies all of the following:

(i) Ck is a (λl, ε2, k)-cylinder.

(ii) All
(

k
3

)
small triads C3 = P xhyi

αxhyi
∪ P

xhzj
αxhzj

∪ P
yizj
αyizj

, {xh, yi, zj} ∈ [sB]3, satisfy that

HQ
C3

= HQ ∩ K(2)
3 (C3) is (α− 2δ, δ, r1)- regular with respect to C3.

In what remains, we heavily use the following notation to denote the classes of k-partite
small cylinders and small triads that were described above. To denote the k-partite small
cylinders Ck described above, let

2Dk = {Ck : Ck is a 2-defective cylinder of P0}, (106)

RDk = {Ck : Ck is a regular-defective cylinder of P0}, (107)

DDk = {Ck : Ck is a dense-defective cylinder of P0}, (108)

3Dk = {Ck : Ck is a 3-defective cylinder of P0}, (109)

Dk = {Ck : Ck is a defective cylinder of P0}, (110)

Πk = {Ck : Ck is a perfect cylinder of P0}. (111)

To denote the small triads C3 described above, let

RD3 = {C3 : C3 is a regular-defective triad of P0}, (112)

DD3 = {C3 : C3 is a dense-defective triad of P0}. (113)

Note that in the notation above, the following trivial identities hold

RDk ∪ DDk = 3Dk, (114)

2Dk ∪ 3Dk = Dk. (115)

For convenience, for any family A given by (106)-(111), we set

K(2)
k (A) =

⋃
Ck∈A

K(2)
k (Ck).

Similarly, for any family A given by (112) or (113), we set

K(2)
3 (A) =

⋃
C3∈A

K(2)
3 (C3).
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Our goal is to provide an upper bound on the quantity

|K(2)
k (Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))|. (116)

This upper bound is crucial for the proof of Proposition 7.2.4. We state this upper bound
as a lemma itself. This is Lemma 7.3.14 advertised earlier in this section.
Lemma 7.3.14.

|K(2)
k (Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 6

√
δk3 Nk/λ(k

2).

As mentioned earlier, we defer the proof of Lemma 7.3.14 until after the end of the proof
of Proposition 7.2.4. Therefore, in that vein, we proceed with the proof of Proposition
7.2.4. However, a fact which we need there is the following corollary to Lemma 7.3.14.
In this corollary, we are able to estimate the total number of perfect cylinders Ck.

Corollary 7.3.15.

|Πk| > (|
rk⋃

s=1

K(2)
k (Q(s))| − 6

√
δk3 Nk

λ(k
2)

)
(λl)(

k
2)

mk(1 + θλl,k(ε2))
.

Proof of Corollary 7.3.15.
We use the following 2 obvious facts

|K(2)
k (Πk)| ≥ |K(2)

k (Πk) ∩
rk⋃

s=1

K(2)
k (Q(s))| (117)

and

|K(2)
k (Πk) ∩

rk⋃
s=1

K(2)
k (Q(s))| = |

rk⋃
s=1

K(2)
k (Q(s))| − |K(2)

k (Dk) ∩
rk⋃

s=1

K(2)
k (Q(s))|.

(118)

Combining (117) and (118) yields

|K(2)
k (Πk)| ≥ |

rk⋃
s=1

K(2)
k (Q(s))| − |K(2)

k (Dk) ∩
rk⋃

s=1

K(2)
k (Q(s))|,

which in tandem with Lemma 7.3.14 implies∑
Ck∈Πk

|K(2)
k (Ck)| > |

rk⋃
s=1

K(2)
k (Q(s))| − 6

√
δk3 Nk

λ(k
2)

. (119)

By Fact 2.1.7, each perfect cylinder Ck ∈ Πk satisfies

|K(2)
k (Ck)| < (1 + θλl,k(ε2))

mk

(λl)(
k
2)

. (120)

We thus infer from (119) and (120) that

|Πk| > (|
rk⋃

s=1

K(2)
k (Q(s))| − 6

√
δk3 Nk

λ(k
2)

) (λl)(
k
2)/mk(1 + θλl,k(ε2)),

and so Corollary 7.3.15 is proved. 2
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7.4. The Proof of Proposition 7.2.4.
With Lemma 7.3.14 stated, we return to our original goal; proving Proposition 7.2.4.

Recall that we were given
−→
Q = (Q(s)), 1 ≤ s ≤ rk, where for all s ∈ [rk], Q(s) =⋃

1≤i<j≤kQ
ij(s), and for all {i, j} ∈ [k]2, for all s ∈ [rk], Qij(s) ⊆ Gij. Moreover,

−→
Q

satisfied

|
rk⋃

s=1

K(2)
k (Q(s))| > δk|K(2)

k (G)|. (121)

Proposition 7.2.4 states that

|K(3)
k (H) ∩

rk⋃
s=1

K(2)
k (Q(s))| > (α(k

3) − 2δk)|
rk⋃

s=1

K(2)
k (Q(s))|.

Recall Lemma 7.3.14 states

|K(2)
k (Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 6

√
δk3 Nk

λ(k
2)

,

where we recall Dk is the set of all k-partite defective cylinders. Recall that a cylinder
Ck is a defective cylinder if it is either

(i) 2-defective (i.e. not a (λl, ε2, k)-cylinder),

(ii) regular-defective but not 2-defective (i.e. one of its
(

k
3

)
triads C3 gives rise to HQ

C3

which is not (δ, r1)-fully regular with respect to C3),

(iii) dense-defective but not regular-defective or 2-defective (i.e. one of its
(

k
3

)
triads

C3 has density dHQ(C3) no more than α− 3δ).

We now turn our attention to K(2)
k (Πk) ∩

⋃rk
s=1K

(2)
k (Q(s)), where we recall that Πk is

the set of all k-partite perfect cylinders. Recall that a cylinder Ck is a perfect cylinder if

it is a (λl, ε2, k)-cylinder, all of whose
(

k
3

)
triads C3 give rise to HQ

C3
which is (α−2δ, δ, r1)-

regular with respect to C3.
We first note that as a consequence of Lemma 7.3.14, nearly all of the copies of⋃rk

s=1K
(2)
k (Q(s)) belong to perfect cylinders Ck. Said differently, the quantity |K(2)

k (Πk)∩⋃rk
s=1K

(2)
k (Q(s))| is nearly identical to |⋃rk

s=1K
(2)
k (Q(s))|. To see this, recall that the

rk-tuple
−→
Q satisfied

|
rk⋃

s=1

K(2)
k (Q(s))| > δk

∣∣∣K(2)
k (G)

∣∣∣ . (122)

Since G is a (λ, ε, k)-cylinder, Fact 2.1.7 says that∣∣∣K(2)
k (G)

∣∣∣ > (1− θk,λ(ε))
Nk

λ(k
2)

>
1

2

Nk

λ(k
2)

, (123)

where the last inequality follows from the fact that ε satisfies (96). Thus, we may apply
the bound in (123) to further bound the inequality in (122) to conclude

|
rk⋃

s=1

K(2)
k (Q(s))| > δk

2

Nk

λ(k
2)

. (124)
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Now, it is easy to bound the fraction

|K(2)
k (Πk) ∩

⋃rk
s=1K

(2)
k (Q(s))|

|⋃rk
s=1K

(2)
k (Q(s))|

.

It follows from Lemma 7.3.14 and (124) that

|K(2)
k (Πk) ∩

⋃rk
s=1K

(2)
k (Q(s))|

|⋃rk
s=1K

(2)
k (Q(s))|

=
|⋃rk

s=1K
(2)
k (Q(s))| − |K(2)

k (Dk) ∩
⋃rk

s=1K
(2)
k (Q(s))|

|⋃rk
s=1K

(2)
k (Q(s))|

,

> 1− 6
√

δk3Nk

λ(k
2)|⋃rk

s=1K
(2)
k (Q(s))|

, (125)

> 1− 12
√

δk3

δk

. (126)

Note that in (126), δ satisfies δ � δk. In terms of the proportion, nearly all of the

elements of
⋃rk

s=1K
(2)
k (Q(s)) are elements of K(2)

k (Πk).
We now complete the proof of Proposition 7.2.4. We know that almost all of the copies

of K
(2)
k from

⋃rk
s=1K

(2)
k (Q(s)) belong to perfect cylinders Ck. For each perfect cylinder

Ck, we want to apply the statement D(k) to 3-cylinder HQ ∩ K(2)
3 (Ck) with underlying

cylinder Ck to conclude that there are a sufficient number of copies of K
(3)
k contained in

HQ ∩ K(2)
3 (Ck). We then sum the number of such copies of K

(3)
k over all Ck ∈ Πk (the

number of which we know from Corollary 7.3.15).
Let us first recall the formulation of the statement D(k) (with a change in notation).

For all positive α̃, β̃, there exists δ̃ = δD(k)(α̃, β̃) > 0 so that for all λ̃ ≥ 1
δ̃
, there exist

positive constants r̃ = rD(k)(α̃, β̃, δ̃, λ̃), ε̃ = εD(k)(α̃, β̃, δ̃, λ̃) so that the following holds:
suppose

(i) H̃ is a k-partite 3-cylinder with k-partition (Ṽ1, . . . , Ṽk), |Ṽ1| = . . . = |Ṽk| = Ñ .

(ii) G̃ =
⋃

1≤i<j≤kG̃
ij is a (λ̃, ε̃, k̃) cylinder underlying H̃.

(iii) For all B ∈ [k]3, H̃(B) is (α̃, δ̃, r̃)-regular with respect to G̃(B).

Then H̃ satisfies

|K(3)
k (H̃)| ≥ (1− β̃)

(α̃)(
k
3)

(λ̃)(
k
2)

(Ñ)k.

Fix Ck ∈ Πk with k-partition (Wx1 , . . . , Wxk
). By definition of Πk, Ck is a (λl, ε2, k)-

cylinder which has all
(

k
3

)
triads C3 giving rise to HQ

C3
which is (α − 2δ, δ, r1)-regular

with respect to C3. Since we apply the statement D(k) to the fixed cylinder Ck and the

3-cylinder HQ ∩ K(2)
3 (Ck), we set

(Ṽ1, . . . , Ṽk) = (Wx1 , . . . , Wxk
), (127)

Ñ = m, (128)

H̃ = HQ ∩ K(2)
3 (Ck) (129)
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G̃ = Ck. (130)

Moreover, we need to verify that all the relevant constants α, δ, λl, r1, and ε2 that have
already been fixed satisfy D(k). More precisely, set

α̃ = α− 2δ, (131)

β̃ = δk. (132)

The statement D(k) guarantees constant δ̃ given by δ̃ = δD(k)(α − 2δ, δk). We see from
(79) that

δ ≤ δD(k)(α/2, δk) ≤ δD(k)(α− 2δ, δk) = δ̃.

Therefore, our choice of δ verifies the statement D(k) for the choices α̃ = α − 2δ and

β̃ = δk. Since G̃ is a (λl, ε2, k)-cylinder, set

λ̃ = λl. (133)

It follows from (77) and (83) that

1

δ̃
=

1

δD(k)(α− 2δ, δk)
≤ 1

δD(k)(α/2, δk)
≤ d1

δ
e ≤ λl0 ≤ λl = λ̃.

Thus, λ̃ ≥ 1
δ̃
. The statement D(k) guarantees constants

r̃ = rD(k)(α− 2δ, δk, δ, λl) (134)

and

ε̃ = εD(k)(α− 2δ, δk, δ, λl). (135)

By (85), we have

r1 = r(t, l) = max{2rkt
3l3, rD(k)(α− 2δ, δk, δ, λl)}. (136)

Thus r1 ≥ rD(k)(α− 2δ, δk, δ, λl)} = r̃ is an appropriate choice for D(k) given the param-
eters in (131), (132), (133). By our choice of ε2 in (86),

ε2(l) ≤ εD(k)(α− 2δ, δk, δ, λl) = ε̃. (137)

Thus we have that ε2 is an appropriate choice for D(k) given the parameters in (131),
(132), (133).

With the parameters given in (131)-(137), apply D(k) to the cylinder G̃ and 3-cylinder
H̃. By that application,

|K(3)
k (H̃)| ≥ (1− δk)

(α− 2δ)(
k
3)

(λl)(
k
2)

mk. (138)

Since K(3)
k (H̃) = K(3)

k (HQ) ∩ K(2)
k (Ck), (138) may be reformulated as

|K(3)
k (HQ) ∩ K(2)

k (Ck)| ≥ (1− δk)
(α− 2δ)(

k
3)

(λl)(
k
2)

mk. (139)
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We repeat the argument above for all Ck ∈ Πk using (139) and the lower bound in
Corollary 7.3.15 that

|Πk| > (|
rk⋃

s=1

K(2)
k (Q(s))| − 6

√
δk3 Nk

λ(k
2)

)
(λl)(

k
2)

mk(1 + θλl,k(ε2))
.

In particular, we obtain

|K(3)
k (HQ) ∩ K(2)

k (Πk)| = |K(3)
k (HQ) ∩

⋃
Ck∈Πk

K(2)
k (Ck)|,

=
∑

Ck∈Πk

|K(3)
k (HQ) ∩ K(2)

k (Ck)|,

> (|
rk⋃

s=1

K(2)
k (Q(s))| − 6

√
δk3 Nk

λ(k
2)

)
(α− 2δ)(

k
3)(1− δk)

1 + θλl,k(ε2)
,

the right hand side of which is equal to

α(k
3)|

rk⋃
s=1

K(2)
k (Q(s))|(1− 6

√
δk3Nk

λ(k
2)|⋃rk

s=1K
(2)
k (Q(s))|

)
(1− δk)(1− 2δ/α)(

k
3)

1 + θλl,k(ε2)
.

Using the fact that we chose ε2 to satisfy (89) and using (125) and (126), we see the
above quantity is larger than

α(k
3)|

rk⋃
s=1

K(2)
k (Q(s))|(1− 12

√
δk3

δk

)
(1− δk)(1− 2δ/α)(

k
3)

1 + δ
.

Since we chose δ to satisfy (78), we have that the above inequality is larger than

(α(k
3) − 2δk)|

rk⋃
s=1

K(2)
k (Q(s))|.

Since |K(3)
k (H)∩⋃rk

s=1K
(2)
k (Q(s))| ≥ |K(3)

k (HQ)∩K(2)
k (Πk)|, Proposition 7.2.4 is proved by

the inequalities above. 2

Now all that remains is to prove Lemma 7.3.14.

7.5. Proof of Lemma 7.3.14. Recall that we are trying to show

|K(2)
k (Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 6

√
δk3Nk/λ(k

2). (140)

For the proof of Lemma 7.3.14, we heavily use the following hierarchy already stated in
(105).

α � δk � δ >
1

λ
� ε1,

1

(lλ)k
� ε2 �

1

T0

� ε � 1

N
.

The proof of Lemma 7.3.14 is easy once we have established some supplemental propo-
sitions. Indeed, in the upcoming Proposition 7.5.2, we show

|K(2)
k (2Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < ε1k

2Nk. (141)
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In the upcoming Propositions 7.5.3 and 7.5.4, we show

|K(2)
k (RDk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 3δk3 Nk

λ(k
2)

(142)

and

|K(2)
k (DDk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 2

√
δk3 Nk

λ(k
2)

. (143)

Using the bounds in (142) and (143) and the easy identity 3Dk = RDk ∪ DDk, we infer
the inequality

|K(2)
k (3Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 5

√
δk3 Nk

λ(k
2)

. (144)

The inequality (140) easily follows from (141), (144) and (82) and the identity Dk =
2Dk ∪ 3Dk. This proves Lemma 7.3.14.

Thus, we need only prove Propositions 7.5.2, 7.5.3 and 7.5.4 to complete the proof of
Lemma 7.3.14. We begin by proving Proposition 7.5.2, and need the following definition.

Definition 7.5.1. Let xi, yj, αxiyj
, be such that 1 ≤ i < j ≤ k, 1 ≤ xi, yj ≤ t, and

1 ≤ αxiyj
≤ lxiyj

. An edge e = {vxi
, vyj

} ∈ P
xiyj
αxiyj

is called a bad edge if P
xiyj
αxiyj

is not a
(λl, ε2, 2)-cylinder.

Let Ebad ⊂ G denote the set of all bad edges of G. Note that statement (ii) of Definition
6.1.2 implies

|Ebad| ≤ ε1t
2

(
k

2

)
m2

λ
. (145)

Proposition 7.5.2.

|K(2)
k (2Dk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < ε1k

2Nk.

Proof of Proposition 7.5.2.
It is a straightforward observation that

K(2)
k (2Dk) ∩

rk⋃
s=1

K(2)
k (Q(s)) = {X ∈

rk⋃
s=1

K(2)
k (Q(s)) : [X]2 ∩ Ebad 6= ∅}.

(146)

Let e = {vi, vj} ∈ G, vi ∈ Vi, vj ∈ Vj, 1 ≤ i < j ≤ k, be an arbitrary edge of G. Trivially,

|{X ∈ K(2)
k (G) : vi, vj ∈ X}| ≤ Nk−2. (147)

The fact that mt = N , (145) and (147) combine to imply

|{X ∈ K(2)
k (G) : [X]2 ∩ Ebad 6= ∅}| < ε1

(
k

2

)
Nk

λ
,

therefore

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]2 ∩ Ebad 6= ∅}| < ε1

(
k

2

)
Nk

λ
< ε1k

2Nk.
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Proposition 7.5.2 then easily follows from our observation in (146). 2

Proposition 7.5.3.

|K(2)
k (RDk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 3δk3 Nk

λ(k
2)

.

Proof of Proposition 7.5.3.
First, we estimate |RD3|. From (71), we have that

∑
{µC3 : C3 is not a (δ, r1)− fully regular triad of P0} < δ

(
kN

mλ

)3

,

where we recall

µC3 =
|K(2)

3 (C3)|
m3

.

It therefore follows that

∑
C3∈RD3

|K(2)
k (C3)| < δ

(
kN

λ

)3

. (148)

Since all regular-defective triads C3 are (λl, ε2, 3)-cylinders, we apply Fact 2.1.7 to (148)
to obtain

|RD3|
(

m

λl

)3

(1− θ3,λl(ε2)) < δ

(
kN

λ

)3

.

Since it follows from (87) that θ3,λl(ε2) < 1/2, and given the fact that mt = N , we obtain
from the above inequality

|RD3| < 2δk3t3l3. (149)

Now we estimate |RDk|. For each regular-defective triad C3, there are no more than

tk−3l(
k
2)−3 (150)

regular-defective cylinders Ck satisfying that C3 is a triad of Ck. (149) and (150) combine
to yield

|RDk| < 2δk3tkl(
k
2). (151)

To complete the proof of Proposition 7.5.3, we need to estimate |K(2)
k (RDk)|. Since

each regular-defective cylinder Ck is a (λl, ε2, k)-cylinder, we apply Fact 2.1.7 to each
Ck ∈ RDk to obtain

|K(2)
k (Ck)| < (1 + θk,λl(ε2))

mk

(λl)(
k
2)

. (152)
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Since we have in (88) that θk,λl(ε2) < 1/2, (151) and (152) combine to yield

|K(2)
k (RDk)| =

∑
Ck∈RDk

|K(2)
k (Ck)|,

< 2δk3tkl(
k
2)(1 + θk,λl(ε2))

mk

(λl)(
k
2)

,

< 3δk3 Nk

λ(k
2)

.

Thus

|K(2)
k (RDk) ∩

rk⋃
s=1

K(2)
k (Q(s))| ≤ |K(2)

k (RDk)| < 3δk3 Nk

λ(k
2)

which completes the proof of Proposition 7.5.3.

Proposition 7.5.4.

|K(2)
k (DDk) ∩

rk⋃
s=1

K(2)
k (Q(s))| < 2

√
δk3 Nk

λ(k
2)

.

Proof of Proposition 7.5.4.
Proposition 7.5.4 follows from the following inequality:

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]3 ∩ K(2)

3 (DD3) 6= ∅}| < 2
√

δk3 Nk

λ(k
2)

. (153)

Thus, it suffices to prove the inequality in (153) above. To that end, we begin by

partitioning DD3 into two classes, DD(1)
3 and DD(2)

3 , where

DD(1)
3 = {C3 ∈ DD3 : |K(2)

3 (C3) ∩
rk⋃

s=1

K(2)
3 (Q(s))| <

√
δ|K(2)

3 (C3)|}

and

DD(2)
3 = DD3 \ DD(1)

3 = {C3 ∈ DD3 : |K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| ≥

√
δ|K(2)

3 (C3)|}.

Set K(2)
3 (DD(i)

3 ) =
⋃

C3∈DD(i)
3
K(2)

3 (C3), i = 1, 2. To prove the inequality in (153), we show

that

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]3 ∩ K(2)

3 (DD(1)
3 ) 6= ∅}| <

√
δk3 Nk

λ(k
2)

(154)

and

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]3 ∩ K(2)

3 (DD(2)
3 ) 6= ∅}| <

√
δk3 Nk

λ(k
2)

. (155)

To facilitate the proofs of the inequalities in (154) and (155), we define the following
sets: for B = {a, b, c} ∈ [k]3,

DD(1)
3 (B)DD(1)

3 (B) = {C3 = P xayb
αxayb

∪ P xazc
αxazc

∪ P ybzc
αybzc

∈ DD(1)
3 }
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and

DD(2)
3 (B)DD(2)

3 (B) = {C3 = P xayb
αxayb

∪ P xazc
αxazc

∪ P ybzc
αybzc

∈ DD(2)
3 }.

Thus, DD(1)
3 =

⋃
B∈[k]3 DD

(1)
3 (B) and DD(2)

3 =
⋃

B∈[k]3 DD
(2)
3 (B).

We begin our proof of (153) by establishing the inequality in (154). By definition of

DD3, for each C3 ∈ DD(1)
3 , K(2)

3 (C3) intersects
⋃rk

s=1K
(2)
3 (Q(s)) very little. The inequality

in (154) is just the union of all these small intersections, and hence is small itself. We
now show the details.

Fix B ∈ [k]3, and let C3 ∈ DD(1)
3 (B). As a member of DD(1)

3 , C3 satisfies

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| <

√
δ|K(2)

3 (C3)|.

Since C3 is a (λl, ε2, 3)-cylinder, we may apply Fact 2.1.7 along with the inequality in
(87) to further conclude

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| <

√
δ

m3

(λl)3
(1 + θ3,λl(ε2)) < 2

√
δ

m3

(λl)3
. (156)

Clearly, |DD(1)
3 (B)| ≤ t3l3, thus it follows from (156) that

|
⋃

C3∈DD3(B)

(K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)))| < 2

√
δ
N3

λ3
. (157)

Our next goal is to count the set of copies X ∈ K(2)
k (G) such that [X]3∩(

⋃
C3∈DD(1)

3 (B)
(K(2)

3 (C3)∩⋃rk
s=1K

(2)
3 (Q(s)))) 6= ∅. We first appeal to Fact 7.2.2. Since G is a (λ, ε, k)-cylinder, we

may apply Fact 7.2.2 to conclude that all but 6kεN3 triangles {vi1 , vi2 , vi3} ∈ K
(2)
3 (G(B))

satisfy that

|{X ∈ K(2)
k (G) : vi1 , vi2 , vi3 ∈ X}| < (1 + θ′′k,λ(ε))

Nk−3

λ(k
2)−3

. (158)

With ε satisfying (95), we conclude from (158) above that all but 6kεN3 triangles

{vi1 , vi2 , vi3} ∈ K
(2)
3 (G(B)) satisfy

|{X ∈ K(2)
k (G) : vi1 , vi2 , vi3 ∈ X}| < 2

Nk−3

λ(k
2)−3

. (159)

As a result of (157) and (159), we conclude that

|{X ∈ K(2)
k (G) : [X]3 ∩ (

⋃
C3∈DD(1)

3 (B)

(K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)))) 6= ∅}|

< 6kεNk + 4
√

δ
Nk

λ(k
2)

. (160)
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Summing (160) over all
(

k
3

)
sets B ∈ [k]3, we easily infer from (160) that

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]3 ∩ K(2)

3 (DD(1)
3 ) 6= ∅}|

has upper bound

6k

(
k

3

)
εNk + 4

√
δ

(
k

3

)
Nk

λ(k
2)

< 5
√

δ

(
k

3

)
Nk

λ(k
2)

where the last inequality follows from our choice of ε in (94). Thus, (154) is proved.
We now prove the inequality in (155). To that effect, for fixed B ∈ [k]3, we show

|DD(2)
3 (B)| ≤ 2

√
δt3l3. (161)

The inequality in (155) will easily follow from (161). Indeed, with (161) and each C3 ∈
DD(2)

3 (B) by Fact 2.1.7 satisfying |K(2)
3 (C3)| < m3

(λl)3
(1 + θ3,λl(ε2)), we have

|K(2)
3 (DD(2)

3 (B))| = |
⋃

C3∈DD(2)
3 (B)

K(2)
3 (C3)|,

< 2
√

δ
N3

λ3
(1 + θ3,λl(ε2)),

< 3
√

δ
N3

λ3

where the last inequality follows from (87). Applying Fact 7.2.2 to G(B) as before, we
have

|{X ∈ K(2)
k (G) : [X]3 ∩ K(2)

3 (DD(2)
3 (B)) 6= ∅}|

has upper bound

6kεNk + 3
√

δ
Nk

λ(k
2)

(1 + θ′′k,λl(ε)) < 5
√

δ
Nk

λ(k
2)

where the last inequality follows from (94). Thus, over all B ∈ [k]3, we have

|{X ∈ K(2)
k (G) : [X]3 ∩ K(2)

3 (DD(2)
3 ) 6= ∅}| < 5

√
δ

(
k

3

)
Nk

λ(k
2)

,

from which we infer

|{X ∈
rk⋃

s=1

K(2)
k (Q(s)) : [X]3 ∩ K(2)

3 (DD(2)
3 ) 6= ∅}| <

√
δk3 Nk

λ(k
2)

.

Thus, as promised, the inequality in (155) is established.
What remains to be shown is that for all B ∈ [k]3, (161) holds. On the contrary,

assume that there exists B ∈ [k]3 such that

|DD(2)
3 (B)| ≥ d2

√
δt3l3e. (162)

Our goal is to show that the assumption in (162) leads to a contradiction with our
hypothesis that H(B) is (α, δ, r)-regular with respect to G(B). That is, we show that

from the set DD(2)
3 (B) being large as in (162), we can construct a “witness against the

regularity of H(B) with respect to G(B)”.
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For convenience of notation in what follows, set

ρ = d2
√

δt3l3e.

Recall that each C3 ∈ DD(2)
3 (B) satisfies

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| ≥

√
δ|K(2)

3 (C3)|, (163)

>
√

δ
m3

(λl)3
(1− θ3,λl(ε2))

where the last inequality follows from Fact 2.1.7. To construct the witness, consider the

following. Fix any C3 ∈ DD(2)
3 (B). For each s ∈ [rk], C3 ∩ Q(s) is a 3-partite subgraph

of C3. Over all rk of the subgraphs C3∩Q(s), we have an rk-tuple of 3-partite subgraphs
of C3. Collecting all these subgraphs of C3 and then letting C3 run over the entire set

DD(2)
3 (B) of ρ small triads, we have a ρrk-tuple of 3-partite subgraphs of G(B). Thus,

our witness is the ρrk-tuple (C3 ∩ Q(s); C3 ∈ DD(2)
3 (B), s ∈ [rk]). To be formal, we

assign an arbitrary numbering to this ρrk-tuple. Let φ : DD(2)
3 (B)× [rk] −→ [ρrk] be an

arbitrary bijection. Consider the ρrk-tuple of 3-partite subgraphs of G(B) given by
−→
Q′

B = (Q′
B(z) : 1 ≤ z ≤ ρrk)

where for each z ∈ [ρrk],

Q′
B(z) = C3 ∩Q(s) (164)

where C3 ∈ DD(2)
3 (B), s ∈ [rk] and φ((C3, s)) = z. Note that

K(2)
3 (Q′

B(z)) = K(2)
3 (C3) ∩ K(2)

3 (Q(s)).

Due to the inequality in (163),

|
ρrk⋃
z=1

K(2)
3 (Q′

B(z))| = |
⋃

C3∈DD(2)
3 (B)

rk⋃
s=1

(K(2)
3 (C3) ∩ K(2)

3 (Q(s)))|,

= |
⋃

C3∈DD(2)
3 (B)

(K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)))|,

> d2
√

δt3l3e
√

δ
m3

(λl)3
(1− θ3,λl(ε2)),

≥ 2(1− θ3,λl(ε2))δ
N3

λ3
. (165)

Combining the inequality in (87) with Fact 2.1.7 ,(165) and (95), we conclude

2(1− θ3,λl(ε2))δ
N3

λ3
>

18

10
δ
N3

λ3
> (1 + θ3,l(ε))δ

N3

λ3
> δ|K(2)

3 (G(B))|.

We thus conclude

|
ρrk⋃
z=1

K(2)
3 (Q′

B(z))| > δ|K(2)
3 (G(B))|.
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Since ρrk = d2
√

δt3l3erk ≤ 2rkT
3
0 L3

0 ≤ r, (cf., (97)), it follows from the (α, δ, r)-regularity
of H(B) with respect to G(B) that

|H ∩
ρrk⋃
z=1

K(2)
3 (Q′

B(z))| > (α− 2δ)|
ρrk⋃
z=1

K(2)
3 (Q′

B(z))|,

or equivalently,

|H ∩ ⋃ρrk
z=1K

(2)
3 (Q′

B(z))|
|⋃ρrk

z=1K
(2)
3 (Q′

B(z))|
> α− 2δ. (166)

Note that by definition in (164),

|H ∩ ⋃ρrk
z=1K

(2)
3 (Q′

B(z))|
|⋃ρrk

z=1K
(2)
3 (Q′

B(z))|
=

|H ∩ (
⋃

C3∈DD(2)
3 (B)

(K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))))|

|⋃
C3∈DD(2)

3 (B)
(K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

,

=
|⋃

C3∈DD(2)
3 (B)

(H ∩ (K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s)))))|

|⋃
C3∈DD(2)

3 (B)
(K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

.

The crucial observation here is that with HQ = H ∩ ⋃rk
s=1K

(2)
3 (Q(s)), it follows that for

each C3 ∈ DD(2)
3 (B),

H ∩ (K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)) = HQ ∩ (K(2)

3 (C3) ∩
rk⋃

s=1

K(2)
3 (Q(s))

holds. Thus, we may rewrite (166) as

|HQ ∩ (
⋃

C3∈DD(2)
3 (B)

(K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))))|

|⋃
C3∈DD(2)

3 (B)
(K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

> α− 2δ. (167)

On the other hand, the following fact (which we prove momentarily) leads to a con-
tradiction with (167).

Fact 7.5.5. For each C3 ∈ DD(2)
3 (B),

|HQ ∩ (K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s)))|

|K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))|

≤ α− 2δ.

We prove Fact 7.5.5 immediately after we produce the promised contradiction to (167).

Indeed, by Fact 7.5.5, for each C3 ∈ DD(2)
3 (B),

|HQ ∩ (K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)))| ≤ (α− 2δ)|K(2)

3 (C3) ∩
rk⋃

s=1

K(2)
3 (Q(s))|.

(168)

Summing (168) over all C3 ∈ DD(2)
3 (B) yields∑

C3∈DD(2)
3 (B)

|HQ ∩ (K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s)))| ≤ (α− 2δ)

∑
C3∈DD(2)

3 (B)

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))|.

(169)
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Note that for each C3, C
′
3 ∈ DD

(2)
3 (B), C3 6= C ′

3, K
(2)
3 (C3)∩K(2)

3 (C ′
3) = ∅. That is to say,

the sets of triangles K(2)
3 (C3) over distinct C3 ∈ DD(2)

3 (B) are pairwise disjoint. Thus, it
follows that∑
C3∈DD(2)

3 (B)

|HQ∩(K(2)
3 (C3)∩

rk⋃
s=1

K(2)
3 (Q(s)))| = |

⋃
C3∈DD(2)

3 (B)

HQ∩(K(2)
3 (C3)∩

rk⋃
s=1

K(2)
3 (Q(s)))|,

and ∑
C3∈DD(2)

3 (B)

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| = |

⋃
C3∈DD(2)

3 (B)

K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))|.

Thus, (169) may be rewritten as

|
⋃

C3∈DD(2)
3 (B)

HQ∩(K(2)
3 (C3)∩

rk⋃
s=1

K(2)
3 (Q(s)))| ≤ (α−2δ)|

⋃
C3∈DD(2)

3 (B)

K(2)
3 (C3)∩

rk⋃
s=1

K(2)
3 (Q(s))|,

or equivalently,

|HQ ∩ (
⋃

C3∈DD(2)
3 (B)

(K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))))|

|⋃
C3∈DD(2)

3 (B)
(K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

≤ α− 2δ,

which is a direct contradiction with (167). This contradiction confirms that the assump-
tion we made in (162) was false, hence, our proof of (161) is complete.
Proof of Fact 7.5.5.

Indeed, fix C3 ∈ DD(2)
3 (B). Recall that as an element of DD3, C3 satisfies that HQ

C3

is (δ, r1)-fully regular with respect to C3, but dHQ
C3

(C3) =
|HQ

C3
∩K(2)

3 (C3)|

|K(2)
3 (C3)|

≤ α − 3δ. As an

element of DD(2)
3 (B),

|K(2)
3 (C3) ∩

rk⋃
s=1

K(2)
3 (Q(s))| ≥

√
δ|K(2)

3 (C3)|,

> δ|K(2)
3 (C3)|.

Note that rk ≤ r1 follows from (85). We submit toHQ
C3

the “witness” (C3∩Q(s); s ∈ [rk]).

We conclude from the (δ, r1)-full regularity of HQ
C3

that∣∣∣∣∣∣ |H
Q
C3
∩ (K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

|K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))|

− dHQ
C3

(C3)

∣∣∣∣∣∣ < δ,

which is equivalent to∣∣∣∣∣∣ |H
Q ∩ (K(2)

3 (C3) ∩
⋃rk

s=1K
(2)
3 (Q(s)))|

|K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))|

− dHQ
C3

(C3)

∣∣∣∣∣∣ < δ.
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Thus, with dHQ
C3

(C3) ≤ α− 3δ, we conclude

|HQ ∩ (K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s)))|

|K(2)
3 (C3) ∩

⋃rk
s=1K

(2)
3 (Q(s))|

≤ α− 2δ.

2

8. The Upper Bound of Theorem 3.1.1

We begin this section by reviewing Theorem 3.1.1.

8.1. Review of Theorem 3.1.1.
Let us recall the of our work in Theorem 3.1.1 (i.e. Setup 1).

Setup:
For a given integer k, set of nonnegative reals {αB : B ∈ [k]3}, constants δ, λ, r, and

ε, suppose triple system H and underlying graph G satisfy the following:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = n.
(ii) G =

⋃
1≤i<j≤k Gij is an underlying (λ, ε, k)-cylinder.

(iii) For all B ∈ [k]3, H(B) is (αB, δ, r)-fully regular with respect to G(B).

Recall the Statement of Theorem 3.1.1.

Theorem 8.1.1. For all integers k ≥ 4, for all sets of nonnegative reals {αB : B ∈ [k]3},
for all β > 0, there exists δ > 0 such that for all integers λ > 1

δ
, there exist r and ε so

that the following holds: whenever triple system H and underlying cylinder G satisfy the
conditions of the Setup with parameters k, {αB : B ∈ [k]3}, δ, λ, r and ε, then

ΠB∈[k]3αB

λ(k
2)

nk(1− β) ≤
∣∣∣K(3)

k (H)
∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

nk(1 + β). (170)

We proved the lower bound in (170) in Theorem 3.2.1. What remains to be shown for
the proof of Theorem 8.1.1 is the upper bound of (170). We mentioned earlier that the
upper bound in (170) follows from the lower bound in (170). For that purpose, we recall
Theorem 3.2.1 as a summary of the lower bound in (170).

Theorem 8.1.2. For all integers k ≥ 4, for all sets of nonnegative reals {αB : B ∈ [k]3},
for all β > 0, there exists δ > 0 such that for all integers λ > 1

δ
, there exist r and ε so

that the following holds: whenever triple system H and underlying cylinder G satisfy the
conditions of the Setup with parameters k, {αB : B ∈ [k]3}, δ, λ, r and ε, then∣∣∣K(3)

k (H)
∣∣∣ ≥ ΠB∈[k]3αB

λ(k
2)

nk(1− β). (171)

To complete the proof of Theorem 8.1.1, it suffices to prove the following proposition,
which establishes the upper bound in (170).
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Proposition 8.1.3. For all integers k ≥ 4, for all sets of nonnegative reals {αB : B ∈
[k]3}, for all β > 0, there exists δ > 0 such that for all integers λ > 1

δ
, there exist r and ε

so that the following holds: whenever triple system H and underlying cylinder G satisfy
the conditions of the Setup with parameters k, {αB : B ∈ [k]3}, δ, λ, r and ε, then∣∣∣K(3)

k (H)
∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

nk(1 + β). (172)

Before we begin the proof of Proposition 8.1.3, we first sketch the easy idea behind it.
For each D ⊆ [k]3, consider k-partite 3-cylinder HD =

⋃
B∈[k]3 HD(B), where for each

B ∈ [k]3,

HD(B) =

{
H(B) if B /∈ D
K(2)

3 (G(B)) \ H(B) if B ∈ D (173)

Clearly, H = H∅. We apply Theorem 8.1.2 to each HD, D 6= ∅, to conclude a lower

bound on |K(3)
k (HD)|. Since

⋃
D⊆[k]3 K

(3)
k (HD) = K(2)

k (G), and |K(2)
k (G)| ∼ nk

λ(
k
2)

, we are

able to infer an upper bound on
∣∣∣K(3)

k (H)
∣∣∣, and show it is given by (172).

8.2. Proof of Proposition 8.1.3.
We now give the definitions of the constants involved in Proposition 8.1.3.

Definitions of the Constants:
Let k ≥ 4 be a given integer, let {αB : B ∈ [k]3} be a given set of nonnegative reals,

and let β > 0 be a given constant. Define auxiliary positive constants

β′ = β′(k, {αB : B ∈ [k]3}, β), (174)

θ = θ(k, {αB : B ∈ [k]3}, β) (175)

to satisfy

θ + β′

ΠB∈[k]3αB

− β′ ≤ β. (176)

We now produce the constant δ promised by Proposition 8.1.3. Given the set {αB :

B ∈ [k]3}, define for every D ⊆ [k]3 auxiliary sets {α(D)
B : B ∈ [k]3} according to the

following rule: for every B ∈ [k]3,

α
(D)
B =

{
αB if B /∈ D
1− αB if B ∈ D.

(177)

For k ≥ 4 given above, for D ⊆ [k]3 and set {α(D)
B : B ∈ [k]3}, and constant β′ in (174)

given above, let

δD = δD(k, {α(D)
B : B ∈ [k]3}, β′)

be that constant guaranteed by Theorem 8.1.2. Set

δ = min{δD : D ⊆ [k]3}. (178)

This concludes our definition of the promised constant δ.
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Let λ > 1
δ

be a given integer. For D ⊆ [k]3, let

rD = rD(k, {α(D)
B : B ∈ [k]3}, β′, λ),

εD = εD(k, {α(D)
B : B ∈ [k]3}, β′, λ)

be those constants guaranteed to exist by Theorem 8.1.2. Set

r = max{rD : D ⊆ [k]3}. (179)

We now determine the value ε guaranteed to exist by Proposition 8.1.3. For this, we
need to recall Fact 2.1.7 of Section 2. Recall that Fact 2.1.7 states that for all integers k
and λ and suitably small constants ε, there exists a function θk,λ(ε), θk,λ(ε) → 0 as ε → 0,
which satisfies the conclusion of Fact 2.1.7. Therefore, for k and λ given above, let ε′ be
a positive constant so that the function θk,λ(ε

′) guaranteed to exist by Fact 2.1.7 satisfies

θk,λ(ε
′) ≤ θ (180)

where θ is that constant given in (175). Set

ε = min
{
ε′, min{εD : D ⊆ [k]3}

}
. (181)

This concludes our definitions of the constants guaranteed by Proposition 8.1.3. We now
proceed to the proof of Proposition 8.1.3.
Proof of Proposition 8.1.3.

Let k ≥ 4 be a given integer, let {αB : B ∈ [k]3} be a set of nonnegative reals, and let
β > 0 be a given constant. Let δ > 0 be given in (178). Let λ > 1

δ
be a given integer,

and let r and ε be given in (179) and (181) respectively. Suppose H is a triple system
and G is an underlying graph which with the parameters k, {αB : B ∈ [k]3}, δ, λ, r and
ε satisfy the hypothesis of the Setup. Our goal is to show∣∣∣K(3)

k (H)
∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

nk(1 + β).

Our strategy is to use the lower bound in (171) for each k-partite 3-cylinderHD defined
in (173), where D ⊆ [k]3, D 6= ∅.

For D ⊆ [k]3 and B ∈ [k]3, recall that in (177) of the Definitions of the Constants, we
defined

α
(D)
B =

{
αB if B /∈ D
1− αB if B ∈ D.

Note that if D = ∅, α
(D)
B = αB for all B ∈ [k]3, and if D = [k]3, α

(D)
B = 1 − αB for all

B ∈ [k]3. We also note the following easy fact about the numbers α
(D)
B .

Fact 8.2.1. ∑
D⊆[k]3

ΠB∈[k]3α
(D)
B = 1.

Proof of Fact 8.2.1.
Since ∑

D⊆[k]3

ΠB∈[k]3α
(D)
B = ΠB∈[k]3(α

(∅)
B + α

([k]3)
B )
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where for all B ∈ [k]3, α
(∅)
B = αB and α

([k]3)
B = 1− αB, we see that Fact 8.2.1 follows. 2

We also note the following (deeper) observations:

(a) For each D ⊆ [k]3, the k-partite 3-cylinder HD =
⋃

B∈[k]3 HD(B) has underlying

(λ, ε, k)-cylinder G =
⋃

1≤i<j≤k Gij.
(b) For each D ⊆ [k]3 and each B ∈ [k]3, the (αB, δ, r)-full regularity of H(B) with

respect to G(B) implies that HD(B) is (α
(D)
B , δ, r)-fully regular. In particular, for

all D ⊆ [k]3, HD and G satisfy the conditions of the Setup with parameters k,

{α(D)
B : B ∈ [k]3}, δ, λ, r, ε.

(c) For each D ⊆ [k]3, by our choices of δ, r and ε in (178), (179) and (181) respec-

tively, Theorem 8.1.2 applies to HD and G with the parameters k, {α(D)
B : B ∈

[k]3}, β′, δ, λ, r, ε. We therefore conclude that for each D ⊆ [k]3,

|K(3)
k (HD)| ≥

ΠB∈[k]3α
(D)
B

λ(k
2)

nk(1− β′). (182)

We now combine our observation in (c) above with Fact 8.2.1. ForD1,D2 ⊆ [k]3, D1 6= D2,

K(3)
k (HD1) ∩ K

(3)
k (HD2) = ∅. Moreover,

⋃
D⊆[k]3 K

(3)
k (HD) = K(2)

k (G). Therefore,∑
D⊆[k]3

|K(3)
k (HD)| = |K(2)

k (G)|. (183)

Since G is a (λ, ε, k)-cylinder, we apply Fact 2.1.7 to conclude∣∣∣K(2)
k (G)

∣∣∣ ≤ nk

λ(k
2)

(1 + θk,λ(ε)) ≤
nk

λ(k
2)

(1 + θ) (184)

where the last inequality follows from our choice of ε in (181). Combining the inequalities
in (182) and (184) in (183) yields

|K(3)
k (H∅)|+

∑
D⊆[k]3

D6=∅

ΠB∈[k]3α
(D)
B

λ(k
2)

nk(1− β′) ≤ nk

λ(k
2)

(1 + θ)

or equivalently, with H = H∅,

∣∣∣K(3)
k (H)

∣∣∣ λ(k
2)

nk(1− β′)
≤ 1 + θ

1− β′
−

∑
D⊆[k]3

D6=∅

ΠB∈[k]3α
(D)
B . (185)

Employing the equality in Fact 8.2.1 in (185) yields

∣∣∣K(3)
k (H)

∣∣∣ λ(k
2)

nk(1− β′)
≤ 1 + θ

1− β′
− 1 + ΠB∈[k]3α

(∅)
B ,

= ΠB∈[k]3αB

(
1 +

θ + β′

(1− β′)ΠB∈[k]3αB

)
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or equivalently, ∣∣∣K(3)
k (H)

∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

nk

(
1− β′ +

θ + β′

ΠB∈[k]3αB

)
. (186)

Since we chose constants β′ and θ to satisfy the inequality in (176), we conclude from
(186) that ∣∣∣K(3)

k (H)
∣∣∣ ≤ ΠB∈[k]3αB

λ(k
2)

nk(1 + β)

and hence our proof of Proposition 8.1.1 is complete. 2

9. Concluding Remarks

In this section, we make brief remarks concerning Theorem 3.1.1. To begin, we consider
the following slight generalization of The Counting Lemma. To discuss this statement,
we define an appropriate context.
Setup:

For a given integer k ≥ 3, for a fixed triple system J0 on vertex set [k], for given
constants α, δ, λ, r and ε, suppose H is a triple system and G is an underlying graph
satisfying the following:

(i) H is a k-partite 3-cylinder with k-partition (V1, . . . , Vk), |V1| = . . . = |Vk| = m.
(ii) G is an underlying (λ, ε, k)-cylinder of H.

(iii) for all B ∈ J0, H(B) is (α, δ, r)-fully regular with respect to the triad G(B) (cf.,
Definition 2.2.7).

Denote by
(
H
J0

)
the set of copies of the hypergraph J0 in the hypergraph H. We define

the following special set SJ0(H) ⊆
(
H
J0

)
of copies of J0 in H as

SJ0(H) =

{
J ∈

(
H
J0

)
: [V (J )]2 ⊆ G

}
.

Then the following may be proved using Theorem 3.1.1.

Theorem 9.0.2. For all integers k ≥ 4 and triple systems J0 ⊆ [k]3, for all α, β > 0,
there exists a constant δ > 0 so that for all integers λ ≥ 1

δ
, there exists an integer r and

ε > 0 so that whenever triple system H and G =
⋃

1≤i<j≤k Gij satisfy the conditions of
the Setup above with constants k, α, δ, λ, r and ε and triple system J0, then

α|J0|

λ(k
2)

mk(1− β) ≤ |SJ0(H)| ≤ α|J0|

λ(k
2)

mk(1 + β).

Note that when J0 = K
(3)
k , Theorem 9.0.2 reduces to Theorem 3.1.1. An application of

Theorem 9.0.2 appears in [3].
The following theorem in [7] was proved using the Hypergraph Regularity Lemma of

[2] in tandem with Theorem 3.1.1. Let a set of triple systems {Fi}i∈I be given and
define Pn to be the set of all 3-uniform hypergraphs on vertex set [n] not containing any
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F ∈ {Fi}i∈I as a subhypergraph. Denote by ex(n, {Fi}i∈I) the maximum size of a triple
system in Pn. Then

|Pn| = 2ex(n,{Fi}i∈I)+o(n3). (187)

Note that (187) extends the result of Theorem 1.1.4 for triple systems. A recent extension
of (187) in [4] provides a similar identity for |P ′

n|, where P ′
n is defined as the set of triple

systems on vertex set [n] containing no F ∈ {Fi}i∈I as an induced subhypergraph.
Finally, in the upcoming paper [9], V. Rödl and J. Skokan developed a method for

counting copies of K
(4)
5 , the hypergraph consisting of 5 points and 5 quadruples, in an

appropriate but quite technical environment. We remark that their environment is a
variation of Setup 1, the environment which hosted Theorem 3.1.1. An alternative (and
hopefully simpler) method for proving Theorem 3.1.1 is currently being explored in [8].
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[8] Y. Peng, V. Rödl, J. Skokan, “Counting small cliques in 3-uniform hypergraphs”, submitted.
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