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ABSTRACT

In a previous paper by the second author, two Markov chain Monte Carlo perfect sampling
algorithms—one called coupling from the past (CFTP) and the other (FMMR) based on rejection
sampling—are compared using as a case study the move-to-front (MTF) self-organizing list
chain. Here we revisit that case study and, in particular, exploit the dependence of FMMR on
the user-chosen initial state. We give a stochastic monotonicity result for the running time of
FMMR applied to MTF and thus identify the initial state that gives the stochastically smallest
running time; by contrast, the initial state used in the previous study gives the stochastically
largest running time. By changing from worst choice to best choice of initial state we achieve
remarkable speedup of FMMR for MTF; for example, we reduce the running time (as measured
in Markov chain steps) from exponential in the length n of the list nearly down to n when the
items in the list are requested according to a geometric distribution. For this same example, the
running time for CFTP grows exponentially in n.
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1 Introduction and summary

Perfect sampling has had a substantial impact on the world of Markov Chain Monte
Carlo (MCMC). In MCMC, one is interested in obtaining a sample from a distribution π
from which it is computationally difficult (or even infeasible) to simulate directly. One
constructs a Markov chain whose stationary distribution is π and after running the chain
“a long time” takes an outcome from the chain as an (approximate) observation from π.
Propp and Wilson [12] (see also [13] [14] [16]) and Fill [4] have devised algorithms to
use Markov chain transitions to produce observations exactly from π, without a priori
estimates of the mixing time of the chain; the applicability of the latter algorithm has
recently been extended by Fill, Machida, Murdoch, and Rosenthal [7], and so we will use
the terminology “FMMR algorithm.” Although the two algorithms are based on differ-
ent ideas—Propp and Wilson use coupling from the past (CFTP) while FMMR is based
on rejection sampling—there is a simple connection between the two, discovered in [7]
and reviewed below. For further general discussion of perfect sampling using Markov
chains, consult the annotated bibliography maintained on the Web by Wilson [15].

Much of the discussion comparing the two algorithms has focused on the issue of
“interruptibility.” FMMR has the feature that the output and the running time—when
measured in number of Markov chain steps—are independent random variables. Thus,
for instance, an impatient user who interrupts a run of the algorithm after any fixed
number of steps and restarts the procedure does not introduce any bias into the output.
This is not so for CFTP. On the other hand, for many practical applications CFTP
is considerably easier to implement, since (see [7]) FMMR requires the user to be able
(i) to generate a trajectory from the time-reversal of the basic chain, and (ii) to build
couplings “ex post facto,” i.e., to perform certain imputation steps; CFTP requires
neither ability.

Remark 1.1. There is a need for time-reversal generation (of an auxiliary chain) and
for ex post facto coupling in an extension of CFTP known as coupling into and from
the past, introduced (under a different name) by Kendall [9]. (See also Section 1.9.3
in [16].)

In this paper we focus on the running time of the two algorithms (but the non-
interruptibility of CFTP will turn out to play a key role). In previous case-study
comparisons [4] [6], the running times (and memory requirements) have been found to
be not hugely different, but CFTP has had the edge. In this paper, by revisiting the
case study of [6], we show that, at least in some cases, FMMR can be made to have
much smaller running time than CFTP.

The general observation that we exploit—one very closely related to Remark 6.9(c)
and Section 8.2 of [7]—is the following. Given a target distribution π, let pCFTP de-
note the probability that CFTP terminates successfully (coalesces) over a fixed time
window (and outputs a sample from π). Similarly, let pCFTP(z) denote the conditional
probability of coalescence over the time window, given that the state (call it ZCFTP)
ultimately output by CFTP (after extending the time window into the indefinite past)
is z. Let pFMMR(z) denote the conditional probability that FMMR terminates suc-
cessfully over the same time window, given that the initial state (call it ZFMMR) is z.
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Then, as we show in Theorem 2.3, pCFTP(z) ≡ pFMMR(z). That is (now letting the time
window vary), if TCFTP and TFMMR denote the respective running times of CFTP and
FMMR, then conditional running time distributions agree:

L(TCFTP |ZCFTP = z) ≡ L(TFMMR |ZFMMR = z),

where L(X) denotes the distribution (law) of the random variable X. As a consequence,
pCFTP = Eπ [pFMMR(ZFMMR)]; that is, L(TCFTP) is the π-mixture of the distributions
L(TFMMR |ZFMMR = z).

The important point here is that, except in the rare instance that CFTP is in-
terruptible for the chain of interest (i.e., that TCFTP and ZCFTP are independent),
for at least one time window there must exist at least one initial state z for which
pFMMR(z) > pCFTP.

The move-to-front (MTF) process is a nonreversible Markov chain on the permuta-
tion group Sn. The two algorithms have been compared for MTF in a previous paper [6].
In that paper, the initial state for FMMR was taken to be the identity permutation, and
it was then found, roughly speaking (see Table 1 and Section 5 therein), that TCFTP

and TFMMR are of the same size. In this paper, we will revisit that case study and
establish a stochastic monotonicity result for L(TCFTP |ZCFTP = z) in z. It turns out,
in particular, that the identity permutation is the worst choice of initial state! When
we choose instead the reversal permutation, which is the best choice, we obtain a (some-
times huge) speedup for FMMR. (See Table 1, which will be explained more fully in
Section 4. Notice that for geometric weights, the change in starting state reduces TFMMR

from exponential in n to about n.) The gains obtained by using the optimal z are suf-
ficiently dramatic that, when measured in Markov chain steps, the resulting worst-case
running time for FMMR (worst over choice of request weights) equals the best-case
running time for CFTP: see Remark 4.2(b).

We temper our enthusiasm, however, by recognizing that our MTF example is some-
what artificial on two counts. Firstly, as discussed in the introduction to [6], there are
algorithms for sampling from the MTF stationary distribution which are both more
elementary (in particular, not involving Markov chains) and more efficient than either
CFTP or FMMR. So we do not recommend applying either CFTP or FMMR to MTF in
practice. Our goal here is to illustrate how judicious choice of starting state for FMMR
can greatly improve its performance.

Secondly, MTF has the (evidently rare) property that one can obtain an exact
analysis of the running time distribution for FMMR for every choice of initial state z.
We do not yet know whether our speedup ideas help in any real applications. We
hope, however, that the ideas in this paper will stimulate further research on FMMR
by pointing to the possibility of speedup of the algorithm.

We briefly review the two perfect sampling algorithms and their general connection
in Section 2. The move-to-front rule is reviewed in Section 3. Our new results are
given in Section 4. A somewhat different approach to speeding up FMMR is given in
Section 5.
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2 Perfect sampling

We briefly review the CFTP and FMMR algorithms (omitting a few of the finer measure-
theoretic details, which are irrelevant anyway for finite-state chains). We assume that
our Markov chain X can be written in the stochastic recursive sequence form

Xs = φ(Xs−1,Us),(2.1)

where φ is called the transition rule and (Us) is an i.i.d. sequence. We further assume
that our Markov chain has finite state space X and is irreducible and aperiodic with
(unique) stationary distribution π.

2.1 CFTP

For a fixed positive integer t, and a Markov chain with n states, start n copies of the
chain at time −t from each of the n states, coupling the transitions by means of the
transition rule φ, and running the chains until time 0. If all copies of the chain agree
at time 0, we say that the trajectories have coalesced and return the common value,
say Z. If the chains do not agree, then increment t and restart the procedure, using for
common values of s the same values of Us used in the previous step; again, check for
coalescence. The running time of the algorithm we define to be the smallest integer t
for which coalescence occurs. If we assume the algorithm terminates with probability 1,
then Z ∼ π exactly.

There is a rich source of papers, primers, and applications of CFTP. The best initial
reference is the “Perfectly random sampling with Markov chains” Web site maintained
by David Wilson at http://www.dbwilson.com/exact/.

2.2 FMMR

Given a Markov chain with transition matrix K, recall that the time-reversal chain has
transition matrix K̃ which satisfies

π(x)K(x, y) = π(y)K̃(y, x) for all x, y.

The FMMR algorithm has two stages: First, choose an initial state X0. Run the
time-reversed chain K̃, obtaining X0,X−1, . . . in succession. Then (conditionally given
the X-values) generate U0,U−1, . . . independently, with Us chosen from its conditional
distribution given (2.1) for s = 0,−1, . . . . (One says that the values Us are imputed.)

For t = 0, 1, . . . , and for each state x in the state space, set Y
(−t)
−t (x) := x and, induc-

tively,

Y(−t)
s (x) := φ(Y

(−t)
s−1 (x),Us), − t+ 1 ≤ s ≤ 0.

We will sometimes refer to the realization of the chain X as the backward trajectory,
and to the realizations of the chains Y(x) as the forward trajectories. The running time

of the algorithm we define to be the smallest t∗ such that Y
(−t∗)
0 (x) agree for every x

in the state space (and hence all equal X0). In this case the algorithm reports X−t∗ as
an observation from π.

http://www.dbwilson.com/exact/
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Remark 2.1. The algorithms are presented here in their most general, “vanilla” ver-
sions. A large amount of research has gone into improving both algorithms and tailoring
them for specific applications. In particular, to improve performance a “doubling trick”
is suggested for both algorithms whereby instead of incrementing t by one at each step,
t is successively doubled. Since this affects the number of Markov chain steps taken only
by constant factors, we shall for our theoretical analysis stick to the “vanilla” versions.

Remark 2.2. For most chains of interest, the state space is very large and the imple-
mentations presented here (running copies of the chain from every state in the state
space) are not feasible. However, for a large class of cases where a form of monotonicity
holds, the algorithms become practical.

Given a Markov chain with transition matrixK, we say that we are in the (realizably)
monotone case if the following conditions hold. The state space is a partially ordered
set (X ,≤). There exist (necessarily unique) minimum and maximum elements in the
state space, denoted 0̂ and 1̂, respectively. There exists a monotone transition rule φ
for the chain. Such a rule is a function φ : X ×U → X together with a random variable
U taking values in a probability space U such that (i) φ(x,u) ≤ φ(y,u) for all u ∈ U
whenever x ≤ y; and (ii) for each x ∈ X , P (φ(x,U) = y) = K(x,y) for all y ∈ X .

When in the monotone case, for CFTP one only needs to follow two trajectories of
the chain, one started at time −t from 0̂ and the other from 1̂, since all other trajectories
are sandwiched between these. Likewise, in the second phase of FMMR, one only needs
to run the Y-chain from states 0̂ and 1̂.

Although the two algorithms are based on different conceptual underpinnings, our
first theorem highlights an important connection between them. Roughly, the distribu-
tion of the running time for CFTP is equal to the stationary mixture, over initial states,
of the distributions of the running time for FMMR. This is given as Remark 6.9(c) in [7],
but we wish to emphasize its importance and so recast it as a theorem. We recall our
notation from Section 1. For a fixed time window, let pCFTP(z) denote the probability
that CFTP coalesces given that the state (call it ZCFTP) ultimately output by CFTP
is z, and let pCFTP denote the corresponding unconditional probability. Let pFMMR(z)
denote the conditional probability that FMMR coalesces given that the initial state (call
it ZFMMR) is z. Let TCFTP and TFMMR denote the respective running times of CFTP
and FMMR (now letting the time window vary).

Theorem 2.3. We have

pCFTP(z) = pFMMR(z) for π-almost every z;(2.2)

pCFTP = Eπ[pFMMR(ZFMMR)];(2.3)

L(TCFTP|ZCFTP = z) = L(TFMMR|ZFMMR = z) for π-almost every z;(2.4)

and

L(TCFTP) is the π-mixture (over z) of L(TFMMR |ZFMMR = z).(2.5)
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The result holds in the most general setting, not restricted either to finite-state chains
or to monotone transition rules. It is a consequence of the discussion in Sections 6.2
and 8.2 of [7]. For the reader’s convenience we give here a simple proof for the discrete
case.

Proof. Each iteration of FMMR is an implementation of rejection sampling (see, e.g.,
Devroye [2] for background). The goal is to use an observation from K̃t(z, ·) to sim-
ulate one from π. One obtains an upper bound c on maxx π(x)/K̃

t(z, x), generates x
with probability K̃t(z, x), and accepts x as an observation from π with probability
c−1π(x)/K̃t(z, x). The unconditional probability of acceptance is then 1/c. Observe
that, for every x,

π(x)

K̃t(z, x)
=

π(z)

Kt(x, z)
≤

π(z)

P (coalescence to z)
:= c,

where “coalescence to z” refers, of course, to coalescence over the given time window of
length t. Thus for the desired conditional acceptance probability given x we can use

P (coalescence to z)

Kt(x, z)
= P (coalescence to z | trajectory from x ends at z),

and the FMMR algorithm is designed precisely to implement this. Thus pFMMR(z) = 1/c
and hence

pFMMR(z) =
P (coalescence to z)

π(z)
= pCFTP(z).(2.6)

Thus, (2.2) is immediate. Taking expectations with respect to π gives (2.3). And (2.4)
[from which (2.5) is immediate] follows from (2.2) since, for a fixed time window of
length t, pFMMR(z) [respectively, pCFTP(z)] is the value at t of the conditional distri-
bution function of TFMMR given that ZFMMR = z (respectively, of TCFTP given that
ZCFTP = z).

Corollary 2.4. If TCFTP and ZCFTP are not independent random variables, then there
exist at least one time window and at least one initial state z for which pFMMR(z) >
pCFTP.

Proof. This is immediate from (2.3).

The following simple examples are artificial, but they give a first demonstration
that judicious choice of starting state can lead to dramatic speedup. First, consider a
three-state Markov chain with states labeled 0, 1, and 2. Let

K =




ǫ (1− ǫ)/2 (1− ǫ)/2
ǫ 1− ǫ 0
ǫ 0 1− ǫ


 ,
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where ǫ > 0 is small. One checks that this chain is reversible (but not monotone).
Let U = 0, 1, 2 with respective probabilities ǫ, (1 − ǫ)/2, (1 − ǫ)/2 and use the natural
transition rule

φ(x, 0) = 0 for all x, φ(0, 1) = φ(1, 1) = φ(1, 2) = 1, φ(0, 2) = φ(2, 1) = φ(2, 2) = 2.

Coalescence occurs over a given time window of length t if and only if the value of
some Us in that window is 0; thus pCFTP = 1 − (1 − ǫ)t, which requires t of order 1/ǫ
to become nonnegligible. On the other hand, if FMMR is started in state 0, then with
high probability ( = 1 − ǫ) we’ll see (going backward in time) one of the transitions
1 ← 0 or 2 ← 0. If we do, then (whichever we see) in the forward phase we impute
U = 0 and hence get coalescence (to state 0) in one step.

For our second example, consider a Gibbs sampler on an attractive spin system
with n sites arranged in a row and left-to-right site-update sweeps. (Consult, e.g., [4]
or [10] for background on attractive spin systems.) This gives a monotone, nonreversible
chain where 0̂ is the state consisting of all −’s and 1̂ is the state of all +’s. Suppose that
the Gibbs distribution is such that there is (i) a strong external field for spin + at sites 1
through n− 1, (ii) a much stronger effect of attractiveness throughout the system, and
(iii) a very much stronger yet external field for spin + at site n (the rightmost site).
First consider CFTP. The state 1̂ is a state of very high probability and so the chain
won’t budge out of that state for a long time. On the other hand, from 0̂, in one sweep
(a full left-to-right update), we obtain [with high probability, because of (ii) and (iii)]
−−· · ·−−+. In the next sweep we obtain [with high probability, because of (ii) and (i)]
−−· · ·−++. Continuing, in about n sweeps we obtain ++ · · ·+++; that is, with high
probability we obtain coalescence in n sweeps. On the other hand, consider FMMR
started in 0̂. Here, the reversed chain is Gibbs sampling with right-to-left updates. The
reversed chain, started in 0̂, [with high probability, because of (iii) and then (ii)] flips
each site from − to + as it moves from right to left. Hence, we obtain + + · · · + ++;
that is, with high probability there is coalescence in one sweep.

(Of course, were we to use right-to-left sweeps or reversible sweeps as the sampler,
the relative disadvantage of CFTP would disappear.)

Remark 2.5. In general, we know of no simpler expression for pFMMR(z) than the ratio
in (2.6). In the monotone case, however, when z = 0̂ or z = 1̂ we obtain significant
simplification. Indeed, then

pFMMR(0̂) =
Kt(1̂, 0̂)

π(0̂)
= min

z

Kt(z, 0̂)

π(0̂)
and pFMMR(1̂) =

Kt(0̂, 1̂)

π(1̂)
= min

z

Kt(z, 1̂)

π(1̂)
.

Recall that for a Markov chain with transition matrix K and stationary distribution π,
the separation at time t given that the chain starts in state x is

sepx(t) := 1−min
z

Kt(x, z)

π(z)
.

Thus, pFMMR(z) = 1 − s̃epz(t) for z = 0̂, 1̂, where s̃ep refers to separation for the
transition matrix K̃. See (e.g.) [1] for more on separation.
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3 Move-to-front

Let (w1, . . . , wn) be a probability mass function on {1, . . . , n} with wi > 0 for each i.
In this study we are concerned with generating an observation from the distribution

π(z) :=

n∏

r=1

wzr∑n
j=r wzj

, z ∈ Sn,(3.1)

where Sn is the group of permutations of {1, . . . , n}. Consider sampling without re-
placement from a population of n items, where item i has probability wi of being chosen,
1 ≤ i ≤ n. Then the probability of drawing the n items in the order z is given by (3.1).

This distribution arises as the limiting distribution of the much-studied move-to-
front (MTF) process. The MTF heuristic is used to “self-organize” a linear list of data
records in a computer file. Let {1, . . . , n} be a set of records (or rather the set of keys, or
identifying labels for the records), where record i has probability wi of being requested.
At discrete units of time, and independent of past requests, item i is requested (with
probability wi) and brought to the front of the list, leaving the relative order of the
other records unchanged. The successive orders of the list of records forms an ergodic
Markov chain on the permutation group Sn with stationary distribution π.

We will assume that the records have been labeled so that w1 ≥ · · · ≥ wn > 0 and
refer to w = (w1, . . . , wn) as the weight vector of the chain. For extensive treatment of
MTF, see [5], which contains pointers to the sizable literature on the subject. Hendricks
[8] was the first to show that the stationary distribution of the MTF Markov chain is
given by (3.1).

Fill [6] used MTF as a case study to compare CFTP and FMMR. We omit many
details but for completeness describe the set-up briefly. Partially order the symmetric
group Sn by declaring z ≤ z′ if z′ can be obtained from z by a sequence of adjacent
transpositions which switch records out of order (that begin in natural order). This is
the weak Bruhat order . With

0̂ := id = (1, 2, . . . , n), 1̂ := rev = (n, n− 1, . . . , 1),

we have 0̂ ≤ z ≤ 1̂ for all z ∈ Sn. (For the definition of the Bruhat order , used
later, delete the word “adjacent.”) The MTF chain possesses the following monotone
transition rule with respect to the weak Bruhat order. Let U be a random variable
satisfying P (U = i) = wi for 1 ≤ i ≤ n. Define

φ(z, i) = movei(z) for z ∈ Sn and 1 ≤ i ≤ n,

where movei(z) is defined to be the permutation resulting from the list z by requesting
record i and applying the MTF rule. It is easily checked (see Lemma 2.2 in [6]) that
this gives a monotone transition rule for M .

MTF, of course, is not a reversible Markov chain; however, it is relatively straight-
forward to generate transitions from the time-reversed chain. We refer the reader to [6]
for further details on implementing MTF both using CFTP and using FMMR.
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Our first result (Theorem 3.1) exhibits explicitly the dependence of TFMMR on the
initial state ZFMMR. In what follows, given z ∈ Sn, let yr := wzr for 1 ≤ r ≤ n. In this
notation, (3.1) can be written in the form

π(z) =
n∏

r=1

yr

1− y+r−1

,

where we have also introduced the notation

y+r :=
r∑

j=1

yj, 0 ≤ r ≤ n,

for any vector (y1, . . . , yn).

Theorem 3.1. (a) The conditional distribution of L(TFMMR) given the initial state ZFMMR

satisfies
L(TFMMR |ZFMMR = z) = L(Tz),

where the law of Tz is the convolution of Geometric(1−y+r ) distributions, 0 ≤ r ≤ n−2.
We write

Tz ∼ ⊕
n−2
r=0Geom(1 − y+r ).

(b) The random variables Tz decrease stochastically in the Bruhat order for z.
(c) The distribution L(Tz) is stochastically minimized (respectively, maximized) by

choosing z = rev (resp., z = id). In that case we find

Trev ∼ ⊕
n
r=2Geom(w+

r ) [resp., Tid ∼ ⊕
n−2
r=0Geom(1 − w+

r )].(3.2)

Proof. Part (a) is a consequence of (2.4) in our Theorem 2.3 and Lemma 3.7 in [6];
indeed, that lemma states that L(TCFTP |ZCFTP = z) = ⊕n−2

r=0Geom(1 − y+r ). For the
weak Bruhat order, Lemma 3.9 in [6] gives part (b); but one need only compare L(Tz)
and L(Tz′) when z and z′ differ by any transposition to see that part (b) holds for the
Bruhat order. Part (c) is an immediate consequence of part (b).

Remark 3.2. Theorem 3.1 for the special case of MTF belies the general Remark 2.5.
Indeed, for every initial state for FMMR, we know exactly the distribution of TFMMR.
The worst starting state for coalescence is the identity permutation, and the result for
L(Tid) in Theorem 3.1(c) recaptures Theorem 4.2 in [6]. The comparison of FMMR and
CFTP in [6] was based on starting FMMR in this worst state. In the next section we
will discuss how much speedup can be achieved by instead starting in the best state,
the permutation rev.

4 Speedup results for MTF

4.1 General weight vectors

From now on, we abbreviate Trev of (3.2) as T . We first consider how L(T ) varies with
the weight vector w. For an understanding of the terminology used in Theorem 4.1 and
a thorough treatment of majorization, see [11].
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Theorem 4.1. The distribution ⊕n
r=2Geom(w+

r ) of T is stochastically strictly Schur-
concave in the weight vector w. In particular, the distribution is stochastically maxi-
mized (respectively, minimized), over all vectors w with w1 ≥ w2 ≥ · · · ≥ wn ≥ 0, at the
uniform distribution w = (1/n, . . . , 1/n) (resp., at any distribution w with w1+w2 = 1).

Proof. The result follows simply from the fact that the Geometric(p) distribution is
stochastically strictly decreasing in p.

Remark 4.2. (a) The possibility w1 +w2 = 1 is ruled out for MTF by our assumption
that all weights are positive. Nevertheless it is a limiting case. In this limiting case,
T = n − 1 with probability 1. At the other extreme of uniform weights, asymptotics
for L(T ) are well known (since this is a slight modification of the standard coupon
collector’s problem). (The distribution of L(T ) for uniform weights is treated in detail in
Theorem 4.3(a) and Section 4.2 of [5]. Roughly put, the distribution of T is concentrated
tightly about n lnn.) Thus, for any sequence w(1) = (w11),w

(2) = (w21, w22, . . . ), . . . of
weight vectors, writing T ≡ Tn for the T corresponding to weight vector w(n) we have

P (T ≥ n− 1) = 0 and lim inf
c→−∞

lim inf
n→∞

P (T ≤ n lnn+ cn) = 1.

So the distribution of T is always tightly sandwiched between n and about n lnn, in
sharp contrast (cf. Table 1 of [6] or Table 1 below) to the distribution of Tid or of TCFTP.

(b) According to Remark 2.6 and the sentence following (3.2) in [6], L(TCFTP) is
strictly Schur-convex in w. In particular, the best-case L(TCFTP), corresponding to
uniform weights, equals the worst-case L(T ), also corresponding to uniform weights.

4.2 Specific examples of weight vectors

We now measure quantitatively, for certain standard examples of weight vectors, the
speedup gained for FMMR by using the best choice of initial permutation, rev. Given
a triangular array of weights w(n) = (wni, i = 1, . . . , n), n ≥ 1, we say that kn steps are
necessary and sufficient for convergence of L(T ) to mean that

Tn

kn
→ 1 in probability.

Here Tn denotes Trev for the weight vector w(n); when there is no danger of confusion,
we will sometimes drop the subscript n.

For some examples of w(n) we can obtain results of sharper form than provided by
“kn steps are necessary and sufficient”. However, for simplicity and for uniformity of
presentation, we stick to the above definition.

Let H
(α)
n :=

∑n
i=1 i

−α for α > 0, and let ζ(α) :=
∑

∞

i=1 i
−α, α > 1, denote the

Riemann zeta function. We consider the following choices of weights, where (now sup-
pressing dependence on n in our notation) each weight vector w is listed up to a constant
of proportionality. The numbers of steps necessary and sufficient for convergence of L(T )
for these examples are stated in Theorem 4.3 and collected in Table 1. The second and
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third columns of Table 1 are taken from [6]. [In these columns, the meaning of “ckn
steps are necessary and sufficient” is that, for some h and H,

h(c) ≤ lim inf
n→∞

P (Tn ≤ ⌊ckn⌋) ≤ lim sup
n→∞

P (Tn ≤ ⌊ckn⌋) ≤ H(c),

where 0 < h(c) ≤ H(c) < 1 for all c ∈ (0,∞), h(c) → 0 as c → 0, and H(c) → 1 as
c→∞.] The fourth column in Table 1 is the content of our next theorem.

Weights wi ∝

Uniform 1
Zipf’s law i−1

Generalized Zipf’s law (GZL) i−α, α > 0 fixed
Power law (n− i+ 1)s, s > 0 fixed
Geometric θi, 0 < θ < 1 fixed

Table 1. Rates of convergence for L(TCFTP) and L(TFMMR).

Weights L(TCFTP) L(TFMMR)(worst) L(TFMMR)(best)

Uniform n lnn n lnn n lnn
Zipf’s law n(lnn)2 n(lnn)2 n
GZL
0 < α < 1 n

1−α lnn n
1−α lnn n

α

α > 1 ζ(α)nα lnn ζ(α)nα lnn n

Power law cns+1 cns+1 n lnn
s+1

Geometric cθ−n cθ−n n

Theorem 4.3. (a) (Uniform weights.) If wi = 1/n for all i, then n lnn steps are
necessary and sufficient.

(b) (Zipf’s law.) If wi = (Hni)
−1, with Hn := H

(1)
n =

∑n
k=1 k

−1, then n steps are
necessary and sufficient.

(c) (Generalized Zipf’s law.) When wi =
(
iαH

(α)
n

)
−1

, (i) if 0 < α < 1, then n/α

steps are necessary and sufficient, and (ii) if α > 1, then n steps are necessary and
sufficient.

(d) (Power law.) Fix s > 0. If wi = (n − i + 1)s/f(n, s), with f(n, s) :=
∑n

j=1 j
s,

then n lnn
s+1 steps are necessary and sufficient.

(e) (Geometric weights.) Fix 0 < θ < 1. If wi = (1− θ)θi−1 for i = 1, . . . , n− 1 and
wn = θn−1, then n steps are necessary and sufficient.

Proof. We shall ignore the trivialities induced by the need to consider integer parts in
various arguments, leaving these to the meticulous reader.

(a) (Uniform weights.) The asymptotics here are well known, as this is essentially
the standard coupon collector’s problem. A very sharp asymptotic result is that

P (T > ⌊n lnn+ cn⌋)→ 1− (1 + e−c)e−e−c

, c ∈ R.



11

A thorough treatment of the uniform-weights case is provided by Diaconis et al. [3].
We establish the remaining results [as we could also have established (a)] by showing,

in each case, (i) that the number of steps kn claimed to be necessary and sufficient is the
lead order term of E[T ], that is, that E[Tn] ∼ kn as n→∞, and (ii) that the standard
deviation of Tn is o(E[Tn]). The result then follows by application of Chebyshev’s
inequality. Showing (ii) for each of the weight examples is easy since

Var[T ] =

n∑

r=2

1− w+
r

(w+
r )2

=

n∑

r=2

1

(w+
r )2
−E[T ]

≤
1

w+
2

n∑

r=2

1

w+
r
−E[T ] = E[T ]

(
1

w+
2

− 1

)
,

and it is easy to check in each case that 1/w+
2 = o(E[T ]). The remainder of the proof

thus consists of showing (i). In each case we give explicit upper and lower bounds for
E[T ].

(b) (Zipf’s law weights.) Here

n− 1 ≤ E[T ] = Hn

n∑

r=2

(Hr)
−1 ≤ (lnn+ 1)

n∑

r=2

1

ln(r + 1)

≤ (lnn+ 1)

∫ n+1

2

dx

lnx
.(4.1)

Observe that ∫ n+1

2

dx

lnx
=

n+ 1

ln(n+ 1)
−

2

ln 2
+

∫ n+1

2

dx

(lnx)2
,

and that ∫ n/(lnn)2

2

dx

(lnx)2
≤

n/(ln n)2

(ln 2)2

and

∫ n+1

n/(lnn)2

dx

(lnx)2
≤

1

ln[n/(lnn)2]

∫ n+1

n/(lnn)2

dx

lnx
≤

1

ln[n/(ln n)2]

∫ n+1

2

dx

lnx
.

Thus,

∫ n+1

2

dx

lnx
≤

n+ 1

ln(n+ 1)
−

2

ln 2
+

n

(lnn)2(ln 2)2
+

1

ln[n/(lnn)2]

∫ n+1

2

dx

lnx
,

i.e.,

∫ n+1

2

dx

lnx
≤

[
1−

1

ln[n/(lnn)2]

]
−1 [ n+ 1

ln(n+ 1)
+

n

(lnn)2(ln 2)2
−

2

ln 2

]

=
n+ 1

ln(n+ 1)
+O

(
n

(lnn)2

)
.
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Continuing now from (4.1) we have

E[T ] ≤ (ln n+ 1)

(
n+ 1

ln(n+ 1)

)
+O

( n

lnn

)
= n+O

( n

lnn

)
.

(c) (Generalized Zipf’s law.) For 0 < α < 1,

E[T ] = H(α)
n

n∑

r=2

1

H
(α)
r

≤ (n− 1)1−α
n∑

r=2

1

(r + 1)1−α − 1

≤ n1−α
n+1∑

r=3

1

r1−α − 1
= n1−α

n+1∑

r=3

1

r1−α

(
1 +O

(
rα−1

))

= n1−α
n+1∑

r=3

(
rα−1 +O(r2α−2)

)
= n1−α

n+1∑

r=3

rα−1 +O(cn)

=
n

α
+ o(n),

where cn is defined as n1−α if 0 < α < 1/2, as n1/2 lnn if α = 1/2, and as n−α if
1/2 < α < 1. Also,

E[T ] ≥
(
(n+ 1)1−α − 1

) n∑

r=2

1

(r − 1)1−α

= (1 + o(1))n1−αn
α

α

=
n

α
+ o(n).

For α > 1, we use the fact that

H(α)
n = ζ(α)−

n−(α−1)

α− 1
+O(n−α).(4.2)

Now

n∑

r=2

1

H
(α)
r

=

n∑

r=2

[
ζ(α)−

r−(α−1)

α− 1
+O(r−α)

]
−1

=
1

ζ(α)

n∑

r=2

[
1−

r−(α−1)

(α− 1)ζ(α)
+O(r−α)

]
−1

=
1

ζ(α)

n∑

r=2

[
1 +

r−(α−1)

(α− 1)ζ(α)
+O(r−α) +O(r−(2α−2))

]

=
n

ζ(α)
+ o(n).
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Together with (4.2) this gives

E[T ] = H(α)
n

n∑

r=2

1

H
(α)
r

=
[
ζ(α) +O(n−(α−1))

] [ n

ζ(α)
+ o(n)

]

= n+ o(n).

(d) (Power law.) Here

E[T ] =
n∑

r=2

f(n, s)

(n− r + 1)s + · · ·+ ns
≤ f(n, s)

n∑

r=2

s+ 1

ns+1 − (n− r)s+1

=
f(n, s)(s+ 1)

ns+1

n∑

r=2

1

1− (1− r
n)

s+1
.

The inequality follows from an integral comparison. Another integral comparison shows
that the last sum above is bounded above by

∫ n

1

dx

1− (1− x
n)

s+1
= n

∫ 1− 1

n

0

dy

1− ys+1
=: n× I.

Now

I =

∫ 1− 1

n

0

∞∑

k=0

(ys+1)k dy

=
∞∑

k=0

1

(s+ 1)k + 1

(
1−

1

n

)(s+1)k+1

≤

(
1−

1

n

)
+

1− 1
n

s+ 1

∞∑

k=1

[
(1− 1

n)
s+1
]k

k

=

(
1−

1

n

)
+

1− 1
n

s+ 1

∣∣∣∣∣ln
(
1−

(
1−

1

n

)s+1
)∣∣∣∣∣

≤

(
1−

1

n

)
+

1− 1
n

s+ 1

∣∣∣∣ln
(
s+ 1

n
−

(s+ 1)s

2n2

)∣∣∣∣

≤

(
1−

1

n

)
+

1− 1
n

s+ 1
lnn

≤
lnn

s+ 1
+ 1,

where the penultimate inequality holds for all sufficiently large n [in particular, for
n ≥ (s+ 1)/2]. We then have that

E[T ] ≤
f(n, s)(s+ 1)

ns

(
lnn

s+ 1
+ 1

)

≤
n lnn

s+ 1
+ n+ lnn+ s+ 1 =

n lnn

s+ 1
+O(n) = (1 + o(1))

n ln n

s + 1
,
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using

f(n, s) ≤
ns+1

s+ 1
+ ns.

For the lower bound,

E[T ] ≥ f(n, s)

n∑

r=2

s+ 1

(n+ 1)s+1 − (n+ 1− r)s+1

=
f(n, s)(s+ 1)

(n+ 1)s+1

n∑

r=2

[
1−

(
1−

r

n+ 1

)s+1
]
−1

.

But

n∑

r=2

[
1−

(
1−

r

n+ 1

)s+1
]
−1

≥

∫ n+1

2

[
1−

(
1−

x

n+ 1

)s+1
]
−1

dx

= (n+ 1)

∫ 1− 2

n+1

0

dy

1− ys+1
.

We can show, but omit the details, that

∫ 1− 2

n+1

0

dy

1− ys+1
=

lnn

s+ 1
−O(1),

so

E[T ] ≥

(
n

n+ 1

)s+1 (n+ 1) ln n

s+ 1
−O(n) ≥

n lnn

s+ 1
−O(n),

where we have used

f(n, s) ≥
ns+1

s+ 1
.

(e) (Geometric weights.) We have

n− 1 ≤ E[T ] = n− 1 +
n−1∑

r=2

θr

1− θr

≤ n− 1 +

∞∑

r=2

θr

1− θr

= n+O(1) = (1 + o(1))n.

5 Coalescence into a set

Here we present a different approach to speeding up the FMMR algorithm, which has
the same spirit as the other results in this paper. In brief, recall that FMMR starts
in a user-chosen state and then, in the second phase of the algorithm, checks whether
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there is coalescence to that state. In the generalization we consider here, one starts
the algorithm in some subset of the state space (not necessarily a singleton) and then
checks if there is coalescence back to that set (but not necessarily to the state in which
the algorithm began).

Theorem 5.1. In the general setting for FMMR described in Section 2.2, let S be a
subset of the state space and define π0(·) := π(·|S). Consider the modified algorithm
which starts in a state X0 distributed according to π0 and outputs W := X−T , where T is
defined to be the smallest t such that all the forward trajectories from time −t coalesce
into S, i.e., such that Y(−t)(x) ∈ S for every state x. Then W has the stationary
distribution π. Further, the algorithm is interruptible (i.e., T and W are independent
random variables).

Proof. For simplicity we consider only the discrete case. It suffices to show that

P (T ≤ t,X−t = x) = P (T ≤ t)π(x)(5.1)

for every t and x, for then

P (T = t, W = x) = P (T = t, X−T = x) = P (T = t, X−t = x)

= P (T ≤ t, X−t = x)− P (T ≤ t− 1, X−t = x)

= P (T ≤ t)π(x)− P (T ≤ t− 1)π(x)

= P (T = t)π(x),

as desired. Here we have used the fact that π is stationary for the time-reversed kernel K̃,
so that

P (T ≤ t− 1, X−t = x)

=
∑

y

P (T ≤ t− 1,X−(t−1) = y)P (X−t = x |T ≤ t− 1, X−(t−1) = y)

=
∑

y

P (T ≤ t− 1)π(y)K̃(y, x) by (5.1) and the Markov property for K̃

= P (T ≤ t− 1)π(x).

To establish (5.1), we first observe that

P (X−t = x) =
∑

z

π0(z)K̃
t(z, x) = π(x)

∑

z

π0(z)

π(z)
Kt(x, z)

=
π(x)

π(S)

∑

z∈S

Kt(x, z) =
π(x)

π(S)
Kt(x, S).(5.2)

One can check that, conditionally given X−t = x, the forward trajectory (X−t, . . . ,X0)
has the same distribution as a K-trajectory conditioned to start at x and end in S.
Therefore, by the algorithm’s design,

P (T ≤ t |X−t = x)

= P (forward coalescence into S over a time-interval of length t)/Kt(x, S).
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Combining this with (5.2) we conclude (5.1), and the additional result

P (T ≤ t) = P (forward coalescence into S over a time-interval of length t)/π(S).

Remark 5.2. In the monotone case, if S is a down-set (meaning: z ∈ S and y ≤ z
implies y ∈ S), then the computational problem of determining whether or not there is
coalescence into S is eased considerably: we need only determine whether the terminal
state (call it y) of the forward trajectory started in 1̂ belongs to S. And so if S is a
principal down-set, that is, if S = {z : z ≤ z0} for some z0, the problem is even easier:
we need only check whether y ≤ z0.

We will now give a “toy” application of these ideas to MTF by describing an algo-
rithm to build up a stationary observation in just n− 1 steps, regardless of the weights
w1, . . . , wn. Let πk denote the MTF stationary distribution on Sk restricted to the
(normalized) weights w1, . . . , wk; that is, to the weights w1/w

+
k , . . . , wk/w

+
k . Let MTFk

denote the MTF process on Sk, and let Sk denote the set of permutations of {1, . . . , k}
that begin with k. Observe that Sk is the principal order ideal {z : z ≤ zk} in the dual
(i.e., “upside-down”) Bruhat order of Sk, where zk is the permutation (k 1 · · · k − 1).
(We will not refer to the symmetric group Sk any further; thus there will be no nota-
tional confusion with its special subset Sk.) Inductively, after k steps of our algorithm
we will have a permutation distributed according to πk+1; thus, after n−1 steps we will
have an observation from π.

Initialize the algorithm (step 0) with the permutation (1) on {1}. Suppose that after
k − 1 steps we have the permutation x = (x1, . . . , xk) distributed according to πk. For
the next (kth) step, we first get immediately an observation from πk+1(· |Sk+1), namely,
(k+1, x1, . . . , xk). Then we apply the “coalesce into S” routine of Theorem 5.1, taking
S = Sk+1. We claim that that routine will terminate in a single step! Indeed, in one
time-reversed MTFk+1 transition we obtain the permutation

x′ = (x1, . . . , xj−1, k + 1, xj , . . . , xk)

for some j. In the forward phase of the routine, record k+1 is brought to the front of ev-
ery trajectory, giving coalescence into the set Sk+1. We thus conclude from Theorem 5.1
that x′ ∼ πk+1, completing the induction.
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