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ABSTRACT

Consider ordinary site percolation on an infinite graph in which the sites, independent of each other, are occupied

with probability p and vacant with probability 1−p. Now suppose that, by some ‘catastrophe’, all sites which are

in an infinite occupied cluster become vacant. Finally, each vacant site gets an extra enhancement to become

occupied. More precisely, each site that was already vacant or that was made vacant by the catastrophe,

becomes occupied with probability δ (independent of the other sites). When p is larger than but close to the

critical value pc one might believe (for ‘nice’ graphs) that only a small δ is needed to have an infinite occupied

cluster in the final configuration. This appears to be indeed the case for the binary tree. However, on the

square lattice we strongly conjecture that this is not true. We discuss the background for these problems and

also show that the conjecture, if true, has some remarkable consequences.
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3.1.

1. INTRODUCTION
The square lattice is the graph whose sites (vertices) are the points of Z

2, and where two sites i and j
are neighbours (share an edge) if |i − j| = 1. We perform independent site percolation on this graph,
i.e. we declare each site occupied with probability p, and vacant with probability 1 − p, independent
of the other sites.
For general information and results on percolation theory, see Grimmett (1999).
Let, as usual, θ(p) denote the probability that a given site, say O = (0, 0), belongs to an infinite
occupied cluster. It is known that there is a critical value 0 < pc < 1 such that θ(p) > 0 if and only if
p > pc.
Now suppose that, by a catastrophe, each site which is in an infinite occupied cluster is destroyed
(that is, becomes vacant). (For this lattice, and more generally on Z

d, d ≥ 2, there is, if p > pc,
a.s. a unique infinite occupied cluster, but on general graphs there can be more than one). Further
suppose that, after this catastrophe, we give the sites independent ‘enhancements’. More precisely,
each site that after the above catastrophe was vacant (i.e. not only the sites that were originally,
before the catastrophe, in an infinite occupied cluster but also those that were originally vacant)
becomes occupied with probability δ, independent of the others (and those that were occupied after
the catastrophe reamain occupied).

Let Pp,δ denote the distribution of the final configuration. Usually we write 1 for occupied and 0 for
empty so that we consider Pp,δ as a distribution on {0, 1}Z

d

(with the natural σ-field). Further, we
use the notation θ(p, δ) for the probability that, in the final configuration, O is in an infinite occupied
cluster:

θ(p, δ) := Pp,δ(O → ∞).
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To get some feeling for the above definitions: it is easy to check that O is occupied in the final
configuration if and only if the above mentioned enhancement was successful, or O belonged initially
(before the catastrophe) to a non-empty but finite occupied cluster. This gives

Pp,δ(O is occupied ) = δ + (1 − δ)(p − θ(p).

Also, in the case that p ≤ pc, nothing happens in the above catastrophe ( since then θ(p) = 0), so that
in the final configuration the sites are independently occupied with probability p+(1−p)δ. Formally,
if p ≤ pc, then

Pp,δ = Pp+(1−p)δ,

where we use the notation Pp for the product measure with parameter p.
In particular,

θ(pc, δ) = θ(pc + (1 − pc)δ) > 0, (1.1)

for each δ > 0.
It also immediately clear from the construction that if δ > pc, then θ(p, δ) > 0 for all p.

It takes a little more effort to prove that, if p > pc, a ‘non-negligible’ enhancement is needed after
the catastrophe to reintroduce an infinite occupied cluster. More precisely, for each p > pc there is a
δ > 0 with θ(p, δ) = 0. This is proved in Proposition 3.1. A much more difficult question is whether
the needed effort to reintroduce an infinite occupied cluster after the catastrophe, goes to 0 as p ↓ pc.
By (1.1) one might be tempted to intuitively reason that this is indeed the case. However, based on
arguments described in Section 3, we strongly believe that this is false: we conjecture that there is a
δ > 0 for which θ(p, δ) = 0 for all p > pc. (See Theorem 3.3 and Conjecture 3.2). For those who think
that this is not surprising at all: for the similar model on the binary tree we can prove that the above
mentioned intuitive reasoning gives a correct conclusion: for that model we prove in Section 5 that

lim
p↓pc

θ(p, δ) = θ(pc, δ) > 0.

Although we mainly restrict to the square lattice and the binary tree, it is convenient for our purpose
to describe the model in some more generality. This, together with the presentation of some basic
properties, will be done in Section 2.

2. GENERALISATION OF THE MODEL, AND BASIC RESULTS
2.1 Generalisation
We will now put the above model in a more general context. Let G be a finite or countably infinite
graph, V (G) the set of vertices of G and Γ is either a subset of V (G) or the symbol ∞. Let p, δ ∈ [0, 1].
Analogously to what we did in Section 1, we first make each vertex i, independent of the other vertices,
occupied with probability p and vacant with probability 1 − p. Then, in the next step, we destroy
all occupied clusters intersecting Γ (when Γ = ∞ we destroy the infinite occupied clusters). That is,
each vertex which has an occupied path to Γ, is made vacant. Finally, in the last step, each vertex
which is vacant at the end of the previous step, is made occupied with probability δ. The probability
distribution of the final configuration will be denoted by P(G;Γ)

p,δ . Often, when the choice of G is
obvious, it is omitted from the notation. Also, when Γ = ∞ we will usually omit it from the notation.

A more formal, and often more convenient for our purposes, description of the model is as follows:
Let Xi, i ∈ V (G) be independent 0 − 1 valued random variables, each Xi being 1 with probability p
and 0 with probability 1−p. Further, Let Yi, i ∈ V (G) be independent 0−1 valued random variables,
each Yi being 1 with probability δ and 0 with probability 1 − δ. Moreover, we take the collection of
Yi’s independent of that of the Xi’s. Let X∗

i = X∗
i (G, Γ) be defined by
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X∗
i =

{
1 if Xi = 1 and there is no X- occupied path from i to Γ
0 otherwise,

(2.1)

where by ‘X-occupied path’ we mean a path on which each site j has Xj = 1.
Finally, define Zi = X∗

i ∨ Yi. Then P(G;Γ)
p,δ is the distribution of the collection (Zi, i ∈ V (G)).

2.2 Association
Recall that a finite collection of random variables (ωi, 1 ≤ i ≤ n) (or its corresponding probability
measure, say µ, on {0, 1}n) is said to be associated if for all increasing events A, B ⊂ {0, 1}n,

µ(A ∩ B) ≥ µ(A)µ(B).

This is equivalent to saying that for all increasing functions f and g on {0, 1}n,

Eµ(fg) ≥ Eµ(f)Eµ(g),

where
Eµ(f) =

∑
x∈{0,1}n

µ(x)f(x).

Lemma 2.1. Let G be a finite graph, and let Γ, p and δ be as above. Then P(G;Γ)
p,δ is associated.

Proof. The following facts (a)-(c) are well-known.
(a) A collection of independent random variables is associated.
(b) If a collection (ωi, 1 ≤ i ≤ n) is associated, and a collection (σi, 1 ≤ i ≤ m) is associated, and these
two collections are independent of each other, then the joint collection (ωi, 1 ≤ i ≤ n; σj , 1 ≤ j ≤ m)
is associated.
(c) If a collection (ωi, 1 ≤ i ≤ n) is associated, and f1, · · · , fk are increasing 0− 1-valued functions on
{0, 1}n, then the collection (f1(ω1, · · ·ωn), · · · , fk(ω1, · · · , ωn)) is associated.
Now let the random variables Xi, Yi, X∗

i and Zi be as defined in the previous subsection. From the
definition of these random variables, and the above mentioned facts it is immediately clear that, to
prove the lemma, it is sufficient to prove that the collection X∗

i , i ∈ V (G) is associated. This is proved
as follows First some more notation. First let Ω = {0, 1}V (G). For ω ∈ Ω we let C = C(Γ, ω) be the
occupied cluster of Γ (i.e. the set of all sites which have a path to Γ on which ω ≡ 1).
For W ⊂ V (G), W denotes the set which consists of W and all neighbours of W .
If W ⊂ V (G) and A ⊂ Ω is increasing, the event (A occurs outside W ) will denote the set of all ω ∈ Ω
such that the configuration ω′, defined by

ω′
i =

{
0 if i ∈ W
ωi otherwise,

(2.2)

is in A.
Let µp be the product measure with parameter p on Ω, and let µ∗

p be the measure on Ω corresponding
with the the collection (X∗

i , i ∈ V (G)).
We have
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µ∗
p(A ∩ B) =

∑
W

µp(C(Γ) = W, A ∩ B occurs outside W )

=
∑
W

µp(C(Γ) = W )µp(A ∩ B occurs outside W )

≥
∑
W

µp(C(Γ) = W )µp(A occurs outside W ) µp(B occurs outside W ), (2.3)

where we have summed over all subsets W of V (G), and where we used that the event {C(Γ) = W}
depends only on the sites in W , and that the events {A occurs outside W} and {B occurs outside
W} are increasing (so that we can use the association property of µp). Now let, for W ⊂ V (G),
f(W ) denote µp(A occurs outside W ) and let g(W ) denote µp(B occurs outside W ). It is clear that
if W ⊂ W ′, then f(W ) ≥ f(W ′), and similar for g. So the last expression above equals∑

W

µp(C(Γ) = W )f(W )g(W )

=
∑
W

∑
ω∈Ω:C(Γ,ω)=W

µp(ω)f(W )g(W )

=
∑
ω∈Ω

µp(ω)f(C(Γ, ω))g(C(Γ, ω))

≥
∑
ω∈Ω

µp(ω)f(C(Γ, ω))
∑
ω∈Ω

µp(ω)g(C(Γ, ω))

= µ∗
p(A)µ∗

p(B), (2.4)

where the inequality holds because f(C(Γ, ω)) and g(C(Γ, ω)) are both decreasing in ω (so that we
can apply the association property of µp), and the last equality follows from similar arguments as
before (but now ‘working backwards’).

2.3 Weak convergence
Let G be a countably infinite, locally finite graph, W a subset of the vertices of G, and A ⊂ {0, 1}W .
Fix a site O of G, and let D(n) denote the set of all vertices at (graph) distance ≤ n from O. Let
∂D(n) be the external boundary of D(n), i.e. ∂D(n) = D(n + 1) \D(n). Recall the definition (in the
beginning of this section) of the distribution P(G;∂D(n))

p,δ .

Lemma 2.2.
lim

n→∞
P(G;∂D(n))

p,δ (A) = PG
p,δ(A).

Proof. Using the description of the X and Y variables in Subsection 2.1, it is easy to see that, if n is
sufficiently large (so that W ⊂ D(n)), P(G;∂D(n))

p,δ (A) and PG
p,δ(A) differ at most the probability that

there is an i ∈ W that has an X−occupied path to ∂D(n) but does not have an infinite X−occupied
path. This is clearly at most

∑
i∈W

Pp(i → ∂D(n)) − Pp(i → ∞).

Since for each i the term in the above summation goes to 0, and W is finite, the lemma follows.

Remark: By combining the two lemma’s it follows that PG
p,δ is associated.
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2.4 Monotonicity
It is immediately clear from the definitions that Pp,δ is stochastically increasing in δ. Strictly speaking
there is no monotonicity in p. However, we will show that ‘some sort of such monotonicity’ does hold:
Let 0 ≤ p < q ≤ 1. Let Γ be a subset of the vertices (or ∞).

Lemma 2.3. For fixed q, the family of probability measures P(G;Γ)
p,(q−p)/(1−p) is stochastically decreasing

in p < q.

Remark: By the observation made a few lines before the lemma, it is clear that the family of
probability measures in the lemma is (for fixed p) stochastically increasing in q.

Proof. Consider the following time evolution. At time 0 each site of G is vacant. Sites become,
independent of each other, occupied at rate 1. If this would simply go on, then, clearly, for each
t ≥ 0, the distribution of the configuration at time t is exactly P1−exp(−t). Now suppose that at a
deterministic time T a ‘catastrophe’ happens: all sites that have, at that time, an occupied path to
Γ, become (instantaneously) vacant. From then on the process behaves ‘normally’ again, i.e. vacant
sites become occupied at rate 1. It follows from the following coupling argument, that, for fixed t > 0,
the configuration at time t is stochastically decreasing in the time T (T < t) at which the catastrophe
takes place:
Let U

(k)
i , i ∈ V (G), k ∈ {1, 2} be i.i.d. exponentially distributed random variables with mean 1. U

(1)
i

denotes the times at which i becomes occupied for the first time. If a site is made vacant by the
catastrophe at time T , then it becomes occupied again at time T +U

(2)
i . More formally, if we let ηi(t)

denote the state (occupied or vacant) of i at time t, then we have for all t > T : ηi(t) = 0 iff U
(1)
i > t

or (U (2)
i > t−T and there is a path π from i to Γ with U

(1)
j < T for all sites j on π). It is immediately

clear that if this condition holds for some T < t, then it also holds for all T ′ ∈ (T, t).
It is also clear from the description above that the distribution of (ηi(t), i ∈ V (G)) is P(G;Γ)

1−exp(−T ),1−exp(−(t−T )).
This, together with the monotonicity observation we just made, gives that, for fixed t, the family of
distributions

P(G;Γ)
1−exp(−T ),1−exp(−(t−T )), 0 ≤ T < t

is stochastically decreasing in T . The Lemma now follows by taking t and T such that p = 1−exp(−T )
and q = 1 − exp(−t) (and hence (q − p)/(1 − p) = 1 − exp(−(t − T ))).

An immediate consequence of this lemma (and the obvious monotonicity of Pp,δ in δ) is the following:

Corollary 2.4. If p2 ≥ p1 and p2 + (1 − p2)δ2 ≤ p1 + (1 − p1)δ1, then

Pp1,δ1 dominates Pp2,δ2 .

3. CONTINUITY OR DISCONTINUITY OF θ(p, δ)
In this section we focus on site percolation on the square lattice, although most of what we say also
holds for many other two-dimensional lattices.

It is intuitively plausible that if p > pc and we destroy the infinite cluster, we need some minimal
(depending on p) positive enhancement to reintroduce an infinite cluster. This is indeed the case, as
stated more formally by the following proposition:

Proposition 3.1.

∀p > pc ∃δ > 0, s.t. θ(p, δ) = 0. (3.1)
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Remarks:
(i) Note that, by earlier mentioned (obvious) monotonicity, it follows that for all δ′ smaller than the
δ in this proposition θ(p, δ′) = 0.
(ii) In fact we prove a much more explicit statement (see below). This proof can be done in practically
the same way for site percolation on the triangular lattice. For bond percolation on the square lattice
the analog of the proposition still holds, but the proof is somewhat more complicated (and we don’t
know an analog of the more explicit claim below).

Proof. We claim that

if p(1 − δ) > pc, then θ(p, δ) = 0. (3.2)

From this the proposition immediately follows. To prove this claim, we use the X and Y variables
introduced in subsection 2.1. Colour each site i red if Xi = 1 and Yi = 0. So, each site is, independent
of the others, red with probability p(1 − δ). Now suppose the pair p, δ satisfies the condition in the
claim. Then, by standard results from ‘ordinary’ site percolation on the square lattice, there is (a.s.)
an infinite red cluster, and this cluster contains arbitrary large red contours (loops) around O. Each
site j on such a contour has X∗

j = 0 (because it is in an infinite red, and hence X-occupied, cluster)
and Yj = 0 and hence Zj = 0. Hence, a.s. there is no infinite path from O on which Z ≡ 1. So θ(p, δ)
is indeed 0.

As said before, the Proposition above is intuitively plausible. With a similar intuition one might
also be tempted to guess the following: Consider the distribution Pp,δ. In particular consider the
description in Section 1. Since (as is well-known) θ(p) ↓ θ(pc) = 0 as p ↓ pc, we have that, if p is
larger than but very close to pc, only a very small portion (namely θ(p)) of the sites is effected by
the ‘catastrophe’. Therefore it is reasonable to believe that then only a very small ‘enhancement’ is
needed to regain an infinite occupied cluster. More formally this belief would state that the answer
to the following question is true (and thus would give in some sense a counterpart to the Proposition
3.1).

Question:
Does the following hold?

∀δ ∃p > pc s.t. θ(p, δ) > 0. (3.3)

Remark: One might even go further and wonder if

lim
p↓pc

θ(p, δ) = θ(pc, δ),

which, as we observed before, equals θ(pc+(1−pc)δ) and hence is positive (so that (3.3) would follow).
In fact, we believed for a while that this is indeed the case. (And we can prove that for the binary

tree this statement is correct; see Section 5). But now we strongly conjecture that for regular planar
lattices including the square lattice, (3.3) is not true.

The rest of this section is meant to relate this problem to quite naturally defined numbers (prob-
abilities) an(δ). We will prove that if for some δ > 0 the sequence (an(δ)) is bounded away from 1,
then the answer to the Question above is negative.

We now will define the numbers an mentioned above. Let n > 0. Consider the box [0, 3n] × [0, 2n].
By inserting the edges inherited from the square lattice, we consider this as a graph, denoted by
G = G(n). Let L = L(n) be the lower side {(i, 0) : 0 ≤ i ≤ 3n} of the box, M = M(n) the horizontal
middle line {(i, n) : 0 ≤ i ≤ 3n}, and U = U(n) be the upper side {(i, 2n) : 0 ≤ i ≤ 3n} of the box.
Then an = an(δ) is formally (using the notation in Section 2.1) defined as follows:
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an := P(G;U)
pc,δ (L → M). (3.4)

Based on computer simulations we strongly believe the following:

Conjecture 3.2.

∃δ > 0 s.t. the sequence (an(δ)) is bounded away from 1. (3.5)

Theorem 3.3. If for some δ > 0 the sequence of probabilities (an(δ)) is bounded away from 1, then

∃δ > 0 s.t. ∀p > pc θ(p, δ) = 0. (3.6)

To prove the theorem we need a few lemmas and introduce some notation. We define

B(n) = [−n, n] × [−n, n], n ≥ 0.

S(n) = B(n) \ B(n − 1), n > 0,

i.e. S(n) is the boundary of B(n). Further,

A(n, m) = B(m) \ B(n − 1).

In additions to the an’s above we now define bn’s as follows: Consider the annulus A(n, 5n). First
make each site occupied with probability p. Then make vacant each site whose occupied cluster in
A(3n, 5n) contains a contour around B(3n). Finally, make a δ-enhancement as usual. We define
bn = bn(p, δ) as the probability that the final configuration has an occupied path from S(n) to S(3n).
For simplicity we will often write ‘contour in A(3n, 5n)’ for ‘contour around B(3n) in A(3n, 5n)’.

Lemma 3.4. If δ is such that the sequence (an(δ)), defined by (3.4), is bounded away from 1, then
also the sequence (bn(pc, δ)) is bounded away from 1.

Proof. In this proof we will write an for an(δ) and bn for bn(pc, δ). We claim that

bn ≤ Ppc
( there is no occupied contour in A(3n, 5n))

+ (1 − (1 − a2n)4)Ppc
(∃ occupied contour in A(3n, 5n)). (3.7)

The Lemma follows from this claim and the well-known fact (RSW theorem) that
Ppc

(∃ occupied contour around A(3n) in A(3n, 5n)) is bounded away from 0.
Proof of claim: Analogously to what we did earlier, let Xi, i ∈ A(n, 5n) be i.i.d. Bernoulli random
variables with parameter p, and Yi, i ∈ A(n, 5n) i.i.d. Bernoulli random variables with parameter δ,
and define, for i ∈ A(n, 5n), the following random variables in terms of the X and Y variables:

X
(∗c)
i := I(Xi = 1 but the X-occupied cluster of i in A(n, 5n)

contains no contour aroundB(3n)). (3.8)

X
(∗S)
i := I(Xi = 1 but 
 ∃X − occupied path in A(n, 5n) from i to S(5n)),
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A(3n,5n)

A(n,3n)

(−3n,−3n)

(−n,−n)

(−5n,−5n)

(n,n)

(3n,3n)

(5n,5n)

Figure 1: The annuli A(n, 3n) and A(3n, 5n). The shaded region is the rectangle R.

where I(·) denotes the indicator function.
Further, let

Z
(c)
i := X

(∗c)
i ∨ Yi,

and

Z
(S)
i := X

(∗S)
i ∨ Yi.

It is clear that for each i ∈ A(n, 3n), each path from i to S(5n) intersects each contour in A(3n, 5n)
around B(3n). From this and the above definitions it follows immediately that if there is an X−
occupied contour in A(3n, 5n), then, for all i ∈ A(n, 3n), X

(∗c)
i ≤ X

(∗S)
i . Hence

bn = P(∃Z(S) − occupied path from S(n) to S(3n))
≤ P( 
 ∃X − occupied contour in A(3n, 5n))
+ P(∃X − occupied contour in A(3n, 5n); ∃Z(S) − occupied path from S(n) to S(3n))
≤ P( 
 ∃X − occupied contour in A(3n, 5n))
+ P(∃X − occupied contour in A(3n, 5n))

×P(∃Z(S) − occupied path from S(n) to S(3n)), (3.9)

since the event {∃X −occupied contour in A(3n, 5n)} depends only on the variables Xi, i ∈ A(3n, 5n)
(and is increasing in those variables), while the event {∃Z(S) − occupied path from S(n) to S(3n)} is
obviously decreasing in those variables (so that we can use the FKG inequality).
Let R1, · · · , R4 be the four 2n×6n rectangles whose union is A(n, 3n). To be more explicit, let R1 be
the lowest of the two horizontal rectangles. Denote the two long sides of R1 by L1 and L2, where L2

is the bottom. Let R denote the union of R1 and its mirror image under reflection in L2. (see figure
1).
Finally, let L3 be the bottom side of R (so L3 is the set {(i,−5n) : −3n ≤ i ≤ 3n}). Now, in our
earlier notation, the factor

P(∃Z(S) − occupied path from S(n) to S(3n))
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in the r.h.s. of (3.9) is
P(A(n,5n);S(5n))

p,δ (S(n) → S(3n)).

By the association property (Lemma 2.1) and the (well-known and often used) fact that a path from
S(n) to S(3n) always contains a subpath in one of the four rectangles R1, · · · , R4, between the two
long sides of that rectangle, and by symmetry (each of the four rectangles ‘plays the same role’), this
is at most

1 − (1 − P(A(n,5n);S(5n))
p,δ (L1 → L2 in R1))4,

which by an obvious monotonicity argument is at most

1 − (1 − P(R;L3)
p,δ (L1 → L2 in R1))4,

which by definition of an equals 1 − (1 − a2n)4. This, together with (3.9) completes the proof of the
claim.

Lemma 3.5. If δ is such that the sequence (bn(pc, δ)) is bounded away from 1, then ∃ ε > 0 s.t. the
family (bn(p, ε), n = 1, 2, · · · , p ∈ [pc, pc + ε]), is bounded away from 1.

Proof. Take ε so small that (pc + ε) + (1 − pc − ε)ε < pc + (1 − pc)δ, and apply Corollary 2.4.

Lemma 3.6. If δ is such that the sequence an(δ) is bounded away from 1, then, with ε as in the
previous lemma,

θ(p, ε) = 0, p ∈ (pc, pc + ε].

Remark: in fact we prove the following stronger claim: Let δ be such that the sequence (an(δ)) is
bounded away from 1. Then, with ε as in Lemma 3.5,

∃α > 0 s.t. ∀p ∈ (pc, pc + ε] ∃C ∀n Pp,ε(O → S(n)) ≤ Cn−α. (3.10)

Proof. Let δ as in the statement of the claim. Then, by the previous Lemma we can find a b < 1 such
that, for all p ∈ [pc, pc + ε],

bn(p, ε) < b. (3.11)

Let n ≥ 1 and p ∈ (pc, pc + ε]. Let C1 be a positive constant (at the moment we take C1 arbitrary;
later we will choose a suitable value, depending on p). Define the random variables Xi, X∗

i , Yi and Zi

as before (so, the Xi’s are i.i.d. Bernoulli with parameter p, the Yi’s i.i.d. Bernoulli with parameter
ε etc.). In addition, we now take

X
(∗c)
i = I(Xi = 1 but its X−occupied cluster contains no contour around B(C1 log n),

and
Z

(c)
i = X

(∗c)
i ∨ Yi.

Note that if there is an infinite X−occupied path from S(C1 log n) then (since this path intersects
every contour around B(C1 log n)) we have X∗

i ≤ X
(∗c)
i for all i ∈ Z

2 \ B(C1 log n). So we have

Pp,ε(O → S(n))
= P(∃Z − occupied path from O to S(n))
≤ P(∃Z − occupied path from S(C1 log n) to S(n))
≤ P(∃Z(c) − occupied path from S(C1 log n) to S(n))
+ P( 
 ∃ infinite X − occupied path from S(C1 log n)). (3.12)
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From standard percolation theory we know that the last term in the r.h.s. of (3.12) is at most

C2(p) exp(−β1(p)C1 log n), (3.13)

where C2(p) and β1(p) are positive constants which depend only on p.
Now we handle the first term in the r.h.s. of (3.12). Let K denote the set of all positive even integers
k with C1 log n < 3k < 5 × 3k < n, and consider the annuli A(3k, 5 × 3k), k ∈ K. These annuli are
pairwise disjoint. By this, and the construction, we have that the first term in the r.h.s. of (3.12) is
at most

∏
k∈K

b3k(p, ε) < b|K|, (3.14)

where the last inequality comes from (3.11) and where |K| denotes the size of K. From the definition
of K it is clear that there is a C3 > 0 (which is a function of C1), and a β2 > 0 (which is a constant
which does not depend on p) s.t. (3.14) is at most C3n

−β2 .
So for all C1 > 0, we have a C3 > 0 so that for all p ∈ (pc, pc + ε) and for all sufficiently large
(depending on C1) n,

P(∃Z − occupied path from O to S(n))
≤ C2(p) exp(−β1(p)C1 log n) + C3n

−β2 . (3.15)

The claim now follows by choosing C1 so large (depending on p) that C1β1(p) ≥ β2, and then finally
choosing the multiplicative constant so large that the inequality holds for all n.

The theorem now follows easily by combining this lemma with (3.2).

4. THE PERMANENT SELF-DESTRUCTIVE PROCESS
4.1 background
Informally, consider the following process in time on the square lattice: at time 0 each site is vacant.
All the time, vacant sites become occupied at rate 1. But whenever an infinite occupied cluster
occurs, it is immediately destroyed (that is, all its sites become vacant) after which its sites again
become occupied at rate 1, as before. An interesting question is whether this description makes sense.
Motivation comes partly from forest fire models on a finite box in Z

2: As above, initially everything
is vacant and sites become occupied (by a tree) at rate 1. At each tree, ignition attempts are made at
rate ε, independent of the growth process. If, at the time of an ignition attempt, the corresponding
site is occupied, the tree is set on fire. Finally, a burning tree burns for an exponentially distributed
time with mean δ, and during that time it spreads the fire to adjacent trees at rate λ. After a tree
is burned down the site is vacant and remains vacant for an exponentially distributed (mean 1) time
etc. Special attention in the literature is given to the study of what happens (to the equilibrium
distribution) when one lets (in some suitable way) the box size and the fire spread rate λ go to ∞,
and ε and δ approach 0. It seems (but most of the results are non-rigorous) that this leads to so-called
self-organised critical behaviour (see e.g. Jensen (1998)). From a mathematical point of view it is
natural to ask whether one can still define a process when, in some sense, we take all the parameters
equal to the above mentioned limit values. Now, one might interpret an ignition rate ε = 0 by saying
that only infinite clusters are ignited. And a natural interpretation of λ → ∞ and δ → 0 could be
that the entire cluster is burned instantaneously. These considerations lead to the question above.
This question is also closely related to a problem posed by Aldous (2000). An analog of this question
for a 1-dimensional system was answered affirmatively in Theorem 1 by Van den Berg and Tòth
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(2001). That paper also gives some further background and relation with other problems. Formally,
our question is as follows:

Question
Do there exist processes χi : R+ �→ {0, 1}, i ∈ Z

2, defined jointly on the same probability space, with
the following properties:
(a) Almost surely, for all i ∈ Z

2, χi(0) = 0.
(b) Almost surely, for all i ∈ Z

2, t �→ χi(t) is continuous from the right having left limits (c.a.d.l.a.g.).
(c) Let U

(k)
i denote the length of the kth interval during which χi(·) equals 0. Then the random

variables
(
U

(k)
i

)
i∈Z2,k∈N

are independent, exponentially distributed with mean 1.
(d) Almost surely, for all t ∈ R+ and i ∈ Z

2 with χi(t−) = 1: if there is an infinite path π from i with
χj(t−) = 1 for all j ∈ π, then χi(t) = 0, else χi(t) = 1.

Theorem 4.1. If Conjecture 3.2 is true, then there are no processes χi : R+ �→ {0, 1}, i ∈ Z
2, with

properties (a)-(d) above.

Before we prove this theorem we state the following lemma. First a definition:
Let k ∈ N and δ > 0. Suppose initially all sites (of the square lattice) are independently open with
probability pc, after which we make vacant all sites whose occupied cluster contains a contour around
the box B(k). Finally (as in the definition of Pp,δ) we give each vacant site a δ−enhancement. Let
µ

(k)
δ denote the distribution of the final configuration.

Lemma 4.2. If δ is such that the sequence (an(δ)) is bounded away from 1, then

∀k µ
(k)
δ (∃ an infinite occupied cluster ) = 0.

Proof. The proof of this lemma is completely similar to(and, in fact, simpler than) that of Theorem
3.3 in the previous section, and therefore we omit it.

4.2 Proof of theorem 4.1
Proof. Suppose we have δ > 0 such that the sequence (an(δ), n ∈ N) is bounded away from 1. Assume
we do have processses χi(·) with the properties (a)-(d). We will show that this leads to a contradiction.
Let the U

(k)
i ’s be as in property (c).

Now first consider, for each m, the following process: initially all sites are vacant. Vacant sites
become occupied at rate 1. At time tc (defined by the relation 1 − exp(−tc) = pc), all sites which
have an occupied path to an occupied contour around B(m), become vacant. After that, vacant sites
become occupied again at rate 1. Let η

(m)
i (t) be the state of site i at time t. All these processes

with different m can be simply coupled together (and with the χ processes) by using the U variables
mentioned above. In fact, for this coupling we only use the U (1)’s and U (2)’s exactly in the same way
as in the Lemma 2.3 (with the T now equal to tc, and with an obvious modification of ‘catastrophe’):
a site i is initially vacant and becomes occupied at time U

(1)
i . If this time is larger than tc, it then

remains occupied forever. However, if at time tc its occupied cluster contains a contour around B(m),
it becomes vacant, and remains vacant until time tc + U

(2)
i , after which it is occupied forever. It is

clear that, for t > tc, the collection (η(m)
i (t), i ∈ Z

2) has distribution µ
(m)
δ (defined above Lemma

4.2) with δ = 1− exp(−(t− tc)). Hence, by that lemma (and the assumption in the beginning of this
proof), and because each η

(m)
i (t) is increasing in t > tc, we have

∃τ > 0 such that ∀m

P(∃ infinite η(m)(t)-occupied cluster for some t < tc + τ ) = 0. (4.1)
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Figure 2: The binary tree

Now back to the χi(t)’s. Let τ be as in (4.1). Clearly (by property (a) and (c)), with probability 1,
there is no site i and t ≤ tc with χi(t−) = 1 and χi(t) = 0. If, in addition, there is no t ∈ (tc, tc + τ )
and site i with χi(t−) = 1 and χi(t) = 0, then χj(t) = I(U (1)

j < t), j ∈ Z
2, t ∈ (tc, tc + τ ). However,

with probability 1, for all t > tc there is an infinite cluster of j ∈ Z
2 with U

(1)
j < t. This gives a

contradiction with property (d). So, almost surely, there is a t ∈ (tc, tc +τ ) and a site i s.t. χi(t−) = 1
and χi(t) = 0. And hence,

∃t̂ ∈ (tc, tc + τ ) s.t. P(∃i ∈ Z
2 and s ∈ (t̂, tc + τ ) with χi(s−) = 1, χi(s) = 0) > 0. (4.2)

Fix such t̂. Now, with exactly the same argument we can prove that, almost surely, the following
event occurs:

∃s ∈ (tc, (tc + t̂)/2) and an i ∈ Z
2 with χi(s−) = 1, χi(s) = 0. (4.3)

But if that event occurs, then, according to the required properties of the χ process, there is an infinite
path on which the χ value changes from 1 to 0 at that time s. But such path intersects, for some
n, all contours around B(n). By similar arguments as in the proof of Lemma 2.3 and Lemma 3.6 we
conclude that,

a.s. ∃m s.t. χj(t) ≤ η
(m)
j (t), for all j ∈ Z

2 and t > (tc + t̂)/2. (4.4)

Combining (4.1) and (4.4) contradicts (4.2).

5. THE BINARY TREE
5.1
Now we turn our attention to the binary tree T . This is the infinite tree in which one site, which we
call the root, has two neighbours, and all other sites have three neighbours (see figure 2). The root
will simply be denoted by 0 and its two neighbours by 1 and 2 respectively. The sites 1 and 2 can be
considered as roots of the subtrees T1 and T2 respectively.
For ordinary site percolation on T with parameter p it is well-known that the critical probability
equals pc = 1/2 and that for p ≥ 1/2

θ(p) := Pp(0 → ∞) =
2p − 1

p
. (5.1)

In particular θ(pc) = 0.
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In fact, using that T1 and T2 are copies of T one has that θ(p) satisfies

θ(p) = p(1 − (1 − θ(p))2). (5.2)

Remark: Moreover, if p > pc, θ(p) is the unique positive solution of the equation x = p(1− (1− x)2).
We will come back to this equation later.
Now we study the probability measures Pp,δ and the function θ(p, δ) = Pp,δ(0 → ∞). We will show
that for T , the answer to the Question below Proposition 3.1 is positive, i.e. that for T (3.3) holds.
This in contrast to what we conjecture for the square lattice.

In fact we prove something stronger, namely:

Theorem 5.1. We have
(i) For all δ > 0, there exists a p̂ > pc and α > 0 such that for all p ∈ [pc, p̂], θ(p, δ) > α.
(ii) Moreover,

lim
p↓pc

θ(p, δ) = θ(pc, δ) (= θ(pc + (1 − pc)δ) > 0). (5.3)

Remark: From this theorem it is easy to obtain similar results for the Bethe lattice B (the tree
where each site has exactly three neighbours). That graph is in fact nicer because all sites are
‘equivalent’. Note that if we delete a site and its three edges from B, three separate copies of T are
left. For ordinary percolation this gives immediately that the probability that a given site is in an
infinite occupied cluster equals p (the probability that the site itself is occupied) times the probability
that at least one of its three neighbours is in an infinite occupied cluster in its corresponding copy of
T . So

θB(p) = p(1 − (1 − θT (p))3).

In particular B has the same critical probability 1/2 as T . For our model ‘with destruction’ the
situation is more complicated, but we can still immediately get an inequality as follows. Using the
description with X and Y variables in Section 2, it is clear that if a site i has Xi = 0, then each
infinite X-occupied cluster belongs to exactly one of the three above mentioned copies of T . A few
seconds thought then yields

θB(p, δ) ≥ (1 − p)δ(1 − (1 − θT (p, δ))3).

(The factor δ comes from the fact that Yi has to be 1 when Xi = 0 and Zi = 1). This, combined with
part (i) of Theorem 5.1, immediately gives an analog for B of that part of the theorem. The analog
for B of the second part of the theorem can then be obtained from the analog for B of the first part,
in exactly the same way in which we will derive the second part for T from the first part for T .

5.2 Proof of Theorem 5.1
Proof. As for ordinary percolation it is natural to use the fact that T1 and T2 are copies of T . The
removal of infinite clusters introduces dependencies between these copies, which complicates things.
By defining suitable classes of random variables these complications can be handled quite smoothly:
Let Xi, i ∈ V (T ), and Yi, i ∈ V (T ) be as in the beginning of Section 2. (So the Xi’s are i.i.d. Bernoulli
with parameter p, the Yi’s i.i.d. Bernoulli with parameter δ, and the family of Xi’s is independent of
the family of Yi’s). We also define the X∗

i and Zi, i ∈ V (T ) as in Section 2 (with Γ = ∞). In addition
we define, for our purpose,

X∗+
i =

{
1 if Xi = 1 and there is no X- occupied path from i to ∞ or to 0
0 otherwise.

(5.4)



14

It is clear from this definition that X∗+
0 = 0.

We also introduce the ‘natural analogs’ of these variables for T1 and T2:

X
∗(1)
i , i ∈ V (T1) is defined by

X
∗(1)
i =

{
1 if Xi = 1 and there is no X- occupied path in T1 from i to ∞
0 otherwise.

(5.5)

X
∗+(1)
i , i ∈ V (T1) is defined by

X
∗+(1)
i =

{
1 if Xi = 1 and there is no X- occupied path in T1 from i to ∞ or 1
0 otherwise.

(5.6)

Further,
Z

(1)
i = X

∗(1)
i ∨ Yi, i ∈ V (T1),

and
Z

+(1)
i = X

∗+(1)
i ∨ Yi, i ∈ V (T1).

Finally, X
∗(2)
i , X

∗+(2)
i , Z

(2)
i and Z

+(2)
i , i ∈ V (T2) are defined analogously.

Remark: From the fact that T1 is a copy of T one gets that the probability that 1 is on an infinite
Z(1)-occupied path in T1 is equal to the probability that 0 is on an infinite Z-occupied path (which
by definition is θ(p, δ)).
To get some feeling for these random variables, note that if Xi ∨ Yi = 1 and the X-occupied cluster
of O is finite, and the event (1 is on an infinite Z(1)-occupied path in T1 or 2 is on an infinite Z(2)-
occupied path in T2 ) occurs, then 0 is on an infinite Z-occupied path. This (see the remark above)
easily gives:

θ(p, δ) ≥ (p + (1 − p)δ) (1 − (1 − θ(p, δ))2) − θ(p). (5.7)

Even simpler to see is the following upper bound:

θ(p, δ) ≤ (p + (1 − p)δ) (1 − (1 − θ(p, δ))2). (5.8)

When p is larger than but very close to pc, then θ(p) is close to 0 so that both (5.7) and (5.8) are
close to the equation (5.2) (with θ(p + (1 − p)δ) instead of θ(p)). One would like to conclude from
this that if p ↓ pc, then θ(p, δ) → θ(pc + (1 − pc)δ) (which as we observed earlier equals θ(pc, δ)), so
that we get part (ii) of the theorem. The trouble is of course that when we take 0 for θ(p, δ) the
above inequalities are also satisfied. However, if we can prove that lim infp↓pc

θ(p, δ) > 0, then the
above argument works (using (5.2) and the remark following that equation), and we get part (ii) of
the theorem. The positivity of this liminf follows immediately from part (i) which we will prove now:

Let, for n ≥ 1, An be the event that there is a Z-occupied path of length n from O, and Bn the event
that there is a Z+-occupied path of length n from 0. Let E be the event that the X-occupied cluster
of O is infinite. Similarly A

(j)
n , B

(j)
n and E(j) are defined for j = 1, 2, in the obvious way. For instance,

B
(1)
n is the event that there is a Z+(1)-occupied path of length n from 1 in T1. We consider, for each

n, the probabilities of the combinations of occurrence or non-occurrence of these events:
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f1(n) := P(¬E,¬An,¬Bn).
f2(n) := P(E,¬An,¬Bn).
f3(n) := P(¬E, An, Bn).
f4(n) := P(¬E, An,¬Bn).
f5(n) := P(E, An, Bn). (5.9)

These probabilities depend of course on p and δ but we have omitted these in our notation. One might
expect eight combinations, but some do not occur ( because, for instance, Bn implies An). One can
check that, for p > pc and δ > 0, each of f1(n), · · · f5(n) is positive and that their sum equals 1.
Also note that, for fixed n, the occurrences/non-occurrences of An+1, Bn+1, E are completely deter-
mined by those of (A(1)

n , B
(1)
n , E(1)), (A(2)

n , B
(2)
n , E(2)) and X0 and Y0. To illustrate this, suppose

the events ¬E(1) , ¬A
(1)
n , ¬B

(1)
n occur and also the events ¬E(2) , A

(2)
n , ¬B

(2)
n , and X0 = 1. This has

probability pf1(n)f4(n). It is not hard to check that then ¬E, An+1 and ¬Bn+1 occur. The same
holds when we exchange the roles of T1 and T2. This gives a contribution 2pf1(n)f4(n) to f4(n + 1).
Considering all contributions we get

f4(n + 1) = p(1 − δ)(2f1f3(n) + 2f1(n)f4(n) + f3(n)2 + 2f3(n)f4(n) + f4(n)2)
+ pδ(2f1(n)f4(n) + f4(n)2). (5.10)

It is easy to see from the definitions that the functions f1(n) and f2(n) are increasing in n and that
f3(n) and f5(n) are decreasing in n. By this monotonicity their limits (as n → ∞), which we denote
by f1, f2, f3, f5, exist.
Clearly these limits depend on the values of p and δ. Therefore we will sometimes write fi(p, δ).

Since the sum
∑

i fi(n) = 1, also the limit f4 of the sequence f4(n) exists. Moreover, the limits
satisfy the analog of equation (5.10).

We now proceed with the proof of the theorem.
Let δ > 0 be given. Suppose that p is such that θ(p, δ) = 0. Hence f3(n) + f4(n) + f5(n) → 0,

f1(n) → 1− θ(p) and f2(n) → θ(p) as n → ∞. Choose ε > 0 such that (1 + δ(1− δ))(1− ε) > 0. The
reason for this choice of ε will become clear later. Because of the convergence of f1(n) to 1− θ(p), we
can find an n0 such that ∀n > n0, f1(n) > 1 − θ(p) − ε. From (5.10) we get for all n > n0:

f4(n + 1) ≥ 2p(1 − δ)(f3(n) + f4(n))(1 − θ(p) − ε) + 2pδf4(n)(1 − θ(p) − ε). (5.11)

Now we use

f3(n) ≥ δ
1 − p

p
f4(n), (5.12)

which can be obtained easily from the definitions.
Applying this to (5.11) we obtain for all n > n0,

f4(n + 1) ≥ (2p + 2(1 − δ)δ(1 − p)) (1 − θ(p) − ε) f4(n). (5.13)

If now

(2p + 2(1 − δ)δ(1 − p))(1 − θ(p) − ε) > 1, (5.14)

we obtain f4(n + 1) > f4(n) for all n > n0, which together with f4(n) > 0 for all n, contradicts the
assumption that, for the chosen value of p, f4(n) → 0.
At p = pc = 1/2 inequality (5.14) is satisfied (we have chosen our ε accordingly) and hence, by
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continuity, there is a p̂ > pc such that for all p ∈ [pc, p̂], the inequality is satisfied. By the above
mentioned contradiction we conclude that θ(p, δ) > 0 for p in this interval. Finally, by straightforward
‘playing’ with the values of δ and p̂ and using Corollary 2.4, part (i) of the theorem follows. As we
saw earlier, part (ii) can then be obtained quite easily.
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