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ON THE ASYMPTOTIC BEHAVIOR OF SOME ALGORITHMS

PHILIPPE ROBERT

Abstract. A simple approach is presented to study the asymptotic behavior
of some algorithms with an underlying tree structure. It is shown that some
asymptotic oscillating behaviors can be precisely analyzed without resorting
to complex analysis techniques as it is usually done in this context. A new
explicit representation of periodic functions involved is obtained at the same
time.
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1. Introduction

Algorithms with an underlying tree structure are quite common in computer sci-
ence, they are used to sort, store and search. . . See Cormen et al. [2] and Knuth [15].
Splitting algorithms are examples of such algorithms, they can be described as fol-
lows

Splitting Algorithm S(n)
— Termination Condition.

For some subset F of N, if n ∈ F
−→ Stop.

— Tree Structure.
Randomly divide n into n1,. . . , nd, with n1 + · · ·+ nd = n.

−→ Apply S(n1), S(n2), . . . , S(nd).

To the algorithm S(n) is attached a cost Rn which can be the number of steps
required to terminate for example. This cost is assumed to be additive that is, with
the above notations, the relation

(1) Rn = 1 +Rn1 +Rn2 + · · ·+Rnd
,

holds. Note that Rn is a random variable since the algorithm divides randomly into
subgroups. This quantity can be thought as the cost of processing n items. If E(Rn)
is its expected value, E(Rn)/n is the average processing time of one item among
n. From a probabilistic point of view, it is natural to expect that the sequence
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2 PHILIPPE ROBERT

(Rn) satisfies a kind of law of large numbers, i.e. that (E(Rn)/n) converges to
some quantity α. The constant α would be, in some sense, the asymptotic average
processing time of an item. In the context of a communication network, Rn is
the total transmission time of n initial messages, 1/α would be the asymptotic
throughput of the protocol.

Curiously, this law of large numbers does not always hold. In some situations, the
sequence (E(Rn)/n) does not converge at all and, moreover, exhibits an oscillating
behavior. Up to now, these phenomena have been mostly analyzed by using sophis-
ticated complex analysis techniques (via functional transforms) by Knuth [15], Fla-
jolet et al. [9] and many others. See Mahmoud [17] for a comprehensive treatment
of this approach. For alternative methods using real analysis on related problems,
see the nice paper by Delange [5] and also Pippenger [20].

In this paper, a direct, simple, approach is proposed to study these uncommon
laws of large numbers. At the same time, it sheds a new light on the oscillating
phenomena involved. First, the classical approach, i.e. with complex analysis, is
briefly recalled.

Analytic approach: An excursion inside the complex plane. A classical
method to derive asymptotics of a sequence (rn) related to a splitting algorithm
consists in taking successive transforms:

(2) (rn)
Poisson−→ r(x) =

∑

n≥0

rn
xn

n!
e−x Mellin−→ r∗(s) =

∫ +∞

0

r(x)xs−1 dx.

The Poisson transform step may be, sometimes, skipped:

(3) (rn)
Mellin−→ r∗(s) =

∑

n≥1

rn
1

ns
.

In this way, Equation (1) can be translated, via a Poisson transform, into a func-
tional equation of the form

(4) r(x) = r(βx) + h(x), x ≥ 0,

where 0 < β < 1 and h is some fixed function. Provided that an iteration scheme
is valid, the problem is then to get an asymptotic expansion of the series

r(x) = r(0) +
∑

n≥0

h(βnx)

as x goes to infinity. This is usually done by taking the Mellin transform of the
function x → r(x).

Mellin Transform. The Mellin transform r∗ is defined in a vertical strip of C and,
under some growth conditions, the asymptotic behavior of rn [resp. r(x)], as n
[resp. x] gets large, can be expressed by using the poles of r∗ on the right of the
strip (provided that some growth conditions of the Mellin transform are satisfied).
See Flajolet et al. [9]. When the Poisson transform is used, the next step is to
justify that the behavior of r(x) as x gets large is similar to the behavior of rn for
n large.
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Poisson Transform. If (N([0, u]), u ≥ 0) is a Poisson process with parameter 1 (see
the Appendix for a quick presentation): for u ≥ 0, the variable N([0, x]) has a
Poisson distribution with parameter x. The function x → r(x) can therefore be
expressed as

r(x) = E
(

rN([0,x])

)

,

for x ≥ 0. The law of large numbers for Poisson processes states that, almost surely,
N([0, x])/x ∼ 1 as x gets large, this suggests that rN([0,x]) ∼ r⌊x⌋ provided that
the sequence (rn) does not vary too much: Recall that, due to the central limit
theorem, the approximation N([0, x]) ∼ x is valid with an error of the order of

√
x.

Analytically, some conditions on the sequence (rn) can be formulated so that an
equivalence between the asymptotic behaviors of the sequence and of the Poisson
transform can be established. See Jacquet and Szpankowski [12] for example.

A direct method. The approach presented here relies on a convenient use of
Fubini’s Theorem combined, sometimes, with some elementary properties of Poisson
processes. The purpose of the paper is to show that some asymptotic results for
algorithms on trees can be obtained in an elementary way. To show the effectiveness
of the method, expansions with oscillating behaviors, which are usually analyzed
with quite technical results of complex analysis, are obtained with this approach.

With the analytical approach, oscillating expansions are described with a pe-
riodic function which shows up through its Fourier coefficients. It occurs when
the Mellin transform of the sequence has poles on an imaginary axis at the points
(a+inb, n ∈ Z). The method presented here has the advantage of being more direct
and to give an explicit expression of the mysterious periodic function which, in the
end, is not mysterious at all.

Rather than setting up a framework with formal results, the presentation of some
important and interesting algorithms already analyzed in the literature has been
chosen. Section 2 studies one of the first algorithms for which a curious oscillating
behavior has been proved (by Knuth). Section 3 considers the basic algorithm of
the Ethernet protocol. It is not, strictly speaking, a law of large numbers setting
but a similar oscillating behavior occurs also in this case. Moreover, it is not only
true for the averages but also for the distribution of the variables. Section 4 gives
other examples where similar methods can be used. In particular, a treatment of
Equation (4) is proposed. The examples of Section 3 and Section 4 show also that
the method does not give only a first order term of the asymptotic expansion (i.e.
at the level of the law of large numbers) but can also give subsequent terms of the
expansion. A more complicated splitting algorithm is analyzed in Mohamed and
Robert [19].

Acknowledgements. The author is grateful to Philippe Flajolet for uncountable
interesting conversations on tree algorithms and Mellin transforms. The paper also
benefited from two anonymous referees’ comments.

2. A Binary Splitting algorithm

This section analyzes an algorithm investigated by Knuth in 1973, see Knuth [15]
page 131-132. It consists in splitting randomly and recursively a group of n initial
items into subgroups until each of the subgroups has cardinality 0 or 1. Latter, it
has been used by Capetanakis [3] and Tsybakov and Mikhailov [22] in the design
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of algorithms for access protocols to communication channels. See also the surveys
Flajolet and Jacquet [10] and Ephremides and Hajek [7].

Binary Splitting Algorithm K(n)

— n = 0 or 1 −→ Stop.
— n ≥ 2. The n elements are randomly, equally, divided into two subgroups.

If n1 and n− n1 denote the cardinalities of these subgroups then
−→ Apply K(n1) and K(n− n1).

The cost Rn of the algorithm K(n) starting with n elements is defined as the
number of steps it requires to stop, in particular, R0 = R1 = 1. The following
proposition establishes a recurrence relation for the other values of n. It is simply
a formal rephrasing of the description of the algorithm.

Proposition 1 (Stochastic Recurrence Relation). For n ≥ 2, the random variable

Rn satisfies the relation

Rn
dist.
= 1 +R1

n−Sn
+R2

Sn
, n ≥ 2,

with Sn = B1 + · · ·+Bn and

— the i.i.d. variables Bi, i ≥ 1 are Bernoulli with parameter 1/2;
— for 0 ≤ k ≤ n, the variables R1

k and R2
n−k are independent and R1

k and R2
k

have the same distribution as Rk.

The Bernoulli variables have the following interpretation: For i ≥ 1, if Bi = 0
[resp. Bi = 1 ] the ith element goes in the first [resp. second] subgroup.

The recurrence relation for (Rn) and the boundary conditions at n = 0 and 1
can be integrated in the following way,

(5) Rn
dist.
= 1 +R1

n−Sn
+R2

Sn
− 2{n≤1}.

The rest of the section is devoted to the analysis of the asymptotic behavior of the
average value E(Rn) of the random variable Rn when n is large.

Proposition 2 (Poisson Transform). For x > 0, the Poisson transform r(x) of the
sequence (E(Rn)) is given by the series

(6) r(x) =

+∞
∑

n=0

E(Rn)
xn

n!
e−x = 1 + 2

∑

k≥0

2k P
(

t2 ≤ x/2k
)

,

where t2 is the sum of two independent exponentially distributed random variables

with parameter 1.

Proof. If N = (N([0, t])), (tn) is a Poisson process with intensity 1. See the appen-
dix. The Poisson transform r(x) can be expressed as

r(x) = E
(

RN([0,x])

)

,

For n ≥ 0, Sn denotes the nth partial sum of Bernoulli random variables with
parameter 1/2. Relation (5) gives the identity

RN([0,x])
dist.
= 1 +R1

SN([0,x])
+R2

N([0,x])−SN([0,x])
− 2{N([0,x])≤1}.

The Poisson variable random variable N([0, x]) is split into two random variables
SN([0,x]) and N([0, x])−SN([0,x]). According to Proposition 10 of the appendix, the
distribution of these two (independent) random variables is Poisson with parameter
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x/2, i.e. the distribution of N([0, x/2]). Since, by definition, t2 is the second point
of the Poisson process then {N([0, x]) ≤ 1} = {t2 > x} and

E
(

RN([0,x])

)

= 2E
(

RN([0,x/2])

)

+ 1− 2P (t2 > x) .

If f(x) = r(x)− 1, the last identity can be written as f(x) = 2f(x/2)+2P (t2 ≤ x).
By iterating, one gets the expansion

f(x) = 2nf(x/2n) + 2

n−1
∑

k=0

2k P(t2 ≤ x/2k).

The limit of the sequence (2nf(x/2n)/x) is the limit of (r(h)− 1)/h as h goes to 0:

lim
n→+∞

2nf(x/2n)/x = r′(0) = E(R0)− E(R1) = 0.

Representation (6) of the Poisson transform is thus established. �

The following proposition establishes a useful integral representation of the quan-
tity E(Rn) which gives the key of the asymptotic expansion. Its proof uses a prob-
abilistic trick of independent interest to invert the Poisson transform.

Proposition 3 (Probabilistic de-Poissonnization). For n ≥ 2,

(7) E(Rn) = 4n

∫ 1

0

2−{− log2(x)}(n− 1) (1− x)
n−2

dx− 1,

with {y} = y − ⌊y⌋, the fractional part of y ∈ R.

Proof. As in the proof of Proposition 2, N = (N([0, x])) = (tn) denotes a Poisson
point process with intensity 1. By using Equation (6) and by decomposing according
to the number of tn’s in the interval [0, x], one gets

r(x) = 1 + 2
∑

k≥0

2kP
(

t2 ≤ x/2k
)

= 1 + 2
∑

k≥0

2k
∑

n≥2

P
(

t2 ≤ x/2k, N([0, x]) = n
)

= 1 + 2
∑

k≥0

2k
∑

n≥2

P
(

t2 ≤ x/2k | N([0, x]) = n
) xn

n!
e−x.

According to Proposition 12, conditionally on the event {N([0, x]) = n}, the vari-
able (t1, t2, . . . tn) has the same distribution as (xUn

(1), xU
n
(2), . . . , xU

n
(n)), where

(Ui, 1 ≤ i ≤ n) are independent random variables uniformly distributed on [0, 1]
and (Un

(i), 1 ≤ i ≤ n) denotes their non-decreasing reordering. In particular, condi-

tionally on the event {N([0, x]) = n}, the variable t2 has the same distribution as
xUn

(2), hence the quantity

P
(

t2 ≤ x/2k | N([0, x]) = n
)

= P
(

xU2,n ≤ x/2k
)

= P
(

U2,n ≤ 1/2k
)

does not depend on x. The Poisson transform can thus be written as

(8) r(x) = 1 + 2
∑

k≥0

2k
∑

n≥2

P
(

U2,n ≤ 1/2k
) xn

n!
e−x
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Now, by switching the two sums, one gets

r(x) =
∑

n≥0

xn

n!
e−x + 2

∑

n≥2





∑

k≥0

2k P
(

U2,n ≤ 1/2k
)





xn

n!
e−x

= e−x + xe−x +
∑

n≥2



1 + 2
∑

k≥0

2k P
(

U2,n ≤ 1/2k
)





xn

n!
e−x.

The last expression is clearly a Poisson transform, by identifying the coefficients,
this yields the following formula, for n ≥ 2,

rn = 1 + 2
∑

k≥0

2k P

(

U2,n ≤ 1

2k

)

= 1 + 2
∑

k≥0

2k E
(

1{U2,n≤1/2k}

)

.

By Fubini’s Theorem, the sum and the expectation can also be switched (the sum-
mands are non-negative), therefore,

rn = 1 + 2E





∑

k≥0

2k 1{k≤− log2(U2,n)}



 = 1 + 2
(

E

(

2⌈− log2(U2,n)⌉
)

− 1
)

.

Since, for x > 0, P(U2,n ≤ x) = 1 − (1 − x)n − nx(1 − x)n−1, the density function
of the variable U2,n is the function x → n(n − 1)x(1 − x)n−2 on [0, 1]. This gives
the relation

rn = 4n

∫ 1

0

2⌊− log2(x)⌋(n− 1)x(1 − x)n−2 dx− 1

= 4n

∫ 1

0

2−{− log2(x)}(n− 1)(1− x)n−2 dx− 1.

The proposition is proved. �

With a similar use of Fubini’s Theorem as in the above proof, one gets the
following representation of the Poisson transform of (Rn).

Proposition 4. The Poisson transform of the sequence (Rn) can be represented as

(9) r(x) = 4x

∫ x

0

2−{log2(x)−log2(y)}e−y dy + 2(1 + x) e−x − 1, x ≥ 0.

If Equation (9) is more explicit than Equation (6), it has nevertheless no use in the
asymptotic analysis, Equation (6) is the key identity.

Proof. By Equation (6) and Fubini’s Theorem, one gets

1

2
(r(x) − 1) =

∑

k≥0

2k E
(

1{t2≤x/2k}

)

= E





∑

k≥0

2k 1{t2≤x/2k}





= E

[(

2⌊log2(x/t2)⌋+1 − 1
)

1{t2≤x}

]

,

the proof is concluded by trite calculations and by using the fact that the random
variable t2 has the density (x exp(−x)) on R+. �

Knuth’s result on the asymptotic behavior of this algorithm is given by the
following theorem.
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Theorem 5 (Asymptotic oscillations). The average of Rn satisfies the expansion

(10) E(Rn) = nF (log2(n))− 1 +O
(

ne−n
)

, n ≥ 1,

with

(11) F (y) = 4

∫ +∞

0

2−{y−log2(x)}e−x dx.

The function F is periodic with period 1, in particular the sequence (E(Rn)/n) is

not converging.

In communication networks, the quantity E(Rn)/n is related to an average trans-
mission time when n messages are initially in the network. The practical conse-
quence of the oscillations of the sequence (E(Rn)/n) is nevertheless quite limited
since the amplitude of the oscillations of the function F is of the order of 10−5. See
Figure 1.

Proof. By Equation (7), it is enough to look at the asymptotic behavior of
∫ 1

0

2−{− log2(x)}n (1− x)
n−1

dx =

∫ n

0

2−{log2(n)−log2(x)}
(

1− x

n

)n−1

dx.

The elementary inequality

∣

∣

∣

∣

∫ 1

0

2−{− log2(x)}n (1− x)
n−1

dx−
∫ +∞

0

2−{log2(n)−log2(x)}e−x dx

∣

∣

∣

∣

≤
∫ +∞

n

e−x dx+

∫ n

0

∣

∣

∣

∣

(

1− x

n

)n−1

− e−x

∣

∣

∣

∣

dx = 2e−n

concludes the proof. �

Remark. By evaluating the integral of Equation (7), one gets that the quantity
E(Rn) can be expressed as

E(Rn) = 1 + 2
∑

k≥0

2k

(

1−
(

1− 1

2k

)n

− n

2k

(

1− 1

2k

)n−1
)

.

This is the starting point of most of analyses of this algorithm. It is followed by some
exponential approximations, a Mellin transform of the residual series and finally
some complex analysis arguments to derive the asymptotic behavior of the original
sequence. The periodic function F appears then through its Fourier transform.
By inversion, it is expressed in term of the values of the Gamma function Γ on a
vertical axis of the complex plane,

F (x) = − 2

log 2

∑

k∈Z−{0}

ξkΓ(ξk − 1) e2ikπx

with ξk = 2ikπ/log 2 for k ∈ Z.
Clearly, it is much easier to evaluate the asymptotic behavior of the integral (7).

Moreover, as a benefit, the periodic function F shows up quite naturally and with
a direct explicit expression which is apparently new.
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Figure 1. The interpolated sequence n → E(Rn)/n

3. Ethernet

The context of the algorithm analyzed in this section is the following: In a com-
munication network with only one channel, at most one message can be transmitted
each unit of time. If two transmitters (or stations) try at the same time, this is
a failure (a collision) and both of them have to retransmit later. In an Ethernet
network, to each station waiting for transmission is associated an integer L which
is the number of collisions it has already experienced. At time t + 1, a station
with a counter equal to k tries to transmit with probability 1/2k. See Metcalf and
Boggs [18] and Aldous [1]. For t ≥ 0, L(t) denotes the value of the counter of a
given station which is waiting for transmission for t units of time. In a completely
congested network, the sequence (L(t)) evolves as follows: L(0) = 1 and

L(t+ 1) =

{

L(t) with probability 1− aL(t)

L(t) + 1 aL(t),

where a ∈ (0, 1). For Ethernet the value of a is 1/2. An approximated counting
algorithm proposed by Flajolet and Martin [11] uses also such a sequence (L(t)),
see Flajolet [8].

For k ≥ 1, Gk denotes the sojourn time of (L(t)) in state k, Gk is a geometrically
distributed with parameter ak:

P(Gk ≥ n) =
(

1− ak
)n

.

Consequently, G1 + · · ·+Gk−1 is the hitting time of k for the process (L(t)). Note
that the random variables (Gk) are, of course, independent.

The average hitting time of k is therefore a−k, this suggests that the value of
L(t) is of the order of log1/a(t) when t is large. This approximation is indeed

true : it is not difficult to show that the quantity |E(L(t)) − log1/a(t)| is bounded
with respect to t. This estimation suggests that there should be a convergence in
distribution of the random variable L(t)−log1/a(t) as t goes to infinity. Surprisingly,
this convergence does not hold. With calculus on some alternating series, Mellin
transforms and complex analysis methods, Flajolet [8] has shown that the variable
L(t)− log1/a(t) exhibits an asymptotic oscillating behavior with respect to t. For

an extension of these results, see also Kirschenhofer et al. [14].
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In this section, a simple proof of this result is presented, together with an explicit
description of the asymptotic behavior of the distribution of the random variable
L(t)− log1/a(t). The following elementary proposition simplifies a lot the analysis
of the algorithm.

Proposition 6. The convergence in distribution

(12) an
n−1
∑

k=0

Gn−k−→H
dist.
=

+∞
∑

k=0

akEk

holds as n goes to infinity, where (En) is a sequence of independent random variables

exponentially distributed with parameter 1. The random variable H has a density

h on R+ given by

(13) h(x) =
1

∏+∞
k=1(1− ak)

+∞
∑

n=0

1
∏n

k=1(1 − a−k)
a−n exp

(

−a−nx
)

, x ≥ 0.

Moreover, Convergence (12) is true for the total variation norm, i.e.

(14) lim
n→+∞

sup
x≥0

∣

∣

∣

∣

∣

P

(

n−1
∑

k=0

anGn−k ≥ x

)

− P (H ≥ x)

∣

∣

∣

∣

∣

= 0.

The random variable H is already known in the domain of communication net-
works, but in a very different framework: The congestion avoidance phase of the
Transmission Control Protocol (TCP) of the Internet. In this case, H is related
to the stationary distribution of the throughput of a long TCP connection. See
Dumas et al. [6]. The variable H also appeared in mathematical finance models to
describe Asian Options, see Carmona et al. [4].

Proof. For k ≥ 0 and x > 0, then

P (anGn−k ≥ x) = (1− an−k)⌈x/a
n⌉

= exp
(

⌈x/an⌉ log
(

1− an−k
)

)

∼ exp
(

− x/ak
)

,

hence the random variable anGn−k converges in distribution to akEk where Ek

is exponentially distributed with parameter 1. Therefore, by independence of the
variables (Gk), the convergence (12) holds. For the explicit expression of the density
of H , see the proof of Proposition 13 of Dumas et al. [6].

Chebychev’s Inequality gives, for x > 0,

P

(

an
n−1
∑

k=0

Gn−k ≥ x

)

≤ 1

x
E

(

an
n−1
∑

k=0

Gn−k

)

≤ 1

x

a2

1− a
,

hence, the uniform convergence (14) has only to be proved in a compact interval.
Since the sequence n → P (anGn−k ≥ x) is non-decreasing, the same property holds
for the function fn defined as follows

n → fn(x)
def.
= P

(

an
n−1
∑

k=0

Gn−k ≥ x

)

.

By Dini’s Theorem, the non-decreasing sequence of functions (fn) converges uni-
formly on compact sets to x → P(H ≥ x). The uniform convergence (14) is estab-
lished . �
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Figure 2. The density function of H when a = 1/2

For t ≥ 1 and u ∈ [0, 1], it is easy to check that

E

(

uL(t)
)

= E





∑

n≥0

un(1− u) 1{L(t)≤n}



 =
∑

n≥0

un(1− u)P (L(t) ≤ n)

holds and, since P (L(t) ≤ n) = P (G1 + · · ·+Gn ≥ t), for n ≥ 1. One thus gets
the relation

E [exp (−λL(t))] =
∑

n≥0

e−λn
(

1− e−λ
)

P

(

an
n−1
∑

i=0

Gn−i ≥ ant

)

, λ > 0.

The uniform convergence (14) gives the expansion, as t goes to infinity,

E [exp (−λL(t))] =
∑

n≥0

e−λn
(

1− e−λ
)

P (H ≥ ant) + o(1),

by switching the sum and the expectation, one gets

E[exp(−λL(t))] ∼ E





∑

n≥0

e−λn
(

1− e−λ
)

1{H≥ant}





= E





∑

n≥⌈log1/a(t/H)⌉

e−λn
(

1− e−λ
)

1{t≥H}



(15)

= E

[

exp
(

−λ⌈log1/a(t/H)⌉
)

1{t≥H}

]

∼ E

[

exp
(

−λ⌈log1/a(t/H)⌉
)]

.

The following equivalence of Laplace transforms has therefore been obtained:

E

(

exp
[

−λ
(

L(t)− log1/a(t)
)])

∼ E

(

exp
[

−λ
(

⌈log1/a(t/H)⌉ − log1/a(t)
)])

= E

(

exp
[

−λ
(

1− log1/a(H)− {log1/a(t/H)}
)])

.

The above relation implies that if x ≥ 0 and Z(t) = L(t) − log1/a(t) then the

sequence (Z(a−n−x)) converges in distribution. The main result of Flajolet [8] can
now be stated.
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Theorem 7 (Asymptotic Oscillating Distribution). Asymptotically, the distribu-

tion of L(t) − log1/a(t) is equivalent to the distribution of F (log1/a(t)) where, for

x ≥ 0, F (x) is defined as

F (x) = log1/a

(

1

aH

)

−
{

x− log1/a(H)
}

, x ∈ R,

where H is the random variable introduced in Proposition 6.

Note that the random function x → F (x) is periodic with period 1. The variable
H is in fact concentrated around its average away from 0 (see the detailed study
by Litvak and den Zwet [16]) and from +∞ (exponential decay). The phenomenon
of moderate oscillations (but not as small) seen for Knuth’s Algorithm is thus also
true in this case.

4. Extensions

In Section 2, the asymptotic behavior of the sequence (E(Rn) is directly obtained
from Relation (7). To obtain this identity, the key steps are 1) the de-Poissonization
and 2) the use of Fubini’s Theorem in Equation (8) to remove the series. In Sec-
tion 3, the key step is also the use of Fubini’s Theorem in Equation (15) to get rid
of the series.

It may be thought that these derivations are nevertheless possible only because of
the particular expressions involved: For example, in Section 2, the special properties
of Poisson processes are critical in the solution of the problem. The purpose of this
section is to propose a simple method along the same lines to study the asymptotic
behavior of some series and functions. As it will be seen, it applies in various sit-
uation, even when there is no probabilistic interpretation of the sequence/function
under study.

Dyadic Sums. This example is taken from Flajolet et al. [9] page 35. The behavior
of the function

(16) G(x) =
∑

k≥1

g
(

x/2k
)

is investigated when x goes to infinity.
It is assumed that x → g(x) is differentiable and that g(0) = 0 so that the sum

is well defined. These conditions are not the weakest possible. The goal here is to
keep the presentation as simple as possible, not to get the most accurate result for
this special case.

By using the elementary relation, for x > 0,

g(x) =

∫ x

0

g′(u) du,

the series (16) can be written as

G(x) =
∑

k≥1

∫ x

0

1{u<x/2k}g
′(u) du.

When the sum and the integral are permuted in the last expression, it yields
∫ x

0

∑

k≥1

1{u<x/2k} g
′(u) du =

∫ x

0

⌊log2(x/u)⌋g′(u) du,
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Fubini’s Theorem states that this last term is indeed G(x) when the condition
∫ x

0

| log2(u)| |g′(u)| du < +∞

holds. In this case, the function G can thus be represented as

G(x) =

∫ x

0

⌊log2(x/u)⌋ g′(u) du

= −
∫ x

0

{log2(x/u)} g′(u) du+

∫ x

0

log2(x/u) g
′(u) du.

The following proposition has been proved.

Proposition 8. If the function g is differentiable and such that g(0) = 0, under
the condition

(17)

∫ +∞

0

| log(u)| |g′(u)| du < +∞,

the dyadic sum G(x) can be expressed as

(18) G(x) = F (log2(x)) +

∫ +∞

x

{log2(x/u)} g′(u) du+
1

log 2

∫ +∞

x

g(u)

u
du.

where F is the periodic function, with period 1, defined by

F (y) = − 1

log 2

∫ +∞

0

g(u)

u
du−

∫ +∞

0

{y − log2(u)} g′(u) du, y ≥ 0.

Provided that g has a monotone behavior in the neighborhood of 0 and +∞, Con-
dition (17) is equivalent to the fact that the integral

∫ +∞

0

|g(u)|
u

du

exists, i.e. that the Mellin transform of g is defined at 0.
From Equation (18), it is then not difficult to derive an asymptotic expansion of

G(x) as x goes to infinity.

Harmonic Sums. More generally, the simple method developed above can be
used for a more general class of functions:

G(x) =
∑

k≥1

λk g(µkx).

This is the main application of Flajolet et al. [9]. For simplicity, it is assumed that
the sequence (µk) is non-increasing and converging to 0 for example. Provided that

Fubini’s Theorem can be applied, one gets the following representation:

G(x) =

∫ +∞

0

∑

k≥1

λk1{µk≥u/x} g
′(u) du.

If, for y > 0 and n ≥ 1,

τ(y) = sup{k : µk > y} and Λ(n) =

n
∑

k=1

λk,
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with the convention that sup{∅} = 0, then the harmonic sum can be written as

G(x) =

∫ +∞

0

Λ(τ(x/u)) g′(u) du.

Hence, the rates of growth of Λ and τ give the key of the asymptotic behavior of
the function G.

Final Remark. It must be noted that, when it can be applied, the method pro-
posed in this paper will require weaker assumptions than the analytic approach.
Indeed, the conditions to apply Fubini’s Theorem are quite minimal (which does
not mean that there is no condition at all). On the contrary, the use of Mellin
transform implies the existence of the transform itself on some specified strip of the
complex plane together with some growth conditions at infinity.

5. Appendix on Poisson Processes

To keep the paper self-contained, this section recalls the basic definitions and
results concerning Poisson processes used in this paper. See also Kingman [13]
and Chapter 1 of Robert [21] for a more detailed presentation of these important
stochastic processes.

Definition 9. A random variable X has the Poisson distribution with parameter

λ whenever

P(X = n) =
λn

n!
e−λ, n ∈ N.

The following proposition is the basic property that motivates the use of Pois-
son transform when dealing with splitting algorithms. It is a striking elementary
property of the Poisson distribution.

Proposition 10 (Splitting Property). If X is a Poisson random variable with

parameter λ, X balls are thrown randomly among n urns and for 1 ≤ i ≤ n, Xi

denotes the number of balls in the ith urn. The variables (Xi) are independent with

a common Poisson distribution with parameter λ/n.

Definition 11. A Poisson process with intensity λ is an increasing sequence (tn)
of positive random variables such that

— the increments tn+1 − tn, n ≥ 1, are independent;

— For n ≥ 1 and x ≥ 0, P(tn+1 − tn ≥ x) = exp(−λx).

A Poisson process (tn) is also represented as a non-decreasing integer valued
function (N([0, t]), t ≥ 0) on R+ where, for t ≥ 0, N([0, t]) is the number of tn’s in
the interval [0, t]: N([0, t]) = n on the event {tn ≤ t < tn+1}. For a Poisson process,
the representations as a sequence (tn) or a non-decreasing function (N([0, t]), t ≥ 0)
are or course equivalent.

Proposition 12. It (tn) is a Poisson process with intensity λ, for t > 0,

— the variable N([0, t]) has a Poisson distribution with parameter λ;
— conditionally on the event {N([0, t]) = n}, the variables

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t

have the same distribution as the reordering of n independent, uniformly

distributed random variables on [0, t].
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