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Abstract

Let Σ = (V,E) be a finite, d-regular bipartite graph. For any λ > 0 let
πλ be the probability measure on the independent sets of Σ in which the set
I is chosen with probability proportional to λ|I| (πλ is the hard-core measure

with activity λ on Σ). We study the Glauber dynamics, or single-site update
Markov chain, whose stationary distribution is πλ. We show that when λ is
large enough (as a function of d and the expansion of subsets of single-parity
of V ) then the convergence to stationarity is exponentially slow in |V (Σ)|. In
particular, if Σ is the d-dimensional hypercube {0, 1}d we show that for values
of λ tending to 0 as d grows, the convergence to stationarity is exponentially
slow in the volume of the cube. The proof combines a conductance argument
with combinatorial enumeration methods.

1 Introduction and statement of the result

Let Σ = (V,E) be a simple, loopless, finite graph on vertex set V and edge set E.
(For graph theory basics, see e.g. [3], [7].) Write I(Σ) for the set of independent sets
(sets of vertices spanning no edges) in V . For λ > 0 we define the hard-core measure
with activity λ on I(Σ) by

πλ({I}) =
λ|I|

Zλ(Σ)
for I ∈ I (1)

Key words: Mixing time, hard-core model, conductance, Glauber dynamics, discrete hypercube.
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where Zλ(Σ) =
∑

I∈I λ
|I| is the appropriate normalizing constant. We will often write

wλ(I) for λ
|I| and, for J ⊆ I, wλ(J ) for

∑

J∈J wλ(J).
The hard-core measure originally arose in statistical physics (see e.g. [8, 1]) where

it serves as a simple mathematical model of a gas with particles of non-negligible size.
The vertices of Σ we think of as sites that may or may not be occupied by particles;
the rule of occupation is that adjacent sites may not be simultaneously occupied. The
activity parameter λ measures the likelihood of a site being occupied.

The measure also has a natural interpretation in the context of communications
networks (see e.g. [14]). Here the vertices of Σ are thought of as locations from
which “calls” can be made; when a call is made, the call location is connected to
all its neighbours, and throughout its duration, no call may be placed from any of
the neighbours. Thus at any given time, the collection of locations from which calls
are being made is exactly an independent set in the graph. If calls are attempted
independently at each vertex as a Poisson process of rate λ and have independent
exponential mean 1 lengths, it can be shown that the long-run stationary distribution
of this process is the hard-core measure on Σ.

Our particular focus in this paper is the mixing time of the Glauber dynamics, or
single-site update Markov chain, for this model. The measure πλ can be realized as
the stationary distribution of a certain Markov chain. Specifically, consider the chain
Mλ =Mλ(Σ) on state space I(Σ) with transition probabilities Pλ(I, J), I, J ∈ I(Σ),
given by

Pλ(I, J) =



















0 if |I △ J | > 1
1
|V |

λ
1+λ

if |I △ J | = 1, I ⊆ J
1
|V |

1
1+λ

if |I △ J | = 1, J ⊆ I

1−∑

I 6=J ′∈I(Σ) Pλ(I, J
′) if I = J

Underpinning the definition ofMλ is the following dynamical process, known as the
Glauber dynamics on I(Σ). From an independent set I, the process follows three
steps. The first step is to choose a vertex v uniformly from V . The second step is to
“add” v to I with probability λ/(1 + λ), and “remove” it with probability 1/(1 + λ);
that is, to set

I ′ =

{

I ∪ {v} with probability λ
1+λ

I \ {v} with probability 1
1+λ

.

The third step is to move to I ′ if it is a valid independent set, and stay at I otherwise.
It is readily checked that Mλ is an ergodic, aperiodic, time reversible Markov

chain with (unique) stationary distribution πλ. A natural question to ask aboutMλ

is how quickly it converges to its stationary distribution. To make this question
precise, we need a few definitions.

LetM be an ergodic Markov chain on state space Ω, with transition probabilities
P : Ω2 → [0, 1]. For a state ω0 ∈ Ω, denote by P t(ω0, ·) the distribution of the state at
time t, given that the initial state is ω0, and denote by π the stationary distribution.
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Define the mixing time ofM by

τM = max
ω0∈Ω

min

{

t0 :
1

2

∑

ω∈Ω
|P t(ω0, ω)− π(ω)| ≤

1

e
∀t > t0

}

.

The mixing time ofM captures the speed at which the chain converges to its station-
ary distribution: for every ǫ > 0, in order to get a sample from Ω which is within ǫ
of π (in variation distance), it is necessary and sufficient to run the chain from some
arbitrarily chosen distribution for some multiple (depending on ǫ) of the mixing time.

Much work has been done on the question of bounding τMλ
. The strongest general

result available to date is due to Vigoda [21] who showed that if Σ is any n-vertex
graph with maximum degree ∆, then τMλ

(Σ) = O(n logn) whenever λ < 2/(∆−2). In
the other direction, Dyer, Frieze and Jerrum [9] considered the case λ = 1 and showed
that for each ∆ ≥ 6 a random (uniform) ∆-regular, n-vertex bipartite Σ almost surely
(with probability tending to 1 as n tends to infinity) satisfies τM1

(Σ) ≥ 2γn for some
absolute constant γ > 0.

Here, we continue in the spirit of [9] and construct explicit families of graphs for
which Glauber dynamics mixes slowly. Specifically, we establish a certain expansion
condition in a regular bipartite graph Σ that forces τMλ(Σ) to be (almost) exponential
in |V | provided λ is suitably large (as a function of the expansion). The d-dimensional
hypercube {0, 1}d satisfies this condition for λ ≥ ω(d−1/4 log3/2 d).

Our work is partly motivated by [5] where a study was made of Glauber dynamics
for the hard-core measure on the even discrete torus TL,d. This is the graph on
{0, . . . , L− 1}d (with L even) in which two strings are adjacent if they differ on only
one coordinate, and differ by 1 (mod L) on that coordinate. It was shown in [5] that
for λ growing exponentially in d (with a suitably large base), τMλ(TL,d) is exponential

in cLd−1/ log2 L for some c that depends on d but not on L.
In light of a recent result of Galvin and Kahn [12], we found it tempting to believe

that slow mixing on TL,d should hold for much smaller values of λ; even for some
values of λ tending to 0 as d grows. The main result of [12] is that the hard-core
model on Z

d exhibits multiple Gibbs phases for λ ≥ Cd−1/4 log3/4 d for some large
constant C. Specifically, write E and O for the sets of even and odd vertices of Zd

(defined in the obvious way: a vertex of Zd is even if the sum of its coordinates is
even). Set

ΛM = ΛdM = [−L, L]d, ∂ΛM = [−L, L]d \ [−(L− 1), L− 1]d.

For λ > 0, choose I from I(ΛM) with Pr(I = I) ∝ λ|I|. The main result of [12] is
that there is a constant C such that if λ ≥ Cd−1/4 log3/4 d then

lim
M→∞

Pr(0 ∈ I|I ⊇ ∂ΛM ∩ E) > lim
M→∞

Pr(0 ∈ I|I ⊇ ∂ΛM ∩O).
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Thus, roughly speaking, the influence of the boundary on behavior at the origin per-
sists as the boundary recedes. Informally, this suggests that for λ in this range, the
typical independent set chosen according to the hard-core measure is either predom-
inantly odd or predominantly even. Thus there is a highly unlikely “bottleneck” set
of balanced independent sets separating the predominantly odd sets from the pre-
dominantly even ones. It is the existence of this bottleneck that should cause the
conductance of the Glauber dynamics chain to be small (see Section 2), and thus
cause its mixing time to be large.

Our main result (Theorem 1.1) provides some support for this belief, verifying it
in the case L = 2; unfortunately, because of the weak isoperimetry of the torus we
cannot hope to use Theorem 1.1 to deal with general L. (See Remark 1.6 for further
discussion of these issues.)

Before stating Theorem 1.1, we establish some notation. From now on, Σ = (V,E)
will be a d-regular, bipartite graph with partition classes E and O. Set N = |V | and
M = |E| = |O| (= N/2).

For u, v ∈ V we write u ∼ v if there is an edge in Σ joining u and v. Set
N(u) = {w ∈ V : w ∼ u} (N(u) is the neighbourhood of u) and N(A) = ∪w∈AN(w).
For A ⊆ E (or O) set

[A] = {x ∈ V (Σ) : N(x) ⊆ N(A)};

we think of [A] as an “external closure” of A. Note that while A determines N(A),
N(A) determines only [A]. For this reason, we find it more convenient at some points
in the sequel to deal with [A] rather than with A itself. Say that A is small if
|[A]| ≤M/2. Define the bipartite expansion constant of Σ by

δ(Σ) = min

{ |N(A)| − |[A]|
|N(A)| : A ⊆ E small or A ⊆ O small, A 6= ∅

}

.

Note that 0 ≤ δ < 1. (The second inequality is obvious. The first follows from
regularity, which implies that Σ has a perfect matching, which in turn implies that
for all A ⊆ E (or O), |A| ≤ |N(A)|.)

All implied constants in O and Ω notation are independent of d. We use “log”
throughout for log2 and “ln” for loge. We write exp2 x for 2x. We always assume that
d is sufficiently large to support our assertions.

Set

α(λ) =
log(1 + λ)

44 (1 + log(1 + λ)) log
(

2 + 1
log(1+λ)

) (2)

and

β(λ) =
log2(1 + λ)

log(1 + λ) + log(d5/δ)
.
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We note for future reference that

λ ≥ 1√
d

implies
1

44
> α(λ) = Ω

(

1√
d log d

)

. (3)

Our main result is

Theorem 1.1 Let Σ be a d-regular, bipartite graph with N ≥ d2 vertices and bipartite
expansion constant δ. There is a constant c > 0 such that whenever λ and δ satisfy

β(λ) ≥ cmax

{

log(d5/δ)√
d

,
log2 d

δd

}

(4)

we have
τMλ(Σ) ≥ exp2 {Ω(Nα(λ)β(λ)δ)} .

Remark 1.2 If we add as an additional hypothesis to Theorem 1.1 that Σ has bounded
codegree (that is, there is a constant κ independent of d such that each pair of vertices
in Σ has at most κ common neighbours), then we can slightly improve our bound on
λ to

β(λ) ≥ cmax

{

log(d5/δ)√
d

,
log d

δd2

}

. (5)

We do not present the more complicated argument here.

Note that since δ < 1, we cannot possibly satisfy (4) for λ ≤ 1/
√
d, so we may

(and will) assume from here on that λ ≥ 1/
√
d.

A slightly stronger condition that implies (4) is

log(1 + λ) ≥ c′ max

{

log(d5/δ)

d1/4
,
log d

√

log(d5/δ)√
δd

}

(6)

where the constant c′ depends on c, from which we can more clearly see the tradeoff
between λ and δ. From (6) we may also read off the following corollary of Theorem
1.1 addressing Glauber dynamics for sampling a uniform independent set (λ = 1).

Corollary 1.3 Let Σ satisfy the conditions of Theorem 1.1. There is a constant
c > 0 such that whenever δ ≥ c log3 d/d we have

τM1(Σ) ≥ exp2

{

Ω

(

Nδ

log d

)}

.
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As an application of Theorem 1.1, we consider the case Σ = Qd, the d-dimensional
hypercube. This is the d-regular bipartite graph on vertex set {0, 1}d in which two
vertices are adjacent if they differ on exactly one coordinate. The hypercube satisfies
δ(Qd) ≥ Ω(1/

√
d) (see, e.g. [16, Lemma 1.3]; this bound can also be derived from

isoperimetric inequalities of Bezrukov [2] and Körner and Wei [15]) and so if c′ > 0
is a suitably large constant (depending on the constant c provided by Theorem 1.1)
then (4) is satisfied as long as λ ≥ c′d−1/4 log3/2 d. So the following is a corollary of
Theorem 1.1.

Corollary 1.4 There are constants c, c′ > 0 such that whenever λ ≥ cd−1/4 log3/2 d
we have

τMλ(Qd) ≥ exp2







c′2d log3(1 + λ)
√
d (1 + log(1 + λ)) (c3 log d+ log(1 + λ)) log

(

2 + 1
log(1+λ)

)







.

In particular,

τMλ(Qd) ≥



































exp2

{

2d log3(1+λ)√
d log2 d

}

if cd−1/4 log3/2 d ≤ λ ≤ O(1),

exp2

{

2d log2(1+λ)√
d log d

}

if Ω(1) ≤ λ ≤ O(d),

exp2

{

2d log(1+λ)√
d

}

if Ω(d) ≤ λ.

Remark 1.5 Using (5) in place of (4) (which we may do, since Qd has bounded
codegree) we may improve the bound on λ in Corollary 1.4 to λ ≥ cd−1/4 log d.

Remark 1.6 Let us return to TL,d, the even discrete torus. Since Qd is easily seen
to be isomorphic to T2,d, Corollary 1.4 gives an exponential lower bound on τMλ(T2,d)

for sufficiently large d whenever λ ≥ ω(d−1/4 log3/2 d). Unfortunately, the best bound
we can obtain on the bipartite expansion constant of TL,d is δ(TL,d) ≥ Ω(1/Ld) (see,
e.g [12]), so we cannot use Theorem 1.1 to obtain any lower bound on λ independent
of L beyond which τMλ(TL,d) is large for all even L ≥ 4 and sufficiently large d.
However, subsequent to the completion of this paper, a strategy specific to the torus
has been employed in [11] to show that for all even L ≥ 4, λ ≥ ω(d−1/4 log3/4 d) and
d sufficiently large,

τMλ(TL,d) ≥ exp2

{

Ld−1

d3 log2 L

}

.

2 Proof of Theorem 1.1

The notion of conductance, introduced in [13], can be used to analyze the behavior
of τMλ

. Let M be a Markov chain on state space Ω with transition matrix P and
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stationary distribution π. For ω1, ω2 ∈ Ω and A,B ⊆ Ω, set

Q(ω1, ω2) = π(ω1)P (ω1, ω2) and Q(A,B) =
∑

ω1∈A, ω2∈B
Q(ω1, ω2).

For ∅ 6= S ⊆ Ω, define the conductance of S as

Φ(S) =
Q(S,Ω \ S)

π(S)
.

We may interpret Φ(S) as the probability under π that the chain escapes from S in
one step, given that it is in S. Define the conductance ofM as

ΦM = min
0<π(S)≤ 1

2

Φ(S).

We may then bound the mixing time ofM by

τM ≥
(

1

2
− 1

e

)

1

ΦM
(7)

(see e.g. [9], where the above bound is derived without assuming time-reversibility of
the chainM). Thus to show that the mixing time is large, it is enough to exhibit a
single S with small conductance.

Throughout this section we fix Σ satisfying the conditions of Theorem 1.1. Set

IE = {I ∈ I(Σ) : |I ∩ E| > |I ∩O|},
define IO analogously, and set Ib = I(Σ) \ (IE ∪ IO) (Ib is the set of balanced inde-
pendent sets). Without loss of generality, assume πλ(IE) ≤ 1/2. Because Glauber
dynamics changes the size of an independent set by at most one at each step, we have
that if I ∈ IE , J 6∈ IE satisfy Pλ(I, J) 6= 0, then J ∈ Ib. It follows that

Q(IE ,Ω \ IE) =
∑

I∈IE ,J 6∈IE

πλ(I)Pλ(I, J)

=
∑

I∈IE ,J 6∈IE

πλ(J)Pλ(J, I) (8)

=
∑

I∈IE ,J∈Ib

πλ(J)Pλ(J, I)

≤ πλ(Ib).
The simplest way to see (8) is to use the fact that Mλ is time-reversible (that is,
that πλ(I)Pλ(I, J) = πλ(J)Pλ(J, I) for all I, J ∈ I); but note that more generally if
M is a (not necessarily time-reversible) Markov chain on finite state space Ω with
transition matrix P and stationary distribution π then

∑

ω1∈S,ω2 6∈S
π(ω1)P (ω1, ω2) =

∑

ω1∈S,ω2 6∈S
π(ω2)P (ω2, ω1)

7



for all S ⊆ Ω. Now using the trivial lower bound wλ(IE) ≥ (1 + λ)M (recall that for
J ⊆ I, ωλ(J ) =

∑

J∈J λ
|J |) we obtain

ΦMλ
≤ Φ(IE) ≤

πλ(Ib)
πλ(IE)

=
wλ(Ib)
wλ(IE)

≤ wλ(Ib)
(1 + λ)M

. (9)

Thus (recalling (7)) to show that τMλ
is large, it is enough to show that wλ(Ib) is

small. We may think of Ib as a “bottleneck” set through which any run of the chain
must pass in order to mix; if the bottleneck has low measure, the mixing time is high.

We will actually consider a larger “bottleneck” set. Set

Itriv = {I ∈ I : |I ∩ E|, |I ∩O| ≤ α(λ)M}

and
Int = {I ∈ I : min{|I ∩ E|, |I ∩ O|} ≥ α(λ)M},

where α(λ) is as defined in (2). Note that Ib ⊆ Itriv ∪Int. We will show that as long
as λ satisfies (4),

wλ(Itriv ∪ Int) ≤ (1 + λ)M exp2 {−Ω (Mα(λ)β(λ)δ)} , (10)

from which Theorem 1.1 follows via (7) and (9).

Dealing with wλ(Itriv) is relatively straightforward. We begin by observing that

4α(λ) log
1

α(λ)
≤ log(1 + λ)

2 (1 + log(1 + λ))
. (11)

To see this, first set

γ(λ) =
log(1 + λ)

1 + log(1 + λ)
.

Note that for all λ > 0, 0 < γ(λ) < 1. We have α(λ) = γ(λ)/(44 log(1+1/γ(λ))) and
so (11) is equivalent to

γ(λ)

11 log
(

1 + 1
γ(λ)

) log





44 log
(

1 + 1
γ(λ)

)

γ(λ)



 ≤ γ(λ)

2

which is in turn equivalent to

44 log

(

1 +
1

γ(λ)

)

≤ γ(λ)

(

1 +
1

γ(λ)

)11/2

.

That this inequality holds for all 0 < γ(λ) < 1 is a routine calculus exercise. Note
also that for 0 < x < 1/e,

x ≤ H(x) ≤ 2x log
1

x
(12)
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(where recallH(x) = −x log x−(1−x) log(1−x) is the usual binary entropy function).
Finally, we use a result concerning the sums of binomial coefficients which follows from
the Chernoff bounds [6] (see also [4], p.11):

[cN ]
∑

i=0

(

N

i

)

≤ 2H(c)N for c ≤ 1
2
, (13)

where [x] denotes the integer part of x.
Now with the inequalities justified below, we have

wλ(Itriv) ≤
(

M

≤ α(λ)M

)2

(1 + λ)2α(λ)M

≤ exp2 {2H(α(λ))M + 2α(λ)M log(1 + λ)} (14)

≤ exp2 {2MH(α(λ))(1 + log(1 + λ))} (15)

≤ exp2

{

4Mα(λ) log
1

α(λ)
(1 + log(1 + λ))

}

(16)

≤ exp2

{

M
log(1 + λ)

2

}

(17)

≤ (1 + λ)
M
2 . (18)

Here (and throughout) we use
(

n
≤k
)

for
∑

i≤k
(

n
i

)

. In (14), we are using (13), which is
applicable by (3). In (15) we are using the first inequality in (12) and in (16) we are
using the second (again, both of these are applicable by (3).) Finally in (17) we are
using (11).

Bounding wλ(Int) requires much more work. We begin by enlarging Int slightly.
Say that I ∈ I(Σ) is small on E if |[I ∩ E ]| ≤M/2 (recall that for A ⊆ E , [A] = {v ∈
O : N(v) ⊆ A}), and set

IntE = {I ∈ Int : I is small on E}.

Define small on O and IntO similarly. A simple argument, based on the fact that Σ
has a perfect matching, shows that any I ∈ I(Σ) must be small on at least one of E ,
O, and so we have

wλ(Int) ≤ 2max
{

wλ(IntE ), wλ(IntO )
}

.

We may assume without loss of generality that

wλ(IntE ) = max
{

wλ(IntE ), wλ(IntO )
}

so that it is enough to show that

wλ(IntE ) ≤ (1 + λ)M exp2 {−Ω(Mα(λ)β(λ)δ)} .

9



For each a ≥ α(λ)M and g ≥ a set

A(a, g) = {A ⊆ E : |[A]| = a, |N(A)| = g}

and set
I(a, g) = {I ∈ IntE : I ∩ E ∈ A(a, g)}.

We have

wλ(IntE ) ≤
∑

a≥α(λ)M, g≥a
wλ(I(a, g))

≤
∑

a≥α(λ)M, g≥a
wλ(A(a, g))(1 + λ)M−g

≤ (1 + λ)M
∑

a≥α(λ)M, g≥a
wλ(A(a, g))(1 + λ)−g

≤ (1 + λ)MM2 max
a≥α(λ)M, g≥a

wλ(A(a, g))(1 + λ)−g

The key now is to upper bound wλ(A(a, g)). The following theorem (whose proof
is given in Section 3) is based on ideas of A. Sapozhenko [18, 19].

Theorem 2.1 Let Σ be any graph satisfying the assumptions of Theorem 1.1. We
have

wλ(A(a, g)) ≤ (1 + λ)g exp2 {−Ω ((g − a)β(λ))} .
for any a ≥ α(λ)M and any λ satisfying (4).

For a ≥ α(λ)M and g ≥ a we have g − a ≥ δg ≥Mα(λ)δ and so

wλ(IntE ) ≤ (1 + λ)MM2 exp2 {−Ω(Mα(λ)β(λ)δ)}
≤ (1 + λ)M exp2 {−Ω(Mα(λ)β(λ)δ)} . (19)

To see that the factor of M2 may be absorbed into the exponent, note that by hy-
pothesis, 2M ≥ d2 and so M2 ≤ exp2 {O(M log d/d2)}, and that combining (3) and
(4) we have α(λ)β(λ)δ ≥ Ω(d−3/2 log d).

Combining (19) and (18) we get (10) and hence Theorem 1.1.

3 Proof of Theorem 2.1

For u, v ∈ V and A,B ⊆ V we write ∇(A) for the set of edges having one end in A
and (if A ∩ B = ∅) ∇(A,B) for the set of edges having one end in each of A,B. We
also write dA(v) for |N(v) ∩A|.

10



Throughout this section, we fix Σ satisfying the assumptions of Theorem 1.1. We
also fix a and g, but we do not assume a ≥ α(λ)M . We write A for A(a, g). Given
A ∈ A we always write G for N(A) and set t = g − a. Note that for A ∈ A,

|∇(G, E \ [A])| = dg − da = td. (20)

The proof of Theorem 2.1 involves the idea of “approximation”. We begin with
an informal outline. To bound wλ(A), we produce a small set U with the properties
that each A ∈ A is “approximated” (in an appropriate sense) by some U ∈ U , and for
each U ∈ U , the total weight of those A ∈ A that could possibly be “approximated”
by U is small. (Each U ∈ U will consist of two parts; one each approximating G
and A.) The product of the bound on |U| and the bound on the weight of those
A ∈ A that may be approximated by any U is then a bound on wλ(A). The set U is
itself produced by an approximation process — we first produce a small set V with
the property that each A ∈ A is “weakly approximated” (in an appropriate sense)
by some V ∈ V, and then show that for each V there is a small set W(V ) with
the property that for each A ∈ A that is “weakly approximated” by V , there is a
W ∈ W(V ) which approximates A; we then take U = ∪V ∈VW(V ). (Each V ∈ V will
consist of a single part.)

The main inspiration for the proof of Theorem 2.1 is the work of A. Sapozhenko,
who, in [19], gave a relatively simple derivation for the asymptotics of the number
of independent sets in Qd (in the notation of (1), this is the asymptotics of Zλ(Qd)
with λ = 1), earlier derived in a more involved way in [16]. Our Lemma 3.3 is a
modification of a lemma in [18], and our overall approach is similar to [19]. See e.g.
[10] for another recent application of these ideas.

We now begin the formal discussion of Theorem 2.1 by introducing the two notions
of approximation that we will use, beginning with the weaker notion. A covering
approximation for A ⊆ E is a set F0 ∈ 2O satisfying

F0 ⊆ G, N(F0) ⊇ [A].

The second notion of approximation depends on a parameter ψ, 1 ≤ ψ ≤ d/2. A
ψ-approximation for A ⊆ E is a pair (F, S) ∈ 2O × 2E satisfying

F ⊆ G, S ⊇ [A], (21)

dF (u) ≥ d− ψ ∀u ∈ S (22)

and
dE\S(v) ≥ d− ψ ∀v ∈ O \ F. (23)

Note that if x ∈ [A] then N(x) ⊆ G, and if y ∈ O \ G then N(y) ⊆ E \ [A]. If we
think of S as “approximate [A]” and F as “approximate G”, (22) says that if x ∈ E is
in “approximate [A]” then almost all of its neighbours are in “approximate G”, while

11



(23) says that if y ∈ O is not in “approximate G” then almost all of its neighbours
are not in “approximate [A]”.

Before continuing, we note a property of ψ-approximations that will be of use
later.

Lemma 3.1 If (F, S) is a ψ-approximation for A ∈ A then

|S| ≤ |F |+ 2tψ

d− ψ . (24)

Proof: Observe that |∇(S,G)| is bounded above by d|F | + ψ|G \ F | and below by
d|[A]|+ (d− ψ)|S \ [A]| = d|S| − ψ|S \ [A]|, giving

|S| ≤ |F |+ ψ|(G \ F ) ∪ (S \ [A])|
d

,

and that each u ∈ (G\F )∪ (S \ [A]) contributes at least d−ψ edges to ∇(G, E \ [A]),
a set of size td, giving

|(G \ F ) ∪ (S \ [A])| ≤ 2td

d− ψ .

These two observations together give (24). ✷

There are three parts to the proof of Theorem 2.1. Lemma 3.2 is the first “ap-
proximation” step, producing a small family V of covering approximations for A.
Lemma 3.3 is the second “approximation” step, refining the covering approxima-
tions to produce a family W of ψ-approximations for A. Finally, Lemma 3.4 is the
“reconstruction” step, bounding the weight of the set of A’s that could possibly be
ψ-approximated by a member of W. We now state the three relevant lemmas. We
will then derive Theorem 2.1 before turning to the proofs of the approximation and
reconstruction lemmas.

Lemma 3.2 There is a V = V(a, g) ⊆ 2O with

|V| ≤
(

M

≤ 2g log d
d

)

such that each A ∈ A has a covering approximation in V.

Lemma 3.3 For any F0 ∈ V and 1 ≤ ψ ≤ d/2 there is a W = W(F0, ψ, a, g) ⊆
2O × 2E with

|W| ≤
(

2g log d

≤ 2g
d

)(

2d3g log d

≤ 2t
ψ

)(

2g log d

≤ td
(d−ψ)ψ

)

such that any A ∈ A for which F0 is a covering approximation has a ψ-approximation
in W.

12



Lemma 3.4 Given 1 ≤ ψ ≤ d/2 and 1 ≥ γ > −2ψ
d−ψ , for each (F, S) ∈ 2O × 2E that

satisfies (24) we have

∑

wλ(A) ≤ max

{

(1 + λ)g−γt,

(

3dg

≤ 2tψ
d−ψ + γt

)

(1 + λ)g−t

}

(25)

where the sum is over all those A’s in A satisfying F ⊆ G and S ⊇ [A].

Before turning to the proofs of Lemmas 3.2, 3.3 and 3.4, we use them to obtain
Theorem 2.1. Throughout, we will use (usually without comment) a simple observa-
tion about sums of binomial coefficients: if k = o(n), we have

∑

i≤k

(

n

i

)

≤ (1 +O(k/n))

(

n

k

)

≤ (1 +O(k/n))(en/k)k

≤ exp2 {(1 + o(1))k log(n/k)} . (26)

Take ψ =
√
d and

γ =
log(1 + λ)−

√
d

d−
√
d
log(d5/δ)

log(1 + λ) + log(d5/δ)
.

Note that for this choice of ψ and γ we have γ > −ψ
d−ψ , and so

log
3d

δ
(

2ψ
d−ψ + γ

) ≤ 1

2
log(d5/δ).

The bound in (25) is therefore at most

(1 + λ)g exp2

{

max

{

−γt log(1 + λ), t

(

2ψ

d− ψ + γ

)

log(d5/δ)

}}

.

(Here we have used (26)). For our choice of ψ and γ this is at most

(1 + λ)g exp2







t
log(1 + λ)

√
d

d−
√
d
log(d5/δ)− log2(1 + λ)

log(1 + λ) + log(d5/δ)
+ t

√
d log(d5/δ)

d−
√
d







,

which in turn is at most

(1 + λ)g exp2

{

O

(

t
log(d5/δ)√

d

)

− t log2(1 + λ)

log(1 + λ) + log(d5/δ)

}

. (27)
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The bounds in Lemmata 3.3 and 3.2 are at most

exp2

{

O

(

g
log d

d
+ t

log(d5/δ)√
d

)}

and exp2

{

O

(

g
log2 d

d

)}

(28)

respectively. For the latter bound, we are using the assumption a ≥ α(M) of Theorem
2.1 and the fact that λ ≥ 1/

√
d, which together imply (via (3)) that

Md

g log d
≤ d3/2.

Combining (28) with (27), we get

wλ(A) ≤ (1 + λ)g exp2

{

O

(

g
log2 d

d
+ t

log(d5/δ)√
d

)

− t log2(1 + λ)

log(1 + λ) + log(d5/δ)

}

.

Noting that t ≥ δg always, we find that if λ satisfies (4) with a suitably large constant
c, then

wλ(A) ≤ (1 + λ)g exp2

{

−Ω
(

t
log2(1 + λ)

log(1 + λ) + log(d5/δ)

)}

.

and so we get Theorem 2.1.

We now turn to the proofs of Lemmata 3.2, 3.3 and 3.4.

Proof of Lemma 3.2: We appeal to a special case of a fundamental result due to
Lovász [17] and Stein [20]. For a bipartite graph Γ with bipartition P ∪ Q, we say
that Q′ ⊆ Q covers P if each p ∈ P has a neighbour in Q′.

Lemma 3.5 If Γ as above satisfies |N(x)| ≥ p for each x ∈ P and |N(y)| ≤ q for
each y ∈ Q, then P is covered by some Q′ ⊆ Q with

|Q′| ≤ (|Q|/p)(1 + ln q).

Applying the lemma with Γ the subgraph of Σ induced by [A]∪G, P = [A], Q = G
and p = q = d, we find that each A ∈ A has a covering approximation of size at most
2g log d/d. Taking V to be the set of all subsets of O of size at most 2g log d/d, the
lemma follows. ✷

Proof of Lemma 3.3: We describe an algorithm, which we refer to as the degree
algorithm, which produces for input (F0, A) ∈ 2O × 2E for which F0 is a covering
approximation of A (i.e., with N(F0) ⊇ [A]), an output (F, S) ∈ 2O × 2E which is
a ψ-approximation for A (i.e, which satisfies (21), (22) and (23)). The idea for the
algorithm is from [18]. To begin, fix a linear ordering ≪ of V .

Step 1: If {u ∈ [A] : dG\F0
(u) > d/2} 6= ∅, pick the smallest (with respect to≪) u in

this set and update F0 by F0 ←− F0 ∪N(u). Repeat this until {u ∈ [A] : dG\F0
(u) >

d/2} = ∅. Then set F1 = F0 and S1 = {u ∈ E : dF1
(u) ≥ d− d/2} and go to Step 2.
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Step 2: If {v ∈ O\G : dS1
(v) > ψ} 6= ∅, pick the smallest (with respect to≪) v in this

set and update S1 by S1 ←− S1\N(v). Repeat this until {v ∈ O\G : dS1
(v) > ψ} = ∅.

Then set S2 = S1 and F2 = {v ∈ O : dS2
(v) > ψ} and go to Step 3.

Step 3: If {w ∈ [A] : dG\F2
(w) > ψ} 6= ∅, pick the smallest (with respect to ≪) w in

this set and update F2 by F2 ←− F2∪N(w). Repeat this until {w ∈ [A] : dG\F2
(w) >

ψ} = ∅. Then set F = F2 and S = S2 ∩ {w ∈ E : dF (w) ≥ d− ψ} and stop.

Claim 3.6 The output of the degree algorithm is a ψ-approximation for A.

Proof: To see that F ⊆ G and S ⊇ [A], first observe that S1 ⊇ [A] (or Step 1 would
not have terminated). We then have S2 ⊇ [A] (since Step 2 deletes from S1 only
neighbours of O \ G), and F2 ⊆ G (or Step 2 would not have terminated). Finally,
F ⊆ G (since the vertices added to F2 in Step 3 are all in G) and S ⊇ [A] (or Step 3
would not have terminated)

By the definition of S, (22) is satisfied. To verify (23), note that by definition of
F2, if y ∈ O \F2 then dE\S2

(y) ≥ d−ψ. That y ∈ O \F implies dE\S(y) ≥ d−ψ now
follows from the fact that F2 ⊆ F and S2 ⊇ S. ✷

Remark 3.7 The alert reader may have noticed that if we replace d/2 by ψ in Step
1, then the output of Step 2 is already a ψ-approximation for A. The three-step
algorithm, however, is needed to obtain the right bound on β(λ) in Theorem 1.1; see
Remark 3.9 following the proof of Claim 3.8.

Claim 3.8 Fix F0 ∈ V. The degree algorithm has at most

(

2g log d

≤ 2g
d

)(

2d3g log d

≤ 2t
ψ

)(

2g log d

≤ td
(d−ψ)ψ

)

outputs as the input runs over those (F0, A) for which A ∈ A and F0 is a covering
approximation for A.

Taking W to be the set of all possible outputs of the algorithm, the lemma follows.

Proof of Claim 3.8: The output of the algorithm is determined by the set of u’s whose
neighbourhoods are added to F0 in Step 1, the set of v’s whose neighbourhoods are
removed from S1 in Step 2, and the set of w’s whose neighbourhoods are added to F2

in Step 3.
Each iteration in Step 1 removes at least d/2 vertices from G \ F , a set of size at

most g, so there are at most 2g/d iterations. The u’s in Step 1 are all drawn from
[A] and hence N(F0), a set of size at most d|F0| ≤ 2g log d. So the total number of
outputs for Step 1 is at most

(

2g log d

≤ 2g
d

)

. (29)
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At the start of Step 2, each x ∈ S1 \ [A] contributes at least d/2 edges to ∇(G, E \
[A]), by (20) a set of size dt, so |S1 \ [A]| ≤ 2t. Each v used in Step 2 reduces this by
at least ψ, so there are at most 2t/ψ iterations. Each v is drawn from N(S1), a set
which is contained in the fourth neighbourhood of F0 (S1 ⊆ N(G) by construction of
S1, G = N(A) and A ⊆ N(F0)) and so has size at most d4|F0| ≤ 2d3g log d. So the
total number of outputs for Step 2 is

(

2d3g log d

≤ 2t
ψ

)

. (30)

At the start of Step 3, each y ∈ G \ F2 contributes at least d − ψ edges to
∇(G, E \ [A]), so |G \ F2| ≤ dt/(d − ψ). Each w used in step 3 reduces this by at
least ψ, so there are at most dt/((d − ψ)ψ) iterations. As in Step 1, the w’s are all
drawn from a set of size at most 2g log d, so the total number of outputs for Step 1 is
at most

(

2g log d

≤ td
(d−ψ)ψ

)

. (31)

Combining (29), (30) and (31), the claim follows. ✷

Remark 3.9 The bound in Claim 3.8 is at most exp2{O(g log d/d+ t log(d5/δ)/ψ)}.
If we replace d/2 by ψ in Step 1 of the degree algorithm and take the output of Step
2 to be the final output, then the bound in the claim becomes weaker:

(

2g log d

≤ g
ψ

)(

2gd3 log d

≤ td
(d−ψ)ψ

)

= exp2

{

O(g log d/ψ + t log(d5/δ)/ψ)
}

.

(Each iteration of Step 1 now reduces G \ F by at least ψ). Using this bound in
the proof of Theorem 1.1 instead of the stronger bound given by the three-step degree
algorithm would ultimately lead to a weaker bound on β(λ) in (4). Step 1 of the degree
algorithm may be though of as an “initialization” which reduces |G \ F | from O(g) to
O(t) without adding much to the “cost” of the algorithm.

Proof of Lemma 3.4: Say that S is small if |S| < g − γt and large otherwise. We can
obtain all A ∈ A for which F ⊆ G and S ⊇ [A] as follows.

If S is small, we specify of A by picking a subset of S. If S is large, we first specify
G. Note that by (24) and the definition of large we have in this case that

|G \ F | < 2tψ/(d− ψ) + γt and G \ F ⊆ N(S) \ F,

so we specify G by picking a subset of N(S) \F of size at most 2tψ/(d−ψ)+ γt (this
is our choice of G \ F ). Then, noting that [A] is determined by G, we specify A by
picking a subset of [A].
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This procedure produces all possible A’s (and more). We now bound the sum of
the weights of the outputs.

If S is small then the total weight of outputs is at most

(1 + λ)g−γt. (32)

We have

|N(S) \ F | ≤ d|S| ≤ dg +
2tdψ

d− ψ ≤ 3dg

so that if S is large, the total number of possibilities for |G \ F | is at most

(

3dg

≤ 2tψ
d−ψ + γt

)

and the total weight of outputs is at most
(

3dg

≤ 2tψ
d−ψ + γt

)

(1 + λ)g−t. (33)

Combining (32) and (33), the lemma follows. ✷
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