
Concentration Inequalities for Functions of
Independent Variables

Andreas Maurer
Adalbertstr. 55
D-80799 München

andreasmaurer@compuserve.com

June 23, 2005

Abstract

Following the entropy method this paper presents general concentra-
tion inequalities, which can be applied to combinatorial optimization and
empirical processes. The inequalities give improved concentration results
for optimal travelling salesmen tours, Steiner trees and the eigenvalues of
random symmetric matrices.

1 Introduction

Since its appearance in 1995 Talagrand�s convex distance inequality [17] has
been very successful as a tool to prove concentration results for functions of
independent variables in cases which were previously inaccessible, or could be
handled only with great di¢ culties. The now classical applications (see McDi-
armid [12] and Steele [15]) include concentration inequalities for con�guration
functions, such as the length of the longest increasing subsequence in a sam-
ple, or for geometrical constructions, such as the length of an optimal travelling
salesman tour or an optimal Steiner tree.
Another recently emerged technique to prove concentration results is the en-

tropy method. Originating in the work of Leonard Gross on logarithmic Sobolev
inequalities for Gaussian measures [6], the method has been developed and re-
�ned by Ledoux, Bobkov, Massart, Boucheron, Lugosi, Rio, Bousquet and oth-
ers ( see [8], [10], [11], [2], [3], etc) to become an important tool in the study
of empirical processes and learning theory. In [2, Boucheron at al] a general
theorem on con�guration functions is presented, which improves on the results
obtained from the convex distance inequality. In [3, Boucheron et al] more re-
sults of this type are given and a weak version of the convex distance inequality
itself is derived.
Technically the core of the entropy method is a tensorisation inequality

bounding the entropy of an n variable function Z in terms of a sum of entropies
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with respect to the individual variables. Together with an elementary bound on
the logarithm this leads to a di¤erential inequality (Proposition 4 below) for a
quantity related to the logarithm of the Laplace transform of Z. Integration of
this inequality (the so-called Herbst argument) leads to concentration inequal-
ities. We use this technique in a straightforward manner only slightly di¤erent
from [3] to obtain stronger results under more restrictive conditions.

The principal contribution of this paper are two theorems giving general
concentration inequalities for functions on product spaces. When applied to the
geometric problems mentioned above, the upwards deviation bound of Theorem
1 improves on the results obtained from the convex distance inequality. Theorem
2 refers to self-bounding functions and can be applied to con�guration functions
and empirical processes.

Concentration inequalities for functions on product spaces typically bound
the deviation probability for a random variable Z in terms of the deviation t and
some other random variable 	(Z) which somehow delimits the sensitivity Z has
to changes in its individual arguments. In most cases the expectation of 	(Z)
can be used to bound the variance of Z by way of the Efron-Stein inequality
[14]. The sensitivity function 	(Z) = �+;Z which we use in this paper is more
restrictive than the 	(Z) = V+;Z used in [3]. Consequently everything which
can be done with our �+ can also be done with V+, and there can be cases
which can be handled with V+ where our method fails. Where our method does
work however, it often gives better bounds. This is the case for several classical
applications of the convex distance inequality, as shown in section 3, where �+
provides a simple and natural measure of sensitivity

The next section states our two principal theorems and explains how the sen-
sitivity function �+ enters in the entropy method. Section 3 gives applications
and an appendix contains detailed proofs of the main theorems and auxilliary
results which would have interrupted the main line of development in the other
parts of the paper.

2 Main Results

Throughout this paper we let f(
i;�i; �i)g
n
i=1 be a collection of probability

spaces and (
;�; �) their product with expectation E [f ] =
R
fd�. For mea-

surable A � 
 we write Pr (A) = � (A) and for a measurable function f on 

we use kfk1 to denote the supremum of jf j (our results can be easily extended
to include exception sets of measure zero, which would slightly complicate the
presentation). For x = (x1; :::; xn) 2 
, k 2 f1; :::; ng and y 2 
k de�ne the
modi�cation xy;k by

xy;k = (x1; :::; xk�1; y; xk+1; :::; xn) :
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We use Ak to denote the algebra of bounded measurable functions independent
of xk, that is

Ak = ff : kfk1 <1 and 8x 2 
; y 2 
k; f (x) = f (xy;k)g :

In all of the following Z will be some random variable on 
, which we assume
to be bounded for simplicity. For 1 � k � n we de�ne a random variable infk Z
on 
 by �

inf
k
Z

�
(x) = inf

y2
k
Z (xy;k) :

Then infk Z 2 Ak and infk Z is the largest member f of Ak satisfying f � Z
(Lemma 14). We denote

�+;Z =
nX
k=1

�
Z � inf

k
Z

�2
and usually drop the second subscript indicating the dependence on Z, unless
there is some possible ambiguity. Using the Efron-Stein inequality [14] we obtain
at once V ar (Z) � E [�+;Z ], so that �+;Z can always be used for a crude
estimate of the variance of Z. Note that �+;Z is distribution independent.

We give exponential concentration inequalities for Z in terms of the random
variable �+.

Theorem 1 For t > 0 we have

Pr fZ � E [Z] � tg � exp
�

�t2
2 k�+k1

�
(1)

and, if Z � infk Z � 1 for all k, then

Pr fE [Z]� Z � tg � exp
�

�t2
2 (k�+k1 + t=3)

�
: (2)

The simplifying assumption of boundedness does not restrict the use of this
result, since a nontrivial right side forces k�+k1 to be �nite, which in turn
implies kZk1 <1.
An inequality related to (1) appears in Corollary 3 of [3]:

Pr fZ � E [Z] � tg � exp
�

�t2
4 kV+k1

�
; (3)

where

V+ (x) =
X
k

Z

k\fy:Z(x)>Z(xy;k)g

(Z (x)� Z (xy;k))2 d�k (y) : (4)
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Evidently V+ � �+, so (3) implies (1), but with an exponent worse by a factor of
2. In every application of (3), which relies on uniform bounds of the integrands
in (4), it is better to use Theorem 1, which is also applicable, because �+ is the
smallest such bound, is simpler than V+, and gives a better exponent.
In [3] inequality (3) is used to derive a weaker version of Talagrand�s convex

distance inequality. The inequalities of Theorem 1 can be used to improve on
this result, without however fully reproducing Talagrand�s result. They can also
be applied to sharpen the upwards deviation bounds in a theorem in [12] which
can be used to derive concentration inequalities for optimal travelling salesman
tours, Steiner trees and the eigenvalues of random symmetric matrices. See
section 3 for these applications.

The random variable �+ can also play a role in concentration inequalities
for self-bounding functions. We have

Theorem 2 Suppose that
�+ � Z: (5)

Then for t > 0

Pr fZ � E [Z] � tg � exp
�

�t2
2E [Z] + t

�
; (6)

and, if Z � infk Z � 18k, then

Pr fE [Z]� Z � tg � exp
�
�t2
2E [Z]

�
:

One candidate for comparison is the result proved in [2], which has almost the
same conclusion (slightly better with (2=3) t in the denominator in (6) instead
of t), but requires the much stronger self-boundedness conditions

0 � Z � Zk � 1 (7)

and X
k

(Z � Zk) � Z; (8)

where Zk 2 Ak. Under these conditions we have

�+ =
nX
k=1

�
Z � inf

k
Z

�2
�

nX
k=1

(Z � Zk)2 �
X
k

(Z � Zk) � Z;

so our result is also applicable.
The other similar result is Theorem 5 in [3] where self-boundedness is re-

quired only in the form
V+ � Z;

and it implies our result, but with an exponent worse by a factor of 2.
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The above results are asymmetrical due to the nature of �+. We de�ne a
random variable ��;Z by

��;Z =
nX
k=1

�
sup
k
Z � Z

�2
;

where supk Z = supy2
k Z (xy;k). Then clearly �+;�Z = ��;Z , so we can use
our results to derive bounds for �Z in terms of �+;�Z = ��;Z .

In the remainder of this section we show how the sensitivity function �+;Z
enters the mechanism of the entropy method.

De�nition 3 For any real � and a r.v. f on 
 de�ne the Gibbs expectation
E�Z [f ] by

E�Z [f ] =
E
�
fe�Z

�
E [e�Z ]

:

We also denote for � 6= 0

H (�) =
1

�
lnE

�
e�Z

�
.

If �Z is viewed as the energy function of a physical system, then E�Z is the
thermal expectation and H (�) is the Helmholtz free energy at inverse temper-
ature �. The formulas

d

d�
lnE

�
e�Z

�
= E�Z [Z] (9)

d

d�
H (�) =

1

�
E�Z [Z]�

1

�2
lnE

�
e�Z

�
(10)

lim
�!0

H (�) = E [Z]

follow from straightforward computation and l�Hospital�s rule. We also de�ne
two real functions � and g by � (t) = e�t + t� 1 and

g (t) =
1X
k=0

(�t)k

(k + 2)!
:

Then

� (t) = t2g (t) and g (t) =
�
� (t) =t2 for t 6= 0
1=2 for t = 0

: (11)

Furthermore the function g is positive, nonincreasing, and for t � 0 and a > 0
we have

ag (t)

1� atg (t) �
max f1; ag

2
: (12)

A principal tool of the entropy method is the following fundamental inequal-
ity (see [11] and [2]).
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Proposition 4 Let Zk 2 Ak for every k 2 f1; :::; ng. Then for all �

�E
�
Ze�Z

�
� E

�
e�Z

�
lnE

�
e�Z

�
� E

"
nX
k=1

e�Z� (� (Z � Zk))
#
: (13)

For � 6= 0, dividing this inequality by �2E
�
e�Z

�
and using (10) we get

H 0 (�) � 1

�2
E�Z

"
nX
k=1

� (� (Z � Zk))
#
: (14)

Using the properties of �, g and �+ one obtains the following simple propo-
sition, which is the key to our results:

Proposition 5 For � > 0 we have

H 0 (�) � 1

2
E�Z [�+] : (15)

For � < 0, if Z � infk Z � 1 for all k, then

H 0 (�) � g (�)E�Z [�+] : (16)

Proof. Since infk Z 2 Ak we have by inequality (14) and (11) for � 6= 0

H 0 (�) � 1

�2
E�Z

"
nX
k=1

�

�
�

�
Z � inf

k
Z

��#
(17)

= E�Z

"
nX
k=1

g

�
�

�
Z � inf

k
Z

���
Z � inf

k
Z

�2#
:

Since g is nonincreasing we have for positive �

g

�
�

�
Z � inf

k
Z

��
� g (0) =

1

2
;

so (17) implies (15). For � < 0, if Z � infk Z � 1 we have � � � (Z � infk Z),
whence

g

�
�

�
Z � inf

k
Z

��
� g (�) ;

so again (17) gives (16).

The proofs of Theorem 1 and Theorem 2 are now straightforward and follow
the path taken in [9] and [3]. The next step is to integrate inequalities (15)
and (16) to obtain a bound on H (�) � H (0) in terms of an integral of the
thermal expectation of �+. Uniform bounds on the integrand lead to Theorem
1, substitution of the self-bounding condition (5) gives Theorem 2. For the
readers convenience detailed proofs are given in the appendix.
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3 Applications

We �rst derive a version of the convex distance inequality from Theorem 1, then
we give a �packaged�result leading to improved bounds for optimal travelling
salesmen tours, Steiner trees and the eigenvalues of random symmetric matrices.

3.1 The Convex Distance Inequality

Talagrand�s convex distance inequality (see [16], [17], [12], [15] or [3]) asserts
that (questions of measurability aside), for A � 
 and t > 0 we have

Pr (A) Pr fdT (x; A) � tg � exp
�
� t

2

4

�
: (18)

The �convex distance�dT (x; A) is de�ned as follows:

De�nition 6 For x;y 2 
 and � 2 Rn+ write

d� (x;y) =
X

i:xi 6=yi

�i:

For A � 
 and x;y 2 
 de�ne

dT (x; A) = sup
�:k�k=1;�i�0

inf
y2A

d� (x;y) :

In [3] it is shown that (18) can be partially derived from the entropy method:
If PrA � 1=2 and t >

p
2 then

Pr fdT (x; A) � tg � 2 exp
�
� t

2

8

�
:

Using a similar argument together with Theorem 1 we can somewhat improve
this result, still without fully recovering Talagrand�s inequality:
If PrA � exp (�3=4) (this is about 0:472 < 1=2), then

Pr (A) Pr fdT (x; A) � tg � exp
�
� t

2

5

�
: (19)

The strategy is to �rst show that for Z = dT (:; A) we have k�+k1 � 1, which
is the hard part and implicitely contained in [3], where Sion�s minimax theorem
is used. A self-contained proof is given in the appendix.

Lemma 7 If Z (x) = dT (x; A) then k�+k1 � 1.
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Given the lemma, for � � 0 de�ne

h (�) =
2�

9
+
2

3

r
2� +

1

9
�2:

By Lemma 15 we have for any real s and 0 � � � 3=4�
3

2
h (�)

�2
� 3� (20)

and
s2

2
�
�
s+ 3

2h (�)
�2

5
� �: (21)

Now write Z = dT (:; A), � = E [Z] and � = ln (1=PrA) � 3=4. By Lemma 7
and Theorem 1 we have

PrA = Pr f�� Z � �g � exp
�

��2
2 + 2�=3

�
or � � � (2 + 2�=3). Elementary algebra gives � � (3=2)h (�).
Now let t > 0. If t � (3=2)h (�) then

t2

5
� 1

5

�
3

2
h (�)

�2
� 3

5
� � �;

so (19) follows from

exp

�
� t

2

5

�
� exp (��) = PrA.

If on the other hand t > (3=2)h (�) then, writing s = t�(3=2)h (�) and invoking
the upper tail bound in Theorem 1 and (21), we have

Pr fZ � tg = Pr fZ � (3=2)h (�) + sg

� Pr fZ � �+ sg � e�
s2

2

� exp

 
� (s+ (3=2)h (�))

2

5
+ �

!

=
1

PrA
e
�t2
5 ;

which concludes the proof of (19).
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3.2 A "Packaged" Concentration Result

The following result sharpens the upwards deviation bound of a general theorem
in [12] (Theorem 4.5), therein derived from the convex distance inequality and
used to give concentration inequalities for geometrical constructions such as
minimal length travelling salesman tours and Steiner trees. Our result is a weak
corollary of Theorem 1 and allows us to make a comparison with consequences
of the convex distance inequality.
Recall de�nition 6 above and observe that for x;y 2 
, � 2 Rn+, k 2 f1; :::; ng

and y 2 
k we have d� (x;xy;k) � �k.

Theorem 8 Suppose that there is a constant c > 0 such that for each x 2 

there is vector � 2 Rn+ with k�k � 1 such that

Z (x) � Z (y) + cd� (x;y) for each y 2 
. (22)

Then

Pr fZ � E [Z] � tg � exp
�
�t2
2c2

�
(23)

and

Pr fE [Z]� Z � tg � exp
�

�t2
2 (c2 + ct=3)

�
: (24)

Proof. Fix any x 2 
 and chose � such that (22) holds. Thus for any k and
y 2 
k we have

Z (x) � Z (xy;k) + cd� (x;xy;k) � Z (xy;k) + c�k:

Taking the in�mum over y 2 
k we see that

Z (x)� inf
k
Z (x) � c�k:

Thus, since k�k � 1,

�+ (x) =
X
k

�
Z (x)� inf

k
Z (x)

�2
� c2

X
k

�2k � c2

and the upper tail bound follows directly from Theorem 1. To ensure the re-
quired bound Z � infk Z � 1 we apply the lower tail bound of Theorem 1 to
Z=c with deviation t=c to arrive at the second conclusion.

Under the same conditions the convex distance inequality (as in [12]) gives
the conclusions

Pr f� (Z �M) � tg � 2 exp
�
�t2
4c2

�
, (25)

where M refers to a median of Z.
Our upper tail bound (23) certainly looks better than (25), while the advan-

tage of our lower tail bound (24) is questionable. For a more detailed comparison
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we set c = 1 and use Lemma 4.6 in [12], which asserts that under these condi-
tions jE [Z]�M j � 2

p
�. We assume this to be our only available estimate on

the di¤erence of median and expectation, so we replace t with max f0; t� 2
p
�g

in our bounds, if we discuss deviations from a median, and make the same
substitution in (25) when we consider deviations from the expectation.
If one is interested in the probability of deviations from the expectation

(perhaps the more frequent case) then our upper tail bound is superior for all
deviations and decays more rapidly than (25). The lower tail bound in (25) has
the value 2 for t � 2

p
� and becomes nontrivial for t > 2

p
� + 2

p
ln 2. For

all deviations larger than t � 10:9 it will be smaller and decay more rapidly
than our lower tail bound (24). At deviation t � 10:9 both results bound
the deviation probability with � 2:7 � 10�6, for smaller deviations (and larger
deviation probabilities) our bound is better.
By the Efron-Stein-inequality [14] and the above proof we have V ar (Z) �

E [�+] � k�+k1 � 1, so the Chebychev inequality gives a deviation bound of
1=t2, which improves on our lower tail bound between the deviation probabilities
� 0:12 and � 0:52.
If one is interested in the probability of deviations from the median, our lower

tail bound (24) is inferior to (25) for all deviations. Our upper tail bound (23)
remains trivial for t � 2

p
�, while (25) already becomes nontrivial at 2

p
ln 2.

For all deviations larger than t � 11:8 our upper tail bound will be smaller and
decay more rapidly than (25). At t � 11:8 both bound the deviation probability
with � 1:5 � 10�15, for smaller deviations (and larger deviation probabilities)
the bound (25) is better.
The above considerations remain valid for general values of c if we replace t

by t=c.

3.3 Applications to Geometry

Let 
k be the unit square [0; 1]
2 and for x = (x1; :::; xn) 2 
 =

�
[0; 1]

2
�n

let

tsp (x) be the minimum length of a �travelling salesman tour�passing through
all the points xi =

�
x1i ; x

2
i

�
in a closed sequence. We use � (x) to denote an

optimal sequence corresponding to the set of positions x 2 
 so that

tsp (x) =
X� (x)i � � (x)i�1 ;

where it is understood that the �rst and last elements in the summation are
identi�ed.
Using space-�lling curves it can be shown (see [15]), that there is a constant

c2 such that for all n and x 2 
 there is a tour �c (x) withX�c (x)i � �c (x)i�12 � c2: (26)

It is shown in [15] and [12], that tsp satis�es the conditions of Theorem 8,
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with c replaced by 2
p
c2, so that

Pr ftsp� E [tsp] � tg � exp
�
�t2
8c2

�
(27)

and

Pr fE [tsp]� tsp � tg � exp
�

�t2
8c2 + 4

p
c2t=3

�
: (28)

If we are interested in the deviation from the expectation then, as explained
above, inequality (27) is an improvement over the result obtained from the
convex distance inequality (in [12]), and (28) is an improvement for deviation
probabilities ' 2:7� 10�6.
Given (26) the inequalities (27) and (28) can be obtained from Theorem 1

directly, which leads to a considerable simpli�cation of the geometrical argu-
ments involved, because to apply Theorem 1 we need to verify the condition
(22) only for those y 2 
 which di¤er from x in only one coordinate:

Proposition 9
k�+;tspk1 � 4c2:

Proof. Fix x 2 
 and write �k =
�c (x)k � �c (x)k�1. To bound �+ (x) we

consider an arbitrary index k and an arbitrary position y 2 [0; 1]2 to replace
xk. The conclusion is trivial if n = 1 so we assume n > 1. Now the tour
� (xy;k) visits all the points of x except for xk, so somewhere along � (xy;k) is
the position x�, which on �c (x) precedes xk. Let�s start there, go to xk (distance
�k) and back to x� (again �k) and then continue along � (xy;k) until we arrive
at our starting point x�. We have then visited all the xi and the entire trip
had length tsp (xy;k)+2�k. By the triangle inequality tsp (x) � tsp (xy;k)+2�k
or tsp (x)� infy tsp (xy;k) � 2�k. The result follows from summing the squares
and using (26).

Obvious modi�cations of this argument lead to concentration inequalities for
optimal Steiner trees.

3.4 Eigenvalues of random symmetric matrices

As an application of Theorem 8 we consider the concentration of eigenvalues
of random symmetric matrices as analysed in [1]. Here we take 
k = [�1; 1]
and n =

�
m+1
2

�
. A randomly chosen vector x = (xij)1�i�j�m 2 
 de�nes

a symmetric m � m-matrix M (x) by setting M (x)ij = xij for i � j and
M (x)ij = xji for j < i. We order the eigenvalues of M (x) by decreasing values
�1 � �2 � ::: � �m, and let Z (x) be the d-th eigenvalue of M (x) in this order.

Theorem 10 For t > 0

Pr fZ � E [Z] � tg � exp
�
�t2
16d2

�
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and

Pr fE [Z]� Z � tg � exp
�

�t2
16d2 + 2dt

�
:

Again the upper tail bound compares favourably with the result in [1] derived
from the convex distance inequality

Pr fZ �M � tg � 2 exp
�
�t2
32d2

�
;

where M refers to the median.
To prove our result we plagiarise the argument in [1], which is modi�ed only

slightly to make Theorem 8 applicable.

Proof. Fix x = (xij)1�i�j�m 2 
 and let v1; :::; vd be normalized eigenvectors
corresponding to the d largest eigenvalues of the matrixM (x). Use V to denote
the span of the vk for k 2 f1; :::; dg. We de�ne � 2 Rn by

�ii =
dX
p=1

(vpi )
2 for 1 � i � m

�ij = 2

vuut dX
p=1

(vpi )
2

vuut dX
p=1

�
vpj
�2
for 1 � i < j � m.

ThenX
1�i�j�m

�2ij =
nX
i=1

 
dX
p=1

(vpi )
2

!2
+ 4

X
1�i<j�m

 
dX
p=1

(vpi )
2

! 
dX
p=1

�
vpj
�2!

� 2

 
nX
i=1

dX
p=1

(vpi )
2

!2
= 2

 
dX
p=1

nX
i=1

(vpi )
2

!2
= 2d2;

so, if we de�ne � = �=
�p
2d
�
, we have k�k � 1.

Now take y 2 
 and use W to denote the span of the eigenvectors corre-
sponding to the d�1 largest eigenvalues ofM (y). Since dimW?+dimV = m+1

we must have W? \ V 6= f0g. Let u =
Pd

p=1 cpv
p be a unit vector in W? \ V .

Since u 2W? we must have hM (y)u; ui � Z (y). Also

Z (x) =
dX
p=1

c2p�d (x) �
dX
p=1

c2p�p (x) = hM (x)u; ui :

If X denotes the set of pairs 1 � i; j � m with xij 6= yij , then

Z (x)� Z (y) � h(M (x)�M (y))u; ui =
X

(i;j)2X

(xij � yij)
dX
p=1

cpv
p
i

dX
p=1

cpv
p
j

� 2
X

(i;j)2X

�����
dX
p=1

cpv
p
i

�����
�����
dX
p=1

cpv
p
j

����� ;
12



where we have used the boundedness condition jxij � yij j � 2. The Cauchy-
Schwartz inequality then gives

Z (x)� Z (y)

� 2
X

(i;j)2X

 
dX
p=1

c2p

!1=2 dX
p=1

(vpi )
2

!1=2 dX
p=1

c2p

!1=2 dX
p=1

�
vpj
�2!1=2

= 2
X

(i;j)2X

 
dX
p=1

(vpi )
2

!1=2 dX
p=1

�
vpj
�2!1=2

= 2
X

1�i�j�n
xij 6=yij

�ij = 2
3=2d

X
1�i�j�n
xij 6=yij

�ij ,

and Theorem 8 gives the desired conclusions.

Appendix

We give proofs for Theorem 1 and Theorem 2 and other results used in the
paper.

Lemma 11 For � > 0

lnE
h
e�(Z�E[Z])

i
� �

2

Z �

0

EZ [�+] d: (29)

For � < 0, if Z � infk Z � 1 for all k, then

lnE
h
e�(Z�E[Z])

i
� ��g (�)

Z 0

�

EZ [�+] d: (30)

Proof. We use proposition 5.
Consider �rst � > 0. Integrating (15) from 0 to � and using lim�!0H (�) =

E [Z] gives
1

�
lnE

�
e�Z

�
� E [Z] � 1

2

Z �

0

EZ [�+] d;

and multiplication with � leads to (29).
For the case � < 0, if Z � infk Z � 1 we integrate (16) from � to 0 to obtain

E [Z]� 1

�
lnE

�
e�Z

�
�
Z 0

�

g ()EZ [�+] d � g (�)

Z 0

�

EZ [�+] d;

where we again used the fact that g is nonincreasing. We then multiply the last
inequality with the positive number �� to arrive at (30).

13



Proof of Theorem 1. For � > 0 we use (29) to arrive at

lnE
h
e�(Z�E[Z])

i
� �

2

Z �

0

EZ [�+] d �
�2

2
k�+k1 :

With � > 0 we get

Pr fZ � E [Z] � tg � E
h
e�(Z�E[Z]�t)

i
� exp

�
�t� + �2

2
k�+k1

�
:

Substitution of the minimizing value � = t= k�+k1 gives (1).
For the other half, by (30), we have

lnE
h
e�(Z�E[Z])

i
� �2g (�) k�+k1 = � (�) k�+k1 :

Setting � = � ln (1 + t= k�+k1) we get, for � < 0,

Pr fE [Z]� Z � tg

� E
h
e�(Z�E[Z]+t)

i
� exp (�t+ � (�) k�+k1)

= exp

�
�k�+k1

��
1 +

t

k�+k1

�
ln

�
1 +

t

k�+k1

�
� t

k�+k1

��
� exp

�
�t2

2 (k�+k1 + t=3)

�
;

where we have used Lemma 2.4. in [12] in the last inequality.

Lemma 12 Let C and b denote two positive real numbers, t > 0. Then

inf
�2[0;1=b)

�
��t+ C�2

1� b�

�
� �t2
2 (2C + bt)

: (31)

Proof. Let h (t) = 1 + t�
p
1 + 2t. Then use

2h (t) (1 + t) = 2 (1 + t)
2 � 2 (1 + t)

p
1 + 2t

= (1 + t)
2 � 2 (1 + t)

p
1 + 2t+ (1 + 2t) + t2

=
�
1 + t�

p
1 + 2t

�2
+ t2

� t2;

so that

h (t) � t2

2 (1 + t)
: (32)

Substituting

� =
1

b

 
1�

�
1 +

bt

C

��1=2!

14



in the left side of (31) we obtain

inf
�2[0;1=b)

�
��t+ C�2

1� b�

�
� �2C

b2
h

�
bt

2C

�
� �t2
2 (2C + bt)

;

where we have used (32).

We give the self-bounding version in a form slightly more general than The-
orem 2:

Theorem 13 Suppose that a > 0 and that

�+ � aZ: (33)

Then for t > 0

Pr fZ � E [Z] � tg � exp
�

�t2
2aE [Z] + at

�
;

and, if Z � infk Z � 18k, then

Pr fE [Z]� Z � tg � exp
�

�t2
2max f1; agE [Z]

�
: (34)

Proof. Using (29) and (33) we get, for � > 0,

lnE
h
e�(Z�E[Z])

i
� a�

2

Z �

0

EZ [Z] d

=
a�

2

Z �

0

�
d

d
lnE

�
eZ
��

d =
a�

2
lnE

�
e�Z

�
=

a�

2
lnE

h
e�(Z�E[Z])

i
+
a�2

2
E [Z] :

Rearranging this inequality we get for � 2 (0; 2=a)

lnE
h
e�(Z�E[Z])

i
� �2

1� 1
2a�

�a
2
E [Z]

�
:

Using Lemma 12 with b = a=2 and C = (a=2)E [Z] we have

Pr fZ � E [Z] � tg � inf
�2(0;2)

lnE
h
e�(Z�E[Z]�t)

i
� inf

�2(0;2)
exp

�
��t+ �2

1� 1
2a�

�a
2
E [Z]

��
� exp

�
�t2

2aE [Z] + at

�
:

15



For the other tail-bound we let � < 0, use (30) and (33) to obtain

lnE
h
e�(Z�E[Z])

i
� �a�g (�)

Z 0

�

EZ [Z] d

= �a�g (�)
Z 0

�

�
d

d
lnE

�
eZ
��

d = a�g (�) lnE
�
e�Z

�
= a�g (�) lnE

h
e�(Z�E[Z])

i
+ a�2g (�)E [Z] :

Thus
(1� a�g (�)) lnE

h
e�(Z�E[Z])

i
� a�2g (�)E [Z] ;

and, since 1� �g (�) > 1 and using (12)

lnE
h
e�(Z�E[Z])

i
� �2

ag (�)

1� a�g (�)E [Z] �
�2

2
max f1; agE [Z] :

We therefore have

Pr fE [Z]� Z � tg � lnE
h
e�(Z�E[Z]+t)

i
� exp

�
�t+

�2

2
max f1; agE [Z]

�
:

The result follows from substitution of � = �t= (max f1; agE [Z]) :

Lemma 14 Write f � g i¤ f (x) � g (x) for all x 2 
 and set

�k = fg 2 Ak : g � Zg :

Then infk Z 2 �k and g � infk Z for every g 2 �k.

Proof. The �rst assertion is obvious. Also let g 2 �k and pick y 2 
k. Then
g (x) = g (xy;k) � Z (xy;k). Taking the in�mum over y gives the result.

Proof of Lemma 7. For any x 2 
 there is a map hx : 
 ! f0; 1gn � Rn+
given by hx (z)i = 1 if xi 6= zi and hx (z)i = 0 if xi = zi. Also de�ne the sets
U (x) = hx (A), let V (x) be the convex hull of the �nite set U (x). Note that
U (x) � Rn+ so that V (x) � Rn+.
Now we �x x 2 
 and go about to show that �+ (x) � 1. This is trivial if

dT (x; A) = 0. We can therefore assume that dT (x; A) > 0. Let �0 be the vector
of minimal norm in V (x). Since dT (x; A) > 0 we have x =2 A so 0 =2 U (x) so
0 =2 V (x) (since 0 is an extremepoint of Rn+) so k�0k > 0. Let ! be the associated
unit vector ! = �0= k�0k. Use h:; :i for the inner product in Rn. Since V (x) is
convex and k�0k is minimal, we have for any � 2 V (x)

0 �
�
d

d�

�
�=0

k(1� �) �0 + ��k
2
= 2 h�0; � � �0i

16



so that k�0k
2 � h�; �0i. In particular we have, since hx (A) � V (x),

8z 2 A; k�0k � hhx (z) ; !i : (35)

Since 0 =2 V (x) and U (x) is �nite any linear functional attains its minimum over
V (x) at a point in U (x). Thus for � 2 Rn+ with k�k = 1, by Cauchy-Schwartz,

d� (x; A) = inf
z2A

X
i:xi 6=yi

�i = inf
z2A

hhx (z) ; �i = inf
�2U(x)

h�; �i = inf
�2V (x)

h�; �i

� inf
�2V (x)

k�k = k�0k ;

so that also dT (x; A) � k�0k. Using (35) we get

8z 2 A; dT (x; A) � hhx (z) ; !i : (36)

Now pick any k and any y 2 
k. Then, because minima are achieved on �nite
sets,

dT (xy;k; A) = sup
�

inf
�2U(xy;k)

h�; �i � inf
�2U(xy;k)

h�; !i =


�0; !

�
for some �0 2 U (xy;k), say �

0 = hxy;k (z0) for some z0 2 A. Thus using (36)
with z = z0

dT (x; A)� dT (xy;k; A) �


hx (z0)� hxy;k (z0) ; !

�
� !k;

leading to

dT (x; A)� inf
y2
k

dT (xy;k; A) = sup
y2


(dT (x; A)� dT (xy;k; A)) � !k:

Squaring this inequality and summing the result over k gives �+ (x) �
P

k !
2
k.

Observing that ! is a unit vector completes the proof.

Lemma 15 For � � 0 de�ne

h (�) =
2�

9
+
2

3

r
2� +

1

9
�2:

Then for any real s and 0 � � � 3=4 we have�
3

2
h (�)

�2
� 3� and s

2

2
�
�
s+ 3

2h (�)
�2

5
� �: (37)

Proof. h is clearly increasing and h (3=4) = 1. Thus, for � � 3=4, we have
h (�) � 1 and

�
3

2
h (�)

�2
=

 
�

3
+

r
2� +

1

9
�2

!2
= �h (�) + 2� � 3�;

17



which is the �rst conclusion and also gives (3=4)h (�)2 � �. For real sde�ne

 � (s) =
s2

2
� 1
5

�
s+

3

2
h (�)

�2
+ �.

Then  � has a minimum at s� = h (�). Resubstitution of s� therefore gives

 � (s) �  � (s
�) = � � 3

4
h (�)

2 � 0;

which gives the second conclusion.
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