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ABSTRACT: Givenaconvexbody K C R?, whatis the probability that arandomly chosen congruent
copy, K*, of K is lattice-point free, that is, K* N Z¢ = ¢)? Here Z is the usual lattice of integer points
in R?. Luckily, the underlying probability is well defined since integer translations of K can be factored
out. The question came up in connection with integer programming. We explain what the answer is for
convex bodies of large enough volume. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 30, 414-426,
2007

1. INTRODUCTION

Let Z¢ denote the integer lattice in the d-dimensional Euclidean space R?. A random copy,
L,of Z4isjustL = L,, = p(Z?+1) where t € [0, 1) is a translation vector and p € SO(d)
is a rotation of R around the origin. We can, of course, replace [0, 1)¢ by any other basis
parallelotope of Z¢. Setting

L=1{L,,:peS0@),t €[0,1)"},

there is a probability measure Prob on £, which is the product of the Lebesgue measure on
[0, 1) and of the normalized Haar measure on SO(d). The following question, which is a
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LATTICE-POINT-FREE CONVEX BODY 415

distant relative of Buffon’s needle problem, emerged while investigating [2] the randomized
integer convex hull, I (K) = conv(K NL) of aconvex body K C R. What is the probability
that KNL = #? Note that in the abstract, the same question is formulated slightly differently.

This probability is clearly zero if K is “large,” for instance, if it contains a ball of radius
Vd/2. But it is not zero if K is “flat”” We show first an upper bound for the probability
in question. Let K¢ denote the set of all convex bodies (i.e., convex compact sets with
nonempty interior) in R,

Theorem 1.1.  For every d > 2 there exist positive constants ¢,(d) and c,(d) such that
for every K € K¢ with Vol K > c,(d),

Prob[K L = 9] < 14
Vol K

Our next theorem shows that this result is the best possible apart from the constants c;.
We need a definition. Given a unit vector ¢t € S¢~!, the width of K € K¢ in direction ¢ is
defined as

w(K,t) = max{t(x —y) : x,y € K},

and the width, or geometric width of K is
w(K) = min{w(K, 1) : t € S*'}.

Theorem 1.2.  For every d > 2 there exist positive constants b,(d), b,(d), and w, such
that for every K € K¢ with Vol K > b,(d) and w(K) < wy

Prob[K N L = @] > M
Vol K

The constant w, is not too small: we can take it to be 1/(2d*?) for instance. What
Theorems 1.1 and 1.2 state is that Prob[K N L = @] is of order 1/Vol K for convex bodies K
with large volume and w(K) < wy. It is not clear (at least for the author) for which convex
body of volume V the probability in question is the largest.

Using Vinogradov < notation these results can be formulated more concisely as

1
Prob[K NL =0 —_—
robl ]<<V01K

for every K € K¢ of large volume and as

]
Prob[K NL = @] > ——
rob] 1> Voik

for every K € K of large volume and small geometric width. Theorems 1.1 and 1.2 imply
the following.

Corollary 1.3.  Foreveryd > 2, as V — 00,
1 4 1
v <K sup{Prob[K NL =0P]: K € K, VolK =V} K v
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The planar case of both Theorems is proved in [2]. So we assume, from now on, that
d > 3. The paper is organized as follows. The next section explains the application of the
above results for the randomized integer convex hull. In Section 3 notation, terminology, and
some basic observations are described. Sections 4 and 5 contain the proofs of Theorems 1.1
and 1.2.

2. APPLICATION: THE RANDOMIZED INTEGER CONVEX HULL
For K € K¢ define the function u : K — R by
u(x) = Vol (K N (x — K)),

that is, u(x) is the volume of the so-called Macbeath region, which is the intersection of K
with K reflected around the point x € K. Information on properties of the Macbeath region
and u(x) is available in [3,6, 10] or [1]. We also set

Ku<t)y={xeK:ukx) <t}

For D > 1 define Kp = K¢ as the set of all K € K¢ for which R/r < D, where R
and r denote the radii of the circumscribed and inscribed ball of K. In [2] we showed that
the expected number, E(fy (I (K)), of vertices of the randomized integer convex hull of a
K € K, satisfies

Vol K(u < 1) < E(fy(I.(K)) < Vol K(u < 1)

as Vol K goes to infinity. It is known, see [3] for instance, that
(log Vol K)*~! « Vol K (u < 1) <« (Vol K)“=1/@+h,
where the implied constants depend only on d. Moreover, these estimates are best possible:
the lower bound is reached for polytopes and the upper bound for smooth convex bodies.
Given K € K, and L € L, the missed volume is
M(K,L) = Vol (K \ I(K)).
The expected missed volume is then the expectation of M (K, L) over L € L:

M(K) := EM(K,L).

We proved in [2] that, for K € Kp in the planar case

/ ¥ Mk < f _
k 1+ ux) x 14+ux)

For d > 3 Theorems 1.1 and 1.2 provide an identical upper bound and a weaker lower
bound for M (K). To state the results we introduce some new terminology. The function
v: K — Ris defined as

v(x) = min{VolK N H : x € H, H is a halfspace}.
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Given x € K the set C(x) = K N H is a minimal cap if H is a halfspace, x € H, and
Vol K N H = v(x). Assume t € S~ is the unit normal vector of the bounding hyperplane
of H. We write w(x) for the width of C(x) in the direction of ¢:

wx) = w(C(x),t) = max{t(y — z) : ¥,z € C(x)}.

The minimal cap of x need not be unique, in which case let w(x) be the supremum of the
widths of the minimal caps of x. Finally, for K € ICp write K for the set of those x € K for
which w(x) < w,; where w,; comes from Theorem 1.2.

Theorem 2.1. Ifd >2and D > 1 and K € Kp with Vol K — o0, then

/ D ME) < / dx
KoK (u=1) U(X) k1 +u®x)’

where the constants implied by the < notation depend only on d and D.

Most likely, the upper and lower bounds are of the same order for every K € Kp. This
is known for d = 2 but the proof (see [2]) is very technical. Yet using this theorem one can
determine the order of magnitude of M (K) for smooth convex bodies,

(VO] K)(d—l)/(d+l) <K MK) < (VO] K)(dfl)/(dJrl)’

and for polytopes,
(log Vol K)? « M(K) « (log Vol K)“.

In both cases the implied constants depend on K as well. The proofs of Theorem 2.1 and
of the inequalities just stated follow those in [2] and are omitted.
3. PREPARATIONS
Foru € RY, u # 0 and v > 0 define
S(u,v) = {xeRd —v < ux < v},

which is just a slab orthogonal to u and of width 2v/|u|. Here |u| stands for the Euclidean

norm of the vector u € R?. Given a vector a = (ay, ..., ay) in R? with all a; > 0 we define
Oct(a) = conv{ta ey, -+ azeq},
where ey, . . ., e, is the standard basis of R¢. Clearly, Oct(a) is the octahedron with half-axes

a; in direction e;.

The Lowner—John theorem (see [5]) states that, given a convex body K in R?, there is a
pair (E, E') of ellipsoids such that E C K C E’, E and E’ are concentric, and E arises from
E’ by shrinking by a factor of 1/d. We will need a similar result with octahedra replacing
the ellipsoids:

Lemma 3.1.  Given a convex body K in R, there is a positive vector a € RY such that a
congruent copy, K*, of K satisfies

Oct(a) C K* C Oct(d**a).
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Proof. Let (E,E’) be the Lowner—John ellipsoid pair for K; let a; < a, < -+ < ay
denote the lengths of the half axes of E. Then the ellipsoid Z‘ll(xi/a,-)2 < 1 contains a
congruent copy, K*, of K. It is trivial to check that Oct(a) C K* C Oct(d*/*a). We remark
that 2a; < w(K) since the width of E (which is 2a;) is at most the width of K because

ECK. n
A random element p € SO(d) takes a fixed orthonormal basis b, . . ., b; of R to another
orthonormal basis pb, ..., pb,. For simpler notation we write [d] = {1,2,...,d} and we

let A denote the usual rotation invariant (d — 1) dimensional measure on S?~' normalized
so that A(S9~!) = 1. It will be convenient to denote by Prob,, the normalized Haar measure
on SO(d) since it is a probability measure and we often want to talk about the probability
of an event.

Lemma 3.2. Under the above conditions,

Prob,[Oct(a) C pS(u, v)] = A {f €S fil < ——Vie [d]} .

a;lul

Proof. Fix an orthonormal basis by, . .., b, withb; = u/|u| andlet pb, = f = (fi,....fs).
Then pS(u,v) = S(f,v/|ul). Here S(f, v/|u|) contains Oct(a) if and only if

ta;e; € S(f,v/|ul) Vi € [d].

This is the same as |a;e;f | = a;lfi| < v/|ul. .

As f is a unit vector the probability in the lemma is positive if and only if

d
1= Zflz < sz/(aiz|u|2).
1

This condition is equivalent to [u|?/v?> < 3" a; %, which implies that if the probability in the
Lemma is positive, then some a; must be “small.”

Let us consider a vector ¢ = («,...,¢s) € R? such that o; > O for all i € [d] and
«; > 1 for at least one i € [d]. In this case,

A={feS" :|fil <o Vieldl)
is nonempty. We have the following estimates.

Lemma 3.3.  With the above notation,

[[o<r@ < ] e

i<l ;<1

Proof. 'We only give a sketch of the proof, which goes by induction on d. The case d = 2
is clear. For the case d — 1 — d, assume that ¢, is the smallest component of o and

define a* = (o), ...,04_;) and write A* for the corresponding set in S9~2. The induction
hypothesis can be used for A*. Simple arguments finish the proof; details are left to the
reader. .
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The lattice width W (K) of a convex body K € K is, by definition,

W(K) = min max{z(x —y):x,y € K}.
z€Z4, 20

If the minimum is reached on z € Z¢, then z is called the lattice width direction of K.
Clearly, such a z is a primitive vector, that is, the g.c.d. of the components of z is 1. We
shall denote by P the set of all primitive vectors in Z¢. Note that 0 ¢ P. We will need the
so-called Flatness Theorem, which is due to Khintchine [9], cf. [8] as well.

Theorem 3.4 (Flatness Theorem). IfC € K and C NZ¢ = §, then W(C) < W,, where
W, is a constant depending only on d.

4. PROOF OF THEOREM 1.1

Assume K € K¢ with VolK = V large. Lemma 3.1 implies the existence of an a =
(ar,...,a;) € R*with0 < a; < a, < --- < gy such that V « ]_[(lla,- and such that a
congruent copy, K*, of K contains Oct(a). Here we may and do assume that

aq

<a2< <
G=n ==

This can be achieved by keeping a, the same and replacing a; by a;,,/2 if a; > a;,1/2
recursively for i = d — 1,d — 2,...,1. Clearly, this does not influence the validity of
V < 1! a.

Now we begin the proof. First

Prob[K N L = @] = Prob[K* N L = @] < Prob[Oct(a) N L = P].

By the Flatness Theorem, Oct(a) N L = (J implies that the lattice width (in the lattice
L) of Oct(a) is at most W,, which implies, in turn, that Oct(a) C pS(u, W,;/2) for some
o € SO(d) with suitable u € P, that is,

Prob[Oct(a) NL =] < Y Prob,[Oct(a) C pS(u, Wy/2)].

ueP
The geometric width of Oct(a) is
4 —12 J . —1/2
2 — > 2 - «/g
(22) =2(Car) -

Since pS(u, W,;/2) cannot contain a set of width larger than W, /|u|, we have

In other words, the sum over u € P is to be restricted to u with |u| < aﬂ Let P* denote

V3
the set of these u € P.
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Given such a u € P*, let i = i(u) be the smallest index j with

W, .
—_— < .
a;lulv/3

We have seen that i(x) > 1. Thus, using Lemmas 3.2 and 3.3, we get for a fixed u € P* that

Prob[Oct(a) C pS(u, W,/2)] = A {f eSS Al < &,j € [d]}

2a;|u|
d d
W, 1
< 1—[ 2a;|ul < 1_[ 2a;|ul
J=i(u) j=2
=D
<
ay Ay

This shows that

Z Prob[Oct(a) C pS(u, W,/2)] K ! Z |u| =@,

a...a
ueP* 2 d ueP*

The last sum can be estimated from above by standard methods: instead of summing
over u € P*, we can sum over all u € Z¢ N B where B is the ball centered at the origin and
having radius alw—jg. This sum, in turn, differs little from the integral [, |x|~“*'dx. Thus, we

1
Sl = Y [
B 1

ueP* uezdnB

have

This implies now that

> Prob[Oct(a) C pS(u, Wa/2)] < L =. .

ap...a
ueP* 1 d

5. PROOF OF THEOREM 1.2

This proof is more difficult than the previous one. We first show that it is enough to prove
the theorem when K is an octahedron: Lemma 3.1 implies that for every K € K¢ with
Vol K =V large there is a = (ay,...,as) € R? with0 < a; < -+ < ay with [Ta; K V
such that a congruent copy, K*, of K is contained in Oct(a). (The a; here are equal to what
was d*/?a; in Lemma 3.1.) It follows from the remark at the end of the proof of Lemma 3.1
that 2a; < d**w(K). We may assume, again, that

a
< d
= 24[—1’

a
0< a; < E <.
by keeping a; the same and replacing, recursively, a;,| by 2a; if a;1; < 2a;. It is clear that

Prob[K N L = ] = Prob[K* N L = ] > Prob[Oct(a) N L = ¢].

Random Structures and Algorithms DOI 10.1002/rsa
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Set § = 0.48. For fixed u € P we define
E(u) = {p € SO) : Oct(a) C pS(u,$)}.

The slab S(u, §) is a little smaller than the slab between two consecutive lattice hyperplanes
orthogonal to u. This fact allows us to get rid of translations:

Claim 5.1.  If p € E(u), then a positive fraction of all translations t € [0,1)? have the
property that Oct(a) is between two consecutive lattice hyperplanes, orthogonal to pu, in
the lattice L = p(Z4 +t).

Proof.  Of course we can consider all translations ¢ € B for an arbitrary basis parallelotope
B of Z¢, not only for B = [0, 1)¢. We choose B so that the associated basis contains u. As
Oct(a) C pS(u,$), Oct(a) lies between two consecutive L-lattice hyperplanes orthogonal
to pu for at least 4% (as 28 = 0.96) of translations ¢ € B because only the u-component of
t matters. .

We want to estimate, from below, the measure of | J, _p E(1) C SO(d). Setting first

ueP

and
Pw)={veP v =>lul,v#u},

we have

Prob, [U E(u):| > Prob, [U E(u):|

ueP ueP*

> Z (Probp[E(u)] — Z Prob,,[E (1) ﬂE(v)]) .

ueP* veP(u)

Our next target is to prove that ) p« Prob,[E(w)] < 1/V and that }_, p« > cp
Prob,[E(«) N E(v)] is much smaller than 1/V.

Remark 1. 'We need the condition w(K) < w, since we need to have some nonempty
E(u). So we need some u € P such that pS(u, §) contains Oct(a), that is, a; must be smaller
than §/|u| for some u € P. As we have seen, 2a; < d*?w(K), we can take wy = 1/(2d*?)
implying a; < 1/4. With this choice there are several primitive vectors satisfying the
requirement.

Remark 2. 'We mention in passing that in the planar case there is no p in E(u) N E(v)
since the intersection of the two slabs has area less than 1 and so it cannot contain Oct(a)
or K.

Random Structures and Algorithms DOI 10.1002/rsa
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We continue with the proof. By the choice of P*, ﬁ > §-2.1 > 1 and also ﬁ <1
and we have, using Lemmas 3.2 and 3.3 again,

s .
> " Prob,[Ew)] = _ A {f est i fl<——.je [d]}
ueP* ueP* aj|u|
d
8 || ~@=D
> Zna-|u| > Z a...ay
ueP* j=2 J ueP*
1
>> |u|—(d—l).
ay...dy ,;

The last sum can be estimated from below by the standard method, which uses the
Mobius function (d) (see, for instance, [7] page 268, or [4], Lemma 1, for very similar

computations):
1
> lul T > —
a
ueP*

‘We omit the routine details.
So we get that

1
Z Prob,[E(w)] > v

ueP*

Our next target is to give an upper bound on Zvep(u) Prob,[E(u) N E(v)] when u € P* is
fixed. This will be done in several steps.

Assume p € E(u) N E(v) and let A be the two-dimensional plane spanned by u and v.
Further, let y denote the smaller angle between the lines of # and v. Fix an orthonormal
basis by, by, ...,bs with by = u/|u| and b, € A, the rest of the b; arbitrary. (Of course
by L b,.) Suppose pb; = f and pb, = g. Since Oct(a) lies in both pS(u, §) and pS(v, §),
its projection onto A lies in the parallelogram in Fig. 1.

, . 0%

S
\O
N

)

Fig. 1. The parallelogram in A.
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The radius of the ball inscribed to the (d — 1)-dimensional octahedron Oct(ay, . . ., a;) is
a4 —1/2
(Z _2> > a3,
a:
2 1

Thus, the diameter of the parallelogram in Fig. 1 is at least 2a,~/3, implying

1 1 48
W3 < —(—+— )= ——, M
siny \ |ul |v| |u| sin y
and hence
) 268 268
siny < < < 0.64.

V3alul T 24/3a;lu|

The octahedron Oct(a) lies in the slab pS(u,6) C S(f,d8/|u|) and also in the slab
pS(v,8) C S(g,28/|ulsiny), where 28/|u| siny comes from the fact that the width (in
direction g) of the parallelogram in Fig. 1 is at most 45/|u| sin y, see (1). So we need to
have

8 268
Ifil £ — =ta;Vie[d], and |g;| < ————— =: B;Vi € [d]. (2)
a;lul a;lulsiny

Note that for i = 1 both inequalities are satisfied.

Claim 5.2. Iff € 8" and |f| < «; fori = 2,3,....d, then |f,| = 1/~/2. Further, if
ge S andf L g then|gi| < 1/v2.

Proof.  This is simple:

d d )
+—+...

2= = s (e )
8% .4 - 52 8%.2.32 1

< < < —.
3ul2a3 ~ 3lul?a? 3 2

(Here the last but one inequality follows from the definition: u € P* if and only if —— hes in

[2.1,2.3].) This implies the first part of the claim since f is a unit vector. For the second part,
assume |g;| > 1/+/2. Then Y5 g2 < 1/2 and since Y 3 f? < 1/2, the Cauchy-Schwarz
inequality gives | Z‘;f,-g,-| < 1/2 and we can’t have f | g. .

Now we return to estimating
Prob,[E(u) NE(W)] < A{(f,8) € Sl x STV F 1 g, satisfying (2)).

For fixed f define Gy = {g € $"' : g L f, |gil < Bi, i=2,...,d}and G; = {1g : g €
Gy, t € [0, 1]}. Let pr be projection from R“ onto the hyperplane {x € R? : x; = 0}. G,
lies on a (d — 2)-dimensional great circle of S9! and it is clear that

d—1
VOld_z Gf = (d — 1)V01d_1 G; = WVOld_l pr G;
1
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Now define the set H = H(u,y) C R*"! by
H=1{heS"?: |h <28, i=2,...,d}

and H* = {th : h € H, t € [0, 1]}. As we have seen, g € G; implies |g;| < 1/\/5. Then
Iprg| > 1/+/2 follows, showing that for each g € G; the projection of the segment [0, g]
lies in H*. In other words pr Gf*- C H*. Further, it is evident that

(d - 1)V01d_1 H* = VOld_z H.

So we have

1
Vol,_» Gf < mVOld_z H < \/EVOI‘;_Q H.
1

Thus, we have, using Lemma 3.2,

Prob,[E(u) N E(W)] < A{f € S*' . |fi| < a; Vi € [d]}V/2Vol,_» H
= +/2Prob,, [E(u)]Vol,_, H.

We are going to estimate Vol,_, H using Lemma (3.2). So our target is to bound the product
of the v2; = 2¥2_ that are below 1.

|u|a; siny
For this end, fix u € P* and fix y and consider v € P(u) with angle y between u and v.
The sequence

28+/2 2842 264/2

- > " > DR > —_—
|ula, sin y |ulas sin y |ulay sin y

is decreasing. Its first element is larger than 1 by inequality (1). Let i = i(v) be the largest
index j € [d] with 26V2 1 We classify the vectors in v € P(u) according to i(v): define

\u|aj sin y

Pw),=1{vePw:iy) =]}
Now we can use the previous estimate for Prob,[E(u) N E(v)]:

> Prob,[E(u) N E(v)] < v/2Prob,[E(w)] Y Voly, H

veP(u); veP(u);

d
< Prob, [E@)] [ (lula;siny)™

vePw); i=j+1
Prob, [E(u)] E :
= Frob, u " - .
d—jq.
ver; (lu| siny)ajy, .. .ay

For simpler writing set y; = arcsin 2542 forj € [d] and y,.; = 0and U = (2.1a;)~".

|ula;

The sum over v € P(u); can be estimated from above by the integral (we omit the routine
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details) over all x € R satisfying |u| < |x| < U such that the angle between vectors x and
u lies in [y;41, ¥;]. So we have

Z 1 < /U/VJ' rd=1(sin y)*2dydr
(lulsiny)iaj, ...a, Wl Jyin (lulsiny)i~aj,; ...aq

VEP(u)j
U’ — ul? K
T —— (siny)2dy
lu|"~a, ...a. Vit
-1 i1
. U 1 262 2672\
luli~a;yy ... a0j — 1 |ula; |ula
u? U?

- < .

|u|d—1aj’-_laj+1 coag lullasas . ag

Here the integral of (siny)/~2 is estimated by substituting = siny and ignoring the
(1 — £2)~/2 factor, which is bounded since siny < 0.64. Recall that u € P* implies that
L c[2.1,2.3]. Adding the above inequalities for j = 2,3,...,d we get that

aplul

d d
> > Prob,[E(u) N E(v)] < Prob,[E(u)]

-1
ul'azas . ..a
=2 veP(); lul*" azas d

U
<& Prob,[E(u)] ————
axas ...dy
1
< vProbp[E(u)],
since U/|u| < 2.3/2.1 and U = (2.1a;)"". So we have, replacing the implicit constant in
< by the explicit constant ¢ = c(d),

d
3 3 Prob,[Ew) NEM)] < %Probp [Ew)] < %Probp [Ew)],

Jj=2 veP(u)j

since ¢/V becomes smaller than 1/2 if V is large enough.
We can finish the proof now. For large enough V we have

Prob,, [U E(u)] = (Probp[E(u)] — ) Prob,[E(u) mE(v)])

ueP ueP* veP(u)

1 1
> > > Prob,[E(u)] > 7

ueP*
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