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5 ON THE LENGTH OF THE LONGEST SUBSEQUENCE

AVOIDING AN ARBITRARY PATTERN IN A

RANDOM PERMUTATION

M. H. ALBERT

Abstract. We consider the distribution of the length of the longest
subsequence avoiding an arbitrary pattern, π, in a random permu-
tation of length n. The well-studied case of a longest increasing
subsequence corresponds to π = 21. We show that there is some
constant cπ such that as n → ∞ the mean value of this length
is asymptotic to 2

√
cπn and that the distribution of the length is

tightly concentrated around its mean. We observe some apparent
connections between cπ and the Stanley-Wilf limit of the class of
permutations avoiding the pattern π.

1. Introduction

The aim of this paper is to generalize certain results concerning the
longest increasing subsequences of permutations to longest subsequences
avoiding some pattern or patterns. The former area is quite well known,
while the latter, though an active field of current combinatorial re-
search, is considerably less so. Thus before surveying the known results
(or at least the ones relevant to this paper) concerning longest increas-
ing subsequences, we introduce the fundamental definitions concerning
pattern avoidance in permutations.

Let σ = σ1σ2 · · ·σk and π = π1π2 · · ·πn be permutations written as
sequences. Then σ occurs as a pattern in π (or σ is involved in π) if
some length k subsequence of π has the same relative ordering as σ. In
other words, for some 1 ≤ i1 < i2 · · · < ik ≤ n and all 1 ≤ s, t ≤ k:

σs < σt ⇐⇒ πis < πit .

For example, a permutation π contains an increasing subsequence of
length k if and only if 123 · · ·k occurs as a pattern in π. We say that π
avoids σ if σ is not involved in π. A pattern avoidance class , Av(B) is
the set of all permutations that avoid each of the permutations in the
set B. The set Av(B) is infinite unless B contains both an increasing
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and a decreasing permutation (in which case it is finite by the Erdös-
Szekeres theorem) and if B is non empty then Av(B) ∩ Sn is a proper
subset of Sn for all n greater than or equal to the length of the shortest
element of B.

More generally, given a finite sequence σ of distinct values from any
linearly ordered set, we define its pattern to be that permutation whose
elements are in the same relative order as those of σ. Then involvement
can be defined for such sequences by reference to their patterns (or
directly as above).

Recently Marcus and Tardos [16] proved the Stanley-Wilf conjecture
about pattern avoidance classes. Specifically,

Theorem (Marcus-Tardos Stanley-Wilf). For any proper pattern avoid-

ance class A there is a real number sA such that:

lim sup
n→∞

|Sn ∩ A|1/n = sA.

So, not only is Av(B) ∩ Sn a proper subset of Sn for sufficiently large
n, it is in fact small relative to Sn, being of merely exponential size in
n. We call sA the Stanley-Wilf limit of the class A.

Consider an arbitrary pattern avoidance class A. Given a permutation
π define the longest A subsequences of π or LAS(π) to be the set of
those subsequences of π of maximum length, subject to the condition
that their patterns belong to A. Also define LA(π) to be the length
of any sequence in LAS(π). Let I = Av(21) be the class of increasing
permutations (note that we should really write Av({21}) but we will
frequently omit such braces for explicit sets of avoided patterns). Then
LIS(π) is simply the set of longest increasing subsequences of π.

Apparently Ulam [21] was the first to ask the question:

What can be said about the distribution of values of

LI(Πn) when Πn is a random variable whose value is a

permutation π chosen uniformly at random from among

the elements of Sn?

We intend to address the generalization of this problem to the random
variable LA(Πn) defined in a similar fashion. The history of the analysis
of Ulam’s problem is well documented in [2]. We repeat here a few
details relevant to our investigations of the more general problem.

For convenience let Ln = LI(Πn). Ulam conjectured that for some
constant c

lim
n→∞

ELn√
n

= c.
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This conjecture was proven by Hammersley [12] who showed also that
n−1/2Ln → c in probability, and who conjectured that c = 2. This
further conjecture was proven in part by Logan and Shepp [15] and
simultaneously in whole by Kerov and Veršik [22].

Frieze [9] and Bollobás and Brightwell [6] used martingale methods
to establish tight concentration of Ln about its mean. Subsequently,
Baik, Deift and Johansson [5] obtained complete asymptotic informa-
tion about the distribution of Ln.

The evaluation of LI(π) for a specific permutation π is straightforward,
owing to the fact that it is the length of the first row of the Young
tableau obtained from π using the Schensted algorithm [19]. For an ar-
bitrary permutation π this row is easily constructed in worst case time
O(|π| logLI(π)). Furthermore, the Robinson-Schensted-Knuth corre-
spondence allows exact computation of the distribution of Ln for mod-
erate values of n as was done by Baer and Brock [4] and to larger values
by Odlyzko and Rains [17]. Monte Carlo simulation of the distribution
of Ln for much larger values of n carried out in the early 1990’s but
reported in [17] led to new conjectures concerning the asymptotic vari-
ance of the distribution, conjectures subsequently proved correct in [5].

Our main theorems are analogs of the results of Hammersley and Frieze
for the more general case of LA(Πn). For the first of these we need to
impose a mild additional restriction on A. The proofs for the general
case are then essentially identical to the originals. We will illustrate an
apparent connection between the limit of the expectation of the longest
A subsequence and the constant sA together with some simulation
results for classes where we have been unable to compute the limiting
ratio exactly.

2. Longest A subsequences in random permutations

Let a proper pattern avoidance class A = Av(B) be given. Choose
some constant s such that for all sufficiently large n,

|A ∩ Sn| < sn.

The existence of such a constant follows from the Marcus-Tardos Stanley-
Wilf Theorem.

As in the arguments of [9] it is convenient to work with a different ran-
dom variable than LA(Πn). Let X = (X1, X2, . . . , Xn) be a sequence of
independent uniform [0, 1] random variables. Define the random vari-
able LA(X) to be the length of the longest subsequence of X whose
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pattern belongs to A. This random variable depends only on the pat-
tern of the sequence X and these patterns are uniformly distributed
over Sn.

The proof in [9] begins with a crude probability inequality for Ln. We
prove essentially the same inequality in exactly the same way, allowing
only for the growth rate of the class A (bounded by sn) as opposed to
that of I (bounded by 1).

Lemma 1.

Pr
(

LA(X) ≥ 2e
√
sn
)

< e−2e
√
sn.

Proof. Let n0 = ⌈2e√sn⌉, and let σ denote the number of subsequences
of X of length n0 whose pattern belongs to A. Then:

Pr (LA(X) ≥ n0) ≤ E (σ)

≤
(

n
n0

)

sn0

n0!

≤
(

ne2s

n2
o

)n0

< e−2e
√
sn.

�

Define the direct sum α ⊕ β of two permutations α and β to be that
permutation αβ ′ where the pattern of β ′ is the same as that of β and
each element of β ′ is larger than all the elements of α. Similarly the
direct difference α ⊖ β is defined to be that permutation α′β where
the pattern of α′ is the same as that of α and each element of α′ is
larger than all the elements of β. A pattern class A is said to be sum-

closed (respectively difference-closed) if for all α, β ∈ A, α ⊕ β ∈ A
(respectively α⊖ β ∈ A).

Much of the investigation of pattern avoidance classes has focused on
the principal classes, those of the form Av(π) for some single permuta-
tion π of length at least two. Any principal pattern avoidance class is
either sum or difference closed since if A = Av(π) then A is sum-closed
(difference-closed) if π has no representation of the form θ ⊕ τ (θ ⊖ τ)
with both θ and τ non-empty. However, no permutation can be written
both as a proper sum and as a proper difference.

Theorem 2. Let A be an infinite and proper pattern avoidance class

which is either sum-closed or difference-closed. There exists a constant
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1 ≤ cA < ∞ such that

(1) lim
n→∞

ELA(Πn)√
n

= 2
√
cA.

Proof. Without loss of generality assume that A is sum-closed (the set
of reversals of permutations in a difference closed class is sum-closed).
The proof is a direct modification of Hammersley’s for Ln. We repeat a
sketch of the details here. A more complete exposition can be found in
[8]. Take a Poisson point process in (0,∞)× (0,∞) with unit density
per unit area. Let Ak be the length of the longest A subsequence in the
k× k box with lower left corner at (0, 0). Then because A is ⊕-closed:

Ak+m ≥ Ak + Am ◦ T k

where T k shifts the origin to (k, k) and preserves measure. The sub-
additive ergodic theorem applies to −Ak and implies that Ak/k con-
verges almost surely to some value in [0,∞]. Conditioned on the
number of points in the k × k square being n, Ak is distributed as
LA(Πn). For large k, n is approximately k2. Every sum-closed class
contains all increasing permutations which establishes the lower bound
claimed. Furthermore, one consequence of the lemma above is that
lim supn→∞LA(X)/

√
n < ∞ so the full result follows. �

Reasons for the obscure choice of limiting constant in equation 1 will
be given in the next section. We now present a modification of the
arguments in [9] to show that the expectation of LA(Πn) is tightly
concentrated around its mean.

Theorem 3. Let A be a proper pattern class. For α > 1/3 and β <
min(α, 3α− 1)

(2) Pr (|LA(Πn)−ELA(Πn)| ≥ nα) < exp(−nβ).

Proof. With the probability bound supplied by the lemma above in
place the remainder of the proof for tight concentration is virtually
identical to that of [9]. At some points in that argument various con-
stants appear (for example, 6 whose significance is that it dominates
2e). Owing to the difference in the probability bounds, these constants
must all be multiplied by

√
s. Otherwise the argument is completely

unaffected, since it never actually makes use of any properties of in-
creasing sequences. �

We remark at this point that the reason we have not been able to
give the tighter concentration bounds supplied by [6] is that the argu-
ments of that paper do use special properties of increasing sequences.
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Specifically, they make use of a decomposition of the unit square into
subsquares and the fact that if an increasing subsequence contains an
element from a particular subsquare, then this generally rules out ele-
ments in many other subsquares. However, the form of (2) is borrowed
from [6] where the observation is made that this form follows directly
from the proof provided in [9].

3. Meaning of the constant

The Marcus-Tardos Stanley-Wilf theorem was a key ingredient in the
proof of Theorems 2 and 3. We will now present observations which
provide some evidence for a connection between the constants cA and
sA.

Recall the definition of sA:

sA = lim sup
n→∞

|Sn ∩A|1/n .

A superadditivity argument due to Arratia [3] establishes that the right
hand side is an actual limit for any principal pattern avoidance class,
and more generally for any sum or difference-closed pattern avoidance
class.

For convenience we adopt a similar definition for cA that applies even
if we cannot be sure that the limit given in equation 1 exists.

2
√
cA = lim sup

n→∞

ELA(Πn)√
n

.

Certainly Lemma 1 implies that for an infinite and proper pattern class
A, 1 ≤ cA < 6sA.

Conjecture 1. For any proper pattern avoidance class A, the limits
superior definining cA and sA are in fact limits, and cA = sA.

This conjecture provides the reason for the otherwise obscure choice
for the form of the right hand side of equation 1. The similarity of
the arguments required to prove that both limits superior above are
actually limits in the sum or difference-closed case is our second piece
of (weak) evidence for the conjecture (the first is that it applies to I!)
The remainder of the paper is devoted to an investigation of the rather
fragmentary evidence in support of Conjecture 1. This evidence takes
two forms: a series of propositions that establish the equality claimed
by it holds for certain classes and is preserved by certain constructions,
and some limited experimental data on two specific classes. We begin
with the more theoretical evidence.
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It will be convenient to use the expression “A satisfies Conjecture 1”
as an abbreviation for the more accurate “the limits superior defining
cA and sA are in fact limits, and cA = sA”. We will also consider
occasionally the weak form of the above where only the equality of
cA and sA is asserted and not the fact that these constants can be
computed as limits rather than as limits superior.

Proposition 4. For each positive integer k, the classes

Av(k(k − 1)(k − 2) · · ·21) and Av(123 · · ·k)

satisfy Conjecture 1.

Proof. By symmetry it suffices to consider I(k) = Av(k(k − 1)(k −
2) · · ·21). Greene [11] proved that the length of the longest I(k)-
subsequence of an arbitrary permutation π is the sum of the lengths
of the first k − 1 rows of the tableaux produced from π through the
Robinson-Schensted-Knuth algorithm. From the detailed asymptotics
for the shapes of such tableaux as can be found in [7] we deduce that

lim
n→∞

ELI(k)(Πn)√
n

= 2(k − 1)

and therefore cI(k) = (k− 1)2. On the other hand results of Regev [18]
(and see also [10]) demonstrate that sI(k) = (k − 1)2. �

We now consider four constructions which when applied to pattern
avoidance classes A and B define a pattern avoidance class C ⊇ A∪B.
The first of these is the union construction itself, the second is direct
sum (which we have seen above), the third is called juxtaposition, and
the fourth merge.

The juxtaposition Juxt(A,B) of two pattern avoidance classes consists
of the set of all permutations of the form αβ where the pattern of α
lies in A and that of β lies in B. The merge Merge(A,B) consists
of the set of all permutations π1π2 · · ·πn such that for some subset
I ⊆ {1, 2, . . . , n} the pattern of the subpermutation of π consisting of
elements whose indices lie in I belongs to A, and the pattern of the
remaining elements lies in B.

Proposition 5. Let A and B be two pattern avoidance classes which

satisfy Conjecture 1. Then their union, direct sum and juxtaposition

also satisfy Conjecture 1. If, additionally, A ∩ B is a finite class then

their merge also satisfies Conjecture 1.
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Proof. Suppose that A and B are pattern avoidance classes which sat-
isfy Conjecture 1 and let ak and bk denote the number of permutations
of length k in A and B respectively.

Let U = A∪B and let uk denote the number of permutations of length
k in U . Then:

max(ak, bk) ≤ uk ≤ ak + bk.

It follows immediately that sU = max(sA, sB).

Using Theorems 2 and 3 it follows that:

cU = max(cA, cB).

So U satisfies Conjecture 1. The argument for direct sum is almost
equally simple based on the observation that the number of permuta-
tions of length n that belong to the direct sum is at least equal to the
maximum of akbn−k for 0 ≤ k ≤ n and at most n times this quantity.
This establishes that the Stanley-Wilf limit for the direct sum is the
maximum sA and sB. The same result follows for cA⊕B using Theorems
2 and 3.

Now let J = Juxt(A,B) and let jk denote the number of permutations
of length k in J . Then:

jn ≤
n
∑

k=0

(

n

k

)

akbn−k ≤ (n+ 1)jn

since each permutation in J of length n has at least one and at most
n+1 representations as a juxtaposition of a permutation in A and one
in B. Observing the similarity of the middle expression to the binomial
expansion of (sA + sB)

n one obtains by taking nth roots that

sJ = sA + sB.

On the other hand the arguments of Steele in [20] applied to juxta-
positions of arbitrary pattern avoidance classes rather than just the
increasing and decreasing class together with the theorems above also
yield:

cJ = cA + cB.

So Conjecture 1 holds for Juxt(A,B).
Finally, suppose that A∩B is finite, and let s be the maximum length
of a permutation in A ∩ B. Let M = Merge(A,B) and let jk denote
the number of permutations of length k in J . Consider first cM. Given
any permutation π, the merge of any of its longest A-sequences with
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any of its longest B-sequences is an M-sequence in π. Conversely, any
M-sequence is a merge of an A-sequence and a B-sequence. So

LA(π) + LB(π)− s ≤ LM(π) ≤ LA(π) + LB(π).

Since s is fixed, on taking expectation dividing by 2
√
n and taking a

limit as n → ∞ we obtain
√
cM =

√
cA +

√
cB.

So cM = (
√
cA +

√
cB)

2.

To form the merge of a permutation of length k and one of length n−k
we choose k positions for the first permutation and also k values. So:

mn ≤
n
∑

k=0

(

n

k

)2

akbn−k.

If π ∈ M is represented in two different ways as the merge of a per-
mutation in A and one in B then the number of positions in which the
two merges disagree (in the sense that one is representing the value in
that position as part of an A-permutation and the other as part of a
B-permutation) is at most 2s. This is because if we consider positions
represented in the first merge as coming from an A-permutation and
in the second as coming from a B-permutation, the pattern occurring
at these positions belongs to A∩B (and likewise for the opposite case).
So, labeling positions in a merge by type, the merges representing π
correspond to a set of diameter at most 2s in the Hamming metric
on the cube {0, 1}n. Kleitman [14] proved that the maximum num-
ber of points in such a set is attained in a ball of radius s, that is
v(n, s) =

∑s
t=0

(

n
s

)

. So

mn ≤
n
∑

k=0

(

n

k

)2

akbn−k ≤ v(n, s)mn.

Since s is fixed, v(n, s)1/n → 1 as n → ∞. Therefore

sM = lim
n→∞

(

n
∑

k=0

(

n

k

)2

akbn−k

)1/n

.

Considering the similarity of the square root of each term of the sum
in the expression above to a term in the expansion of (

√
sA +

√
sB)

n

we obtain:

sM = (
√
sA +

√
sB)

2

and therefore M satisfies Conjecture 1. �
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The results of the preceding proposition apply in part to the weaker
version of Conjecture 1 which only asserts the equality of two limits
superior. Namely, following the details of the proof we see that if A and
B satisfy the weaker form then so do their union and direct sum, while
if one satisfies the stronger form and the other the weaker form then
their juxtaposition and merge (subject to finite intersection) also satisfy
the weaker form. Note also that the condition that A ∩ B be finite is
equivalent to asserting that for some k and k′, k(k− 1) · · · 321 6∈ A∩B
and 123 · · ·k′ 6∈ A∩B. The “interesting” cases are when neither A nor
B is finite, say A ⊆ Av(k(k − 1) · · · 321) and B ⊆ Av(123 · · ·k′).

Let A be any pattern avoidance class and define Rot(A) to be the set
of permutations obtained by taking all the cyclic rotations of elements
of A. It is easily verified that Rot(A) is also a pattern avoidance class.

Proposition 6. If A satisfies Conjecture 1 then so does Rot(A).

Proof. Let A be a pattern avoidance class satisfying Conjecture 1 and
let R = Rot(A). Since R ⊇ A and the number of elements of R of
length n is at most n times the number of elements of A of length n,
sR = sA.

However, the definition of cR and Theorem 3 also imply that cR =
cA. To see this observe that the length of any LRS sequence in a
permutation π is the maximum of the lengths of an LAS sequence in
the cyclic rotations of π. The n! permutations in Sn are partitioned
into (n− 1)! classes of n elements under cyclic rotation, and the mean
length of an LRS sequence is the mean of the maximum lengths of the
LAS sequences in each of these equivalence classes. Thus the mean
length of an LRS sequence is not greater than Mn, the mean length of
an LAS sequence over the (n− 1)! permutations whose LAS sequences
are longest. Choose 1/3 < α < 1/2 and 0 < β < 3α − 1. Then, using
Theorem 3:

Mn ≤ (ELA(Πn) + nα) + n2 exp(−nβ).

The final term arises from the upper bound of n for the length of the
longest A subsequence. In particular:

lim
n→∞

Mn√
n
≤ 2

√
cA.

This gives cR ≤ cA and the reverse inequality is of course trivial. Thus
R satisfies Conjecture 1 as claimed. �

Again, the “weak” form of this proposition is valid.
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4. Experimental results

The results of the previous section provide some evidence in favour
of Conjecture 1, or more conservatively, provide evidence that for a
fairly wide set of pattern avoidance classes A, cA = sA. However, we
have no significant evidence in favour of this conjecture based on an
exact computation of cA for any classes other than those which can be
produced from the classes Av(k(k−1) · · ·321) or Av(123 · · · (m−1)m)
by the constructions described in the previous section.

In this section we consider two specific pattern avoidance classes:

• The layered permutations, L = Av(231, 312), consisting of all
permutations of the form D1 ⊕ D2 ⊕ · · · ⊕ Dk where each of
D1 through Dk is a descending permutation. The number of
permutations of length n in L is 2n−1 and so sL = 2.

• The subclass L(2) = Av(231, 312, 321) of L formed by requiring
that each Di contain at most two elements. The number of
permutations of length n in L(2) is equal to the nth Fibonacci
number, so sL(2) = (1 +

√
5)/2. Kaiser and Klazar [13] proved

that L(2) is the smallest pattern avoidance class whose Stanley-
Wilf limit is strictly greater than 1.

Results in [1] give dynamic programming algorithms for solving the
longest subsequence problem for both L and L(2) whose complexity is
O(n2 log n) where n is the length of the input permutation. We have
been able to improve the latter algorithm, based on a tableau style
method to result in a complexity of O(n logn). Both algorithms were
implemented and a long period random number generator was used to
provide experimental data concerning the values cL and cL(2).

For L(2) we present data based on permutations of length 2k × 104 for
0 ≤ k ≤ 7. For each value of k, 1000 random permutations of that
length were generated and the length of the longest L(2) subsequences
was computed. Table 1 shows the mean, sample standard deviation,
and resulting estimates of cL(2) based on these simulations. We would
be forced to classify a person who believed in the truth of Conjecture 1
based on this data for L(2) as an optimist. If the estimates are indeed
converging to sL(2) then they are not yet within 6% of their final limit
at n = 128 × 104. By contrast, for this value of n the estimate for cI
(whose actual value is 1) is approximately 0.985.

Because of the slower running time and increased space requirements
required by the algorithm for finding longest layered subsequences data
for L is based on permutations of length 2k × 102 for 0 ≤ k ≤ 7. As
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Length µ σ ∼ cL(2)
1× 104 239.3 4.5 1.431
2× 104 340.7 5.2 1.451
4× 104 484.7 6.1 1.468
8× 104 688.4 6.4 1.481
16× 104 978.1 7.1 1.495
32× 104 1386.8 8.3 1.503
64× 104 1965.3 9.3 1.510
128× 104 2785.3 10.2 1.515

Table 1. Summary data for the mean, µ, and standard
deviation σ of the length of the longest L(2) subsequences
of random permutations together with corresponding es-
timates of cL(2).

Length µ σ ∼ cL
1× 102 23.8 1.8 1.418
2× 102 34.8 2.2 1.517
4× 102 50.6 2.5 1.602
8× 102 73.4 3.0 1.682
16× 102 105.2 3.3 1.730
32× 102 150.7 4.0 1.774
64× 102 215.9 4.4 1.821
128× 102 307.5 4.9 1.847

Table 2. Summary data for the mean, µ, and standard
deviation σ of the length of the longest L subsequences
of random permutations together with corresponding es-
timates of cL.

for L(2), 1000 random permutations of each length were analysed and
the results are presented in Table 2. The data for this class do not
require as much optimism as the L(2) data to be viewed as support for
Conjecture 1.

5. Conclusions

We have illustrated that, broadly speaking, the LA statistic on Sn

has the same general qualities as the more well known LI statistic.
Certainly a great deal more work is required before one could begin
to appreciate the former statistic at the level of detail that is known
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concerning the latter. Not surprisingly, it appears that there is a con-
nection between LA and the growth rate of the pattern avoidance class
A. Conjecture 1 proposes a precise form for this connection and the
results of Section 3 establish a relatively wide collection of classes for
which the Conjecture 1 holds. One extension to these results concerns
classes A for which sA = 1. These are (essentially) classified in [13]
and it is only a matter of somewhat tedious routine to confirm that in
all these cases cA = 1 also.

However, the experimental results of Section 4 can be viewed as provid-
ing evidence against Conjecture 1. In particular the class L(2) seems
a likely contender as a possible counterexample. The structure of the
permutations in this class is sufficiently simple that there may be some
chance of carrying out a more detailed analysis of LL(2) with a view to
explicitly calculating, or providing bounds for, cL(2).

Notable by its omission from either Section 3 or Section 4 is the class
Av(312). This class has Stanley-Wilf limit 4 (as does every class defined
by avoiding a single three element pattern since all such classes are
enumerated by the Catalan numbers). A polynomial time algorithm
for the longest subsequence problem based on this class is given in [1]
but its complexity on permutations of length n is O(n5) which makes it
impractical for experiments of the size required to produce even vaguely
convincing evidence. The goal of producing such evidence would seem
to require finding, even on an ad hoc basis some collection of classes for
which the longest subsequence problem can be solved algorithmically
in reasonable time (basically, at worst quadratic) and/or developing
better algorithms for classes such as Av(312).
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[22] A. M. Veršik and S. V. Kerov. Asymptotic behavior of the Plancherel measure
of the symmetric group and the limit form of Young tableaux. Dokl. Akad.
Nauk SSSR, 233(6):1024–1027, 1977.

Department of Computer Science, University of Otago, Dunedin, New

Zealand

E-mail address : malbert@cs.otago.ac.nz


	1. Introduction
	2. Longest A subsequences in random permutations
	3. Meaning of the constant
	4. Experimental results
	5. Conclusions
	References

