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A Continuous-Discontinuous Second-Order Transition in the Satisfiability of
Random Horn-SAT Formulas

Cristopher Moore∗ Gabriel Istrate† Demetrios Demopoulos‡ Moshe Y. Vardi§

Abstract

We compute the probability of satisfiability of a class of random Horn-SAT formulae, motivated by a connection
with the nonemptiness problem of finite tree automata. In particular, when the maximum clause length is 3, this
model displays a curve in its parameter space along which theprobability of satisfiability is discontinuous, ending
in a second-order phase transition where it becomes continuous. This is the first case in which a phase transition
of this type has been rigorously established for a random constraint satisfaction problem.

1 Introduction

In the past decade, phase transitions, orsharp thresholds, have been studied intensively in combinatorial prob-
lems. Although the idea of thresholds in a combinatorial context was introduced as early as 1960 [15], in recent
years it has been a major subject of research in the communities of theoretical computer science, artificial intelli-
gence and statistical physics. Phase transitions have beenobserved in numerous combinatorial problems in which
they the probability of satisfiability jumps from1 to 0 when the density of constraints exceeds a critical threshold.

The problem at the center of this research is, of course, 3-SAT. An instance of 3-SAT is a Boolean formula,
consisting of a conjunction of clauses, where each clause isa disjunction of three literals. The goal is to find
a truth assignment that satisfies all the clauses and thus theentire formula. Thedensityof a 3-SAT instance is
the ratio of the number of clauses to the number of variables.We call the number of variables thesizeof the
instance. Experimental studies [9, 28, 29] show a dramatic shift in the probability of satisfiability of random 3-
SAT instances, from 1 to 0, located at a critical densityrc ≈ 4.26. However, in spite of compelling arguments from
statistical physics [25, 26], and rigorous upper and lower bounds on the threshold if it exists [11, 18, 23], there
is still no mathematical proof that a phase transition takesplace at that density. For a view variants of SAT the
existence and location of phase transitions have been established rigorously, in particular for 2-SAT, 3-XORSAT,
and 1-in-k SAT [2, 12, 7, 8, 17].

In this paper we prove the existence of a more elaborate type of phase transition, where a curve of discontinuities
in a two-dimensional parameter space ends in asecond-ordertransition where the probability of satisfiability
becomes continuous. We focus on a particular variant of 3-SAT, namely Horn-SAT. A Horn clause is a disjunction
of literals of whichat most oneis positive, and a Horn-SAT formula is a conjunction of Horn clauses. Unlike
3-SAT, Horn-SAT is a tractable problem; the complexity of the Horn-SAT is linear in the size of the formula [10].
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This tractability allows one to study random Horn-SAT formulae for much larger input sizes that we can achieve
using complete algorithms for 3-SAT.

An additional motivation for studying random Horn-SAT comes from the fact that Horn formulae are connected
to several other areas of computer science and mathematics [24]. In particular, Horn formulae are connected to
automata theory, as the transition relation, the starting state, and the set of final states of an automaton can be
described using Horn clauses. For example, if we consider automata on binary trees, then Horn clauses of length
three can be used to describe its transition relation, whileHorn clauses of length one can describe the starting state
and the set of the final states of the automaton. (we elaborateon this below). Then the question of the emptiness
of the language of the automaton can be translated to a question about the satisfiability of the formula. Since
automata-theoretic techniques have recently been appliedin automated reasoning [30, 31], the behavior of random
Horn formulae might shed light on these applications.

Threshold properties of random Horn-SAT problems have recently been actively studied. The probability of
satisfiability of random Horn formulae in avariable-clause-length model was fully characterized in [20, 21],
where it was shown that random Horn formulae have acoarserather than a sharp satisfiability threshold, meaning
that the problem does not have a phase transition in this model. The variable-clause-length model used there is
ideally suited to studying Horn formulae in connection withknowledge-based systems [24]. Bench-Capon and
Dunne [4] studied afixed-clause-length model, in which each Horn clause has precisely k literals, and proved a
sharp threshold with respect to assignments that have at leastk − 1 variables assigned to be true.

Motivated by the connection between the automata emptinessproblem and Horn satisfiability, Demopoulos
and Vardi [14] studied the satisfiability of two types of fixed-clause-length random Horn-SAT formulae. They
considered 1-2-Horn-SAT, where formulae consist of clauses of length one and two only, and 1-3-Horn-SAT,
where formulae consist of clauses of length one and three only. These two classes can be viewed as the Horn
analogue of 2-SAT and 3-SAT. For 1-2-Horn-SAT, they showed experimentally that there is a coarse transition
(see Figure 4), which can be explained and analyzed in terms of random digraph connectivity [22]. The situation
for of 1-3-Horn-SAT is less clear cut. On one hand, recent results on random undirected hypergraphs [13] fit the
experimental data of [14] quite well. On the other, a scalinganalysis of the data suggested that transition between
the mostly-satisfiable and mostly-unsatisfiable regions (the “waterfall” in Figure 1) is steep but continuous, rather
than a step function. It was therefore not clear if the model exhibits a phase transition, in spite of experimental
data for instances with tens of thousands of variables.

In this paper we generalize the fixed-clause-length model of[14] and offer a complete analysis of the probability
of satisfiability in this model. For a finitek > 0 and a vectord of k nonnegative real numbersd1, d2, . . . , dk,
d1 < 1, let the random Horn-SAT formulaHk

n,d be the conjunction of

• a single negative literalx1,

• d1n positive literals chosen uniformly without replacement fromx2, . . . , xn, and

• for each2 ≤ j ≤ k, djn clauses chosen uniformly from thej
(

n
j

)

possible Horn clauses withj variables
where one literal is positive.

Thus, the classes studied in [14] areH2
n,d1,d2

andH3
n,d1,0,d3

respectively.
With this model in hand, we settle the question of sharp thresholds for 1-3-Horn-SAT. In particular, we show

that there are sharp thresholds in some regions of the(d1, d3) plane in the probability of satisfiability, although not
from 1 to 0. We start with the following general result for theHk

n,d model.

Theorem 1.1 Let t0 be the smallest positive root of the equation

ln
1− t

1− d1
+

k
∑

j=2

djt
j−1 = 0 . (1)
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Figure 1. Satisfiability probability of a random 1-3-Horn fo rmula of size 20000. Left, the experimental
results of [14]; right, our analytic results.

Call t0 simpleif it is not a double root of(1), i.e., if the derivative of the left-hand-side of(1) with respect tot is
nonzero att0. If t0 is simple, the probability that a random formula fromHk

n,d is satisfiable in the limitn → ∞ is

Φ(d) := lim
n→∞

Pr[Hk
n,d is satisfiable] =

1− t0
1− d1

. (2)

Specializing this result to the casek = 2 yields an exact formula that matches the experimental results in [14]:

Proposition 1.2 The probability that a random formula fromH2
n,d1,d2

is satisfiable in the limitn → ∞ is

Φ(d1, d2) := lim
n→∞

Pr[H2
n,d1,d2

is satisfiable] = −W
(

−(1− d1)d2e
−d2
)

(1− d1)d2
. (3)

HereW (·) is Lambert’s function, defined as the principal root of the equationW (x)eW (x) = x.
For the casek = 3 andd2 = 0, we do not have a closed-form expression for the probabilityof satisfiability,

though numerically Figure 1 shows a very good fit to the experimental results of [14]. In addition, we find an
interesting phase transition behavior in the(d1, d3) plane, described by the following proposition.

Proposition 1.3 The probability of satisfiabilityΦ(d1, d3) that a random formula fromH3
n,d1,0,d3

is satisfiable is
continuous ford3 < 2 and discontinuous ford3 > 2. Its discontinuities are given by a curveΓ in the (d1, d3)
plane described by the equation

d1 = 1−
exp

(

1
4

(√
d3 −

√
d3 − 2

)2
)

d3 −
√

d3(d3 − 2)
. (4)

This curve consists of the points(d1, d3) at whicht0 is a double root of(1), and ends at the critical point

(1−
√
e/2, 2) = (0.1756..., 2) .



The curveΓ of discontinuities described in Proposition 1.3 can be seenin the right part of Figure 1. The drop
at the “waterfall” decreases as we approach the critical point (0.1756..., 2), where the probability of satisfiability
becomes continuous (although its derivatives at that pointare infinite). We can also see this in Figure 2, which
shows a contour plot; the contours are bunched at the discontinuity, and “fan out” at the critical point. In both
cases our calculates closely match the experimental results of [14].

0.020.040.060.080.10.120.140.160.180.2

1

1.5

2

2.5

3

3.5

4

4.5

5

d
1

d
3

Satisfiability for random 1−3−HornSAT (n=20000)

Figure 2. Contour plots. Left, the experimental results of [ 14]. Right, our analytical results.

In statistical physics, we would say thatΓ is a curve offirst-order transitions, in which the order parameter
is discontinuous, ending in asecond-ordertransition at the tip of the curve, at which the order parameter is
continuous, but has a discontinuous derivative (see e.g. [5]). A similar transition takes place in the Ising model,
where the two parameters are the temperatureT and the external fieldH; the magnetization is discontinuous at
the lineH = 0 for T < Tc whereTc is the transition temperature, but there is a second-order transition at(Tc, 0)
and the magnetization is continuous forT ≥ Tc.

To our knowledge, this is the first time that a continuous-discontinuous transition of this type has been estab-
lished rigorously in a model of random constraint satisfaction problems. We note that a similar phenomenon is
believed to take place for(2 + p)-SAT model at the triple pointp = 2/5; here the order parameter is the size of
the backbone, i.e., the number of variables that take fixed values in every truth assignment [3, 27]. Indeed, in our
model the probability of satisfiability is closely related to the size of the backbone, as we see below.

2 Horn-SAT and Automata

Our main motivation for studying the satisfiability of Horn formulae is the unusually rich type of phase transition
described above, and the fact that its tractability allows us to perform experiments on formulae of very large size.
However, the original motivation of [14] that led to the present work is the fact that Horn formulae can be used to
describe finite automata on words and trees.

A finite automatonA is a 5-tupleA = (S,Σ, δ, s, F ), whereS is a finite set of states,Σ is an alphabet,s is a
starting state,F ⊆ S is the set of final (accepting) states andδ is a transition relation. In a word automaton,δ is a
function fromS × Σ to 2S , while in a binary-tree automatonδ is a function fromS × Σ to 2S×S . Intuitively, for
word automataδ provides a set of successor states, while for binary-tree automataδ provides a set of successor
state pairs. A run of an automaton on a worda = a1a2 · · · an is a sequence of statess0s1 · · · sn such thats0 = s
and(si−1, ai, si) ∈ δ. A run is succesful ifsn ∈ F : in this case we say thatA accepts the worda. A run of
an automaton on a binary treet labeled with letters fromΣ is a binary treer labeled with states fromS such
that root(r) = s and for a nodei of t, (r(i), t(i), r(left-child-of-i), r(right-child-of-i)) ∈ δ. Thus, each pair in



Algorithm PUR:
1. while (φ contains positive unit clauses)
2. choose a random positive unit clausex
3. remove all other clauses in whichx occurs positively inφ
4. shorten all clauses in whichx appears negatively
5. labelx as “implied” and call the algorithm recursively.
6. if no contradictory clause was created
7. acceptφ
8. else
9. rejectφ.

Figure 3. Positive Unit Resolution.

δ(r(i), t(i)) is a possible labeling of the children ofi. A run is succesful if for all leavesl of r, r(l) ∈ F : in this
case we say thatA accepts the treet. The languageL(A) of a word automatonA is the set of all wordsa for
which there is a successful run ofA ona. Likewise, the languageL(A) of a tree automatonA is the set of all trees
t for which there is a successful run ofA on t. An important question in automata theory, which is also of great
practical importance in the field of formal verification [30,31], is: given an automatonA, isL(A) non-empty? We
now show how the problem of non-emptiness of automata languages translates to Horn satisfiability. Thus, getting
a better understanding of the satisfiability of Horn formulae would tell us about the expected answer to automata
nonemptiness problems.

Consider first a word automatonA = (S,Σ, δ, s0, F ). Construct a Horn formulaφA over the setS of variables
as follows: create a clause(s̄0), for eachsi ∈ F create a clause(si), for each element(si, a, sj) of δ create
a clause(s̄j, si), where(si, · · · , sk) represents the clausesi ∨ · · · ∨ sk and s̄j is the negation ofsj. Similarly
to the word automata case, we can show how to construct a Horn formula from a binary-tree automaton. Let
A = (S,Σ, δ, s0, F ) be a binary-tree automaton. Then we can construct a Horn formulaφA using the construction
above with the only difference that sinceδ in this case is a function fromS × {α} to S × S, for each element
(si, α, sj , sk) of δ we create a clause(s̄j , s̄k, si).

Proposition 2.1 [14] Let A be a word or binary tree automaton andφA the Horn formula constructed as de-
scribed above. ThenL(A) is non-empty if and only ifφA is unsatisfiable.

3 Main Result

Consider the positive unit resolution algorithmPUR applied to a random formulaφ (Figure 3). The proof of
Theorem 1.1 follows immediately from the following theorem, which establishes the size of the backbone of the
formula with the single negative literalx1 removed: that is, the set of positive literals implied by thepositive unit
clauses and the clauses of length greater than1. Thenφ is satisfiable as long asx1 is not in this backbone.

Lemma 3.1 Letφ be a random Horn-SAT formulaHk
n,d with d1 > 0. Denote byt0 the smallest positive root of

Equation(1), and suppose thatt0 is simple. Then, for anyǫ > 0, the numberNd,n of implied positive literals,
including thed1n initially positive literals, satisfies w.h.p. the inequality

(t0 − ǫ) · n < Nd,n < (t0 + ǫ) · n, (5)

Proof: First, we give a heuristic argument, analogous to the branching process argument for the size of the giant
component in a random graph. The numberm of clauses of lengthj with a given literalx as their implicate (i.e., in
whichx appears positively) is Poisson-distributed with meandj . If any of these clauses have the property that all



their literals whose negations appear are implied, thenx is implied as well. In addition,x is implied if it is one of
thed1n initially positive literals. Therefore, the probability thatx is not implied is the probability that it is not one
of the initially positive literals, and that, for allj, for all m clausesc of lengthj with x as their implicate, at least
one of thej − 1 literals whose negations appear inc is not implied. Assuming all these events are independent, if
t is the fraction of literals that are implied, we have

1− t = (1− d1)

k
∏

j=2

(

∞
∑

m=0

e−djdmj
m!

(1− tj−1)m

)

= (1− d1)
k
∏

j=2

exp(−djt
j−1)) = (1− d1) exp



−
k
∑

j=2

djt
j−1





yielding Equation (1).
To make this rigorous, we use a standard technique for proving results about threshold properties: analysis

of algorithms via differential equations [32] (see [1] for areview). We analyze the while loop ofPUR shown
in Figure 3; specifically, we viewPUR as working instages, indexed by the number of literals that are labeled
“implied.” After T steps of this process,T variables are labeled as implied. At each stage the resulting formula
consists of a set of Horn clauses of lengthj for 1 ≤ j ≤ k on then − T unlabeled variables. Let the number
of distinct clauses of lengthj in this formula beSj(T ); we rely on the fact that, at each stageT , conditioned on
the values ofSj(T ) the formula is uniformly random. This follows from an easy induction argument which is
standard for problems of this type (see e.g. [21]).

Now, the variables appearing in the clauses present at stageT are chosen uniformly from then− T remaining
variables, so the probability that the chosen variablex appears in a given clause of lengthj is j/(n − T ), and the
probability that a given clause of lengthj+1 is shortened to one of lengthj (as opposed to removed) isj/(n−T ).
A newly shortened clause is distinct from all the others withprobability1− o(1) unlessj = 1, in which case it is
distinct with probability(n − T − S1)/(n − T ). Finally, each stage labels the variable in one of theS1(T ) unit
clauses as implied. Thus the expected effect of each step is

E[Sj(T + 1)] = Sj(T ) + j
Sj+1(T )− Sj(T )

n− T
+ o(1) for all 2 ≤ j ≤ k

E[S1(T + 1)] = S1(T ) +

(

n− T − S1

n− T

)(

S2(T )

n− T

)

− 1 + o(1)

SettingT = t · n andSj(T ) = sj(t) · n, we rescale this to form a system of differential equations:

dsj
dt

= j
sj+1(t)− sj(t)

1− t
for all 2 ≤ j ≤ k

ds1
dt

=

(

1− t− s1(t)

1− t

)(

s2(t)

1− t

)

− 1 . (6)

Then Wormald’s Theorem tells us that, for any constantδ > 0, for all t such thats1 > δ, w.h.p. we have
Sj(t · n) = sj(t) · n + o(n) wheresj(t) is the solution to the system (6). With the initial conditions sj(0) = dj
for 1 ≤ j ≤ k, a little work shows that this solution is

sj(t) = (1− t)j
k
∑

ℓ=j

(

ℓ− 1

j − 1

)

dℓt
ℓ−j for all 2 ≤ j ≤ k

s1(t) = 1− t− (1− d1) exp



−
k
∑

j=2

djt
j−1



 . (7)



Note thats1(t) is continuous,s1(0) = d1 > 0, ands1(1) < 0 sinced1 < 1. Thuss1(t) has at least one root in
the interval(0, 1). SincePUR halts when there are no unit clauses, i.e., whenS1(T ) = 0, we expect the stage at
which it halts. Thus the number of implied positive literals, to beT = t0n+ o(n) wheret0 is the smallest positive
root ofs1(t) = 0, or equivalently, dividing by1− d1 and taking the logarithm, of Equation (1).

However, the conditions of Wormald’s theorem do not allow usto run the differential equations all the way up
to staget0n. We therefore choose small constantsǫ, δ > 0 such thats1(t0 − ǫ) = δ and run the algorithm until
stage(t0 − ǫ)n. At this point(t0 − ǫ)n literals are already implied, proving the lower bound of (5).

To prove the upper bound of (5), recall that by assumptiont0 is a simple root of (1), i.e., the second derivative
of the left-hand size of (1) with respect tot is nonzero att0. It is easy to see that this is equivalent tods1/dt < 0
at t0. Sinceds1/dt is analytic, there is a constantc > 0 such thatds1/dt < 0 for all t0 − c ≤ t ≤ t0 + c.
Setǫ < c; the number of literals implied during these stages is bounded above by a subcritical branching process
whose initial population is w.h.p.δn + o(n), and by standard arguments we can bound its total progeny to be ǫ′n
for anyǫ′ > 0 by takingδ small enough.

It is easy to see that the backbone of implied positive literals is a uniformly random subset of{x1, . . . , xn} of
sizeNd,n. Sincex1 is guaranteed to not be among thed1n initially positive literals, the probability thatx1 is not
in this backbone is

n−Nd,n

(1− d1) · n
.

By completeness of positive unit resolution for Horn satisfiability, this is precisely the probability that theφ is
satisfiable. Applying Lemma 3.1 and takingǫ → 0 proves equation (2) and completes the proof of Theorem 1.1.

We make several observations. First, if we setk = 2 and take the limitd1 → 0, Theorem 3.1 recovers Karp’s
result [22] on the size of the reachable component of a randomdirected graph with mean out-degreed = d2, the
root of ln(1− t) + dt = 0.

Secondly, as we will see below, the condition thatt0 is simple is essential. Indeed, for the 1-3-Horn-SAT model
studied in [14], the curveΓ of discontinuities, where the probability of satisfiability drops in the “waterfall” of
Figure 1, consists exactly of those(d1, d3) wheret0 is a double root, which impliesds1/dt = 0 at t0.

Finally, we note that Theorem 3.1 is very similar to Darling and Norris’s work on identifiability in random
undirected hypergraphs [13], where the number of hyperedges of lengthj is Poisson-distributed with meanβj .
Their result reads

ln(1− t) +
k
∑

j=1

jβjt
j−1 = 0 .

We can make this match (1) as follows. First, since each hyperedge of lengthj corresponds toj Horn clauses, we
setdj = jβj for all j ≥ 2. Then, since edges are chosen with replacement in their model, the expected number of
distinct clauses of length1 (i.e., positive literals) isd1n whered1 = 1− e−β1 .

4 Application to H
2
n,d

ForH2
n,d, Equation (1) can rewritten as1− t = (1− d1) · e−d2·t. Denotingy = d2(t− 1), this implies

y · ey = d2(t− 1) · ed2·(t−1) = −d2(1− d1) · e−d2·t · ed2·(t−1) = −(1− d1)d2e
−d2 .

Solving this yields

t0 = 1 +
1

d2
W
(

−(1− d1)d2e
−d2
)

and substituting this into (2) proves Equation (3) and Proposition 1.2. In Figure 4 we plot the probability of
satisfiabilityΦ(d1, d2) as a function ofd2 for d1 = 0.1 and compare it with the experimental results of [14]; the
agreement is excellent.
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5 A continuous-discontinuous phase transition forH3
n,d1,0,d3

For the random modelH3
n,d1,0,d3

studied in [14], an analytic solution analogous to (3) does not seem to exist.
Let us, however, rewrite (1) as

1− t = f(t) := (1− d1)e
−d3t

2

. (8)

We claim that for some values ofd1 andd3 there is a phase transition in the roots of (8). For instance,consider
the plot off(t) shown in Figure 5 ford1 = 0.1 andd3 = 3. Heref(t) is tangent to1− t, so there is a bifurcation
as we vary either parameter; ford3 = 2.9, for instance,f(t) crosses1− t three times and there is a root of (8) at
t = 0.185, but for d3 = 3.1 the unique root is att = 0.943. This causes the probability of satisfiability to jump
discontinuously but from0.905 to 0.064. The set of pairs(d1, d3) for whichf(t) is tangent to1− t is exactly the
curveΓ on which the smallest positive roott0 of (1) or (8) is a double root, giving the “waterfall” of Figure 1.
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Figure 5. Left, the function f(t) of (8) when d1 = 0.1 and d3 = 3. Right, the probability of satisfiability
Φ(d1, d3) with d1 equal to 0.15 (continuous), 0.1756 (critical), and 0.2 (discontinuous).



To find where this transition takes place, we setf ′ = −1, yielding f(t) = 1/(2d3t). Setting this to1 − t and
solving fort gives

d1 = 1− ed3t
2

2d3t
(9)

where

t =
1

2

(

1−
√

1− 2

d3

)

(10)

Substituting (10) in (9) and simplifying gives (4), provingProposition 1.3.
The fact thatd1 is only real ford3 ≥ 2 explains whyΓ ends atd3 = 2. At this extreme case we have

d1 = 1−
√
e

2
≈ 0.1756 and

∂d1
∂d3

= −
√
e

8
.

What happens ford3 < 2? In this case, there are no realt for which f ′(t) = −1, so the kind of tangency
displayed in Figure 5 cannot happen. In that case, (8) (and equivalently (1)) has a unique solutiont, which varies
continuously withd1 andd3, and therefore the probability of satisfiabilityΦ(d1, d3) is continuous as well. To
illustrate this, in the right part of Figure 5 we plotΦ(d1, d3) as a function ofd3 with three values ofd1. For
d1 = 0.15, Φ is continuous; ford1 = 0.2, it is discontinuous; and ford1 = 0.1756..., the critical value at the
second-order transition, it is continuous but has an infinite derivative atd3 = 2.
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