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In the on-line nearest-neighbour graph (ONG), each point after the first in a
sequence of points in R

d is joined by an edge to its nearest neighbour amongst
those points that precede it in the sequence. We study the large-sample asymptotic
behaviour of the total power-weighted length of the ONG on uniform random points
in (0, 1)d. In particular, for d = 1 and weight exponent α > 1/2, the limiting
distribution of the centred total weight is characterized by a distributional fixed-
point equation. As an ancillary result, we give exact expressions for the expectation
and variance of the standard nearest-neighbour (directed) graph on uniform random
points in the unit interval.
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1 Introduction

Spatial graphs, defined on random point sets in Euclidean space, constructed by joining
nearby points according to some deterministic rule, have been the subject of considerable
recent interest. Examples of such graphs include the geometric graph, the minimal-length
spanning tree, and the nearest-neighbour graph and its relatives. Many aspects of the
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large-sample asymptotic theory for such graphs, which are locally determined in a certain
sense, are by now quite well understood. See for example [11, 14,15,17–19,24,28].

Many real-world networks share several common features, including spatial structure,
local construction (nearby nodes are more likely to be connected), and sequential growth
(the network evolves over time via the addition of new nodes). In this paper our main ob-
ject of interest is the on-line nearest-neighbour graph, which is one of the simplest models
of network evolution that captures some of these features. We give a detailed descrip-
tion later. Recently, graphs with an ‘on-line’ structure, i.e. in which vertices are added
sequentially and connected to existing vertices via some rule, have been the subject of
considerable study in relation to the modelling of real-world networks. The literature is
extensive (see for example [8, 13] for surveys), but mostly non-rigorous. Rigorous math-
ematical results are fewer in number, even for simple models, and the existing results
concentrate on graph-theoretic rather than geometric properties (see e.g. [3, 6]).

The on-line nearest-neighbour graph (or ONG for short) is constructed on n points
arriving sequentially in R

d by connecting each point after the first to its (Euclidean) near-
est neighbour amongst the preceding points in the sequence. The ONG was apparently
introduced in [3] as a simple growth model of the world wide web graph (for d = 2);
see also [9]. When d = 1, the ONG is related to certain fragmentation processes, which
are of separate interest in relation to, for example, molecular fragmentation (see e.g. [4],
and references therein). The ONG in d = 1 is related to the so-called ‘directed linear
tree’ considered in [16]. The higher dimensional ONG has also been studied [15]. Figure
1 shows a realization of the ONG on 50 simulated random points in the unit interval.
Figure 2 below shows realizations of the planar and three-dimensional ONG, each on 50
simulated uniform random points.

Figure 1: Realization of the ONG on 50 simulated uniform random points in the unit
interval. The vertical axis gives the order in which the points arrive, and their position is
given by the horizontal axis.

We consider the total power-weighted length of the ONG on uniform random points
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Figure 2: Realizations of the ONG on 50 simulated uniform random points in the unit
square (left) and the unit cube (right).

in (0, 1)d, d ∈ N. We are interested in large-sample asymptotics, as the number of points
tends to infinity. Explicit laws of large numbers for the random ONG in (0, 1)d are given
in [26]. In the present paper we give further results on the limiting behaviour in general
dimensions d.

The main part of the present paper is concerned with convergence in distribution re-
sults for the ONG. We give detailed properties of the random ONG on uniform random
points in the unit interval (d = 1), and identify the limiting distribution of the centred
total power-weighted length of the graph. When the weight exponent α is greater than
1/2, this distribution is described in terms of a distributional fixed-point equation reminis-
cent of those encountered in, for example, the analysis of stochastic ‘divide-and-conquer’
or recursive algorithms. Such fixed-point distributional equalities, and the recursive al-
gorithms from which they arise, have received considerable attention recently; see, for
example, [2, 12, 22, 23].

On the other hand, we believe that for α ∈ (0, 1/2] the total weight, suitably centred
and scaled, satisfies a central limit theorem (CLT). Penrose [15] gave such a result for
α ∈ (0, 1/4). [27] addresses the case α ∈ (0, 1/2).

In this paper we also give new explicit results on the expectation and variance of
the standard one-dimensional nearest-neighbour (directed) graph, in which each point is
joined by a directed edge to its nearest neighbour, on uniform random points in the unit
interval. This is related to our results on the one-dimensional ONG via the theory of
Dirichlet spacings, which we use in our analysis.

2 Definitions and main results

Let d ∈ N, and let ‖ · ‖ be the Euclidean norm on R
d. For d ∈ N, let

vd := πd/2 [Γ (1 + (d/2))]−1 , (1)

the volume of the unit d-ball (see e.g. equation (6.50) of [10]).
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Define w to be a weight function on edges, assigning weight w(x,y) to the edge between
x ∈ R

d and y ∈ R
d, such that w : Rd × R

d → [0,∞). A case of particular interest is
when the weight is taken to be power-weighted Euclidean distance. In this case, for some
α ≥ 0, we have the weight function given by, for x,y ∈ R

d,

wα(x,y) := ‖x− y‖α. (2)

2.1 The on-line nearest-neighbour graph

We now give a formal definition of the on-line nearest-neighbour graph (ONG). Let d ∈ N.
Suppose (x1,x2, . . .) are points in (0, 1)d, arriving sequentially; the ONG on vertex set
{x1, . . . ,xn} is formed by connecting each point xi, i = 2, 3, . . . , n to its nearest neighbour
(in the Euclidean sense) amongst the preceding points in the sequence (i.e. {x1, . . . ,xi−1}),
using the lexicographic ordering on R

d to break any ties. We call the resulting tree the
ONG on (x1,x2, . . . ,xn).

From now on we take the sequence of points to be random. Let (U1,U2, . . .) be
a sequence of independent uniform random vectors on (0, 1)d. Then for n ∈ N take
Un = (U1,U2, . . . ,Un). The points of sequence Un then constitute a binomial point
process consisting of n independent uniform random vectors on (0, 1)d. Denote the ONG
constructed on Un by ONG(Un). Note that, with probability one, Un has distinct inter-
point distances so that the ONG on Un is almost surely unique.

The ONG is of interest as a natural growth model for random spatial graphs; in
particular it has been used (with d = 2) in the context of the world wide web graph
(see [3]). In [15], stabilization techniques were used to prove that the total length (suitably
centred and scaled) of the ONG on uniform random points in (0, 1)d for d > 4 converges
in distribution to a normal random variable. In [27] the CLT is extended to cover d = 3, 4.
It is suspected that a CLT also holds for d = 2. On the other hand, when d = 1, the limit
is not normal, as demonstrated by Theorem 2.2(ii) below.

For d ∈ N and α ≥ 0, let Od,α(Un) denote the total weight, with weight function wα as
given by (2), of ONG(Un). Our results for the ONG in general dimensions are as follows,
and constitute a distributional convergence result for α > d, and asymptotic behaviour
of the mean for α = d. For the sake of completeness, we include the law of large numbers

for α < d from [26] (Theorem 4 therein) as part (i) of the theorem below. By ‘
Lp

−→’ we
denote convergence in Lp norm.

Theorem 2.1 Suppose d ∈ N. We have the following:

(i) Suppose 0 ≤ α < d. Then, as n → ∞

n(α−d)/dOd,α(Un)
L1

−→ d

d− α
v
−α/d
d Γ(1 + (α/d)). (3)

(ii) Suppose α > d. Then, as n → ∞,

Od,α(Un) −→ W (d, α), (4)

where the convergence is in Lp, (p ∈ N), and almost sure, and W (d, α) is a non-
negative random variable with E[(W (d, α))k] < ∞ for k ∈ N.
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(iii) Suppose α = d. Then, as n → ∞,

E[Od,d(Un)] = v−1
d log n+ o(log n). (5)

In particular (5) implies that E[O1,1(Un)] ∼ (1/2) log n, a result given more precisely in
Proposition 2.1 below. We prove Theorem 2.1(ii) and (iii) in Section 3.

Now we consider the particular case of the ONG in d = 1, where Un is now a sequence
of independent uniform random points in the unit interval (0, 1). Let γ denote Euler’s
constant, so that γ ≈ 0.57721566 and

(

k
∑

i=1

1

i

)

− log k = γ +O(k−1). (6)

The following result gives the expectation of the total weight of ONG(Un).

Proposition 2.1 As n → ∞, we have

E[O1,α(Un)] =
Γ(α + 1)

1− α
2−αn1−α +

2

α
− 2−α(2− α)

α(1− α)
+O(n−α); (0 < α < 1)

E[O1,1(Un)] =
1

2
log n+

γ

2
− 1

4
+ o(1);

E[O1,α(Un)] =
2

α(α + 1)

(

1 +
2−α

α− 1

)

+O(n1−α) (α > 1)

Proof. The proposition follows from Proposition 4.2 and Lemma 4.3 below. �

In Theorem 2.2 below, we present our main convergence in distribution results for the
total weight of the ONG (centred, in some cases) in d = 1. The limiting distributions are
of different types depending on the value of α in the weight function (2). In this paper, we
restrict attention to α > 1/2, and we define these limiting distributions in Theorem 2.2,
in terms of distributional fixed-point equations (sometimes called recursive distributional

equations, see [2]). Writing ‘
d
=’ for equality in distribution, these fixed-point equations

are of the form

X
d
=

k
∑

r=1

ArX
{r} + B, (7)

where k ∈ N, X{r}, r = 1, . . . , k, are independent copies of the random variable X,
and (A1, . . . , Ak, B) is a random vector, independent of (X{1}, . . . , X{k}), satisfying the
conditions

E

k
∑

r=1

|Ar|2 < 1, E[B] = 0, E[B2] < ∞. (8)

Theorem 3 of Rösler [22] (proved by the contraction mapping theorem; see also [12, 23])
says that if (8) holds, there is a unique square-integrable distribution with mean zero
satisfying the fixed-point equation (7), and this will guarantee uniqueness of solutions to
all the distributional fixed-point equalities considered in the sequel.
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We now define the distributions that will appear as limits in Theorem 2.2, in terms
of (unique) solutions to fixed-point equations. In each case, U denotes a uniform random
variable on (0, 1), independent of the other random variables on the right-hand side of
the distributional equality. The fixed-point equations (9)–(12) are all of the form of (7),
and hence define unique solutions.

We define J̃1 by the distributional fixed-point equation

J̃1
d
= min{U, 1− U}+ UJ̃

{1}
1 + (1− U)J̃

{2}
1 +

U

2
logU +

1− U

2
log(1− U). (9)

We shall see later (Proposition 4.4) that E[J̃1] = 0. For α > 1/2, α 6= 1, define J̃α by

J̃α
d
= UαJ̃{1}

α + (1− U)αJ̃{2}
α +min{Uα, (1− U)α}+ 2−α

α− 1
(Uα + (1− U)α − 1) . (10)

Define the random variable H̃1 by

H̃1
d
= UJ̃1 + (1− U)H̃1 +

U

2
+

U

2
logU +

1− U

2
log(1− U), (11)

where J̃1 has the distribution given by (9), and is independent of the H̃1 on the right. We
shall see later (Theorem 4.1) that E[H̃1] = 0. We give the first three moments of J̃1 and
H̃1 in Table 2 later in this paper. For α > 1/2, α 6= 1, define H̃α by

H̃α
d
= UαJ̃α + (1− U)αH̃α + Uα

(

1 +
2−α

α− 1

)

+ ((1− U)α − 1)

(

1

α
+

2−α

α(α− 1)

)

, (12)

where J̃α has the distribution given by (10) and is independent of the H̃α on the right.
We shall see later that, for α > 1, the J̃α and H̃α defined in (10) and (12) arise as centred
versions of the random variables Jα and Hα, respectively, satisfying the slightly simpler
fixed-point equations (13) and (14) below, so that E[J̃α] = E[H̃α] = 0; see Proposition
4.5. For α > 1, we have

Jα
d
= UαJ{1}

α + (1− U)αJ{2}
α +min{Uα, (1− U)α}. (13)

Also for α > 1, we have

Hα
d
= Uα + UαJα + (1− U)αHα, (14)

where Jα has distribution given by (13) and is independent of the Hα on the right. The
expectations of Jα and Hα are given in Proposition 4.5. Note that the uniqueness of the
J̃α and H̃α implies the uniqueness of Jα and Hα also.

Theorem 2.2 gives our main results for the ONG(Un) in one dimension. Theorem
2.2 will follow as a corollary to Theorem 4.1, which we present later. Let Õd,α(Un) :=
Od,α(Un) − E[Od,α(Un)] be the centred total weight of the ONG on Un. For ease of
notation, we define the following random variables. As before, U is uniform on (0, 1) and
independent of the other variables on the right. For 1/2 < α < 1, let

G̃α
d
= UαH̃{1}

α +(1− U)αH̃{2}
α +

(

Uα + (1− U)α − 2

1 + α

)(

1

α
− 2−α

α(1− α)

)

, (15)
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where H̃
{1}
α , H̃

{2}
α are independent with distribution given by (12). Also let

G̃1
d
= UH̃

{1}
1 + (1− U)H̃

{2}
1 +

U

2
logU +

1− U

2
log(1− U) +

1

4
, (16)

where H̃
{1}
1 , H̃

{2}
1 are independent with distribution given by (11). We write ‘

d−→’ for
convergence in distribution. We prove Theorem 2.2 in Section 4.

Theorem 2.2 (i) For 1/2 < α < 1, we have that, as n → ∞,

Õ1,α(Un)
d−→ G̃α, (17)

where G̃α has distribution given by (15), and E[G̃α] = 0.

(ii) For α = 1, we have that, as n → ∞,

O1,1(Un)−
1

2
(γ + log n) +

1

4

d−→ G̃1, (18)

where G̃1 has distribution given by (16). Also, E[G̃1] = 0, Var[G̃1] = (19 + 4 log 2−
2π2)/48 ≈ 0.042362, and E[G̃3

1] ≈ 0.00444287.

(iii) For α > 1, the distribution of the limit W (1, α) of (4) is given by

W (1, α)
d
= UαH{1}

α + (1− U)αH{2}
α ,

where H
{1}
α , H

{2}
α are independent with the distribution given by (14).

Remarks. (a) Since the variables W (d, α) are non-negative, Theorem 2.1(ii) shows
that when α > d, the distributional limit of Õd,α(Un) is not Gaussian. On the other
hand, in Theorem 3.6 of [15], a CLT for Õd,α(Un) is obtained for the case α ∈ (0, d/4).
In the context of Theorem 2.1, the result of [15] implies that, provided α ∈ (0, d/4),
n(α/d)−(1/2)Õd,α(Un) is asymptotically normal as n → ∞. In [15], it is remarked that it
should be possible to extend the result to the case α ∈ (d/4, d/2) and perhaps α = d/2
also. In [27] (using different techniques from those of the present paper) this extension
is addressed, and it is also shown that Õd,α(Un) converges in distribution to some limit
variable when α ∈ (d, 2, d]. In the special case d = 1, Theorem 2.2 above gives such a
result, and moreover demonstrates that such a limit is non-Gaussian.

(b) A closely related ‘directed’ version of the one-dimensional ONG is the ‘directed
linear tree’ (DLT) introduced in [16], in which each point is joined to its nearest neighbour
to the left amongst those points preceding it in the sequence, if such points exist. In [16],
results for the DLT with α ≥ 1 analogous to parts (ii) and (iii) of Theorem 2.2 were
given. Following the methods of the present paper, one can obtain results for the DLT
with 1/2 < α < 1 analogous to part (i) of Theorem 2.2.

(c) With some more detailed calculations (given in [25]), one can replace the error
term o(log n) in (5) by O(1) (see the remark in Section 3).

(d) Figure 3 is a plot of the estimated probability density function of G̃1 given by (16).
This was obtained by performing 105 repeated simulations of the ONG on a sequence
of 103 uniform (simulated) random points on (0, 1). For each simulation, the expected
value of O1,1(U103) was subtracted from the total length of the simulated ONG to give
an approximate realization of the distributional limit. The density function was then
estimated from the sample of 105 realizations. The simulated sample from which the
density estimate was taken had sample mean ≈ 3× 10−3 and sample variance ≈ 0.0425,
which are reasonably close to the expectation and variance of G̃1.
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Figure 3: Estimated probability density function for G̃1.

2.2 The nearest-neighbour (directed) graph

Our next result gives exact expressions for the expectation and variance of the total weight
of the nearest-neighbour (directed) graph on n independent uniform random points in the
unit interval. The nearest-neighbour (directed) graph on a point set X places a directed
edge from each vertex to its nearest neighbour (in the Euclidean sense).

Let L1,α
1 (X ) denote the total weight, with weight function wα given by (2), of the

nearest-neighbour (directed) graph on vertex set X ⊂ (0, 1). We use this notation to be
consistent with [26], which presents explicit laws of large numbers for nearest-neighbour
graphs including this one. For this section, let Un denote the binomial point process
consisting of n independent uniform random points in the unit interval. In this section
with give explicit results for the expectation and variance of L1,α

1 (Un).
Let 2F1(·, ·; ·; ·) denote the Gauss hypergeometric function (see e.g. Chapter 15 of [1])

defined for |z| < 1 and c 6= 0,−1,−2, . . . by

2F1(a, b; c; z) :=
∞
∑

i=0

(a)i(b)i
(c)ii!

zi,

where (a)i is Pochhammer’s symbol (a)i := Γ(a+ i)/Γ(a). For n ∈ {2, 3, . . .}, α > 0, set

Jn,α := 6−α−1 Γ(n+ 1)Γ(2 + 2α)

(1 + α)Γ(n+ 1 + 2α)
2F1(−α, 1 + α; 2 + α; 1/3). (19)

Also, for α > 0, set

jα := 8 lim
n→∞

(n2αJn,α) = 8 · 6−α−1Γ(2 + 2α)

1 + α
2F1(−α, 1 + α; 2 + α; 1/3). (20)
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Theorem 2.3 Suppose α > 0. For n ∈ {2, 3, 4, . . .} we have

E[L1,α
1 (Un)] = ((n− 2)2−α + 2)

Γ(n+ 1)Γ(α + 1)

Γ(n+ α + 1)
∼ 2−αΓ(α + 1)n1−α, (21)

as n → ∞. Also, for n ∈ {4, 5, 6, . . .}

Var[L1,α
1 (Un)] =

Γ(n+ 1)

Γ(n+ 2α + 1)

[

Γ(2α + 1)(2− 2 · 3−2α + 4−αn+ 2 · 3−1−2αn)

+Γ(α + 1)2(4 + 12 · 4−α − 12 · 2−α + 22−αn− 7 · 4−αn+ 4−αn2)
]

−
(

E[L1,α
1 (Un)]

)2
+ 8(n− 3)Jn,α, (22)

where E[L1,α
1 (Un)] is given by (21) and Jn,α is given by (19). Further, for α > 0

n2α−1Var[L1,α
1 (Un)] → (4−α + 2 · 3−1−2α)Γ(2α + 1)− 4−α(3 + α2)Γ(α + 1)2 + jα, (23)

as n → ∞, where jα is given by (20).

Using (22), with (19), we obtain, for instance

Var[L1,1
1 (Un)] =

2n2 + 17n+ 12

12(n+ 1)2(n+ 2)
=

1

6
n−1 +O(n−2),

and

Var[L1,2
1 (Un)] =

85n3 + 3645n2 + 7154n− 456

108(n+ 1)2(n+ 2)2(n+ 3)(n+ 4)
=

85

108
n−3 +O(n−4).

Table 1 below gives some values of Vα := limn→∞(n2α−1Var[L1,α
1 (Un)]). We prove Theorem

2.3 in Section 5. One can obtain analogous explicit results in the case of L1,α
1 (Pn), where

α 1
2

1 2 3 4

Vα
1
2
+
√
2 arcsin

(

1√
3

)

− 13π
32

≈ 0.094148 1
6

85
108

149
18

135793
972

Table 1: Some values of Vα.

Pn is a homogeneous Poisson point process of intensity n on (0, 1): see [25], where a
“Poissonized” version of (23) is given.

The remainder of the present paper is organized as follows. Our results on the ONG in
general dimensions (Theorem 2.1(ii) and (iii)) are proved in Section 3. The main body of
this paper, Section 4, is devoted to the ONG in one dimension and the proof of Theorem
2.2. In Section 5 we prove Theorem 2.3. Finally, in the Appendix, we give the proofs of
some technical lemmas which would otherwise interrupt the flow of the paper.

3 Proof of Theorem 2.1 (ii) and (iii)

Suppose d ∈ N. For i ∈ N, let Zi(d) := Od,1(Ui)−Od,1(Ui−1), setting Od,1(U0) := 0. That
is, Zi(d) is the gain in length of the ONG on a sequence of independent uniform random
points in (0, 1)d on the addition of the ith point. For x ∈ R

d and point set X ⊂ R
d, let

d1(x;X ) := inf{‖x− y‖ : y ∈ X \ {x}}
denote the (Euclidean) distance between x and its nearest neighbour in X \ {x}.
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Lemma 3.1 For α > 0 and d ∈ N, as n → ∞,

E[(Zn(d))
α] = O(n−α/d). (24)

Proof. We have

E[(Zn(d))
α] = E[(d1(U1;Un))

α] = n−α/d
E[(d1(n

1/dU1;n
1/dUn))

α],

which is O(n−α/d) (see the proof of Lemma 3.3 in [26]). �

Remark. We can obtain, by some more detailed analysis (see [25]),

E[(Zn(d))
α] = (nvd)

−α/dΓ(1 + (α/d)) + o(n−(α/d)).

Proof of Theorem 2.1(ii) and (iii). With the definition of Zi(d) in this section, let

W (d, α) =
∞
∑

i=1

(Zi(d))
α.

The sum converges almost surely since it has non-negative terms and, by (24), has finite
expectation for α > d. Let k ∈ N. By (24) and Hölder’s inequality, there exists a constant
C ∈ (0,∞) such that

E[(W (d, α))k] =
∞
∑

i1=1

∞
∑

i2=1

· · ·
∞
∑

ik=1

E[(Zi1(d))
α(Zi2(d))

α · · · (Zik(d))
α]

≤
∞
∑

i1=1

∞
∑

i2=1

· · ·
∞
∑

ik=1

E[(Zi1(d))
−αk]1/k · · ·E[(Zik(d))

−αk]1/k

≤ C

∞
∑

i1=1

∞
∑

i2=1

· · ·
∞
∑

ik=1

i
−α/d
1 i

−α/d
2 · · · i−α/d

k < ∞,

since α/d > 1. The Lk convergence then follows from the dominated convergence theorem,
and we have part (ii) of Theorem 2.1.

Finally, for (iii) of Theorem 2.1, we have, when α = d

n(Zn(d))
d d
= (d1(n

1/dU1;n
1/dUn))

d d−→ d1(0;H1)
d, (25)

where H1 denotes a homogeneous Poisson point process of unit intensity on (0, 1)d, by the
proof of Lemma 3.2 of [18]. Let B(x; r) denote the closed (Euclidean) d-ball with centre
x ∈ R

d and radius r > 0. For n ∈ N and r ≥ 0, by scaling,

P[(d1(n
1/dU1;n

1/dUn))
d > r] = P[n1/dd1(U1;Un) > r1/d] = P[d1(U1;Un) > (r/n)1/d].

For all r > 0 and n ≥ 2 this is bounded by

P(B(U1; (r/n)
1/d) ∩ (0, 1)d ∩ Un = {U1}) ≤ (1− C(r/n))n−1,

since for some C ∈ (0,∞) depending only on d, |B(U1; s) ∩ (0, 1)d| ≥ Csd for all U1 ∈
(0, 1)d and all s ≤ d, and the probability in the display is 0 for (r/n)1/d ≥ d. Thus for
some C ′ < ∞

sup
U1∈(0,1)d;n≥1

P((d1(n
1/dU1;n

1/dUn))
d > r) ≤ C ′ exp(−r/C ′).
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It follows that the sequence (d1(n
1/dU1;n

1/dUn))
d is uniformly integrable, and so by (25)

E[n(Zn(d))
d] → E[(d1(0;H1))

d] = v−1
d ,

where the last inequality follows by a simple computation, or by equation (19) of [26]. So
E[(Zn(d))

d] = n−1(v−1
d + h(n)) where h(n) → 0 as n → ∞. Thus

E

n
∑

i=1

(Zi(d))
d =

n
∑

i=1

i−1(v−1
d + h(i)) = v−1

d log n+ o(log n),

and so we have (5), completing the proof of Theorem 2.1. �

4 The ONG in d = 1

4.1 Notation and results

In this section we analyse the ONG in the interval (0, 1). Theorem 2.2 will follow from
the main result of this section, Theorem 4.1 below. We introduce our notation.

For any finite sequence of points Tn = (x1, x2, . . . , xn) ∈ [0, 1]n with distinct inter-
point distances, we construct the ONG as follows. Insert the points x1, x2, . . . into [0, 1]
in order, one at a time. We join a new point by an edge to its nearest neighbour among
those already present, provided that such a point exists. In other words, for each point
xi, i ≥ 2, we join xi by an edge to the point of {xj : 1 ≤ j < i} that minimizes |xi − xj|.
In this way we construct a tree rooted at x1, which we denote by ONG(Tn). Denote the
total weight (under weight function wα given by (2), α > 0) of ONG(Tn) by O1,α(Tn), to
be consistent with our previous notation.

For what follows, our main interest is the case in which Tn is a random vector in
[0, 1]n. In this case, set Õ1,α(Tn) := O1,α(Tn) − E[O1,α(Tn)], the centred total weight of
the ONG on Tn. Let (U1, U2, U3, . . .) be a sequence of independent uniformly distributed
random variables in (0, 1), and for n ∈ N set Un := (U1, U2, . . . , Un). Given Un, we define
the augmented sequences U0

n = (0, U1, . . . , Un) and U0,1
n = (0, 1, U1, . . . , Un). Notice that

ONG(U0,1
n ) and ONG(U0

n) both give a tree rooted at 0, and that in ONG(U0,1
n ) the first

edge is from 1 to 0.
We now state the main result of this section, from which Theorem 2.2 will follow.

The convergence of joint distribution results in (26) and (27) are given in more detail,
complete with joint distribution fixed-point representation, in Propositions 4.3 and 4.4.

Theorem 4.1 (i) For 1/2 < α < 1, we have that, as n → ∞,

(Õ1,α(U0,1
n ), Õ1,α(U0

n), Õ1,α(Un))
d−→ (J̃α, H̃α, G̃α), (26)

where J̃α, H̃α, G̃α are jointly distributed random variables with marginal distribu-
tions given by (10), (12), (15) respectively.

(ii) For α = 1, we have that, as n → ∞,

(Õ1,1(U0,1
n ), Õ1,1(U0

n), Õ1,1(Un))
d−→ (J̃1, H̃1, G̃1), (27)

11



where J̃1, H̃1, G̃1 are jointly distributed random variables with marginal distributions
given by (9), (11), (16) respectively. The first three moments of J̃1, H̃1 and G̃1

are given in Table 2. Further, the variables on the right-hand side of (27) satisfy
Cov(J̃1, H̃1) = ((9 + 6 log 2)/32) − (π2/24) ≈ −1.84204 × 10−5, Cov(G̃1, H̃1) =
((35 + 10 log 2)/48)− (π2/24) ≈ 0.0255536, and Cov(G̃1, J̃1) = ((7 + 4 log 2)/24)−
(π2/24) ≈ −4.04232× 10−3.

(iii) For α > 1, we have that, as n → ∞,

O1,α(U0,1
n ) → 1 + Jα; O1,α(U0

n) → Hα,

where the convergence is almost sure and in Lp, p ∈ N, and the distributions of Jα
and Hα are given by (13) and (14) respectively.

E[·] Var[·] E[(·)3]
J̃1 0 ((1 + log 2)/4)− (π2/24) ≈ 0.012053 ≈ −0.00005733

H̃1 0 ((3 + log 2)/8)− (π2/24) ≈ 0.050410 ≈ 0.00323456

G̃1 0 ((19 + 4 log 2)/48)− (π2/24) ≈ 0.042362 ≈ 0.00444287

Table 2: First three moments for the random variables J̃1, H̃1, G̃1.

Our method for establishing convergence in distribution results is based on the re-
cursive nature of the ONG. Essential is its self-similarity (scaling property). In terms
of the total weight, this says that for any t ∈ (0, 1), if V1, . . . , Vn are independent and
uniformly distributed on (0, t), then the distribution of O1,α(V1, . . . , Vn) is the same as
that of tαO1,α(U1, . . . , Un).

Write U = U1 for the position of the first arrival. For ease of notation, denote

Yn := O1,α(U0,1
n )− 1, (28)

where by subtracting 1 we discount the length of the edge from 1 to 0. Using the self-
similarity of the ONG, and conditioning on the first arrival, we have the following relations:

O1,α(Un)
d
= UαO1,α

{1}(U0
N(n)) + (1− U)αO1,α

{2}(U0
n−1−N(n)), (29)

O1,α(U0
n)

d
= UαO1,α

{1}(U
0,1
N(n)) + (1− U)αO1,α

{2}(U0
n−1−N(n)), (30)

Yn
d
= (min{U, 1− U})α + UαY

{1}
N(n) + (1− U)αY

{2}
n−1−N(n), (31)

where, given U , N(n) ∼ Bin(n − 1, U) gives the number of points of U2, U3, . . . , Un that
arrive to the left of U1 = U . Given U and N(n), O1,α

{1}(·) and O1,α
{2}(·) are independent

copies of O1,α(·). Also, given U and N(n), Y
{1}
N(n) and Y

{2}
n−1−N(n) are independent with the

distribution of YN(n) and Yn−1−N(n), respectively.
For α > 1, we prove almost sure and Lp (p ∈ N) convergence of O1,α(U0

n) and
O1,α(U0,1

n ), in the same way as in the proof of Theorem 2.1(ii), and thereby obtain the
corresponding result for O1,α(Un). The relations (29), (30) and (31) will then enable us
to prove the desired results for α > 1.
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For 1/2 < α ≤ 1, we use a result of Neininger and Rüschendorf [12] on limit theorems
for ‘divide and conquer’ recurrences. However, we cannot apply this directly to (29) to
obtain the convergence of O1,α(Un), since (29) is not of the required form; the variables
on the right are not of the same type as the variable on the left. On the other hand, we
see that (31) is of the desired form. This will be the basis of our analysis for 1/2 < α ≤ 1.

Indeed, by considering a vector defined in terms of all three of O1,α(Un), O1,α(U0
n), and

O1,α(U0,1
n ), we obtain the recurrence relation (72) below. We can then apply the result

of [12]. This is why we need to consider O1,α(U0
n) and O1,α(U0,1

n ) in addition to O1,α(Un).
Since it is the basis of some of our proofs, in Lemma 4.1 we recall the following result

of Neininger and Rüschendorf, which is the s = 2, dimension 3 case of Theorem 4.1 in [12].
Let (Xn) be a sequence of random 3-vectors satisfying the recurrence

Xn
d
=

k
∑

r=1

Ar(n)X
{r}
Ir(n)

+ B(n), (32)

for n ≥ n0 ≥ 1, where k ∈ N, I(n) := (I1(n), . . . , Ik(n)) is a vector of random car-
dinalities Ir(n) ∈ {0, . . . , n}, A1(n), . . . , Ak(n) are random 3 × 3 matrices, B(n) is a

random 3-vector, (X
{1}
n ), . . . , (X

{k}
n ) are independent copies of (Xn), and the vectors

(A1(n), . . . , Ak(n), B(n), I(n)), (X
{1}
n ), . . . , (X

{k}
n ) are independent.

For n ∈ N, let Mn := E[Xn]. We renormalize (32) by setting X̃n := Xn −Mn. Then
(X̃n) satisfies the modified recurrence

X̃n
d
=

k
∑

r=1

Ar(n)X̃
(r)
Ir(n)

+ B̃(n), (33)

for n ≥ n0, where for each r ∈ {1, . . . , k},

X̃
{r}
Ir(n)

= X
{r}
Ir(n)

−MIr(n) = X
{r}
Ir(n)

− E[XIr(n)|Ir(n)], (34)

and

B̃(n) = B(n)− E[Xn] +
k
∑

r=1

Ar(n)E[XIr(n)|Ir(n)]. (35)

Let ‖ · ‖op denote the operator norm; i.e. for a 3 × 3 matrix A, ‖A‖op := sup‖z‖=1 ‖Az‖,
where the supremum is over (column) 3-vectors with norm 1.

Lemma 4.1 [12] Suppose (Xn) satisfies (32). Set X̃n := Xn −Mn, so that X̃n satisfies
(33). Suppose that (X̃n) is square-integrable, and

(A1(n), . . . , Ak(n), B̃(n))
L2

−→ (A1, . . . , Ak, B), as n → ∞; (36)

E

k
∑

r=1

‖Ar‖2op < 1; (37)

E[1{Ir(n)≤ℓ}∪{Ir(n)=n}‖Ar(n)‖2op] → 0, (38)
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as n → ∞, for all ℓ ∈ N and r = 1, . . . , k. Then as n → ∞, X̃n converges to a limit X̃
in Zolotarev ζ2 metric, and hence in distribution (see e.g. Chapter 14 of [21]), where X
is the unique square-integrable solution to the fixed-point equation

X
d
=

k
∑

r=1

ArX
{r} +B,

where (A1, . . . , Ak, B), X{1}, . . . , X{k} are independent and each X{r} is distributed as X.

The outline of the remainder of this section is as follows. In Section 4.2 below, we
give a discussion of the theory of spacings, which will be very useful in the sequel. In
Section 4.3 we begin our analysis of the ONG with some preliminary results, based on
the discussion in Section 4.2. Then, in Sections 4.4, 4.5 and 4.6 we give results on O1,α(·)
when 1/2 < α < 1, α = 1, and α > 1 respectively. Finally, in Section 4.7 we give proofs
of Theorems 4.1 and 2.2.

4.2 Spacings

The one-dimensional models considered in this paper (the ONG and the standard nearest-
neighbour graph) are defined in terms of the spacings of points in the unit interval. Thus
the theory of so-called Dirichlet spacings will be useful. For some general references on
spacings, see for example [20]. A large number of statistical tests are based on spacings,
see e.g. [7] for a few examples.

Let U1, U2, . . . be independent uniform random variables on (0, 1). Let n ∈ N. Given
{U1, . . . , Un} ⊆ (0, 1), denote the order statistics of U1, . . . , Un, taken in increasing or-
der, as Un

(1), U
n
(2), . . . , U

n
(n). Thus (Un

(1), . . . , U
n
(n)) is a nondecreasing sequence, forming a

permutation of the original (U1, . . . , Un).
The points U1, . . . , Un divide [0, 1] into n + 1 intervals. Denote the intervals between

points by Inj := (Un
(j−1), U

n
(j)) for j = 1, 2, . . . , n+1, where we set Un

(0) := 0 and Un
(n+1) := 1.

Let the widths of these intervals (the spacings) be

Sn
j := |Inj | = Un

(j) − Un
(j−1),

for j = 1, 2, . . . , n+ 1. For n ∈ N, let ∆n ⊂ R
n denote the n-dimensional simplex, that is

∆n :=

{

(x1, . . . , xn) ∈ R
n : xi ≥ 0, 1 ≤ i ≤ n;

n
∑

i=1

xi ≤ 1

}

.

By the definition of Sn
j , we have that Sn

j ≥ 0 for j = 1, . . . , n + 1 and
∑n+1

j=1 S
n
j = 1.

So we see that the vector (Sn
1 , S

n
2 , . . . , S

n
n+1) is completely specified by any n of its n+ 1

components, and any such n-vector belongs to the simplex ∆n. It is not hard to show that
any such n-vector is, in fact, uniformly distributed over the simplex. Hence (Sn

1 , . . . , S
n
n)

is uniform over the simplex ∆n, and Sn
n+1 = 1−∑n

i=1 S
n
i .

Thus (Sn
1 , S

n
2 , . . . , S

n
n+1) has the symmetric Dirichlet distribution with parameter 1

(see, e.g., [5], p. 246), and any n-vector of the Sn
j has the Dirichlet density

f(x1, . . . , xn) = n!, (x1, . . . , xn) ∈ ∆n. (39)
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In particular, the spacings Sn
j , j = 1, . . . , n + 1 are exchangeable – the distribution of

(Sn
1 , S

n
2 , . . . , S

n
n+1) is invariant under any permutation of its components.

By integrating out over the simplex, from (39) one can readily obtain the marginal
distributions for the spacings. Thus, for n ≥ 1, a single spacing has density

f(x1) = n(1− x1)
n−1, 0 ≤ x1 ≤ 1, (40)

while for n ≥ 2, any two spacings have joint density

f(x1, x2) = n(n− 1)(1− x1 − x2)
n−2, (x1, x2) ∈ ∆2, (41)

and for n ≥ 3 any three spacings have joint density

f(x1, x2, x3) = n(n− 1)(n− 2)(1− x1 − x2 − x3)
n−3, (x1, x2, x3) ∈ ∆3. (42)

In fact, for 1 ≤ k < n and xi ≥ 0, i = 1, . . . , k such that
∑k

i=1 xi ≤ 1,

P[Sn
i > xi, i = 1, . . . , k] =

(

1−
k
∑

i=1

xi

)n

; (43)

this is n! times the volume of a smaller simplex. Using the fact that (see, e.g., 6.2.1 in [1])

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
, (44)

for a > 0, b > 0, it then follows from (40) that, for β > 0, n ≥ 1

E
[

(Sn
1 )

β
]

=
Γ(n+ 1)Γ(β + 1)

Γ(n+ β + 1)
, (45)

and from (41) that for β > 0, n ≥ 2

E
[

(Sn
1 )

β(Sn
2 )

β
]

=
Γ(n+ 1)Γ(β + 1)2

Γ(n+ 2β + 1)
. (46)

When considering our nearest-neighbour graphs, we will encounter the minimum of two
(or more) spacings. The following results will also be needed in Section 5.

Lemma 4.2 For n ≥ 1,

min{Sn
1 , S

n
2 }

d
= Sn

1 /2. (47)

For n ≥ 2,

(Sn
1 ,min{Sn

2 , S
n
3 })

d
= (Sn

1 , S
n
2 /2). (48)

Finally, for n ≥ 3

(min{Sn
1 , S

n
2 },min{Sn

3 , S
n
4 })

d
= (Sn

1 /2, S
n
2 /2); and (49)

min{Sn
1 , S

n
2 , S

n
3 }

d
= Sn

1 /3. (50)
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Proof. These results follow from the observation (43), or directly; for example we give
the direct proof of (47) (similar calculations can be used in the other cases). Suppose
n ≥ 2. From (41), we have, for 0 ≤ r ≤ 1/2

P[min{Sn
1 , S

n
2 } > r] = P[Sn

1 > r, Sn
2 > r]

= n(n− 1)

∫ 1−r

r

dx1

∫ 1−x1

r

(1− x1 − x2)
n−2dx2

= (1− 2r)n = P[Sn
1 > 2r],

and so we have (47). �

4.3 Preparatory results

We now return to the ONG. We make use of the discussion of spacings in Section 4.2.
For n ∈ N let Zn, Hn and Tn denote the random variables given by the gain in length, on
the addition of the point Un, of the ONG on Un−1, U0

n−1 and U0,1
n−1 respectively. That is,

with the convention O1,1(U0) = O1,1(U0
0 ) = 0 and O1,1(U0,1

0 ) = 1, for n ∈ N set

Zn := O1,1(Un)−O1,1(Un−1), (51)

Hn := O1,1(U0
n)−O1,1(U0

n−1),

Tn := O1,1(U0,1
n )−O1,1(U0,1

n−1).

Thus, for example, in the ONG(U0,1
n ) with weight function wα as given by (2), the nth

edge to be added has weight T α
n .

We will make use of the following discussion for the proof of Lemma 4.3 below. For
α > 0, with the definitions at (51), we have that

O1,α(U0
n)−O1,α(U0,1

n ) = −1 +
n
∑

i=1

(Hα
i − T α

i ) , and (52)

O1,α(Un)−O1,α(U0
n) =

n
∑

i=1

(Zα
i −Hα

i ) = −Hα
1 +

n
∑

i=2

(Zα
i −Hα

i ) , (53)

since Z1 = 0. Consider the arrival of the point Un. For any n, Tn and Hn are the same
unless the point Un falls in the right-hand half of the rightmost interval In−1

n of width
Sn−1
n . Denote this latter event by En. Given Sn−1

n , the probability of En is Sn−1
n /2. Given

Sn−1
n , and given that En occurs, the value of Tn is given by (1− Vn)S

n−1
n /2 and the value

of Hn by (1 + Vn)S
n−1
n /2, where Vn = 1 + 2(Un − 1)/Sn−1

n is uniform on (0, 1) given En.
So we have that, for n ∈ N, given Sn−1

n

Hα
n − T α

n = 1En

(

Sn−1
n

2

)α

((1 + Vn)
α − (1− Vn)

α) , (54)

where En is an event with probability Sn−1
n /2. A similar argument (based this time on

the leftmost spacing) yields that, for n ≥ 2

Zα
n −Hα

n = 1Fn

(

Sn−1
1

2

)α

((1 +Wn)
α − (1−Wn)

α) , (55)
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where Fn is an event with probability Sn−1
1 /2 and, given Fn, Wn is uniform on (0, 1).

We will need the following asymptotic expansion, which follows from Stirling’s formula
(see e.g. 6.1.37 in [1]). For any β > 0, as n → ∞,

Γ(n+ 1)

Γ(n+ 1 + β)
= n−β − 1

2
β(β + 1)n−β−1 +O(n−β−2). (56)

Lemma 4.3 For α > 0 and n ≥ 2, we have that

E[O1,α(U0
n)−O1,α(U0,1

n )] =
1− 2−α − α

α
+ (2−α − 1)

Γ(α)Γ(n+ 1)

Γ(n+ 1 + α)

=
1− 2−α − α

α
+O(n−α), (57)

and

E[O1,α(Un)−O1,α(U0
n)] =

1− 2−α − α

α(1 + α)
+ (2−α − 1)

Γ(α)Γ(n+ 1)

Γ(n+ 1 + α)

=
1− 2−α − α

α(1 + α)
+O(n−α). (58)

Proof. Suppose α > 0. From (54) we have that for n ∈ N

E[Hα
n − T α

n |Sn−1
n ] = (Sn−1

n )1+α

(

1− 2−α

1 + α

)

.

So by (45) we have that

E[Hα
n − T α

n ] =
(1− 2−α)Γ(1 + α)Γ(n)

Γ(n+ 1 + α)
.

Thus, from (52),

E[O1,α(U0
n)−O1,1(U0,1

n )] = −1 + E

n
∑

i=1

(Hα
i − T α

i ) = −1 +
n
∑

i=1

(1− 2−α)Γ(1 + α)Γ(i)

Γ(i+ 1 + α)
.

Then the first line of (57) follows by induction on n, with the second line of (57) following
by (56). Similarly, from (55)

E[Zα
n −Hα

n ] =
(1− 2−α)Γ(1 + α)Γ(n)

Γ(n+ 1 + α)
,

for n ≥ 2, while E[Hα
1 ] = E[Uα

1 ] = (α + 1)−1 and Z1 = 0. With (56), (58) follows. �

Lemma 4.4 (i) For n ∈ N, Tn as defined at (51) has distribution function Fn given by
Fn(t) = 0 for t < 0, Fn(t) = 1 for t ≥ 1/2, and Fn(t) = 1−(1−2t)n for 0 ≤ t ≤ 1/2.

(ii) For β > 0,

E[T β
n ] = 2−βΓ(n+ 1)Γ(β + 1)

Γ(n+ β + 1)
. (59)

In particular,

E[Tn] =
1

2(n+ 1)
; Var[Tn] =

n

4(n+ 1)2(n+ 2)
. (60)
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(iii) For β > 0, as n → ∞

E[T β
n ] = 2−βΓ(β + 1)n−β +O(n−β−1).

(iv) As n → ∞,

2nTn
d−→ Exp(1),

where Exp(1) is an exponential random variable with parameter 1.

Proof. By conditioning on the number of Uj , j ≤ n with Uj ≤ Un, using Lemma 4.2, and

by exchangeability of the spacings, we have that for n ≥ 1, Tn
d
= min{Sn

1 , S
n
2 }

d
= Sn

1 /2, by
(47). Then (i) follows by (40), and (ii) follows by (45). Part (iii) then follows from part (ii)
by (56). For (iv), we have that, for t ∈ [0,∞), and n large enough so that t/(2n) ≤ 1/2,

P[2nTn > t] = P[Tn > t/(2n)] = (1− (t/n))n → e−t,

as n → ∞, but 1 − e−t, t ≥ 0 is the distribution function of an exponential random
variable with parameter 1. �

Proposition 4.1 Recall that γ ≈ 0.57721566 is Euler’s constant, defined at (6). Suppose
α > 0. As n → ∞, we have

E[O1,α(U0,1
n )] =

Γ(α + 1)

1− α
2−αn1−α + 1− 2−α

1− α
+O(n−α); (0 < α < 1) (61)

E[O1,1(U0,1
n )] =

1

2
log n+

1

2
(γ + 1) +O(n−1); (62)

E[O1,α(U0,1
n )] = 1 +

2−α

α− 1
+O(n1−α) (α > 1) (63)

Proof. Counting the first edge from 1 to 0, we have

E[O1,α(U0,1
n )] = 1 +

n
∑

i=1

(

E[O1,α(U0,1
i )]− E[O1,α(U0,1

i−1)]
)

= 1 +
n
∑

i=1

E[T α
i ].

In the case where α = 1, E[Ti] = (2(i+1))−1 by (60), and (62) follows by (6). For general
α > 0, α 6= 1, from (59) we have that

E[O1,α(U0,1
n )] = 1 + 2−αΓ(1 + α)

n
∑

i=1

Γ(i+ 1)

Γ(1 + α + i)

= 1 +
2−α

α− 1
− 2−αΓ(1 + α)Γ(n+ 2)

(α− 1)Γ(n+ 1 + α)
, (64)

the final equality proved by induction on n. By Stirling’s formula, the last term satisfies

−2−αΓ(1 + α)Γ(n+ 2)

(α− 1)Γ(n+ 1 + α)
= −2−αΓ(1 + α)

α− 1
n1−α(1 +O(n−1)), (65)

which tends to zero as n → ∞ for α > 1, to give us (63). For α < 1, we have (61) from
(64) and (65). �
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Proposition 4.2 Suppose α > 0. As n → ∞, we have

E[O1,α(U0
n)] =

Γ(α + 1)

1− α
2−αn1−α +

1

α
− 2−α

α(1− α)
+O(n−α); (0 < α < 1)

E[O1,1(U0
n)] =

1

2
log n+

1

2
γ +O(n−1);

E[O1,α(U0
n)] =

1

α
+

2−α

α(α− 1)
+O(n1−α) (α > 1) (66)

Proof. This follows from Proposition 4.1 with (57). �

Lemma 4.5 Suppose α > 1/2. Then there exists C ∈ (0,∞) such that for all n ∈ N,

Var[Õ1,α(Un)] ≤ C, Var[Õ1,α(U0
n)] ≤ C, Var[Õ1,α(U0,1

n )] ≤ C.

Proof. The statement for Un for α > 1 follows from Theorem 2.1(ii), and for α > 1/2 is
proved in [27]. From (55) we have that

E[(Zα
n −Hα

n )
2] ≤ CE[(Sn−1

n )2α+1] ≤ Cn−1−2α,

by (45) and (56). So by Cauchy-Schwarz we obtain

E





(

n
∑

i=2

(Zα
i −Hα

i )

)2


 ≤
n
∑

i=2

n
∑

j=2

(E[(Zα
i −Hα

i )
2])1/2(E[(Zα

j −Hα
j )

2])1/2

≤ C

n
∑

i=2

n
∑

j=2

i−(1/2)−αj−(1/2)−α,

which is uniformly bounded for n ≥ 2 since α > 1/2. Thus from (53) and Cauchy-Schwarz
again we obtain

E[(O1,α(Un)−O1,α(U0
n))

2] ≤ C < ∞,

for all n ∈ N. The statement for U0
n in the lemma then follows. The statement for U0,1

n

follows in a similar way, this time using (52) and (54). �

4.4 Limit theory when 1/2 < α < 1

Let U be uniform on (0, 1), and given U , let N(n) ∼ Bin(n− 1, U). Set

Dα(n) := (n− 1)1/2

(

Uα

(

N(n)

n− 1

)1−α

+ (1− U)α
(

n− 1−N(n)

n− 1

)1−α

− 1

)

. (67)

Lemma 4.6 Suppose 0 ≤ α ≤ 1. Then, as n → ∞,

Dα(n)
L3

−→ 0. (68)

We defer the proof of this lemma to the Appendix. Note that for what follows in this
paper we will only use L2 convergence in (68). However, the stronger L3 version requires
little extra work, and we anticipate using it in future work.
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Proposition 4.3 Suppose 1/2 < α < 1. Then as n → ∞,




Õ1,α(U0,1
n )

Õ1,α(U0
n)− Õ1,α(U0,1

n )

Õ1,α(Un)− Õ1,α(U0
n)





d−→





J̃α
R̃

S̃



 , (69)

where (J̃α, R̃, S̃)⊤ satisfies the fixed-point equation




J̃α
R̃

S̃





d
=





Uα 0 0
0 0 0
0 Uα 0









J̃
{1}
α

R̃{1}

S̃{1}



+





(1− U)α 0 0
0 (1− U)α 0
0 0 0









J̃
{2}
α

R̃{2}

S̃{2}





+







min{U, 1− U}α + 2−α

α−1
((1− U)α + Uα − 1)

(Uα − (1− U)α)1{U>1/2} + ((1− U)α − 1)1−2−α

α

(Uα − 1
1+α

)1−2−α−α
α






. (70)

In particular, J̃α satisfies the fixed-point equation (10). Also, E[J̃α] = E[R̃] = E[S̃] = 0.

Proof. We use Lemma 4.1 (from Theorem 4.1 of [12]). Recall the definition of Yn at
(28). Let

Rn := O1,α(U0
n)−O1,α(U0,1

n ) + 1, Sn := O1,α(Un)−O1,α(U0
n). (71)

Write U = U1 for the position of the first arrival. Given U , let N(n) ∼ Bin(n − 1, U)
be the number of points of U2, U3, . . . , Un that arrive to the left of U1 = U . Using the
self-similarity of the ONG, we have that Xn = (Yn, Rn, Sn)

⊤ satisfies, for α > 0, and
n ≥ 1





Yn

Rn

Sn





d
=





Uα 0 0
0 0 0
0 Uα 0











Y
{1}
N(n)

R
{1}
N(n)

S
{1}
N(n)







+





(1− U)α 0 0
0 (1− U)α 0
0 0 0











Y
{2}
n−1−N(n)

R
{2}
n−1−N(n)

S
{2}
n−1−N(n)






+





min{U, 1− U}α
(Uα − (1− U)α)1{U>1/2}
−Uα



 , (72)

where, given U and N(n), Y
{1}
N(n), Y

{2}
n−1−N(n) are independent copies of YN(n), Yn−1−N(n)

respectively, and similarly for the Rs and Ss. This equation is of the form of (32) with
k = 2. Suppose 1/2 < α < 1. We now renormalize (72) by taking

(Ỹn, R̃n, S̃n)
⊤ := (Yn − E[Yn], Rn − E[Rn], Sn − E[Sn])

⊤, (73)

so we are now in the situation of Lemma 4.1, with X̃n = (Ỹn, R̃n, S̃n)
⊤. In particular,

Ỹn = Õ1,α(U0,1
n ), R̃n = Õ1,α(U0

n)− Õ1,α(U0,1
n ), S̃n = Õ1,α(Un)− Õ1,α(U0

n). (74)

Now using the notation of (34) and (35), and the expressions for the expectations at (61),
(57) and (58), from (72) we obtain

X̃n
d
=





Uα 0 0
0 0 0
0 Uα 0



 X̃
{1}
N(n) +





(1− U)α 0 0
0 (1− U)α 0
0 0 0



 X̃
{2}
n−1−N(n) + B̃(n), (75)
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where

B̃(n) =







min{U, 1− U}α + Cα(n− 1)(1/2)−αDα(n) +
2−α

α−1
(Uα + (1− U)α − 1)

(Uα − (1− U)α)1{U>1/2} +
1−2−α

α
((1− U)α − 1)

(Uα − 1
1+α

)1−2−α−α
α







+





Uαh(N(n)) + (1− U)αh(n− 1−N(n))− h(n)
(1− U)αk(n− 1−N(n))− k(n)
Uαk(N(n))− ℓ(n)



 ,

where Dα(n) is as defined at (67), h(n), k(n), ℓ(n) are all o(1) as n → ∞ and Cα is a
constant.

The fact that X̃n is square-integrable, as required for Lemma 4.1, follows from Lemma
4.5. In order to apply Lemma 4.1, we need to verify the conditions (36), (37) and (38).
By Lemma 4.6, (n−1)(1/2)−αDα(n) tends to zero in L2 as n → ∞, for 1/2 < α < 1. Thus,
for condition (36), as n → ∞,

B̃(n)
L2

−→







min{U, 1− U}α + 2−α

α−1
(Uα + (1− U)α − 1)

(Uα − (1− U)α)1{U>1/2} +
1−2−α

α
((1− U)α − 1)

(Uα − 1
1+α

)1−2−α−α
α






. (76)

Also, for condition (37),

E





∥

∥

∥

∥

∥

∥





Uα 0 0
0 0 0
0 Uα 0





∥

∥

∥

∥

∥

∥

2

op

+

∥

∥

∥

∥

∥

∥





(1− U)α 0 0
0 (1− U)α 0
0 0 0





∥

∥

∥

∥

∥

∥

2

op



 =
2

2α + 1
< 1, (77)

for α > 1/2. Finally, for condition (38), for α > 0 and any ℓ ∈ N, as n → ∞

E
[

1{N(n)≤ℓ}∪{N(n)=n}U
2α
]

→ 0; E
[

1{n−1−N(n)≤ℓ}∪{n−1−N(n)=n}(1− U)2α
]

→ 0, (78)

since, for example for any ℓ ∈ N, as n → ∞

E
[

1{N(n)≤ℓ}∪{N(n)=n}U
2α
]

≤ P(N(n) ≤ ℓ) → 0,

by standard properties of the binomial distribution. Now with k = 2, Lemma 4.1 applied
to equation (75), with the conditions (77), (76) and (78), implies that X̃n = (Ỹn, R̃n, S̃n)

⊤

converges in distribution to some X = (Ỹ , R̃, S̃)⊤, where E[Ỹ ] = E[R̃] = E[S̃] = 0 and
the distribution of (Ỹ , R̃, S̃)⊤ is characterized by the fixed-point equation





Ỹ

R̃

S̃





d
=





Uα 0 0
0 0 0
0 Uα 0









Ỹ {1}

R̃{1}

S̃{1}



+





(1− U)α 0 0
0 (1− U)α 0
0 0 0









Ỹ {2}

R̃{2}

S̃{2}





+







min{U, 1− U}α + ((1− U)α + Uα − 1) 2
−α

α−1

(Uα − (1− U)α)1{U>1/2} + ((1− U)α − 1)1−2−α

α
(

Uα − 1
1+α

)

1−2−α−α
α






. (79)

That is, Ỹ satisfies (10), so that Ỹ has the distribution of J̃α, and setting Ỹ = J̃α in (79)
gives (70). Then (69) follows by (74). �
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4.5 Limit theory when α=1

Proposition 4.4 below is our main convergence result when α = 1. First, we need the
following result, the proof of which we defer to the Appendix. For x ≥ 0, set log+ x :=
max{log x, 0}.

Lemma 4.7 Let U be uniform on (0, 1) and, given U , let N(n) ∼ Bin(n− 1, U). Then,
as n → ∞,

U(log+N(n)− log n)
L2

−→ U logU ; (80)

(1− U)(log+(n− 1−N(n))− log n)
L2

−→ (1− U) log(1− U). (81)

Proposition 4.4 As n → ∞,





Õ1,1(U0,1
n )

Õ1,1(U0
n)− Õ1,1(U0,1

n )

Õ1,1(Un)− Õ1,1(U0
n)





d−→





J̃1
R̃

S̃



 , (82)

where (J̃1, R̃, S̃)⊤ satisfies the fixed-point equation





J̃1
R̃

S̃





d
=





U 0 0
0 0 0
0 U 0









J̃
{1}
1

R̃{1}

S̃{1}



+





1− U 0 0
0 1− U 0
0 0 0









J̃
{2}
1

R̃{2}

S̃{2}





+





U
2
logU + 1−U

2
log(1− U) + min{U, 1− U}

(2U − 1)1{U>1/2} − U
2

1
4
− U

2



 . (83)

In particular, J̃1 satisfies the fixed-point equation (9). Also, E[J̃1] = E[R̃] = E[S̃] = 0,
Var[R̃] = 1/16, Var[S̃] = 1/24, and

Var[J̃1] =
1

4
(1 + log 2)− π2

24
≈ 0.012053, (84)

and E[J̃3
1 ] ≈ −0.00005732546.

Proof. We follow the proof of Proposition 4.3. Recall the definition of Yn at (28). Again
define Rn and Sn as at (71), this time with α = 1. Now the α = 1 case of (72) holds, and
we are in the situation of (32) with Xn = (Yn, Rn, Sn)

⊤. We now renormalize (72), taking
X̃n = Xn −Mn with the notation of (73) and (33). By (62) we have

E[Yn] = E[O1,1(U0,1
n )]− 1 =

1

2
log n+

1

2
(γ − 1) + h(n),

where h(n) = o(1), while by the α = 1 case of (57) E[Rn] = (1/2) + k(n), where k(n) =
O(n−1), and by the α = 1 case of (58) E[Sn] = −(1/4)+ℓ(n), where ℓ(n) = O(n−1). Then
the modified version of (72) is

X̃n
d
=





U 0 0
0 0 0
0 U 0



 X̃
{1}
N(n) +





1− U 0 0
0 1− U 0
0 0 0



 X̃
{2}
n−1−N(n) + B̃(n), (85)
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where

B̃(n) =





Uh(N(n)) + (1− U)h(n− 1−N(n))− h(n)
(1− U)k(n− 1−N(n))− k(n)
Uk(N(n))− ℓ(n)





+





min{U, 1− U}+ U
2
(log+ N(n)− log n) + 1−U

2
(log+(n− 1−N(n))− log n)

(2U − 1)1{U>1/2} − U
2

1
4
− U

2



 .

By the SLLN and dominated convergence, the first vector on the right of the above
equation tends to 0 in L2. So by Lemma 4.7 we obtain

B̃(n)
L2

−→





U
2
logU + 1−U

2
log(1− U) + min{U, 1− U}

(2U − 1)1{U>1/2} − U
2

1
4
− U

2



 , (86)

as n → ∞. The conditions of Lemma 4.1 are satisfied, by Lemma 4.5 and equations (77),
(78) and (86). Then Lemma 4.1 applied to equation (85) shows that X̃n = (Ỹn, R̃n, S̃n)

⊤

converges in distribution to X = (Ỹ , R̃, S̃)⊤, where E[Ỹ ] = E[R̃] = E[S̃] = 0 and the
distribution of (Ỹ , R̃, S̃)⊤ is characterized by the fixed-point equation





Ỹ

R̃

S̃





d
=





U 0 0
0 0 0
0 U 0









Ỹ {1}

R̃{1}

S̃{1}



+





1− U 0 0
0 1− U 0
0 0 0









Ỹ {2}

R̃{2}

S̃{2}





+





U
2
logU + 1−U

2
log(1− U) + min{U, 1− U}

(2U − 1)1{U>1/2} − U
2

1
4
− U

2



 . (87)

That is, Ỹ satisfies (9), so that Ỹ has the distribution of J̃1, and setting Ỹ = J̃1 in (87)
gives (83). By the α = 1 case of (74) we then have (82).

It remains to prove the results for the higher moments of J̃1. For the variance of J̃1,
squaring both sides of (9), taking expectations, and using independence and the fact that
E[J̃1] = 0, we obtain

E[J̃2
1 ] =

2

3
E[J̃2

1 ] + E[min{U, 1− U}2] + 1

2
E[U2(logU)2]

+
1

2
E[U(1− U) logU log(1− U)] + 2E[U logU min{U, 1− U}].

The integrals required for the expectations are standard, and we find that E[J̃2
1 ] = ((1 +

log 2)/4) − (π2/24), which yields (84). Similarly, we obtain the third moment E[J̃3
1 ] ≈

−0.00005732546 from (9), although in this case numerical methods are required for some
of the integrals. �

4.6 Limit theory for α > 1

Proposition 4.5 Let α > 1.

(i) There exists a r.v. Jα such that as n → ∞ O1,α(U0,1
n ) → 1 + Jα a.s. and in Lp,

p ∈ N. Also, Jα satisfies the fixed-point equality (13), and E[Jα] = 2−α/(α− 1).
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(ii) There exists a r.v. Hα such that as n → ∞ O1,α(U0
n) → Hα a.s. and in Lp, p ∈ N.

Also, Hα satisfies the fixed-point equality (14), and E[Hα] = (1/α)+2−α/(α(α−1)).

Proof. First we prove part (i). Let Ti be the length of the ith edge of the ONG on
U0,1
n , as defined at (51). Let Jα :=

∑∞
i=1 T

α
i . The sum converges almost surely since it

has non-negative terms and, by (63), for α > 1 the partial sums have uniformly bounded
expectation so that the infinite sum has finite expectation. By a similar argument to the
proof of Theorem 2.1 (ii) in Section 3, the Lp convergence follows by Hölder’s inequality
and dominated convergence.

We now identify the limit. We have (31), this time for α > 1. As n → ∞, N(n) and
n−N(n) both tend to infinity almost surely, and so, by taking n → ∞ in (31), we obtain
the fixed-point equation (13).

The identity E[Jα] = 2−α(α− 1)−1 is obtained either from (63), or by taking expecta-
tions in (13). Next, if we set J̃α = Jα − E[Jα], (13) yields (10).

We now prove part (ii). Following the above argument with the Hi replacing the Ti

and using (66) in place of (63) gives that O1,α(U0
n) converges a.s. and in Lp, p ∈ N, to

some random variable. Once more, we need to identify the limit.
Consider the α > 1 case of (30). As n → ∞, N(n) and n−N(n) both tend to infinity

almost surely, and so, by taking n → ∞ in (30), and using the fact that O1,α(U0,1
N(n))

converges almost surely to 1+Jα (by part (i)), and that O1,α(U0
n−1−N(n)) converges almost

surely to Hα (by the argument above) we obtain the fixed-point equation (14).
The identity E[Hα] = α−1+2−αα−1(α−1)−1 is obtained either from (66), or by taking

expectations in (14). Next, if we set H̃α = Hα − E[Hα], (14) yields (12). �

4.7 Proof of Theorems 4.1 and 2.2

Proof of Theorem 4.1. First we prove part (i) of the theorem. For 1/2 < α < 1 we
have that




Õ1,α(U0,1
n )

Õ1,α(U0
n)

Õ1,α(Un)



 =





1 0 0
1 1 0
1 1 1









Õ1,α(U0,1
n )

Õ1,α(U0
n)− Õ1,α(U0,1

n )

Õ1,α(Un)− Õ1,α(U0
n)





d−→





1 0 0
1 1 0
1 1 1









J̃α
R̃

S̃



 , (88)

as n → ∞, by Proposition 4.3. By (70), the final term in (88) is equal in distribution to





1 0 0
1 1 0
1 1 1









Uα 0 0
0 0 0
0 Uα 0









J̃
{1}
α

R̃{1}

S̃{1}



+





1 0 0
1 1 0
1 1 1









(1− U)α 0 0
0 (1− U)α 0
0 0 0









J̃
{2}
α

R̃{2}

S̃{2}





+





1 0 0
1 1 0
1 1 1











min{U, 1− U}α + ((1− U)α + Uα − 1) 2
−α

α−1

(Uα − (1− U)α)1{U>1/2} +
1−2−α

α
((1− U)α − 1)

(Uα − 1
1+α

)1−2−α−α
α






.

Multiplying out and noting (Uα − (1− U)α)1{U>1/2} = Uα −min{U, 1− U}α we get





Õ1,α(U0,1
n )

Õ1,α(U0
n)

Õ1,α(Un)





d−→





J̃α
J̃α + R̃

J̃α + R̃ + S̃





d
= Uα







J̃
{1}
α

J̃
{1}
α

J̃
{1}
α + R̃{1}






+ (1− U)α







J̃
{2}
α

J̃
{2}
α + R̃{2}

J̃
{2}
α + R̃{2}






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+







min{U, 1− U}α + ((1− U)α + Uα − 1) 2
−α

α−1

Uα(1 + 2−α

α−1
) + ((1− U)α − 1)( 1

α
+ 2−α

α(α−1)
)

(Uα + (1− U)α − 2
1+α

)( 1
α
− 2−α

α(1−α)
)






.

So setting H̃α = J̃α + R̃ and G̃α = J̃α + R̃ + S̃, we have (26).
Now we prove part (ii) of the theorem. For α = 1, as an analogue of (88),





Õ1,1(U0,1
n )

Õ1,1(U0
n)

Õ1,1(Un)



 =





1 0 0
1 1 0
1 1 1









Õ1,1(U0,1
n )

Õ1,1(U0
n)− Õ1,1(U0,1

n )

Õ1,1(Un)− Õ1,1(U0
n)





d−→





1 0 0
1 1 0
1 1 1









J̃1
R̃

S̃



 , (89)

as n → ∞, by Proposition 4.4. By (83), the final term in (89) is equal in distribution to





1 0 0
1 1 0
1 1 1









U 0 0
0 0 0
0 U 0









J̃
{1}
1

R̃{1}

S̃{1}



+





1 0 0
1 1 0
1 1 1









1− U 0 0
0 1− U 0
0 0 0









J̃
{2}
1

R̃{2}

S̃{2}





+





1 0 0
1 1 0
1 1 1









U
2
logU + 1−U

2
log(1− U) + min{U, 1− U}

(2U − 1)1{U>1/2} − U
2

1
4
− U

2



 .

Multiplying out and using the fact that (2U − 1)1{U>1/2} = U −min{U, 1− U} we have





Õ1,1(U0,1
n )

Õ1,1(U0
n)

Õ1,1(Un)





d−→





J̃1
J̃1 + R̃

J̃1 + R̃ + S̃





d
= U







J̃
{1}
1

J̃
{1}
1

J̃
{1}
1 + R̃{1}






+ (1− U)







J̃
{2}
1

J̃
{2}
1 + R̃{2}

J̃
{2}
1 + R̃{2}







+





(U/2) logU + 1−U
2

log(1− U) + min{U, 1− U}
(U/2) logU + 1−U

2
log(1− U) + U

2

(U/2) logU + 1−U
2

log(1− U) + 1
4



 .

So setting H̃1 = J̃1 + R̃ and G̃1 = J̃1 + R̃ + S̃, we have (27). Proposition 4.4 gives
E[J̃1] = E[R̃] = E[S̃] = 0, and so E[H̃1] = E[G̃1] = 0 also. Proposition 4.4 also gives
Var[J̃1]. We obtain the higher moments of H̃1 and G̃1 from (11) and (16). The stated
covariances follow from (83) and the moments given in Proposition 4.4.

Finally, part (iii) of the theorem is Proposition 4.5. �

Proof of Theorem 2.2. Parts (i) and (ii) of the theorem follow directly from the
corresponding parts of Theorem 4.1. It remains to prove part (iii) of the theorem. Suppose
α > 1. Consider the α > 1 case of (29). We use the fact that N(n) and n − N(n) tend
to infinity almost surely, the independence given U and N(n), and the convergence in Lp

and almost surely of Õ1,α(U0
n) (for α > 1) to obtain the result. �

5 Proof of Theorem 2.3

Proof of Theorem 2.3. We make use of the theory of Dirichlet spacings as discussed
in Section 4.2. Since the nearest-neighbour (directed) graph joins each vertex (which sits
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at the endpoint of each spacing apart from the points 0 and 1) to its nearest neighbour,
we have, for n ≥ 3

L1,α
1 (Un) = (Sn

2 )
α + (Sn

n)
α +

n−1
∑

i=2

(

min{Sn
i , S

n
i+1}

)α
. (90)

Now, from (90), using exchangeability we have that

E[L1,α
1 (Un)] = 2E[(Sn

1 )
α] + (n− 2)E[(min{Sn

1 , S
n
2 })α],

where, from (47) and (45) we have

E [(min{Sn
1 , S

n
2 })α] = 2−α

E[(Sn
1 )

α] = 2−αΓ(α + 1)Γ(n+ 1)

Γ(n+ α + 1)
. (91)

Then (21) follows. We now prove (22). Squaring both sides of (90) and taking expecta-
tions, we have

E

[

(

L1,α
1 (Un)

)2
]

=
n−1
∑

i=2

E

[

(

min{Sn
i , S

n
i+1}

)2α
]

+ 2
n−1
∑

i=3

i−1
∑

j=2

E
[(

min{Sn
i , S

n
i+1}

)α (
min{Sn

j , S
n
j+1}

)α]

+E[(Sn
2 )

2α] + E[(Sn
n)

2α] + 2
n−1
∑

i=2

E[(Sn
2 )

α(min{Sn
i , S

n
i+1})α]

+2
n−1
∑

i=2

E[(Sn
n)

α(min{Sn
i , S

n
i+1})α] + 2E[(Sn

2 )
α(Sn

n)
α].

Then, by exchangeability,

E

[

(

L1,α
1 (Un)

)2
]

= (n− 2)E
[

(min{Sn
1 , S

n
2 })2α

]

+ 2E[(Sn
1S

n
2 )

α]

+(n− 3)(n− 4)E [(min{Sn
1 , S

n
2 })α (min{Sn

3 , S
n
4 })α]

+2(n− 3)E [(min{Sn
1 , S

n
2 })α (min{Sn

2 , S
n
3 })α] + 2E[(Sn

1 )
2α]

+4(n− 3)E[(Sn
1 )

α(min{Sn
2 , S

n
3 })α] + 4E[(Sn

1 )
α(min{Sn

1 , S
n
2 })α]. (92)

Now, by (46) and (48) we have

E[(Sn
1 )

α(min{Sn
2 , S

n
3 })α] = 2−αΓ(n+ 1)Γ(1 + α)2

Γ(n+ 1 + 2α)
,

and, using (46) this time with (49) we obtain

E[(min{Sn
1 , S

n
2 })α(min{Sn

3 , S
n
4 })α] = 2−2αΓ(n+ 1)Γ(1 + α)2

Γ(n+ 1 + 2α)
.

Also we have that

E[(Sn
1 )

α(min{Sn
1 , S

n
2 })α] = E[(Sn

1 )
2α1{Sn

1
<Sn

2
}] + E[(Sn

1 )
α(Sn

2 )
α1{Sn

1
>Sn

2
}]

=
1

2
E[(min{Sn

1 , S
n
2 })2α] +

1

2
E[(Sn

1 )
α(Sn

2 )
α].
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Hence from (91) and (46) we obtain

E[(Sn
1 )

α(min{Sn
1 , S

n
2 })α] =

1

2

(

2−2αΓ(1 + 2α) + Γ(1 + α)2
) Γ(n+ 1)

Γ(n+ 1 + 2α)
.

The final term on the right-hand side of (92) that we need to evaluate is

E[(min{Sn
1 , S

n
2 })α(min{Sn

2 , S
n
3 })α] = E[(Sn

2 )
2α1{Sn

2
<Sn

1
, Sn

2
<Sn

3
}]

+4E[(Sn
1 )

α(Sn
2 )

α1{Sn
1
<Sn

2
<Sn

3
}]. (93)

For the first term on the right of (93), by (50) we have

E[(Sn
2 )

2α1{Sn
2
<Sn

1
, Sn

2
<Sn

3
}] =

1

3
E[(min{Sn

1 , S
n
2 , S

n
3 })2α]

= 3−1−2αΓ(1 + 2α)Γ(n+ 1)

Γ(n+ 1 + 2α)
.

Now consider the final term of (93). A direct computation using (42) gives

E[(Sn
1 )

α(Sn
2 )

α1{Sn
1
<Sn

2
<Sn

3
}]

= n(n− 1)(n− 2)

∫ 1/3

0

dy

∫ (1−y)/2

y

dx

∫ 1−x−y

x

xαyα(1− x− y − z)n−3dz

= n(n− 1)

∫ 1/3

0

dy

∫ (1−y)/2

y

xαyα(1− y − 2x)n−2dx,

which, via the change of variables w = y + 2x and Fubini’s theorem is the same as

n(n− 1)2−α−1

∫ 1

0

(1− w)n−2dw

∫ w/3

0

yα(w − y)αdy.

Setting t = 3y/w reduces this last expression to

n(n− 1)6−α−1

∫ 1

0

w1+2α(1− w)n−2dw

∫ 1

0

tα(1− (t/3))αdt.

Using (44) for the integral involving w, and the fact that (see, e.g., 15.3.1 in [1]) for a > 0,

∫ 1

0

ta−1(1− (t/z))−bdt =
1

a
2F1(b, a; a+ 1; z)

for the integral involving t, we obtain the expression for Jn,α as given by (19). Then, by
(92) and the subsequent calculations, we obtain (22). Finally, (22) and (56) give (23). �

Appendix: technical lemmas

Proof of Lemma 4.6. The result is trivial when α = 1 or α = 0. Suppose 0 < α < 1.
Suppose n > 1. To ease notation, for the duration of this proof, set m = n− 1. Then we
have that for any U ∈ (0, 1) and 0 ≤ N(n) ≤ m,

−1 ≤ Uα

(

N(n)

m

)1−α

+ (1− U)α
(

m−N(n)

m

)1−α

− 1 ≤ 0, (94)
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so that in particular |Dα(n)| ≤ n1/2 for 0 ≤ α ≤ 1. Let

Wn :=
N(n)−mU
√

mU(1− U)
,

so that E[Wn] = 0, E[W 2
n ] = 1, and

N(n)

mU
= 1 +Wn

√

1− U

mU
;

m−N(n)

m(1− U)
= 1−Wn

√

U

m(1− U)
.

Then, by Taylor’s theorem,

Uα

(

N(n)

m

)1−α

= U

(

1 + (1− α)Wn

√

1− U

mU
−R1(n)W

2
n

1− U

mU

)

(95)

= U

(

1 +R2(n)Wn

√

1− U

mU

)

, (96)

for remainder terms R1(n), R2(n) (which depend on Wn and U). Similarly, we have

(1− U)α
(

m−N(n)

m

)1−α

= (1− U)

(

1− (1− α)Wn

√

U

m(1− U)
−R3(n)W

2
n

U

m(1− U)

)

(97)

= (1− U)

(

1−R4(n)Wn

√

U

m(1− U)

)

. (98)

By the Lagrange form of the remainder in Taylor’s theorem and a continuity argument
at x = 0 there exists a constant B ∈ (0,∞) such that for β = 1− α,

0 ≥ (1 + x)β − 1− βx

x2
≥ −B, and 0 ≤ (1 + x)β − 1

x
≤ B,

for all x ≥ −1. Thus we have, for i ∈ {1, 2, 3, 4},

0 ≤ Ri(n) < C, (99)

for a finite positive constant C. For n > 1, m = n− 1, let En denote the event m−3/4 <
U < 1−m−3/4. From (95) and (97) we obtain

|Dα(n)1En
| =

∣

∣−R1(n)W
2
n(1− U)m−1/2 −R3(n)W

2
nUm−1/2

∣

∣1En
≤ Cm−1/2W 2

n1En
,(100)

for some C ∈ (0,∞). By a standard moment generating function calculation,

E[(N(n)−mU)6|U ] = mU(1− U)
[

15m2U2(1− U)2 − 130mU2(1− U)2

+25mU(1− U)− 30U(1− U)(1− 2U)2 + 1
]

≤ mU(1− U)(15m2U2(1− U)2 + 25mU(1− U) + 1). (101)
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By (101) we have that

E[W 6
n1En

] ≤ E[(N(n)−mU)6m−3U−3(1− U)−3|En]

≤ 15 + 25m−1
E[U−1(1− U)−1|En] +m−2

E[U−2(1− U)−2|En] = O(1),

as n → ∞, so from (100) we have that

Dα(n)1En

L3

−→ 0. (102)

Also, from (96) and (98) we have,

∣

∣Dα(n)1Ec
n

∣

∣ =
∣

∣(R2(n)−R4(n))WnU
1/2(1− U)1/2

∣

∣1Ec
n
,

and so using (99) we have

∣

∣Dα(n)1Ec
n

∣

∣ ≤ C|Wn|U1/2(1− U)1/21Ec
n
. (103)

Now, from (101) we have that

E[(WnU
1/2(1− U)1/2)6] = m−3

E[(N(n)−mU)6] = O(1),

as n → ∞, so by Cauchy-Schwarz we obtain from (103) that

E[|Dα(n)1Ec
n
|3] ≤ (E[(WnU

1/2(1− U)1/2)6])1/2(P[Ec
n])

1/2 → 0, (104)

as n → ∞ by the fact that P[Ec
n] = O(n−3/4). So (102) and (104) complete the proof. �

Proof of Lemma 4.7. For n ∈ N, let Mn := log+ N(n) − log n − logU . First, suppose
N(n) ≥ nU/2. We have that

− log 2 ≤ Mn1{N(n)≥nU/2}1{nU≥2} ≤ − logU.

Hence

U2M2
n1{N(n)≥nU/2}1{nU≥2} ≤ U2 max{(log 2)2, (logU)2}. (105)

The expected value of the right-hand side of (105) is finite. Also, U2M2
n → 0 almost

surely as n → ∞, by continuity and the strong law of large numbers for N(n). Hence, by
the dominated convergence theorem, as n → ∞,

E[U2M2
n1{N(n)≥nU/2}1{nU≥2}] → 0. (106)

Also, we have 0 ≤ log+N(n) ≤ log n, so that − log n ≤ Mn ≤ − logU . Hence

U4M4
n ≤ (log n)4 + (logU)4, (107)

so that E[U4M4
n] = O((log n)4). Since P[nU < 2] = 2n−1, we then obtain, by Cauchy-

Schwarz, that there exists a finite positive constant C such that

E[U2M2
n1{N(n)≥nU/2}1{nU<2}] ≤ C(log n)2n−1/2 → 0, (108)
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as n → ∞. Now, suppose 0 ≤ N(n) < nU/2. In this case, from (107), and Cauchy-
Schwarz again, for some finite positive constant C

E[U2M2
n1{N(n)<nU/2}] ≤ C(log n)2(P[N(n) < nU/2])1/2 → 0, (109)

as n → ∞, since

(log n)2(P[N(n)< nU/2])1/2≤ (log n)2(P[U < n−1/2] + P[U > n−1/2, N(n)< nU/2])1/2,

which tends to zero as n → ∞, using standard bounds for the tail of a binomial distribu-
tion (see, e.g., Lemma 1.1 in [14]) for the final probability. The results (106), (108), and
(109) then give (80). The argument for (81) is similar. �

Acknowledgements

Some of this work was done when AW was at the University of Durham, supported by an
EPSRC doctoral training account, and subsequently at the University of Bath.

References

[1] Abramowitz, M. and Stegun, I.A. (Eds.) (1965) Handbook of Mathematical Func-
tions, National Bureau of Standards, Applied Mathematics Series, 55. U.S. Govern-
ment Printing Office, Washington D.C.

[2] Aldous, D.J. and Bandyopadhyay, A. (2005) A survey of max-type recursive distri-
butional equations, Ann. Appl. Probab., 15, 1047–1110.

[3] Berger, N., Bollobás, B., Borgs, C., Chayes, J., and Riordan, O. (2003) Degree
distribution of the FKP model, In Automata, Languages and Programming, Lecture
Notes in Computer Science, 2719, Springer, Heidelberg, pp. 725–738.

[4] Bertoin, J. and Gnedin, A. (2004) Asymptotic laws for nonconservative selfsimilar
fragmentations, Electr. J. Probab., 9, 575–593.

[5] Billingsley, P. (1999) Convergence of Probability Measures, 2nd edn., Wiley, New
York.

[6] Bollobás, B. and Riordan, O.M. (2003) Mathematical results on scale-free random
graphs. In Handbook of Graphs and Networks, Wiley-VCH, Weinheim, pp. 1–34.

[7] Darling, D.A. (1953), On a class of problems related to the random division of an
interval, Ann. Math. Stats, 24, 239–253.

[8] Dorogovstev, S.N. and Medes, J.F.F. (2002), Evolution of networks, Adv. Phys., 51,
1079–1187.

[9] Fabrikant, A., Koutsoupias, E. and Papadimitriou, C.H. (2002) Heuristically op-
timized trade-offs: a new paradigm for power laws in the internet. In Automata,
Languages and Programming, Lecture Notes in Comput. Sci., 2380, Springer, Berlin,
pp. 110–122.

30



[10] Huang, K. (1987) Statistical Mechanics, 2nd edn., Wiley, New York.

[11] Kesten, H. and Lee, S. (1996) The central limit theorem for weighted minimal span-
ning trees on random points, Ann. Appl. Probab., 6, 495–527.
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