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ABSTRACT: We consider Nash equilibria in 2-player random games and analyze a simple Las
Vegas algorithm for finding an equilibrium. The algorithm is combinatorial and always finds a Nash
equilibrium; on m × n payoff matrices, it runs in time O(m2n log log n + n2m log log m) with high
probability. Our result follows from showing that a 2-player random game has a Nash equilibrium
with supports of size two with high probability, at least 1 − O(1/ log n). Our main tool is a polytope
formulation of equilibria. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 31, 391–405, 2007
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1. INTRODUCTION

In a 2-player game, the first player, namely Alice, has m pure strategies S = {σ1, σ2 . . . , σm}
while the second player, namely Bob, has n pure strategies T = {τ1, τ2 . . . , τn}. We are
given two payoff matrices A and B for Alice and Bob, respectively. Here, the ijth entry of
A is the payoff to Alice when she plays σi and Bob plays τj. A Nash equilibrium is a pair of
mixed strategies (probability distributions) ν, λ such that given ν, the distribution λ on T
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392 BÁRÁNY, VEMPALA, AND VETTA

maximizes νT Bλ, the payoff to Bob, and simultaneously, given λ, the distribution ν on S
maximizes νT Aλ, the payoff to Alice.

The complexity of finding a Nash equilibrium in a game is a pivotal question in algo-
rithmic game theory [22]. For general games this question was answered recently when
Chen and Deng [6] proved that the Nash equilibrium problem in 2-player games is PPAD-
complete. Determining the complexity of finding equilibria has also lead to much research in
a variety of directions, e.g., a quasi-polynomial-time algorithm to find an approximate Nash
equilibrium due to Lipton et al. [19]; an investigation into the complexity of finding pure
strategy Nash equilibria in succinctly specified games by Fabrikant et al. [12]; a proof that the
Lemke-Howson algorithm [18] takes exponential time with all possible initial pivots [26].

In this article, we consider 2-player games where the two payoff matrices are chosen
randomly. Our motivation is the question of whether finding Nash equilibria is any easier in
random games compared to general games, that is, easier “on average.” In a random game,
every entry in each of the matrices is drawn independently according to some probability
distribution. We consider the uniform distribution on an interval and the standard Normal
distribution N(0, 1). In the first case, the distribution of any set of k entries of a payoff
matrix is uniform in a k-dimensional cube, while in the second case it is a k-dimensional
Normal. In fact, there has been much work in this direction for a special case of 2-player
games, the zero-sum case. This case is equivalent to linear programming. Motivated by the
question of explaining the success of the simplex algorithm, Borgwardt [5], Smale [28],
and Megiddo [21] studied linear programs where the constraints are chosen randomly from
spherically symmetric distributions and showed that variants of the simplex algorithm run
in polynomial time. Besides simplex, other simple methods (e.g., the perceptron algorithm)
also work for random linear programs, demonstrating that they have considerably more
structure than arbitrary linear programs.

Here we show random games are indeed much simpler than general games. Specifically,
we show that with high probability, there is a Nash equilibrium in which the supports of the
mixed strategies of both players have small cardinality.

In a random game, the vectors of the payoff matrices define points in general position
with probability one. This implies the well-known property that in a Nash equilibrium the
supports of both players have the same cardinality, which we call the “size of the equilibrium
support.” As a result, the following naive heuristic is a Las Vegas algorithm for finding Nash
equilibria: exhaustively check for Nash equilibria with support of cardinality i = 1, 2, . . .
until an equilibrium is found. In fact, see Corollary 12, with high probability only two
phases will be required! (Interestingly, this simple heuristic has also recently been shown
to perform extremely well experimentally, see [23].)

The key to our result is a reformulation of the problem in terms of random polytopes.
For convenience, we will assume that m = n. We will see in Section 2 that, given a
mixed strategy for Alice (Bob), the supports of best response strategies for Bob (Alice) are
precisely those supports that induce facets with non-negative normal vectors in an associated
random polytope. Consequently, the algorithmic problem of finding Nash equilibria can be
tackled by considering problems relating to the number of points on the convex hull of
a set of n random points in d dimensions. In Section 5, we extend the analysis of such
random polytopes for our purpose. This allows us to examine the quality of our algorithm
in Section 4. In particular, consider the convex hull of n random points in d dimensions. Let
N1 denote the expected number of points that lie on the boundary of the convex hull (this
will differ for the Normal and uniform distributions). Then, our main theorem can be stated
as follows.

Random Structures and Algorithms DOI 10.1002/rsa
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Theorem 1. The probability that a random n × n game contains no Nash equilibria with
support of size at most d is less than

f (d)

(
1

n
+ 1

(N1)2

)

where f (d) is a function of d alone.

It is known that N1 is unbounded as a function of n for both the distributions we consider
and so we get our algorithmic result as a corollary.

Corollary 2. There is a combinatorial algorithm that finds a Nash equilibrium in a
random n × n game and, with high probability, runs in time O(n3 log log n).

In related work, Goldberg et al. [13] have studied the expected number of pure strategy
Nash equilibria in random games; McLennan and Berg [20] considered the case of (mixed
strategy) Nash equilibria in certain random games. Finally, we remark in Section 6 that if our
work could be extended to allow matrix entries to have arbitrary means then a polynomial
time randomized algorithm for finding approximate Nash equilibria in arbitrary games
would follow.

2. A GEOMETRIC INTERPRETATION OF NASH EQUILIBRIA

In this section, we give a geometric characterisation of Nash equilibria in terms of polytopes.
For any subset of Alice’s strategies, S ⊆ S, let BS = {bS

1, . . . , bS
n} be the set of subcolumns

of B induced by S, i.e., whose entries correspond to the rows of S. We will view the elements
of BS as points in R

d , and denote by conv(BS) the polytope corresponding to the convex
hull of these points. Given a subset of Bob’s strategies, T ⊆ T , we denote by BS(T) the
points in BS corresponding to elements in T . Similarly AT is the set of subrows of A induced
by T . We define conv(AT ) and AT (S) in an analogous manner.

Key to the geometric interpretation is the following simple lemma.

Lemma 3. A pure strategy τj of Bob is a best response to some mixed strategy ν with
support S of Alice if and only if bS

j maximizes ν · b among all points b ∈ BS.

Proof. Any mixed strategy λ for Bob corresponds to a point b(λ) ∈ conv(BS) where
y(λ) = ∑n

i=1 λibS
i . The expected payoff to Bob of the mixed strategy λ is then just ν · y.

Note that only non-negative vectors correspond to feasible mixed strategies. Conse-
quently, our real interest lies in the anti-dominant of the convex hull; the anti-dominant of
a polyhedron K ⊆ R

d is ant(K) = {z ∈ R
d : ∃x ∈ K , z ≤ x}. For simplicity, we will

write ant(BS) = ant(conv(BS)). We may now give the desired characterization of Nash
Equilibria.

Theorem 4. The pair S ⊆ S, T ⊆ T produces a Nash equilibrium if and only if BS(T)

induces a face of ant(BS) and AT (S) induces a face of ant(AT ).

Proof. Suppose the points in BS(T) induce a face in ant(BS) contained in a facet with
normal ν �= 0. Then, by Lemma 3, each point in BS(T) is a best response for Bob when

Random Structures and Algorithms DOI 10.1002/rsa
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Alice is using the mixed strategy ν/||ν||1 on S. Similarly, suppose the points in AT (S) induce
a face in ant(AT ) with normal λ �= 0. Then, each point in AT (S) is a best response for Alice
is using the mixed strategy λ/||λ||1 on T . Therefore, the use of the strategies S and T
with probability distributions ν/||ν||1 and λ/||λ||1, respectively, gives a Nash equilibrium.
Conversely, suppose that the points in BS(T) do not induce a face in ant(BS). Then, it is not
possible to find a mixed strategy ν on S such that every point in BS(T) is a best response
for Bob when Alice is using the mixed strategy ν. Thus, no mixed strategy on T for Bob
can be a best response against any mixed strategy for Alice on S.

This characterization applies to general games. In our case, it implies that Nash equi-
libria in random games are closely related to the polytopes produced by random points. In
particular, we need to study the faces of random polytopes. Since the entries of A and B
are chosen at random, with probability one the corresponding point sets will be in general
position and any face of dimension d contains exactly d + 1 points. It follows that for any
Nash equilibrium in a random game we must have |S| = |T |.

3. EXPECTED NUMBER OF NASH EQUILIBRIA

For motivation, let’s first consider the simple case of pure strategy Nash equilibrium. Observe
that any pure strategy σi for Alice is a best response to any pure strategy τi for Bob with
probability exactly 1

n and vice versa. It follows that the expected number of pure strat-
egy Nash equilibria in a random game is exactly one. However, it is easy to show using
basic probabilistic techniques that there are no pure strategy Nash equilibria with constant
probability (in fact, this probability tends to 1

e [13] even for multiplayer games [9]).
Is the probability of success better when we look for mixed strategy Nash equilibria?

To answer this question we will use the polyhedral framework developed in Section 2. We
will begin by showing how to use this framework to easily count the expected number of
mixed strategy Nash equilibria in a random game. Towards this end, let Ni be the expected
number of faces of dimension i − 1 induced by conv(P) where P is a set of n random
points (N1 is the number of vertices, Nd is the number of facets). We will say that a facet
of the polytope is useful if its normal vector is positive. Similarly a face of any dimension
is called useful if it is contained in some useful facet. Our interest is in the expected
number of useful faces of dimension i − 1, denoted N+

i , since such faces are also faces of
ant(P).

We are now ready to calculate the expected number of Nash equilibria. Again, let S
and T be strategy subsets for Alice and Bob, respectively, where |S| = |T | = d. We
let F(T) = {S1, S2, . . . , Sp} be the set of facets of the polyhedron ant(AT ) (observe that
E(p), the expectation of p, is just N+

d ); each Si corresponds to the set of rows that induce
the facet. We also define F̄(T) to be the set of all faces contained in facets of F(T).
To avoid confusion between row and column vectors, the sets G(S) and Ḡ(S) are defined
similarly w.r.t. the polyhedron ant(BS). Then S ∈ F(T) iff Alice’s strategies induced
by S are all best responses to some mixed strategy by Bob on the strategy set induced
by T . Note that S and T induce a Nash equilibrium, denoted by S↔T , if and only if
S ∈ F(T) and T ∈ G(S). We denote by EST the event that S↔T , and by χ ST the indicator
variable for this event. By the independence of the payoff matrices for Alice and Bob,
the probability that S↔T is exactly the product of the probabilities that S ∈ F(T) and
T ∈ G(S).

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 5. The expected number of d × d Nash equilibria in a random n × n game is

µ = E

( ∑
S,T :|S|=|T |=d

χ ST

)
= (

N+
d

)2
.

Proof. Given S let us first evaluate the probability that T ∈ G(S) for some T . We have seen
that this is the case if and only if BS(T) induces a useful facet in BS. Thus, this probability
is exactly

N+
d(n

d

) .

Similarly, we also have that

P(S ∈ F(T)) = N+
d(n

d

) .

By the independence of the payoff matrices, we obtain P(S↔T) =
(

N+
d

(n
d)

)2

. Summing up

over all pairs S and T , the lemma follows.

We will use the following notation. We write α � β if there is a fixed function f (d), of
the dimension d alone, such that α ≤ f (d)β. We write α ≈ β if α � β and α � β. Observe
that, for any 1 ≤ s ≤ d, N+

s � N+
1 � N1/2d , where the second inequality follows from the

observation that there are 2d sign patterns for the normal of any face. Thus, by Lemma 5, we
obtain a lower bound on the expected number of Nash equilibria by examining the behaviour
of N1. There has already been a large amount of work studying Ni for various distributions
(for example, [1, 11, 14, 15, 30]); for a rather comprehensive survey see [31]. We begin
with two basic results regarding the uniform and Normal distributions, respectively.

Theorem 6. [10] Given n points drawn independently and uniformly from a d-dimensional
unit cube, the expected number of points N1 on the convex hull is � (log n)d−1.

Theorem 7. [24] Given n points in R
d with coordinates drawn independently from N(0, 1),

the expected number of points N1 on the convex hull is � (log n)
1
2 (d−1).

For completeness and to illustrate some of the techniques applied later, we will present a
proof of Theorem 6. Our proof is based on the approach of Devroye [7] for counting maxima
(undominated points) in random polytopes. We will also require the notion of a cap. Given
a convex body K ⊆ R

d , the intersection of K with a closed halfspace H is called a cap C.
Intuitively, caps are useful in counting convex hull points in that a randomly chosen point
is more likely to be on the convex hull if there is some cap of small volume that contains it.

Proof of Theorem 6. It suffices to give a lower bound on N+
1 . By symmetry, we just need

to count the expected number of vertices on the dominant (rather than the anti-dominant) of
the convex hull. Take a point α = (α1, α2, . . . , αd) ∈ R

d . Note that α lies on the hyperplane

H =
(

x :
x1

α1
+ x2

α2
+ · · · + x3

αd
= d

)
.

Random Structures and Algorithms DOI 10.1002/rsa



396 BÁRÁNY, VEMPALA, AND VETTA

Now consider the cap C formed by intersecting the negative halfspace induced by H with the
unit cube. Observe that C is contained within the simplex formed by the vertices (0, . . . , 0)

and (0, . . . , dαi, . . . , 0) for 1 ≤ i ≤ d. This simplex has volume

∏d
i=1(dαi)

d! = dd

d!
d∏

i=1

αi.

Denote the distribution of the ith coordinate by Ui. This is the uniform distribution on
the unit interval. Since each coordinate is drawn independently we have that

N+
1 ≥ n E




(
1 − dd

d!
d∏

i=1

Ui

)n−1



= n
∫ d!

dd

x=0

(
1 − dd

d! x

)n−1

f (x)dx.

Here f is density function for the product of d independent uniform random variables. It is
well known that that

f (x) = logn−1
(

1
x

)
�(d)

, 0 < x < 1

where � is the gamma function. Hence, for small ε we have

N+
1 ≥ n

(
1 − dd

d! ε
)n−1 ∫ ε

x=0
f (x)dx

= n

(
1 − dd

d! ε
)n−1

ε

d−1∑
j=0

(
log 1

ε

)j

j!

≥ n

(
1 − dd

d! ε
)n−1

ε

(
log 1

ε

)d−1

(d − 1)! .

Setting ε = 1
n , we obtain

N+
1 ≥

(
1 − dd

nd!
)n−1

(log n)d−1

(d − 1)!
� (log n)d−1.

We remark that similar techniques can be applied to give a matching upper bound on the
expected number of vertices on the convex hull.

4. PERFORMANCE ANALYSIS OF THE LAS VEGAS ALGORITHM

Here we analyze the performance of aforementioned simple algorithm. To do this an expec-
tation on the number of Nash equilibria is not sufficient; we also need to obtain concentration
bounds. Recall that the algorithm exhaustively checks for Nash equilibria with support of
size 1, then for Nash equilibria with support of size 2, etc., until we find a Nash equilibrium.

Random Structures and Algorithms DOI 10.1002/rsa
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There are
(n

d

)2
pairs of supports of size d and determining whether a pair of supports induce

a Nash equilibrium can be done in polynomial time using the solution to a system of linear
equations. Thus, provided that our game has a Nash equilibrium with a support of constant
size, we obtain a polynomial time algorithm. We will show that with high probability, a
random game has a 2 × 2 equilibrium. More generally, here we consider the probabil-
ity that there is no d × d Nash equilibrium in a random game. So for a fixed d, we are
interested in the probability that the random variable Z = ∑

S,T
χ ST > 0. We will use the

notation

∆ =
∑

(S,T),(S′ ,T ′):(S,T)
�(S′ ,T ′)
P(EST ∧ ES′T ′),

where �� signifies that the events EST and ES′T ′ are dependent. We remark that such a
dependency arises if and only if S ∩ S′ �= ∅ or T ∩ T ′ �= ∅. Our interest in ∆ arises because,
applying standard techniques [2], we obtain:

P(Z = 0) ≤ Var(Z)

E(Z)2
≤ E(Z) + ∆

E(Z)2
. (1)

The next lemma bounds ∆.

Lemma 8. In a random game, with µ as in Lemma 5, we have

∆ � µ2

(
1

n
+ 1(

N+
1

)2

)
.

Proof. Let X = S∗ ∩ S and Y = T ∗ ∩ T , s = |X| and t = |Y |. We remark that only the
cardinalities of these intersections will be of consequence. Recall that X ∈ F̄(T ∗) means
that the vertices corresponding to X form a useful face (i.e., are all best responses) in the
game induced by the strategies of T ∗. So

∆ =
∑

s,t

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=t

P(S↔T and S∗↔T ∗)

=
∑

s,t

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=t

P(S ∈ F(T) and S∗ ∈ F(T ∗)) P(T ∈ G(S) and T ∗ ∈ G(S∗))

= 2
∑
s≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=0

P(S ∈ F(T) and S∗ ∈ F(T ∗)) P(T ∈ G(S) and T ∗ ∈ G(S∗))

+
∑
s,t≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=t

P(S ∈ F(T) and S∗ ∈ F(T ∗)) P(T ∈ G(S) and T ∗ ∈ G(S∗))

= 2∆1 + ∆2.

For clarity, we will defer the proofs of the following two claims until the next section.
We will need these claims to bound the terms ∆1 and ∆2.

Random Structures and Algorithms DOI 10.1002/rsa



398 BÁRÁNY, VEMPALA, AND VETTA

Claim 9. For n sufficiently larger than d, if T ∩ T ∗ = 0 then

P(T ∈ G(S) ∧ T ∗ ∈ G(S∗)) �
(

N+
d(n

d

)
)2

.

Claim 10. For n sufficiently larger than d,

P(T ∈ G(S) and T ∗ ∈ G(S∗)) �
(n

t

)
(N+

d )2(n
d

)2
N+

t

.

Now we bound ∆1 from above. Observe that since t = 0 the events S ∈ F(T) and
S∗ ∈ G(T ∗) are independent. Therefore,

P(S ∈ F(T) and S∗ ∈ F(T ∗)) = P(S ∈ F(T))2 =
(

N+
d(n

d

)
)2

.

Applying Claim 9, we have

∆1 =
∑
s≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=0

P(S ∈ F(T) and S∗ ∈ F(T ∗)) P(T ∈ G(S) and T ∗ ∈ G(S∗))

�
∑
s≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=0

(
N+

d

)4

(n
d

)4 .

However,(
N+

d

)4

(n
d

)4

∑
s:d≥s≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=0

1 = µ2(n
d

)4

∑
s:d≥s≥1

(
n

d

)(
d

s

)(
n − d

d − s

)(
n

d

)(
n − d

d

)
� µ2

n
.

Thus,

∆1 � µ2

n
.

Next, we bound ∆2. Applying Claim 2, we obtain

∆2 =
∑
s,t≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=t

P(S ∈ F(T) and S∗ ∈ F(T ∗)) P(T ∈ G(S) and T ∗ ∈ G(S∗))

�
∑
s,t≥1

∑
(S,T),(S∗ ,T∗):
|X|=s,|Y |=t

(n
s

)(n
t

)
(N+

d )4(n
d

)4
N+

s N+
t

.

To finish the proof, observe that we have the following simple relationship between the
number of faces of a given dimension and the number of points on the convex hull:

Observation 11. The number of faces of conv(P) of dimension s is at least 1
s+1

(d−1
s

)
times

the number of points on the convex hull.
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Proof. Every vertex of the convex hull is contained in at least d facets. Take a vertex x
and consider any d facets containing x. Each of these is a simplex of d vertices and induces
a set of

(d−1
s

)
faces of dimension s that contain x. The union of these sets may contain

at most d copies of any face. Moreover, as all the points are in general position, every
s-dimensional face contains exactly s + 1 points. Thus, summing over all vertices, we
obtain the result.

Hence Ns+1 ≥ 1
s+1

(d−1
s

)
N1, and so we have

µ2
∑
s,t≥1

(d
s

)(d
t

)
N+

s N+
t

� µ2(
N+

1

)2 .

Thus

∆2 � µ2(
N+

1

)2 .

and this completes the proof of Lemma 8.

Theorem 1 now follows from (1) and Lemma 8. Then, by Theorems 6 and 7, which
imply that N+

1 becomes much larger than f (d) as n increases, we obtain our result for
random games in which the payoff entries are either uniformly or Normally distributed. In
fact, it is enough to look for 2 × 2 equilibria.

Corollary 12. A random n × n game with normally (respectively, uniformly) distributed
payoffs contains no 2 × 2 Nash equilibrium with probability � 1

log n (respectively, � 1
log2 n

).

It follows from Corollary 12 that the run time of the algorithm is O(m2n log log n +
n2m log log m), with high probability. To see this, observe that we need to calculate the
convex hull of n points for each pair of strategies of Alice, and calculate the convex hull of
m points for each pair of strategies of Bob. Since we can find the convex hull of k points in
2 dimensions in time O(k log h), where h is the number of points on the convex hull [17],
this takes time O(m2n log log n + n2m log log m). If a pair of strategies for Alice and a pair
of strategies for Bob mutually induce facets with non-negative normals in the convex hull
associated with the other pair then we have a Nash equilibrium. The normals to these facets
also give the probability distributions on the strategy supports (at a Nash equilibrium). Thus
our algorithm is entirely combinatorial.

5. RANDOM POLYTOPES UNDER GAUSSIAN AND UNIFORM DISTRIBUTIONS

In this section, we present proofs of the main technical results used in analysing the Las
Vegas algorithm. Specifically, we present proofs of Claim 9 and Claim 10. To do so, we will
be interested in the following general question. Let P = {x1, . . . , xn} be a set of i.i.d. random
points from a distribution with density function f . Let F be the set of subsets of points that
induces facets of conv(P), and let Y1 and Y2 be two subsets of P . The probability that one
subset Y1 induces a facet is well-understood for many important distributions, including
the Gaussian and the cube. What, though, is the probability that both Y1 and Y2 induce
facets, i.e., P(Y1, Y2 ∈ F)? We prove the following results (which may be of independent
interest).

Random Structures and Algorithms DOI 10.1002/rsa



400 BÁRÁNY, VEMPALA, AND VETTA

Lemma 13. Suppose f is the normal density or the uniform density over a cube. If Y1, Y2

are disjoint subsets of P , then

P(Y1, Y2 ∈ F) � P(Y1 ∈ F)2.

Lemma 14. Suppose f is the normal density or the uniform density over a cube. If Y1, Y2

are subsets of P with |Y1 ∩ Y2| > 0, then

P(Y1, Y2 ∈ F) � P(Y1 ∈ F)2

P(Y1 ∩ Y2 is a face of conv(P))
.

The proof of these lemmas for the normal distribution can be carried out directly using
the density function. We give such a proof of Lemma 13 at the end of this section (the proof
of Lemma 14 is similar). For a cube, however, things are more complicated and we will use
an economic cap-covering [4]. The next theorem is from [3].

Theorem 15. Assume K is a convex body in R
d , vol(K) = 1 and 0 < ε < ε0(d) where

ε0(d) is a constant depending only on d. Let K(ε) denote the set of points from K that can
be cut off by a cap of volume ε. Then there are caps C1, . . . , Cm and pairwise disjoint convex
sets C′

1, . . . , C′
m such that C′

i ⊂ Ci for every i such that every cap of volume ε is contained
in one of the Ci and, further,

m⋃
1

C′
i ⊂ K(ε) ⊂

m⋃
1

Ci

vol
(
C′

i

)
� ε and vol(Ci) � ε.

Simply put, Theorem 15 states that K(ε) can be covered by caps of volume ≈ ε without
much overlapping, that is, we have an economic cap-covering. Hence, the theorem implies
that m ≈ 1

ε
vol(K(ε)). Moreover, if Kn is the random polytope on n points from K then

K − K( 1
n ) is a good approximation to Kn [4]; of course, this is why the study of K(ε)

and, consequently, of cap coverings is of use here. It follows that, for m corresponding to
ε = 1/n, the expected number of k − 1-dimensional faces of Kn is Nk(Kn) ≈ m.

For the case in which K is the unit cube, we may take the sets Ci to be axis-parallel dyadic
boxes instead of caps. In fact, the proof of Theorem 15 first finds an economic covering
using Macbeath regions (boxes in the case of the unit cube) and then replaces them by
closely fitting caps. In particular, the box-covering for K(ε) consists of all boxes of the
form

d∏
j=1

[0, 2−fj ]

where the fj are non-negative integers summing to f , and 2−f ≈ ε. (We remark that these
boxes only form a covering near a single vertex, the origin, of the unit cube. As before, by
symmetry, this is all that is required for the useful faces.)

One can define cap coverings for other distributions as well, replacing the volume of each
set Ci by its measure. Such a covering exists for the normal distribution if the complement
of a suitably large ball is deleted.

One can define similar cap or box coverings for other distributions as well, replacing the
volume of each set Ci by its measure. Such a covering does exist for instance for the Normal
distribution, and could be used to give alternative proofs of Lemma 13 and Lemma 14.
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We will use Theorem 15 to prove the following generalization of Lemma 14. Again, we
focus on the case when K is the unit cube, but the proof applies whenever a cap covering
exists.

Lemma 16. Let S, S∗, T , T ∗ be sets of cardinality d with S ∩ S∗ = X, T ∩ T ∗ = Y,
|X| = s > 0, |Y | = t > 0. We denote by K = Q|S∪S∗| ⊂ R

2d−s the unit cube in R
2d−s.

Assume x1, . . . , xn are uniform random points from K. Assume T = {x1, . . . , xd} and T ∗ =
{x1, . . . , xt , xd+1, . . . , x2d−t}. Let F(S) denote the facets of the convex hull of the xis projected
onto R

S, and similarly for F(S∗). Then,

P[T ∈ F(S) and T ∗ ∈ F(S∗)] � (log n)2d−s−1

n2d−t
.

Proof. We take the box covering Mf for every large enough f for the unit cube. We write
L|S and L|S∗ for the projection of a set L ⊂ R

|S∪S∗| onto R|S| and R|S∗|, respectively. We need
a special minimal cap C(T) of K that contains T : namely, writing C(T |S) for the minimal
cap containing T |S in Q|S| we let

C(T) = C(T |S) × Q|S∗\S|.

Similarly,
C(T ∗) = C(T ∗|S∗) × Q|S\S∗|,

note that both C(T) and C(T ∗) are caps of K . Now,

P[T ∈ F(S) and T ∗ ∈ F(S∗)] =
∫

K
. . .

∫
K

χ [T ∈ F(S)] χ [T ∗ ∈ F(S∗)] dx1 · · · dxn,

where χ [E] is the indicator of the event E. We can restrict integration to the subset where
vol(C(T)) ≤ c log n

n for a fixed constant c and the same for C(T ∗), since, with probability
1 − n−5d , Kn contains all points of K that cannot be cut off from K by a cap of volume
c log n

n , if c is large enough. Define f0 by 2−f0 = c log n
n . We replace the above integral by a

double sum in the following way. Given x1, . . . , xd and C(T), let f be the largest integer with
C(T) ⊂ Cf for some Cf ∈ Mf where Mf is the aforementioned box covering for ε = 2−f .
Of course, the Cf that matters is of the form∏

j∈S∪S∗
[0, 2−fj ]

with fj = 0 when j ∈ S∗\S. Let M1
f be the set of these elements of Mf . Obviously,

vol(C(T)) ≥ c(d)2−f with a suitable small c(d) > 0, and similarly for C(T ∗). Analogously,
we get a C∗

g from Mg for each C(T ∗), and the ones that matter are collected in M2
g ⊂ Mg.

We integrate then on each Cf ∈ M1
f and C∗

g ∈ M2
g for f , g ≥ f0. Assuming g ≥ f , the

integrand is at most

(1 − c(d)2−f )n−(2d−t)(vol(Cf ))
d−t

(
vol

(
C∗

g

))d−t(
vol

(
Cf ∩ C∗

g

))t

since x1, . . . , xt come from Cf ∩C∗
g , xt+1, . . . , xd from Cf , and xd+1, . . . , x2d−t from C∗

g , while
the rest of the xi come from K\C(T). Summing this for all g ≥ f ≥ f0, and all Cf ∈ M1

f , all
C∗

g ∈ M2
g we are lead to the sum

∑
f ≥f0

∑
g≥f

exp

{
−1

2
c(d)2−f n

}
2−f (d−t)2−g(d−t)Sf ,g
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where,

Sf ,g =
∑
M1

f

∑
M2

g

(
vol

(
Cf ∩ C∗

g

))t
.

Now Cf ∩ C∗
g is an axis-parallel dyadic box in K with side lengths 2−hj = min(2−fj , 2−g∗

j )

for 1 ≤ j ≤ d. Thus, it is equal to a unique box Ch ∈ Mh where h = ∑
hj. Consequently,

Sf ,g ≤
∑
h≥g

2−ht
∑

Ch∈Mh

W(f , g)

where W(f , g) is the number of pairs Cf and C∗
g with Ch = Cf ∩ C∗

g . For a fixed Ch, it is not
hard to see that W(f , g) � (2h − f − g + 1)s. Further, |Mh| � h2d−s−1. Thus

Sf ,g �
∑
h≥g

2−hth2d−s−1(2h − g − f + 1)s.

The rest is a computation: one shows first that Sf ,g is dominated by the term when h = g.
Then the next sum∑

g≥f exp
{− 1

2 c(d)2−f n
}

2−f (d−t)2−g(d−t)Sf ,g

�
∑

g≥f exp
{− 1

2 c(d)2−f n
}

2−f (d−t)2−g(d−t)2−gtg2d−s−1(g − f + 1)s

is again dominated by the term when g = f , implying that

P[T ∈ F(S) and T ∗ ∈ F(S∗)] �
∑
f ≥f0

exp

{
−1

2
c(d)2−f n

}
2−f (2d−t)f 2d−s−1.

Finally, the last sum is dominated by the term when 2−f = 1
n which gives

P[T ∈ F(S) and T ∗ ∈ F(S∗)] � (log n)2d−s−1

n2d−t
.

Remark 1. This method works when T ∩ T ∗ = ∅. Then (vol(Cf ∩ C∗
g ))

t = 1 since t = 0
and Mh does not appear at all. With a similar computation one could prove Claim 1 in the
following form: P[T ∈ F(S) and T ∗ ∈ F(S∗)] � P[T ∈ F(S)]P[T ∗ ∈ F(S∗)].

Remark 2. For general convex bodies the outcome depends on Sf ,g and then on W(f , g).
For smooth convex bodies W(f , g) is a constant, and the computation is simpler.

We now give a more direct proof for the case of the normal distribution.

Proof of Lemma 13 (Normal distribution). We prove the lemma directly for the Normal
density. We write

P(Y1, Y2 ∈ F) =
∫

x1,...xn∈Rd

χ [Y1 ∈ F] χ [Y2 ∈ F] df (x1) · · · df (xn).

Random Structures and Algorithms DOI 10.1002/rsa



NASH EQUILIBRIA IN RANDOM GAMES 403

Assume that Y1 = {x1, . . . , xd}, Y2 = {xd+1, . . . , x2d}. For a subset Y , let H(Y) be the
hyperplane spanning Y and V(Y) be measure of the distribution in the halfspace bounded
by this hyperplane not containing the origin. Then the above probability can be bounded as

P(Y1, Y2 ∈ F) ≤ 2
∫

x1,...,x2d ,V(Y1)≥V(Y2)

(1 − V(Y1))
n−2d df (x1) · · · df (x2d). (2)

We now estimate this when f is the standard Normal density in R
d . Clearly, V(Y1)

depends only on the distance of H(Y1) from the origin. So, it will be convenient to param-
etrize in terms of hyperplanes, and positions on them. This is achieved by the Blaschke-
Petkantschin formula (for example, see [25]). For a spherically symmetric density function f
we have, ∫

x1,...,xd∈Rd
g(x1, . . . , xd) df (x1) · · · df (xd)

= ψ(d)

∫
H:(d-1)-flat

∫
x1,...,xd∈H

g(x1, . . . , xd) dfH(x1) · · · dfH(xd)dµ(H).

Here ψ(d) is a function of d alone and dµ(H) is the measure induced on (d − 1)-flats
determined by picking d points from f . By spherical symmetry, dµ(H) = dhdu where u
is a unit vector (normal to H) and h is the distance of H from the origin. For the normal
density, the measure of a random point on a flat is determined by its position on the flat and
the distance of the flat to the origin, i.e., dfH(x1) = dfh(x1). The integrand on the RHS of (2)
depends only on the distance of H(Y1) from the origin. Thus, applying the formula twice,
once for xd+1, . . . , x2d and then for x1, . . . , xd , we have∫

x1,...,x2d ,V(Y1)≥V(Y2)

(1 − V(Y1))
n−2d df (x1) · · · df (x2d)

= ψ(d)2

∫
t1≤t2

(1 − V(t1))
n−2d dν(t1)dν(t2)

≤ ψ(d)2vol(Sd)
2

(2π)d

∫
t1

(1 − V(t1))
n−2de−dt21 (t1)

2(d−1) dt1

≤ ψ(d)2vol(Sd)
2

(2π)d

∫
t

(
1 − e−t2/2

2
√

2π t

)n−2d

e−dt2 t2(d−1) dt

� n−2d(log n)d−1.

where Sd is the d-dimensional unit sphere. Since

P(Y1 ∈ F) � (log n)(d−1)/2(n
d

) ,

the lemma follows for the normal density.

Proof of Claim 9. Let G−T (S∗) be the set of useful facets of the polytope induced by the
rows of S∗ if we ignore the d points corresponding to the columns of T ; define G−T∗

(S)

similarly. Then clearly

P(T ∈ G(S) ∧ T ∗ ∈ G(S∗)) ≤ P(T ∈ G−T∗
(S) ∧ T ∗ ∈ G−T (S∗))

= P(T ∈ G−T∗
(S)|T ∗ ∈ G−T (S∗))P(T ∗ ∈ G−T (S∗)).
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But P(T ∈ G−T∗
(S)|T ∗ ∈ G−T (S∗)) is maximised when S = S∗. The result then follows

from Lemma 13.

Similarly Claim 10 follows by applying Lemma 14 or Lemma 16.

6. CONCLUDING REMARKS

We have shown that finding equilibria on average is easy. This raises several questions:
(i) Can we extend the analysis to more general distributions? Our result is unaffected by
linear transformations of the payoff matrices. So, for example, each matrix can be cho-
sen from an arbitrary Gaussian. (ii) Our analysis shows that random games do not have
small support Nash equilibria with polylogarithmically small probability. Can this bound
be improved further? Even more importantly, does this simple algorithm have polynomial
expected running time? (iii) We crucially use the fact that the mean of each entry is the
same. Is this necessary? An algorithm that works for Gaussian entries with arbitrary means
(and time polynomial in the largest variance), akin to smoothed analysis [29], would give a
polynomial-time randomized algorithm for finding approximate Nash equilibria in arbitrary
games [16]: add random Gaussians to the entries of the given payoff matrices; an equilib-
rium of the perturbed game will be an approximate equilibrium of the original game with
high probability, given that the variance of the Gaussians is small enough. The current best
algorithm for finding approximate equilibria has quasi-polynomial complexity [19].

Finally, we observe that finding approximate equilibria in random games is quite easy:
for both the distributions we consider, with high probability there will be many pure strategy
approximate equilibria and hence, by sampling, one of them can be found in time sublinear
in the input size.
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