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Abstract

We extend results about heights of random trees (Devroye, 1986, 1987, 1998b). In
this paper, a general split tree model is considered in which the normalized subtree
sizes of nodes converge in distribution. The height of these trees is shown to be in
probability asymptotic to c logn for some constant c. We apply our results to obtain
a law of large numbers for the height of all polynomial varieties of increasing trees
(Bergeron et al., 1992).
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1 Introduction

The present paper gives a general result on the heights of random trees. It applies in
particular to general d-ary increasing trees (Bergeron, Flajolet, and Salvy, 1992), a random
tree model whose height was not known until now, although the variance of the height is
known to be bounded (Drmota, 2006). The general approach we adopt is based on branching
processes (Athreya and Ney, 1972; Harris, 1963). The hunt for the height of binary search
trees has motivated the development of these branching processes techniques. Pittel (1984)
was the first to introduce a crucial continuous embedding and to show that the height
of a tree of n nodes is asymptotic to c log n for some positive constant c. Using earlier
work by Biggins (1976, 1977), Devroye (1986) proved that c ≥ 2 is given by the solution
of c log(2e/c) = 1, hence showing that the height of random binary search trees of size n
is asymptotic to 4.311 . . . log n in probability. Using branching random walks Biggins and
Grey (1997) were able to generalize these theorems and extend the class of random trees
that can be handled using this single method. More recently, Broutin and Devroye (2006)
gave further results based on 2-dimensional branching processes that seem to encompass
many extremal problems related to paths in trees.

In our tree model, we distinguish the nodes of the tree from the items they may contain.
A node may contain zero, one, or more items. In the sequel, the size is the number of items
in a tree. For a given node u, we use Nu to denote the size of the subtree rooted at u. We
introduce d-ary ideal trees, in which each node receives an independent copy of the vector
V = (V1, V2, . . . , Vd), with Vi ≥ 0, for i = 1, . . . , d, and

∑d
i=1 Vi = 1. V is called the split

vector. It turns out that one can relate ideal trees to a larger family of random trees in
which, for a node u and its i-th child ui, Nui is close to Nu · Vi in distribution. We will
be more precise in the next section. This model is close to the split tree model of Devroye
(1998b). Note that in the ideal tree model, the split vectors are independent and identically
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distributed (i.i.d.). In particular, the copy at a node u does not depend on the value of Nu.
However, there are kinds of trees in which there is such a dependence. These include the
increasing trees, for instance. With a bit more machinery, one can relate the model to an
ideal tree, and obtain results concerning the height (see Section 3).

We now describe the increasing tree model of Bergeron et al. (1992). This tree model
relates to ordered trees. Thus, all trees in the next few paragraphs are to be considered
ordered. A labeled tree of size n is a tree on n vertices that are given distinct elements of
{1, 2, . . . , n}. A labeled tree is called increasing if the labels are increasing along any path
starting at the root. Let {sr, r ≥ 0} be a sequence of nonnegative integers with s0 6= 0. One
can describe a variety of trees by its characteristic sequence {sr} or its degree function, the
power series φ(w) =

∑
i≥0 siw

i. Varieties for which sd 6= 0 and sr = 0 for all r > d are
called polynomial. The variety with characteristic sequence {sr} consists of a collection of
trees in which a specific tree T , with fixed shape and labeling, occurs exactly∏

r≥0

sDrr

times, where Dr is the number of nodes of outdegree r in T , and we adopt the convention
00 = 1. Then, a random increasing tree of size n is an element of size n taken uniformly
at random from the collection. As a consequence, a specific tree is drawn with probability
proportional to the number of its occurrences in the collection. For counting purposes, it is
helpful to think of a node of outdegree r as being colored in one of sr colors. In that case,
we see that each labeled colored tree T of size n occurs exactly once in the collection. The
model embraces many important tree families like random recursive trees, plane oriented
trees, and binary search trees. We now describe these three examples to help the reader
become more familiar with the increasing tree model.
Example 1: uniform recursive trees. Uniform recursive trees are described using an
incremental process (Meir and Moon, 1978). A recursive tree of size 1 is a single node,
labeled 1. At any time n, a new node labeled n comes along, and becomes a child of a
uniformly chosen random vertex. The process produces any properly (increasingly) labeled
tree of size n with the same probability 1/(n − 1)!. The order of the children of a node
is irrelevant, and without loss of generality, one can consider the children as ordered by
increasing value of their labels. As a consequence, a random recursive tree of size n is
distributed as a random (ordered) increasing tree of the same size with associated sequence
{1/r!, r ≥ 0} or, equivalently, degree function φ(w) = expw. The factorial compensates the
fact that a node of degree d can label its children with d labels in d! ways. Put differently,
in the ordered tree labeling, we only keep the one labeling in which the child labels are
ordered. The fact that sr is not integer-valued does not matter here, as we can still build a
collection of validly labeled trees.
Example 2: plane oriented trees. Plane oriented trees (or plane recursive trees) are
an ordered version of recursive trees due to Szymański (1987). Plane oriented trees are
also discussed and enumerated by Prodinger and Urbanek (1983). They may be obtained
using successive insertions as well. The difference lies in that a parent is no longer chosen
uniformly, but rather with probability proportional to one plus its outdegree. This is also the
preferential attachment model of Barabási and Albert (1999), and a particular case of the
more general linear recursive trees of Pittel (1994). Because the trees are now ordered, an
increasing tree with characteristic sequence {1, 1, . . . }, and degree function φ(w) = 1/(1−w),
is distributed as a random plane oriented tree. This equivalence is best seen by observing
that in an increasing labeling, the maximal label attaches itself as a child of a node of degree
d with probability proportional to d+1, as it can be inserted anywhere among the d existing
children. These trees are the main example of random ordered trees. For more information
see Mahmoud (1992), Mahmoud, Smythe, and Szymanski (1993) or the survey by Smythe
and Mahmoud (1995).
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Example 3: random binary search tree. The random binary search tree is a partic-
ularly important data structure. It also occurs in the analysis of quicksort (Knuth, 1973).
One is given σ = (σ1, σ2, . . . , σn), a random permutation of {1, 2, . . . , n}. A random binary
search tree is built by first storing σ1 in the root. The left and right subtrees are then built
similarly from the permutations {σi : σi < σ1} and {σj : σj > σ1}, respectively. Note
that the values σi should not be seen as the labels of the increasing tree model. Observe
that a tree with the same distribution may be obtained using a sequence of insertions. Let
k ≥ 1 and let Tk be the binary search tree corresponding to {σi, 1 ≤ i ≤ k}. Then, since
{σi, 1 ≤ i ≤ k + 1} is a uniform random permutation, σk+1 is uniform on {1, . . . , k + 1}.
A position corresponds to an external node of Tk, and hence σk+1 is assigned to a uniform
random external node of Tk to make Tk+1. The tree Tn whose nodes are labeled with the
indices of the elements of the random permutation σ is clearly increasing. The probability
that Tn has a given shape t is proportional to the number of proper labelings of t. Now,
binary search trees are position trees, i.e., left and right children are distinguished. Hence, a
random binary search tree is distributed as a random increasing tree taken from the sequence
{s0 = 1, s1 = 2, s2 = 1}.

Although true for our three examples, it is not true that all increasing tree families may
be obtained using an incremental process. When there is a hole in the sequence {sr}, as in
{s0 = 1, s1 = 0, s2 = 1}, for example, no incremental process exists that can model a random
increasing tree. We refer the reader to Panholzer and Prodinger (2006) who characterize
the varieties of increasing trees that admit a construction using successive insertions. From
now on, we consider only polynomial varieties. See also the related papers of  Luczak and
Winkler (2004) and Janson (2006).

Asymptotics of the heights of particular instances of increasing trees are known, but a
general theorem was still missing. In this paper, we prove that the height of any random
increasing tree of size n with bounded maximum degree d is asymptotic to cd log n in proba-
bility. The constant cd depends only on d and is characterized as the solution of an implicit
equation (Theorem 3).

In Section 3, we introduce a general model of random trees. We prove the following result
(Theorem 2): for a node u with children u1, . . . , ud, if the distribution of (Nu1/Nu, . . . , Nud/Nu),
conditioned on Nu = n converges in distribution to the split vector V as n → ∞, then the
height is asymptotic to cd log n in probability. The theorem covers a broad spectrum of
applications, including polynomial families of increasing trees discussed above. We start by
describing the simpler model of ideal trees.

2 Ideal trees

Let V = (V1, . . . , Vd) be a random vector with nonnegative components such that
∑d
i=1 Vi =

1 almost surely (a.s.). Let T∞ be an infinite rooted d-ary tree (with dk nodes at every level
k ≥ 0). Assign an independent copy of V to each node of T∞. Consider any node u ∈ T∞
and its copy of the vector, (V1, . . . , Vd). If e is the edge between u and its i-th child, we
define Ve = Vi. It should always be clear whether the subscript refers to an index or an
edge. Let π(u) be the set of edges on the unique path from u to the root in T∞. We define
Lu =

∏
e∈π(u) Ve. The subtree Tn of T∞ consisting of the nodes u with Lu ≥ 1/n is called

the ideal tree built from the split vector V. Its height, i.e., the maximum distance from a
node to the root, is denoted by Hn.

Alternatively, we can describe Tn using additive settings. For each edge e of T∞, let
Ee = − log Ve ≥ 0. Then, Bu = − logLu =

∑
e∈π(u)Ee is similar to the birth time of u,

and Tn is the tree of nodes u born before time log n, i.e., for which Bu ≤ log n. Then,
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studying the height Hn reduces to analyzing the time at which the first node is born at
level k (Biggins, 1976, 1977). We use the notation Ee because in many applications, Ee is
distributed as an exponential random variable.

Without loss of generality, we assume that the components of V = (V1, . . . , Vd) are
identically distributed. Indeed, randomly permuting the components does not affect the
height and yields i.i.d. components. Let now V denote a typical component, and write
E = − log V ≥ 0, agreeing that log 0 = −∞. Observe that EV = 1/d, and that P {E = 0} =
P {V = 1} ≤ EV = 1/d.

Ideal trees and their heights have already been studied under the name of branching
random walk by Biggins (1976, 1977) and Biggins and Grey (1997). The split trees of
Devroye (1998b) are close to ideal trees as well. The theory of large deviations (see, e.g.,
Dembo and Zeitouni, 1998) is at the heart of the analysis. We now introduce the necessary
background. Let Λ = ΛE be the cumulant generating function associated with the random
variable E: for λ < 0, we have

Λ(λ) = log EeλE .

Then the left-tail Cramér function Λ? is the Fenchel–Legendre dual of Λ (see Rockafellar,
1970), defined for ρ ≤ EE by

Λ?(ρ) = Λ?E(ρ) = sup{λρ− Λ(λ) : λ ≤ 0}. (1)

The function Λ? characterizes large deviation tail probabilities for sums of i.i.d. variables
distributed as E: Let {Ei, i ≥ 1} be a family of i.i.d. random variables distributed as E,
then Cramér’s theorem (Cramér, 1938; Chernoff, 1952) states that for ρ ≤ EE (possibly
infinite)

P

{
n∑
i=1

Ei ≤ ρn

}
= exp (−nΛ?(ρ) + o(n)) , (2)

as n tends to infinity. For more information about the Cramér functions and large deviations,
we refer the reader to Dembo and Zeitouni (1998) or Deuschel and Stroock (1989). In
particular, Λ?(ρ) ∈ [0,∞] and is non-increasing in ρ. Trivially, since E ≥ 0, we have
Λ?(ρ) = ∞ for ρ < 0. Broutin and Devroye (2006) studied this very model. In particular,
they showed that if EE < ∞, E takes values down to 0 (its essential infimum inf{ρ :
P {E > ρ} > 0} = 0), and P {E = 0} = 0, then

Hn ∼ c log n in probability, (3)

as n→∞, where c is the unique solution of Λ?(1/c) = log d such that 1/c ≤ EE.

The result of Broutin and Devroye has conditions that we would like to relax here.
Neither of the two extensions is straightforward. The main issue is that, when relaxing the
conditions, the equation Λ?(1/c) = log d may no longer have a solution (Figure 1). This
happens in particular if either E has a fairly large mass at the left end of its support,
or P {E =∞} is too large. Indeed, assume first that ρm = inf{ρ : P {E > ρ} > 0} and
P {E = ρm} = p > 1/d. Then, for all t ≥ ρm, Λ?(t) ≤ − log p < log d and clearly Λ?(t) =∞
when t < ρm. On the other hand, if P {E <∞} = p < 1/d then, for all ρ, Λ?(ρ) ≥ − log p >
log d (see Figure 1). Therefore, going beyond such apparently pathological cases, requires
to modify the definition of the constant c. We have

Theorem 1. Let Tn be an ideal tree built from the split vector V. Let Hn be its height.
Assume that P {V > 0} > 1/d and P {V = 1} < 1/d. Then, for c = sup{1/ρ : Λ?(ρ) ≤
log d} <∞, we have Hn = c log n+ o(log n) in probability, as n→∞.
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Λ!(ρ)

∞

log d

− log(1− p)

ρm
E[E|E <∞]

ρ

Λ!(ρ)

∞

− log(1− p)

log d

ρm E[E|E <∞]

ρ

Λ!(ρ)

− log(1− p)

log d

ρm E[E|E <∞]

ρ

∞

Figure 1. The function Λ? in the
three main possible cases: (a) in the
upper-left corner, P {E <∞} > 1/d
and P {E = ρm} < 1/d; (b) in the
upper-right corner, P {E <∞} ≤ 1/d;
and (c) on the left, P {E <∞} > 1/d
but P {E = ρm} ≥ 1/d.

Theorem 1 has been proved by Biggins (1977) in a slightly different form based on
Laplace transforms. Note that enforcing P {V = 1} < 1/d only excludes the trivial case
in which the split vector V is a uniform random permutation of (1, 0, . . . , 0). In such a
case, Hn = ∞ for all n, and it happens that c = ∞. If P {V > 0} ≤ 1/d, then the set
{ρ ∈ R : Λ?(ρ) ≤ log d} = ∅ but Λ?(∞) = 0. So, at an intuitive level, an informal
equivalent of Theorem 1 holds in those two extreme cases as well. By definition, if c is
well-defined, it is clearly unique.

Lemma 1. Assume that P {E = 0} < 1/d and P {E <∞} > 1/d. Then c = sup{1/ρ :
Λ?(ρ) ≤ log d} is well-defined and c <∞.

Proof. Set p = P {E =∞} = P {V = 0}. Note that 1−p = P {V > 0} > 1/d. Introduce the
random variable S, distributed as E conditional on E <∞. It is possible that P {S = 0} > 0
and ES =∞. For λ < 0, we have Λ(λ) = log EeλE = log(1− p) + log EeλS , and therefore,

Λ?(ρ) = Λ?S(ρ)− log(1− p). (4)

Since S ∈ [0,∞), we have infρ Λ?S(ρ) = 0 (Dembo and Zeitouni, 1998) and infρ Λ?(ρ) =
− log(1 − p) < log d. As a consequence, c is well-defined. In other words, the case (b) in
Figure 1 is forbidden.

We now show that there exists δ > 0 such that for all ρ ≤ δ, Λ?(ρ) > log d. Since Λ? is
nonincreasing, this proves that c ≤ 1/δ <∞. Let q = P {S = 0}. We claim that

lim inf
ρ↓0

Λ?S(ρ) ≥

{
− log q if q > 0;
∞ if q = 0.

(5)
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Clearly, taking (5) for granted, and using (4), either q = 0 and lim infρ↓0 Λ?(ρ) =∞, or we
have

lim inf
ρ↓0

Λ?(ρ) ≥ lim inf
ρ↓0

Λ?S(ρ)− log(1− p)

≥ − log P {S = 0} − log P {E <∞}
= − log P {E = 0} > log d,

and the result holds as well. So it remains only to show (5). Let X be distributed as S
conditional on S > 0. Then, for any ρ,

Λ?S(ρ) = sup
λ≤0

{
ρλ− log

(
q + (1− q)EeλX

)}
≥ −√ρ− log

(
q + (1− q)Ee−X/

√
ρ
)
,

by taking λ = −1/
√
ρ. If q = 0, then by the dominated convergence theorem, Λ?S(ρ)→∞,

as ρ→ 0. Otherwise, q > 0 and, as ρ→ 0,

Λ?S(ρ) ≥ o(1)− log q − log
(

1 +
1− q
q
·Ee−X/

√
ρ

)
= o(1)− log q,

by the dominated convergence theorem, as P {X > 0} = 1.

Example. Consider a simple example to illustrate the computation of the constant c.
Suppose d = 2 and let the split vector V be defined by

V =


(0, 1) w.p. p/2
(1, 0) w.p. p/2
(1/2, 1/2) w.p. 1− p,

where p ∈ (0, 1). Observe that EE =∞. Also, µ def= E [ E | E <∞ ] = 1−p
2−p · log 4. We have

Λ?(ρ) =

{
− log(1− p/2) when µ < ρ <∞,
supλ≤0

{
λρ− log

(
2λ(1− p) + p

2

)}
when ρ ≤ µ.

The supremum above is achieved at

λ = log2

(
p

2(1− p)(ρ−1 log 2− 1)

)
,

which is nonpositive for the given range of ρ. Λ?(ρ), ρ > 0 spans [− log(1 − p/2), log(2/p)]
and hence there exists a value c such that Λ?(1/c) = log 2. For λ defined above, we get the
following implicit equation for c:

1
c

log2

(
p

2(1− p)(c log 2− 1)

)
− log

(
p

c log 2− 1
+ p

)
= 0.

For all values of p ∈ (0, 1), the ideal tree with split vector V has height Hn ∼ c log n in
probability. In particular, one can show that c → 1/ log 2 as p → 0. So, the shape of the
tree approaches that of a complete binary tree on n nodes. Numerical values can be found
in Table 1.

Note that along any path from leaf to root, we have blog2 nc internal nodes with two
children corresponding to the (1/2, 1/2) split. All other nodes have (0, 1) type splits, and
thus, by eliminating the child edge corresponding to zero, they can be viewed as one-child
nodes. The number of consecutive one child nodes on a path is geometrically distributed
with parameter 1 − p. Eliminating the one-child nodes, the height could thus equivalently
have been studied by looking at binary trees with perfect splits in which the edges have
independent geometrically distributed weights in the manner of Broutin and Devroye (2006).
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p 1/3 1/5 1/10 1/20

c 4.328085123 . . . 3.251524856 . . . 2.579634951 . . . 2.237874866 . . .

Table 1.

3 A general model of random trees

Let T∞ be a copy of the infinite complete d-ary tree. We place n items in the tree in some
way and associate each item with one node of the tree. It is possible that several items
are associated with the same node, although none of our examples cover this. The item
distribution can equivalently be captured by the collection of cardinalities {Nu, u ∈ T∞},
where Nu is the number of items contained in the subtree rooted at u. We define the finite
tree Tn consisting of all nodes with Nu > 0. We are interested in asymptotic properties of
Hn, the height of Tn. The d children of u are denoted by u1, u2, . . . , ud. Given Nu, Nu > 0,
the split at u in T∞ is the random vector (Nu1/Nu, . . . , Nud/Nu). When Nu = 0, we say
that the split vector consists of all zeros. Our model is as follows:

• conditional independence. For every node u, the subtrees Tn(u1), . . . , Tn(ud)
rooted at u1, . . . , ud are independent conditional on the sizes Nu1 , . . . , Nud .

• permutation independent distribution. If u1, u2, . . . , ud are the children of u ∈
T∞, and σ is any permutation of {1, . . . , d}, then given Nu, (Nuσ(1) , . . . , Nuσ(d)) is
distributed as (Nu1 , . . . , Nud).

• size-dependent distributions. There exist random vectors {Vm,m ≥ 0} such
that for all u, conditioned on Nu = m > 0, (Nu1/m, . . . , Nud/m) is distributed as
Vn = (V n1 , . . . , V

n
d ). This implies that for all u ∈ T∞, and conditioned on Nu = m,

the subtree Tn(u) rooted at u is distributed as Tm.

• convergence in distribution. We have Vn → V in distribution as n→∞.

• bounded height. There exists a deterministic function ψ such that Hn ≤ ψ(n) a.s.
for all n ≥ 0. For example, in most tree models, we have Hn ≤ n. However, tries
(Fredkin, 1960; Knuth, 1973) are an exception to this rule, since such a function does
not exist.

The following theorem is our main result.

Theorem 2. Let Tn be a random tree satisfying the above conditions with V such that
P {V > 0} > 1/d and P {V = 1} < 1/d. Let Hn be the height of Tn. Let c = sup{1/ρ :
Λ?(ρ) ≤ log d}. Then Hn = c log n+ o(log n) in probability, as n→∞.

The lower and upper bounds are proved in Sections 4 and 5, respectively. Taken together,
they prove Theorem 2.

4 Proof of the lower bound

As in the proofs for branching random walks or ideal trees, the argument is based on
branching processes: One aims at building a surviving Galton–Watson tree (Devroye, 1987,
1998a). The key ideas can be traced back to Biggins (1977).

4.1 Relying on ideal trees

Depths in Tn should not be far from those in ideal trees for large n, if all split vectors in Tn
are replaced by their asymptotic counterparts. This is formalized in Lemma 2 below.
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Lemma 2. Let {Tn, n ≥ 0} be a family of random trees satisfying the conditions of the
previous section, and let the limiting split vector be denoted by V. Let ` be a fixed integer.
Let v1, v2, . . . , vk be the k = d` nodes at level ` in T∞. Then

(Nv1/n,Nv2/n, . . . , Nvk/n) −−−−→
n→∞

(Lv1 , Lv2 , . . . , Lvk)

in distribution, where the random variables Lu, u ∈ T∞, are as defined for the ideal trees.

Proof. The proof is based on a coupling argument: we find a coupled copy of the family
{Tn, n ≥ 0} such that (Nv1/n, . . . , Nvk/n)→ (Lv1 , . . . , Lvk) almost surely as n→∞. Recall
that, by assumption, Vn → V in distribution. Accordingly, by Skohorod’s representation
theorem (see, e.g., Billingsley, 1995), there exist copies of these random vectors such that
the convergence holds almost surely. In the following, we let Vn and V denote these copies.

We now construct our coupled sequence of random trees Tn. To do so, assign indepen-
dently to each node u ∈ T∞ a copy of the sequence of vectors {Vm,m ≥ 0}. Given these
sequences, we deterministically build a sequence {T ′n, n ≥ 0} distributed as {Tn, n ≥ 0}.
More precisely, for all n and u ∈ T∞, we construct a new random variable N ′u distributed as
the size Nu of the subtree Tn(u). Let now n ≥ 0. We proceed inductively on the distance
from the root. If u is the root of T∞, then N ′u = n. Otherwise, u is the i-th child of some
node v. Let {V mi (v),m ≥ 0} be the sequence of the i-th components of the given vectors
{Vm(v),m ≥ 0} at v. Assume that N ′v has already been defined. Then we set

N ′u = N ′v · V
N ′v
i (v).

Observe that, although v has an infinite sequence {Vm(u),m ≥ 0}, the split vector to be
used at v, namely VN ′v (v), is selected at the time that N ′v is defined. Note also that N ′u is
integer. Equivalently, we can write

N ′v =
∑
m≥0

m · V mi (u) · 1[N ′u = m].

This finishes the construction of the tree T ′n characterized by {N ′u, u ∈ T∞}.
Since Vn → V almost surely as n→∞, each node u ∈ T∞ has actually a coupled copy of

V as well. These are used to obtain the coupled sequence {Lu, u ∈ T∞} as in the ideal tree.
We now proceed to show that for all u ∈ T∞, N ′u/n converges almost surely to Lu. Note that
this implies that the random vector (N ′v1/n, . . . , N

′
vk
/n) converges a.s. to (Lv1 , . . . , Lvk).

Since, by construction, (N ′v1/n, . . . , N
′
vk
/n) is distributed as (Nv1/n, . . . , Nvk/n), this is

sufficient to prove the lemma.
Consider a set A of probability 1 on which Vn → V. We prove by induction on the depth

of u ∈ T∞ that, for all ω ∈ A, N ′u(ω)/n → Lu(ω) as n → ∞. Fix ω ∈ A. To simplify the
notation, we drop the ω’s but remember that, in fact, all values are deterministic and taken
at ω ∈ A. If u is the root, then N ′u/n = 1 = Lu. Let now u ∈ T∞, and consider ui its i-th
child. We assume that N ′u/n→ Lu, and we want to prove that N ′ui/n→ Lui . There are two
cases: if Lu = 0, then Lui = Lu · Vi(u) = 0. Since N ′ui ≤ N ′u, it is clear that N ′ui/n→ Lui .
Otherwise, Lu > 0. Then by the induction hypothesis, N ′u ∼ Lun→∞, so

N ′ui
n

=
N ′ui
N ′u
· N
′
u

n
= V

N ′u
i · N

′
u

n
−−−−→
n→∞

Vi(u) · Lu = Lui .

This concludes the proof.

4.2 Finding Galton–Watson processes

In the trees Tn, the splits used at different nodes do not have the same distribution. As a
consequence, the construction of proper Galton–Watson processes based on {Nu, u ∈ T∞}

8



is more intricate than in the models considered by Devroye (1998b) or Broutin and Devroye
(2006). Lemma 3 provides us with the result we need to find Galton–Watson processes
inside other branching processes.

Lemma 3. Let N be a random positive integer. Let X be a random variable. Assume that,
conditioning on N = n, X is distributed like Xn, where, for all k,

inf
n

P {Xn ≥ k} ≥ tk

and tk ↓ 0 as k → ∞. Then one can find a random variable Y such that Y ≤ X and, for
all k,

P {Y ≥ k} = tk.

Proof. Let W be a random variable with tail distribution tk: P {W ≥ k} = tk. Let Fn be
the distribution function of Xn and G be the distribution function of W . Let U be uniformly
distributed on [0, 1], then we couple W and all Xn’s in the Skorohod manner:

Xn = F−1
n (U), and W = G−1(U).

It is easy to see that with probability one, W ≤ Xn for all n, and thus W ≤ X.

Lemma 4 below allows us to tune the branching processes arguments that we are about
to use in the proof of Lemma 5.

Lemma 4. Assume that P {V > 0} > 1/d and P {V = 1} < 1/d. Let c = sup{1/ρ :
Λ?(ρ) ≤ log d}. For any ε > 0, there exists ρ such that 1/ρ > c− ε and Λ?(ρ) < log d.

Proof. Let ε > 0. By definition of c, we can find ρ0 such that c − ε/2 ≤ 1/ρ0 ≤ c and
Λ?(ρ0) ≤ log d. There exists an open ball B centered at ρ0 such that, for all ρ ∈ B, 1/ρ ≥ c−ε.
Now, Λ? is convex (Dembo and Zeitouni, 1998), and strictly convex except possibly when
Λ?(ρ) = ∞ or its minimum value, − log P {E | E <∞} < 1/d. As a consequence, there
exists ρ ∈ B such that Λ?(ρ) < log d.

The essence of the lower bound argument is the following lemma.

Lemma 5. Let Hn be the height of Tn defined as in Theorem 2. Assume that P {V > 0} >
1/d and P {V = 1} < 1/d. Let c = sup{1/ρ : Λ?(ρ) ≤ log d}. Then, for any ε > 0, there
exists n0 ≥ 0 such that

inf
n≥n0

P {Hn ≥ (c− ε) log n} > 0.

Proof. Let ε > 0 be arbitrary. We want to prove that we can find deep nodes in Tn. The hunt
for such nodes is simplified by first finding nodes with similar properties in the corresponding
ideal tree. So consider first ideal trees. Let V∞ and E∞ be the distributions of the variables
associated with the ideal tree. For example, we will write E∞e for the value of a random
sample drawn from E∞ and associated with edge e.

By Lemma 4, there exists ρ > 0 such that c − ε < 1/ρ and Λ?(ρ) < log d. Let such ρ
now be fixed. A node u is called ideally good if either it is the root, or if lies ` levels below
an ideally good node v and Lu ≥ Lv · e−ρ` (in the notation introduced in the section on
ideal trees). The constant ` is to be determined later. The collection of ideally good nodes
form a Galton–Watson tree. Let W denote the progeny distribution of this process. While
its distribution may be a bit complicated to describe, we know that

EW = d` ·P
{
Lu ≥ Lv · e−ρ`

}
= d` ·P

 ∑
e∈π(u,v)

E∞e ≤ ρ`

 ,

where π(u, v) is the set of edges on the path from u to v. By Cramér’s theorem, we have

EW = d` · e−`Λ
?(ρ)+o(`) →∞
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as `→∞. Accordingly, there exists ` large enough that EW > 1. Take such an ` and fix it
until the end of the proof.

We now move on to finding deep nodes in Tn. A node u ∈ T∞ is called good if either
u is the root, or u lies ` levels below a good node v and Nu ≥ Nv · e−ρ`. Let Xu be the
number of good descendants of u, ` levels below u. Observe that unlike W , the distribution
of Xu depends on u, and hence, the process consisting of good nodes is not a Galton–
Watson process. However, Lemma 3 allows us to show that there exists a subset of the good
nodes that is distributed as a supercritical Galton–Watson tree with progeny distribution
Y . In the rest of the proof, we construct the random variable Y and the necessary coupled
Galton–Watson process.

Consider {vi, 1 ≤ i ≤ d`}, the d` nodes ` levels below u in Tn. By Lemma 2, conditioning
on Nu = n, {Nvi/n, 1 ≤ i ≤ d`} converges to {Lvi/Lu, 1 ≤ i ≤ d`} in distribution, as
n→∞. This implies in particular that

lim inf
n→∞

P {Xu ≥ t | Nu = n} ≥ P {W ≥ t} ,

for all 0 ≤ t ≤ d`. As a consequence, since EW > 1, we can find M large enough such that
for all n ≥M ,

P {Xu ≥ t | Nu = n} −P {W ≥ t} > 1−EW
2d`

. (6)

Consider the random variable Y such that for all t,

P {Y ≥ t} = max
{
P {W ≥ t}+

1−EW
2d`

, 0
}
.

Then, we have

EY =
d`∑
t=1

P {Yu ≥ t}

≥
d`∑
t=1

(
P {W ≥ t}+

1−EW
2d`

)
= EW +

1−EW
2

=
1 + EW

2
> 1. (7)

Consider a Galton–Watson tree with progeny distribution Y ≤ d`. Assume that this
process finds its individuals in the layers k`, k ≥ 0 of T∞. Let Yu denote the copy of Y at
a node u. By Lemma 3 and (6), there exists a coupling such that for all u ∈ Lk`, k ≥ 0,
Yu ≤ Xu as long as Nu ≥M . Let G collect all nodes u from T∞ that are also nodes at which
the Galton–Watson process is alive. Recalling that {Xu} counts the good nodes, this implies
that, in the coupled process, every node u ∈ G with Nu ≥M is guaranteed to be good (see
Figure 2). By (7), the Galton–Watson process G is supercritical, and survives, therefore,
with probability 1− q > 0 (Harris, 1963; Athreya and Ney, 1972). This probability depends
upon constants M,d and ` which were already chosen earlier. If G survives, then look only
at the nodes of G that also belong to {u ∈ T∞ : Nu ≥M}. Either there is an infinite path
of nodes u ∈ G satisfying Nu ≥M , or G contains a node u such that Nu < M . In the first
case, Hn =∞ and the result holds. In the latter situation, let u ∈ G be of minimum depth
k (as measured in T∞, not G) such that Nu < M . Since u ∈ G, we have M > Nu ≥ n ·e−ρk.
It follows that

Hn ≥ k ≥
log n− logM

ρ
≥ (c− ε) log n,

for n ≥ n0 large enough. This proves that infn≥n0 P {Hn ≥ (c− ε) log n} ≥ 1− q > 0.
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!

Nu ≥M
v !∈ G

u

Figure 2. On the left, the coupled Galton–Watson process G. On the right, an individual u such
that Nu ≥ M and its progeny (black dots). The white node v is good, but x 6∈ G. This illustrates
the fact that Xu ≥ Yu, and that on the set {u : Nu ≥M}, the Galton–Watson process G provides
a lower bound on the number of good nodes.

4.3 Boosting the probability up to 1− o(1)

Finally, we show the lower bound:

Lemma 6. Consider random trees Tn as described in Section 3. Assume that P {V > 0} >
1/d and P {V = 1} < 1/d. Let c = sup{1/ρ : Λ?(ρ) ≤ log d}. For any ε > 0, we have

P {Hn ≥ (c− ε) log n} −−−−→
n→∞

1.

Proof. We run multiple independent copies of the process used in the proof of Lemma 5,
therefore multiplying the chances that one survives (Devroye, 1998a). This is achieved by
starting the processes at level t, and using the conditional independence of disjoint subtrees.
Since we may have V = 0 with some positive probability p, we cannot ensure that all dt

nodes at level t are suitable as starting individuals. However, a fair number of them are.
To see this, we use a second branching process argument in the top t levels of T∞. More

precisely, let Zt denote the number of nodes u at level t in Tn such that Nu > ne−at, where
the value of a > 0 is chosen such that P {V > e−a} > 1/d and e−a < 1/d. Such a choice
is possible since P {V > 0} > 1/d. We claim that for any integer r, there exists a natural
number t such that, for all n large enough, P {Zt ≤ r} < 1/r.

To prove this fact consider T∞ as an ideal tree and let Z∞t denote the number of nodes
u at level t such that Lu > e−at. Define an auxiliary Galton–Watson process starting at
the root in the following way: a node v is called ideally nice if it is the root, or if its parent
is ideally nice and Ve > e−a. The set of ideally nice nodes is clearly a Galton–Watson
process. Since

∑d
i=1 Vi = 1, each individual has at least one child and the process survives

with probability 1. Also, we have ... and so the process is not trivial. In particular, the
number of elements of the process at level t tends to infinity in probability as t → ∞ (see,
e.g., Athreya and Ney, 1972). Accordingly, there exists t0 such that the number of ideally
nice nodes at level t0 is less than or equal to r with probability less than 1/r. Since for any
ideally nice node u at level t0, Lu > e−at, this implies P

{
Z∞t0 ≤ r

}
< 1/r.

But now, by Lemma 2,

lim inf
n→∞

P {Zt0 ≤ r} ≤ P
{
Z∞t0 ≤ r

}
< 1/r.

So, there exists n1 = n1(t0, r) large enough such that for all n ≥ n1, P {Zt0 ≤ r} ≤ 2/r.
Assume now that Zt0 > r. Let {vi, 1 ≤ i ≤ r} be the first r nice individuals at level t0. For
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1 ≤ i ≤ r, we have Nvi ≥ n · e−at0 . Conditioning on the sizes at level t, we can run the
processes described in the proof of Lemma 5 independently in T∞(vi), the subtrees of T∞
rooted at vi, 1 ≤ i ≤ r. By Lemma 5, for all n large enough, in any of the r subtrees T∞(vi),
with probability at least 1 − q, there exists a node at depth at least (c − ε/2)(log n − at0).
In such a case, Hn ≥ (c− ε/2)(log n− at0) + t0 ≥ (c− ε) log n, for n large enough.

Finally, still for n large enough,

P {Hn < (c− ε) log n} ≤ P {Zt0 ≤ r}+ P {Hn < (c− ε) log n,Zt0 > r}

≤ 2
r

+ qr.

This can be made arbitrarily close to 0 by the choice of r. This concludes the proof of the
lower bound.

5 Proof of the upper bound

Let ε > 0 and pick ρ0 such that 1/ρ0 ∈ (c, c + ε). Since c = sup{1/ρ : Λ?(ρ) ≤ log d}, we
have Λ?(ρ0) > log d. Now by definition, Λ?(ρ0) = sup{λρ0−Λ(λ) : λ ≤ 0}, and hence there
exists λ ≤ 0 such that λρ0−Λ(λ) > log d. Let this particular λ be fixed in rest of the proof.

Let Lt be the set of nodes at level t in T∞. Let ut be the left-most node in Lt. Let
M > 0 be any integer. Since HM ≤ ψ(M), for Hn to be larger than (c+ ε) log n there must
be a node u in level Lk, with k = b(c+ ε) log n− ψ(M)c:

P {Hn ≥ (c+ ε) log n} ≤ P {∃u ∈ Lk : Nu ≥M} .

Then, by the union bound over nodes in Lk, and the symmetry condition on the split
vectors,

P {Hn ≥ (c+ ε) log n} ≤ dk ·P {Nuk ≥M} . (8)

If Nu0 = n, then the random variable Nuk is a product of random variables. However, they
are neither independent nor identically distributed. We aim at bounding Nuk by a product
of i.i.d. random factors distributed as XM , say.

We now construct the random variable XM . Let Fn and F be the distribution functions
of V n and V , the typical components of Vn and V, respectively. By assumption, V n → V
in distribution, so that for every point of continuity x of F , we have Fn(x)→ F (x) (see, for
example, Billingsley, 1995). Then, for all such x, and M > 0,

GM (x) def= inf{Fn(x) : n ≥M} −−−−→
M→∞

F (x). (9)

Since GM is increasing, right-continuous, and bounded between 0 and 1, it is indeed the dis-
tribution function of some random variable XM . Also, by (9), XM converges in distribution
to V . In particular, since 0 ≤ XM ≤ 1, and λ ≤ 0, by the dominated convergence theorem,

log EX−λM → log EV −λ = Λ(λ)

as M → ∞. As a consequence, by our choice of λ, there exists M large enough such that
λρ0 − log EX−λM − log d > 0. Let this M be fixed until the end of the proof.

With the random variable XM in hand, let us go back to bounding (8). With the value
of M described above, we claim that

P {Nuk ≥M} ≤ P

{
k∏
i=1

X
(i)
M ≥

M

n

}
, (10)
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where X(i)
M , 1 ≤ i ≤ k, are i.i.d. copies of XM . To see this, we couple the random variables

appearing on both sides of (10). Let U1, . . . , Uk be i.i.d. [0, 1]-uniform random variables.
Then, by the inverse transform technique,

X
(i)
M = G−1

M (Ui), 1 ≤ i ≤ k,

are i.i.d. copies of XM (Grimmett and Stirzaker, 2001). We now construct the coupled
copies of Nu0 , Nu1 , . . . , Nuk inductively. We set Nu0 = n and define

Nui+1 = Nui · F−1
Nui

(Ui+1), 0 ≤ i ≤ k − 1.

By construction, conditional upon Nui = m, Nui+1/m is distributed as V m and Nui+1 ∈ N
almost surely, as desired. Recall that, by (9), for m ≥M , we have Fm ≥ GM . This implies
that, for all i such that 0 ≤ i ≤ k − 1,

Nui+1

Nui
= F−1

Nui
(Ui+1) ≤ G−1

M (Ui+1) = X
(i)
M .

Finally, on the set {Nuk ≥M},

Nuk = n ·
k−1∏
i=0

Nui+1

Nui
≤ n ·

k−1∏
i=0

X
(i)
M ,

which proves (10).

Let Y = − logXM . Observe that for n large enough, ρ0k = ρ0 b(c+ ε) log n− ψ(M)c ≥
log n. Now, recalling (8), and using (10), we see that

P {Hn ≥ (c+ ε) log n} ≤ dk ·P

{
k∏
i=1

X
(i)
M ≥

M

n

}

= dk ·P

{
k∑
i=1

− logX(i)
M ≤ log n− logM

}

≤ dk ·P

{
k∑
i=1

− logX(i)
M ≤ ρ0k

}
,

for n large enough. Finally, by Chernoff’s bound (Chernoff, 1952), and because Λ?Y (ρ0) ≥
ρ0λ− log EX−λM > log d,

P {Hn ≥ (c+ ε) log n} ≤ e−k(Λ?Y (ρ)−log d) −−−−→
n→∞

0.

This completes the proof of the upper bound.

6 Simple examples

Randomly balanced binary search trees. Suppose we are given distinct real numbers
x1, . . . , xn. We build a random tree in the following way. Select a random sample of size
mn, where mn →∞ slowly enough that mn is o(n), and find the median Mn of this random
sample. Split the nodes into two subtrees with Mn as the root, as one does in a binary
search tree: {xi : xi < Mn} and {xi : xi > Mn} are sent to the left and right subtrees,
respectively. Repeat recursively at all nodes. It is easy to show that the split for this random
tree, (N1/n,N2/n), where N1 and N2 are the sizes of the first and second subtrees, converges
in probability to (1/2, 1/2) as n → ∞. Thus, without any further work, we can conclude

13



from Theorem 2 that Hn ∼ log2 n in probability. This yields a simple randomized way of
asymptotically balancing a binary search tree, strengthening a result of Mart́ınez and Roura
(2001) who proved that the average depth is asymptotically log2 n.

Almost perfect splits. As a further example, we consider the situation where the split
vector of the random tree is close to (1/2, 1/2) with high probability, but can sometimes
have a very unbalanced split. Let (Xn, Yn, Zn), n ≥ 1, be a random sequence where 0 ≤
Xn, Yn ≤ 1/2 and 0 ≤ Zn ≤ 1 have a quite arbitrary dependence structure. We only assume
that Xn → 0 and Yn → 0 in probability, as n→∞. Suppose the split vector at a node u of
size n is: {

(bnZnc, bn(1− Zn)c) w.p. Xn

(bn( 1
2 + Yn)c, bn( 1

2 − Yn)c) w.p. 1−Xn.

We flip a perfect coin and exchange the components of the split vector to satisfy the permu-
tation invariance constraint. The split vector converges in distribution to (1/2, 1/2). This
holds whatever the distribution of Zn, even in the extreme case where Zn = 1 almost surely.
Thus, as in the previous example, Hn ∼ log2 n in probability.

7 Increasing trees

The varieties of increasing trees discussed in Section 1 have been introduced and thoroughly
studied by Bergeron, Flajolet, and Salvy (1992), especially the polynomial families, with
bounded maximum degree. We start by recalling the model of increasing trees and some
of the important results. First of all, we must verify that the increasing trees of bounded
maximum degree are indeed covered by our conditions. An increasing tree on n nodes has
n items, one per node. Clearly, the bounded height condition holds. Furthermore, we can
make a d-ary tree out of the ordered tree by adding, if necessary, empty subtrees to make
all degrees d, and randomly permuting all children of all nodes. This creates the required
symmetry. Given subtree sizes of siblings, the subtrees are indeed independent, and their
distributions depend upon the subtree size only. Finally, as we will show in the proof of our
main result, the crucial split vector convergence condition holds with a limiting Dirichlet
split.

Bergeron, Flajolet, and Salvy (1992) showed that, in a random increasing tree sampled
from any polynomial family of maximum degree d, the depth Dn of a typical node has mean
µn asymptotic to d

d−1 log n and variance σ2
n ∼ d

d−1 log n. Furthermore, they showed that

Dn − µn
σn

→ N (0; 1),

the standard Gaussian, in distribution, as n → ∞. Depths in increasing tree families have
also been studied by Panholzer and Prodinger (2004, 2006). Drmota (2006) showed that
the expected height is O(log n) and that, under some extra conditions, the variance of the
height is O(1), just as in the more usual model of binary search trees (Reed, 2000, 2003;
Drmota, 2003). The fact that the first order asymptotics for the depths are identical for all
polynomial varieties of outdegree d motivated this paper. We show that similarly, the first
order limit behaviour for the height depends upon d only.

Theorem 3. Let Tn be a random increasing tree of size n from the family described by
{sr : 0 ≤ r ≤ d}, s0 6= 0, sd 6= 0. Let p be the period of the variety (the greatest common
divisor of all indices i > 0 for which si > 0). Let Hn be the height of Tn. Then Hn ∼ cd log n
in probability, as n → ∞ along integers n that are 1 mod p. The constant cd is the unique
solution in [1/(d− 1),∞) of

(d− 1)cd log
(

de

(d− 1)cd

)
= 1. (11)
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d 2 3 4 5 10 50 100

cd 4.311. . . 3.540. . . 3.272. . . 3.137. . . 2.907. . . 2.753. . . 2.735. . .

Table 2. Some numerical values for cd. Observe that limd→∞ cd = e.

Proof. The main result of interest to us is the asymptotic enumeration of polynomial families
of increasing trees provided by Bergeron et al. (1992). Let δ = 1/(d− 1), and let Yn be the
number of increasing trees with n nodes in the variety described by {sr}. Define

Rn =
Yn

n!ρ−nnδ−1
with ρ =

∫ ∞
0

dw

φ(w)
.

Then, Bergeron et al. (1992) proved that there exists m large enough such that if n ≥ m,
and if the limit is taken along values n = 1 mod p, we have

lim
n→∞

Rn = pC, and a ≤ Rn ≤ b, (12)

for some constants 0 < a ≤ b < ∞ and C > 0. If n does not satisfy n = 1 mod p, then
Rn = Yn = 0. The limit for Rn is the key to obtaining the height of random increasing
trees.

From Theorem 2, we only need to compute the limit distribution of the split. We are
particularly interested in integer-valued vectors (n1, . . . , nd) satisfying

ni = 1 mod p, and
d∑
i=1

ni = n− 1. (13)

Equation (13) implies n = 1+dmod p, so that, since d is a multiple of p, we have n = 1 mod p.
The number of increasing trees such that the children of the root have (positive) sizes
n1, n2, . . . , nd is

sd ·
(

n− 1
n1, n2, . . . , nd

)
·
d∏
i=1

Yni = sd · f(n1, . . . , nd) · (n− 1)! · ρ1−n
d∏
i=1

nδ−1
i . (14)

Here, by (12), we have ad ≤ f(n1, . . . , nd) ≤ bd and f(n1, . . . , nd) → pdCd, provided that
(13) holds and min{ni : 1 ≤ i ≤ d} → ∞.

Let X1, X2, . . . , Xd be the sizes of the d subtrees of the root of a random increasing tree
on n nodes. Then, normalizing (14) by Yn we obtain that

P {(X1, . . . , Xd) = (n1, . . . , nd)} = ρ · sd · g(n1, . . . , nd) · n1−d ·
d∏
i=1

(ni
n

)δ−1

, (15)

where ad/b ≤ g(n1, . . . , nd) ≤ bd/a, for min{ni : 1 ≤ i ≤ d} ≥ m, and g(n1, . . . , nd) →
pd−1Cd−1 if (13) holds and the min{ni : 1 ≤ i ≤ d} → ∞. The upper bound on g holds if
we merely have n ≥ m. Observe that, for z = (z1, . . . , zd) ∈ (0, 1]d and

S(z) =
{

(n1, . . . , nd) : ni ≥ nzi, ni = 1 mod p,
d∑
i=1

ni = n− 1
}
,

we have

P

{
d⋂
i=1

[
Xi

n
≥ zi

]}
= ρ · sd · n1−d ·

∑
(n1,...,nd)∈S(z)

g(n1, . . . , nd) ·
d∏
i=1

(ni
n

)δ−1

. (16)
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Equation (16) describes the distribution of the split whose asymptotics we are after. Let
n = 1 mod p. Consider the (d − 1)-dimensional grid of integers that are 1 mod p: we place
(n1, . . . , nd−1) on this grid, and set nd = n − 1 −

∑d−1
i=1 ni (so that nd = 1 mod p as well).

We now bound the sum in the right-hand side of (16) from above and below by an integral
in the standard manner. For the upper bound, consider the (d− 1)-dimensional cube with
side p/n having as its topmost point (n1/n, . . . , nd−1/n). Then, setting

S′(z) =
{

(w1, . . . , wd−1) : wi ≥ zi,
d−1∑
i=1

wi ≤ 1
}
, (17)

for a continuous version of S(z), and writing wd = 1−
∑d−1
i=1 wi to save space, we have

∑
S(z)

g(n1, . . . , nd) ·
d∏
i=1

(ni
n

)δ−1

≤
∫
S′(z−p/n)

g(n1, . . . , nd) ·
(
n

p

)d−1

·
(
wd −

(d− 1)p
n

)δ−1

·
d−1∏
i=1

wδ−1
i · dwi .

Recall that g(n1, . . . , nd) is bounded, and g(n1, . . . , nd)→ (pC)d−1 if min{ni : 1 ≤ i ≤ d} →
∞ in such a way that (13) holds. Therefore,

P

{
d⋂
i=1

[
Xi

n
≥ zi

]}
−−−−→
n→∞

ρ · sd · Cd−1 ·
∫
S′(z)

wδ−1
d ·

d−1∏
i=1

wδ−1
i · dwi ,

by the dominated convergence theorem. A matching lower bound is easily obtained in a
similar way. We are now ready to prove the following lemma, giving the limit distribution
we are looking for.

Lemma 7. Let V = (V1, . . . , Vd) have the symmetric Dirichlet distribution with parameter
δ. Then, (X1, . . . , Xd)→ V in distribution as n→∞.

Proof. Recall that by definition (Evans et al., 2000), for all z = (z1, . . . , zd) ∈ [0, 1], and
u = (w1, . . . , wd−1),

P

{
d⋂
i=1

[Vi ≥ zi]

}
= D ·

∫
S′(z)

(
1−

d−1∑
i=1

wi

)δ−1

·
d−1∏
i=1

wδ−1
i · dwi,

where D is a normalization constant depending upon δ and d only, and S′(z) is given by (17).
It seems that we have convergence in distribution of (X1/n, . . . ,Xd/n) to (V1, V2, . . . , Vd).

However, we only know that the distribution functions are asymptotically proportional, as
we did not bother with the constants—we did not show that D = ρsdC

d−1. To complete
the proof, it suffices to show that

lim
ε↓0

P

{
d⋂
i=1

[
Xi

n
≥ ε
]}

= 1.

As a side-product, this also shows that the probability that the root has fewer than d children
is o(1), and this is the reason why we did not bother with calculations for those cases. By
symmetry, to show that P{

⋃d
i=1 [Xi ≤ εn]} = o(1) it suffices to prove that P {X1 ≤ εn} =

o(1). Let

S1(ε) def=
{

(n1, . . . , nd) : n1 ≤ εn, ni = 1 mod p,
d∑
i=1

ni = n− 1
}
.
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For n ≥ m, we have

P {X1 ≤ εn} = ρ · sd · n1−d ·
∑

(n1,...,nd)∈S1(ε)

g(n1, . . . , nd) ·
d∏
i=1

(ni
n

)δ−1

≤ ρ · sd · n1−d ·
∑

(n1,...,nd)∈S1(ε)

bd

a
·
d∏
i=1

(ni
n

)δ−1

−−−−→
n→∞

ρ · sd ·
bd

a
· p1−d ·

∫
w1≤ε

(
1−

d−1∑
i=1

wi

)δ−1

·
d−1∏
i=1

wδ−1
i · dwi,

by the integral comparison method used earlier. The last integral is o(1) as ε ↓ 0. This
finishes the proof.

With Lemma 7 in hand, it remains only to compute Λ? and characterize cd. Let V be
a typical component of V with the symmetric Dirichlet distribution with parameter δ. It
is well-known that V is beta (δ, 1) (Evans et al., 2000). In fact, V is distributed as U1/δ,
where U is uniform on [0, 1]. With E = − log V , we have EE = 1/δ. For λ ≤ 0, we have

Λ(λ) def= log E
[
eλE

]
= log E

[
V −λ

]
= log E

[
U−λ/δ

]
= log

(
δ

δ − λ

)
.

The function λ 7→ λt − Λ(λ) is maximized for λ = δ − 1/t, and thus Λ?(ρ) = δρ − 1 −
log δ − log ρ. Since P {V = 0} = P {V = 1} = 0, there exists ρ such that Λ?(ρ) = log d. As
a consequence, by Theorem 2, we have Hn = cd log n + o(log n) in probability, as n → ∞
where cd is the solution greater than δ = 1/(d− 1) of

1
(d− 1)cd

− 1 + log(d− 1) + log cd = log d,

which is equivalent to (11). This completes the proof.

Random binary search tree. As we have seen in the introduction, this model is equiv-
alent to a random increasing tree with characteristic sequence {s0 = 1, s1 = 2, s2 = 1}. The
height given by Theorem 3 matches the result of Devroye (1986), that is, Hn ∼ 4.311 . . . log n
in probability, as n → ∞. Observe that in this case, the distribution of the split is exact
and V is uniformly distributed on [0, 1].

Increasing d-ary position tree. Consider the following growth process for d-ary position
trees. An external node is a node with no children, and an internal node is a node with
d children (of which some may be internal and some external). Furthermore, each node
contains a time-stamp value that indicates the time at which is was added to the tree.
We start the growth process with a single internal node (with time-stamp 1) which has d
external children. At each time step, an external node is picked uniformly at random and
replaced by an internal node with d external nodes—its potential children. The time-stamp
value of the i-th internal node is exactly i. A random tree of size n built in this way is
distributed as a random increasing tree taken from the variety associated with the sequence
{
(
d
i

)
: 0 ≤ i ≤ d}. To see this, note first that the number of proper increasing labelings

of a tree T with a fixed shape is exactly the number of ways T can be obtained by our
process. Also, the growth process produces every properly labeled position tree with equal
probability. It suffices now to observe that the number of trees T of a given shape and
labeling in the increasing family is

d∏
i=0

(
d

i

)Di(T )

,
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where Di(T ) is the number of nodes of degree i in T . This turns out to be the number
of embeddings of T in a d-ary position tree, and therefore we can consider the family of
increasing trees as containing each embedding once. Since the number of labelings also
matches up, a tree produced by the incremental growth process is a random increasing
tree. Binary search trees correspond to the case d = 2. In some sense, the increasing trees
associated with φ(w) = (1 + w)d are the typical increasing trees of degree d because they
have a natural incremental construction. Since the children in this model are identified by
their position between 1 and d, we have in effect created a random d-ary position tree (of
internal nodes).

8 Increasing conditional Galton–Watson trees

There is an analogy between Galton–Watson trees conditional on their size and simply
generated trees (see, e.g., Moon (1970), Kennedy (1975), or Kolchin (1980, 1986)). If T
is a Galton–Watson tree with reproduction law µ = {µn, n ≥ 0}, then for all integers n,
the probability that, conditional on |T | = n, T is equal to an ordered tree t of size n is
proportional to ∏

r≥0

µDr(t)
r , (18)

where Dr(t) is the number of nodes in t of outdegree r. This formula is the same as the one
defining a random simply generated tree with defining sequence

∑
r≤0 µrw

r: for a certain
unlabeled tree of shape t, the probability of selection is proportional to (18).

In the random increasing trees of the polynomial variety, we made the selection prob-
ability of an ordered tree of shape t equal to (18) times the number of possible increasing
labelings of nodes of t using the integers 1, . . . , |t|. Let us call the latter number Ψ(t). While
it will not matter in the discussion, it is easy to see that

Ψ(t) =
n!∏

u∈t |Nu|
.

We can formally extend this definition to size-conditioned Galton–Watson trees: select
a tree of shape t with probability proportional to

Ψ(t)×
∏
r≥0

µDr(t)
r .

For reference below, we will call this the increasing conditional Galton–Watson tree. Here,
of course, the µr have no restrictions except that they define a probability distribution on
{0, 1, . . . , d}. Equivalently, the probability of a given increasingly-labeled tree t is propor-
tional to (18). Another equivalent way of thinking of these trees is via simulation: generate
an unconditional random Galton–Watson tree T and label the nodes by a random equiprob-
able permutation of 1, . . . , |T |. Repeat this until for the first time, a tree is obtained that
has precisely size n and whose labeling is increasing. That tree has the desired distribution.

A curiosity of the increasing conditional Galton–Watson tree is that if µr is replaced by
αµrθ

r for arbitrary constants α > 0 and θ > 0, then (18) is rewritten as∏
r≥0

(
αDr(t)µDr(t)

r θrDr(t)
)

= αnθn−1
∏
r≥0

µDr(t)
r .

In other words, increasing conditional Galton–Watson trees (as well as their special case,
the increasing trees of Bergeron et al. (1992)) have distributions that do not depend upon
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the actual values of α and θ. This fact was already known for standard conditional Galton–
Watson trees (Kennedy, 1975). It carries over to the increasing labels model.

Our main theorem still applies to increasing conditional Galton–Watson trees, and, inter-
estingly, the first-order asymptotics of the height do not depend upon the particular values
of µr, but only on the index d of the largest strictly positive value µr. There is an analog
asymptotic result on Yn (see above Theorem 3). The difference is that then one no longer
has the combinatorial interpretation of Yn as the number of trees of size n in the variety, as
it is replaced by a weighting of the tree of size n. To check its validity, follow the proof of
Bergeron et al. (1992) step by step, and verify that everything goes through.

9 Digital search trees

Consider random tries over a finite alphabet A = {1, . . . , k}, where each datum consists
of an infinite string of i.i.d. symbols drawn from a fixed distribution on A (Fredkin, 1960;
Szpankowski, 2001). A string corresponds to an infinite path in the tree, with the i-th
symbol having the index of the i-th child on the path. On each path, we mark the highest
node visited by only one string and associate it with that string. The trie consists of these
n marked nodes (leaves) and their paths to the root.

The probability of the i-th symbol is denoted by pi. When there are n independent
strings, we obtain the standard random trie. Its properties are well-known (Szpankowski,
2001): for example, if Dn is the depth of a random leaf, then

Dn

log n
→ 1
E

in probability

as n→∞, where

E =
k∑
i=1

pi log
(

1
pi

)
is the entropy of the distribution {pi, 1 ≤ i ≤ k} (Pittel, 1985). Also, if Hn denotes the
height of the trie, then

Hn

log n
→ 2

Q
in probability

as n→∞, where

Q = log

(
1∑k
i=1 p

2
i

)
(Pittel, 1985). From Jensen’s inequality and (max1≤i≤k pi)2 ≤

∑k
i=1 p

2
i ≤ max1≤i≤k pi, we

have
1
H
≤ 1
Q
≤ 1

log
(

1
max1≤i≤k pi

) ≤ 2
Q
,

so that the height is always at least twice as big as the typical depth of a node.

In some applications, it is important to reduce the height. Attempts in this direction
include patricia trees (Morrison, 1968), and digital search trees (Coffman and Eve, 1970;
Konheim and Newman, 1973). In both cases, we have

Hn

log n
→ 1

log
(

1
max1≤i≤k pi

) in probability
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(Pittel, 1985). In other words, the height improves over that of the random trie, but not
by more than 50%. Also, both patricia trees and digital search trees introduce slight
inconveniences: inorder traversal of digital search trees does not visit the nodes in sorted
order, and internal edges of patricia trees have cumbersome labels.

The term of digital search tree seems misleading to us, since digital search trees are not
search trees, where a search query is carried over using the values stored in the nodes. We
have kept the name digital search tree since it is standard. However, we prefer the term
pebbled tries, to emphasize the trie structure: a string (a “pebble”) is assigned to each node
in the tree instead of to each leaf. We may also assign up to b pebbles to each node. In the
pebbled trie, we recursively split the collection of strings up as follows: at the root, where
n strings have to split up, select one string uniformly at random and associate it with the
root. Assign the n − 1 remaining strings according to the values of their first symbol to
the subtrees of the root. Recursively apply this rule for each node, but use the `-th symbol
for a node at level ` in the tree. In this manner, the height Hn of the pebbled trie is at
most n−1. The fact that we can bound the height by a deterministic function distinguishes
pebbled tries from ordinary tries. It permits us to apply our results to pebbled tries. The
vector of subtree sizes (N1, . . . , Nk) at the root is multinomial (n− 1, p1, p2, . . . , pk).

Since Hn ≤ n − 1 and (N1/n, . . . , Nk/n) tends in distribution to (p1, . . . , pk), we can
apply Theorem 1, after randomly permuting the split vector. Thus, the random variable V in
Theorem 1 is distributed as pZ , where Z is uniform in {1, . . . , k}. From trivial calculations,
we deduce that

Hn

log n
→ 1

log
(

1
max1≤i≤k pi

) in probability,

just as for the more intricate patricia trees. Note that Theorem 1 does not apply to the
standard trie because Hn cannot be bounded in a deterministic manner by a function of n.

While Theorem 1 is only valid for trees with a finite branch factor, it is easy to verify
that the above result remains valid for infinite branch factors, that is, pebbled tries in which
the symbols take any positive integer value.

10 Concluding remarks

Using Theorem 2, we have obtained the height of increasing trees with bounded degree d.
It is interesting to observe that the first order asymptotics do not depend on the sequence
of values {s0, s1, . . . , sd}. In particular, having ordered or unordered trees does not change
the height. The case of d = ∞, that is, families with unbounded degree is fundamentally
different. Indeed, uniform recursive trees and plane-oriented trees (Pittel, 1994) are special
cases of this model, and their heights are e log n and 1.7956 . . . log n, respectively. Ordering
nodes clearly modifies the height in this case.

Another model worthy of study is that of Prodinger and Urbanek (1983) in which increas-
ing trees pick their labels from {1, 2, . . . , ϕ(n)}, with ϕ(n) < n, and ties between parent-child
pairs are allowed.
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