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Abstract

The even discrete torus is the graphTL,d on vertex set{0, . . . , L − 1}d (with L

even) in which two vertices are adjacent if they differ on exactly one coordinate and
differ by 1 (modL) on that coordinate. Thehard-core measure with activityλ onTL,d

is the probability distributionπλ on the independent sets (sets of vertices spanning no
edges) ofTL,d in which an independent setI is chosen with probability proportional
to λ|I|. This distribution occurs naturally in problems from statistical physics and the
study of communication networks.

We study Glauber dynamics, a single-site update Markov chain on the set of in-
dependent sets ofTL,d whose stationary distribution isπλ. We show that forλ =

ω(d−1/4 log3/4 d) andd sufficiently large the convergence to stationarity is (essen-
tially) exponentially slow inLd−1. This improves a result of Borgset al., who had
shown slow mixing of Glauber dynamics forλ growing exponentially withd.

Our proof, which extends toρ-local chains (chains which alter the state of at most
a proportionρ of the vertices in each step) for suitableρ, closely follows the conduc-
tance argument of Borgset al., adding to it some combinatorial enumeration meth-
ods that are modifications of those used by Galvin and Kahn to show that the hard-
core model with parameterλ on the integer latticeZd exhibits phase coexistence for
λ = ω(d−1/4 log3/4 d).

The discrete even torus is a bipartite graph, with partitionclassesE (consisting
of those vertices the sum of whose coordinates is even) andO. Our result can be
expressed combinatorially as the statement that for each sufficiently largeλ, there is
a ρ(λ) > 0 such that ifI is an independent set chosen according toπλ, then the
probability that||I ∩ E| − |I ∩ O|| is at mostρ(λ)Ld is exponentially small inLd−1.

Key words and phrases: Glauber dynamics, mixing time, independent sets, hard-core model, conduc-
tance, discrete torus, Peierl’s argument.
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In particular, we obtain the combinatorial result that for all ε > 0 the probability that a
uniformly chosen independent set fromTL,d satisfies||I ∩E|−|I ∩O|| ≤ (.25−ε)Ld

is exponentially small inLd−1.

1 Introduction and statement of the result

Let Σ = (V,E) be a simple, loopless, finite graph on vertex setV and edge setE. (For
graph theory basics, seee.g. [2], [7].) Write I(Σ) for the set of independent sets (sets of
vertices spanning no edges) inV . Forλ > 0 we define thehard-core probability measure
with activityλ onI(Σ) by

πλ({I}) =
λ|I|

Zλ(Σ)
for I ∈ I(Σ)

whereZλ(Σ) =
∑

I∈I λ
|I| is the appropriate normalizing constant orpartition function.

Note thatπ1 is uniform measure onI(Σ).
The hard-core measure originally arose in statistical physics (seee.g. [8, 1]) where it

serves as a model of a gas with particles of non-negligible size. The vertices ofΣ we think
of as sites that may or may not be occupied by particles; the rule of occupation is that
adjacent sites may not be simultaneously occupied. In this context the activityλ measures
the likelihood of a site being occupied.

The measure also has a natural interpretation in the contextof multicast communica-
tions networks (seee.g.[16]). Here the vertices ofΣ are thought of as locations from which
calls can be made; when a call is made, the call location is connected to all its neighbours,
and throughout its duration, no call may be placed from any ofthe neighbours. Thus at any
given time, the set of locations from which calls are being made is an independent set inΣ.
If calls are attempted independently at each vertex as a Poisson process of rateλ and have
independent exponential mean1 lengths, then the process has stationary distributionπλ.

UnlessL andd are small, it is unfeasible to explicitly compute the partition function
Zλ and the distributionπλ. It is therefore of great interest to understand the effectiveness
of algorithms which approximateZλ and/orπλ. In this paper we studyGlauber dynamics,
a Monte Carlo Markov chain (MCMC) which simulatesπλ. MCMC’s occur frequently
in computer science in algorithms designed to sample from orestimate the size of large
combinatorially defined structures; they are also used in statistical physics and the study of
networks to help understand the behavior of models of physical systems and networks in
equilibrium. Glauber dynamics is the single-site update Markov chainMλ = Mλ(Σ) on
state spaceI(Σ) with transition probabilitiesPλ(I, J), I, J ∈ I(Σ), given by

Pλ(I, J) =



















0 if |I △ J | > 1
1
|V |

λ
1+λ

if |I △ J | = 1, I ⊆ J
1
|V |

1
1+λ

if |I △ J | = 1, J ⊆ I

1−∑I 6=J ′∈I(Σ) Pλ(I, J
′) if I = J .
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We may think ofMλ dynamically as follows. From an independent setI, choose a vertex
v uniformly fromV . Then addv to I with probability proportional toλ, and remove it with
probability proportional to1; that is, set

I ′ =

{

I ∪ {v} with probability λ
1+λ

I \ {v} with probability 1
1+λ

.

Finally, move toI ′ if I ′ is an independent set, and stay atI otherwise.
It is readily checked thatMλ is an ergodic Markov chain with (unique) stationary dis-

tributionπλ. A natural and important question to ask aboutMλ is how quickly it converges
to its stationary distribution. It is traditional to define themixing timeτMλ(Σ) of Mλ(Σ) to
be

τMλ(Σ) = max
I∈I(Σ)

min







t0 :
1

2

∑

J∈I(Σ)

|P t(I, J)− πλ(J)| ≤
1

e
∀t > t0







,

whereP t(I, ·) is the distribution of the chain at timet, given that it started in stateI.
The mixing time ofMλ captures the speed at which the chain converges to its stationary
distribution: for everyǫ > 0, in order to get a sample fromI(Σ) which is withinǫ of πλ

(in variation distance), it is necessary and sufficient to run the chain from some arbitrarily
chosen distribution for some multiple (depending onǫ) of the mixing time. For surveys of
issues related to the mixing time of a Markov chain, seee.g.[19, 20].

Here we studyτMλ(TL,d), whereTL,d is the even discrete torus. This is the graph on
vertex set{0, . . . , L − 1}d (with L even) in which two strings are adjacent if they differ
on only one coordinate, and differ by1 (modL) on that coordinate. ForL ≥ 4 this is a
2d-regular bipartite graph with unique bipartitionE ∪O whereE is the set of even vertices
of TL,d (those strings the sum of whose coordinates is even) andO is the set of odd vertices.

Much work has been done on the question of boundingτMλ
above for various classes

of graphs. The most general results available to date are dueto Luby and Vigoda [18] and
Dyer and Greenhill [11], who have shown that for any graphΣ with maximum degree∆,
τMλ(Σ) is a polynomial in|V (Σ)| wheneverλ < 2/(∆ − 2), which implies thatτMλ(TL,d)

is a polynomial inLd wheneverλ < 1/(d − 1). More recently, Weitz [22] has improved
this general bound in the case of graphs with sub-exponential growth, and in particular has
shown thatτMλ(TL,d) is a polynomial inLd wheneverλ ≤ (2d−1)2d−1/(2d−2)2d ≈ e/2d.

Recently, attention has been given to the question of regimes of inefficiencyof Glauber
and other dynamics. Dyer, Frieze and Jerrum [10] consideredthe caseλ = 1 and showed
that for each∆ ≥ 6 a random (uniform)∆-regular,n-vertex bipartiteΣ almost surely (with
probability tending to1 asn tends to infinity) satisfiesτM1(Σ) ≥ 2γn for some absolute
constantγ > 0. The first result in this vein that applied specifically toTL,d was due to
Borgset al. [5], who used a conductance argument to obtain the following.

Theorem 1.1 There isc(d) > 0 (independent ofL) such that forλ sufficiently large and
all evenL ≥ 4,

τMλ(TL,d) > exp

{

c(d)Ld−1

log2 L

}

.
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An examination of [5] reveals that “sufficiently large” may be quantified asλ > cd for
a suitable constantc > 1. One motivation for [5] was to show that for values ofλ for
which the hard-core model on the integer latticeZ

d exhibits multiple Gibbs phases (to be
explained below), the mixing of the Glauber dynamics onTL,d should be slow. Dobrushin
[8] showed that as long asλ is sufficiently large, there are indeed multiple Gibbs phases in
the hard-core model. Specifically, writeE andO for the sets of even and odd vertices ofZ

d

(defined in the obvious way). EquipZd with the usual nearest neighbour adjacency and set

ΛL = [−L, L]d and ∂ΛL = [−L, L]d \ [−(L− 1), L− 1]d.

Forλ > 0, chooseI from I(ΛL) with Pr(I = I) ∝ λ|I|. Dobrushin showed that forλ large

lim
L→∞

P

(

~0 ∈ I | I ⊇ ∂ΛL ∩ E
)

> lim
L→∞

P

(

~0 ∈ I | I ⊇ ∂ΛL ∩ O
)

(1)

where~0 = (0, . . . , 0). Thus, roughly speaking, the influence of the boundary on behavior
at the origin persists as the boundary recedes. Informally,this suggests that forλ large,
the typical independent set chosen fromTL,d according to the hard-core measure is either
predominantly odd or predominantly even, and so there is a highly unlikely bottleneck set
of balanced independent sets separating the predominantlyodd sets from the predominantly
even ones. It is the existence of this bottleneck that shouldcause the mixing of the Glauber
dynamics chain to be slow. No explicit bound is given in [8], but several researchers report
that Dobrushin’s argument works forλ > cd for a suitable constantc > 1. A key tool in the
proof of Theorem 1.1 is an appeal to a (suitable generalization) of a lemma of Dobrushin
from [9], and our main lemma, Lemma 3.5, is of a similar flavour.

In light of a recent result of Galvin and Kahn [12], it is tempting to believe that slow
mixing on TL,d should hold for smaller values ofλ; even for values ofλ tending to0
asd grows. The main result of [12] is that the hard-core model onZ

d exhibits multiple
Gibbs phases forλ = ω(d−1/4 log3/4 d). Specifically, Galvin and Kahn show that forλ ≥
cd−1/4 log3/4 d for sufficiently largec, (1) holds.

In [13], some progress was made towards establishing slow mixing onTL,d for small
λ. Let Qd be the usual discrete hypercube (the graph on{0, 1}d in which two strings are
adjacent if they differ on exactly one coordinate). Note that T2,d is isomorphic toQd. A
corollary of the main result of [13] is that forλ = ω(d−1/4 log3/2 d),

τMλ(Qd) ≥ exp

{

Ω

(

2d

d2

)}

.

In the present paper, using different methods, we show that for d sufficiently large
Glauber dynamics does indeed mix slowly onTL,d for all evenL ≥ 4 for some small
values ofλ.

Theorem 1.2 There are constantsc, d0 > 0 for which the following holds. For

λ ≥ cd−1/4 log3/4 d, (2)
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d ≥ d0 andL ≥ 4 even, the Glauber dynamics chainMλ onI(TL,d) satisfies

τMλ(TL,d) ≥ exp

{

Ld−1

d4 log2 L

}

.

Our techniques actually apply to the class ofρ-local chains (considered in [5] and also
in [10], where the terminologyρ|V |-cautiousis employed) for suitableρ. A Markov chain
M on state spaceI is ρ-local if in each step of the chain the states of at mostρ|V | vertices
are changed; that is, if

PM(I1, I2) 6= 0 ⇒ |I1△I2| ≤ ρ|V |.
Our main theorem is the following.

Theorem 1.3 There are constantsc, d0 > 0 for which the following holds. Forλ satisfying
(2), d ≥ d0, L ≥ 4 even andρ satisfying

ρ+
1

2d1/2
≤ λ

1 + λ
(3)

and

H

(

1

2d1/2

)

+H

(

ρ+
1

2d1/2

)

+

(

1

d1/2
+ ρ

)

log2 λ+
10

d4L log2 L
≤ log2(1 + λ) (4)

(whereH(α) = −α log2 α − (1 − α) log2(1 − α) is the usual binary entropy function), if
M is an ergodicρ-local Markov chain on state spaceI(TL,d) with stationary distribution
πλ then

τM(TL,d) ≥ exp

{

Ld−1

d4 log2 L

}

.

With ρ = L−d, (4) is satisfied for allλ satisfying (2) (for sufficiently larged). An
L−d-local chain is a single-site update chain and so Theorem 1.2is a corollary of Theorem
1.3. Takingλ = 1 we may satisfy (4) withρ any constant less than1/2 by takingd large
enough (as a function ofρ). We therefore obtain a further corollary of Theorem 1.3.

Corollary 1.4 Fix ρ < 1/2. There is a constantd0 = d0(ρ) > 0 for which the following
holds. ForL ≥ 4 even andd ≥ d0, if M is an ergodicρ-local Markov chain on state space
I(TL,d) with uniform stationary distribution then

τM(TL,d) ≥ exp

{

Ld−1

d4 log2 L

}

.

We prove Theorem 1.3 via a well-known conductance argument (introduced in [15]). A
particularly useful form of the argument was given by Dyer, Frieze and Jerrum [10]. LetM
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be an ergodic Markov chain on state spaceΩ with transition probabilitiesP and stationary
distributionπ. LetA ⊆ Ω andM ⊆ Ω \ A satisfyπ(A) ≤ 1/2 and

ω1 ∈ A, ω2 ∈ Ω \ (A ∪M) ⇒ P (ω1, ω2) = 0.

Then from [10] we have

τM ≥ π(A)

8π(M)
. (5)

The intuition behind (5) is that if we start the chain at some state inA, then in order to
mix, it must at some point leaveA and so pass throughM . The ratio ofπ(A) to π(M) is
a measure of how long the chain must run before it transitionsfrom A to M . So we may
think of M as a bottleneck set through which any run of the chain must pass in order to
mix; if the bottleneck has small measure, then the mixing time is high.

Now let us return to the setup of Theorem 1.3. Set

Ib,ρ = Ib,ρ(TL,d) = {I ∈ I(TL,d) : ||I ∩ E| − |I ∩ O|| ≤ ρLd/2}

(Ib,ρ is the set ofbalancedindependent sets) and

IE,ρ = IE,ρ(TL,d) = {I ∈ I(TL,d) : |I ∩ E| > |I ∩O|+ ρLd/2}.

By symmetry,πλ(IE,ρ) < 1/2. Notice that sinceM changes the state of at mostρLd

vertices in each step, we have that ifI1 ∈ IE,ρ and I2 ∈ I(TL,d) \ (IE,ρ ∪ Ib,ρ) then
PM(I1, I2) = 0. From (5) we obtain

τM ≥ πλ(IE,ρ)

8πλ(Ib,ρ)
=

1− πλ(Ib,ρ)

16πλ(Ib,ρ)
.

Theorem 1.3 thus follows from the following theorem, whose proof will be the main busi-
ness of this paper.

Theorem 1.5 There are constantsc, d0 > 0 for which the following holds. Forλ satisfying
(2), d ≥ d0, L ≥ 4 even andρ satisfying (3) and (4),

πλ(Ib,ρ) ≤ exp

{

− 2Ld−1

d4 log2 L

}

.

Theorem 1.5 is the statement that if an independent setI is chosen fromI(TL,d) accord-
ing to the hard-core distributionπλ, then, as long asλ is sufficiently large, it is extremely
unlikely thatI is balanced. In particular, if we takeλ = 1we obtain the following appealing
combinatorial corollary.

Corollary 1.6 Fix ε > 0. There is a constantd0 = d0(ε) > 0 for which the following
holds. ForL ≥ 4 even andd ≥ d0, if I is a uniformly chosen independent set fromTL,d

then

P
(

||I ∩ E| − |I ∩O|| ≤ (.25− ε)Ld
)

≤ exp

{

− 2Ld−1

d4 log2 L

}

.
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2 Overview of the proof of Theorem 1.5

Consider an independent setI ∈ I(TL,d). Some regions ofTL,d consist predominantly of
even vertices fromI together with their neighbours (theeven-occupiedregions) and some
regions consist predominantly of odd vertices fromI with their neighbours. These regions
are separated by a collection of connected unoccupied two-layer moats orcutsetsγ. In
Section 3.1 we follow [5] and describe a procedure which selects a collectionΓ(I) of these
γ’s with the properties thati) the interiors of thoseγ ∈ Γ(I) are mutually disjoint (the
interior of γ is the smaller of the two parts into which its deletion breaksa graph) and
ii) either the interiors of allγ ∈ Γ(I) are predominantly even-occupied or they are all
predominantly odd-occupied. We do this in the setting of an arbitrary bipartite graph. We
also point out some properties ofγ that are specific to the torus, including an isoperimetric
inequality that gives a lower bound on|γ| (the number of edges inγ) in terms of the number
of vertices it encloses.

Our main technical result, Lemma 3.5, is the assertion that for each specification of
cutset sizesc1, . . . , cℓ and verticesv1, . . . , vℓ, the probability that an independent setI has
among its associated cutsetsΓ(I) a collectionγ1, . . . , γℓ with |γi| = ci and withvi in the
interior of γi is exponentially small in the sum of theci’s. The caseℓ = 1 is essentially
contained in [12], and our generalization draws heavily on that paper. It may be worthwhile
to compare our Lemma 3.5 with [5, Lemma 6] in which is obtainedan exponential bound
on the probability ofI having aparticular collection of cutsets.

We use a Peierl’s argument (seee.g. [14]) to prove Lemma 3.5. For simplicity, we
describe the argument here forλ = 1. For fixed c1, . . . , cℓ, v1, . . . , vℓ, let Ispec be the
collection of I ∈ I(TL,d) which have a collection of associated cutsetsγ1, . . . , γℓ with
|γi| = cℓ and with vi in the interior ofγi. For anI ∈ Ispec, fix one such collection
γ1, . . . , γℓ. By modifying I carefully in the interior of eachγi (specifically, by shiftingI
one unit in a carefully chosen direction) we can identify a collection of subsetsSi of the
vertices ofγi with |Si| = ci/2d which can be added to the modifiedI, the resulting set
still being independent. (Here we exploit the fact that the cutset can be thought of as two
unoccupied layers separating the interior from the exterior). By adding arbitrary subsets of
eachSi to the modifiedI, we get a one-to-many mapϕ from Ispec to I(TL,d) with |ϕ(I)|
exponential in the sum of theci’s.

If the ϕ(I)’s would be disjoint for distinctI ’s, we would essentially be done, having
shown that there are exponentially more (in the sum of theci’s) independent sets than
sets inIspec. To deal with the issue of overlaps between theϕ(I)’s, we define a flow
ν : Ispec × I(TL,d) → [0,∞) supported on pairs(I, J) with J ∈ ϕ(I) in such a way that
the flow out of everyI ∈ Ispec is 1. Any uniform bound we can obtain on the flow into
vertices ofI(TL,d) is then easily seen to be a bound onπ1(Ispec).

We define the flow via a notion of approximation modified from [12]. To each cut-
setγ we associate a setA(γ) which approximates the interior ofγ in a precise sense, in
such a way that as we run over all possibleγ, the total number of approximate sets used is
small (and in particular, much smaller than the total numberof cutsets). There is a clear
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trade-off here: the more precise the notion of approximation used, the greater the number
of approximate sets needed. Then for eachJ ∈ I(TL,d) and each collection of approxi-
mationsA1, . . . , Aℓ we consider the set of thoseI ∈ Ispec with J ∈ ϕ(I) and withAi the
approximation toγi. We define the flow in such a way that if this set is large, thenν(I, J)
is small for eachI in the set. In this way we control the flow intoJ corresponding to each
collection of approximationsA1, . . . , Aℓ; and since the total number of approximations is
small, we control the total flow intoJ .

In the language of statistical physics, there is a tradeoff betweenentropyandenergy
that we need to control. EachI ∈ Ispec has high energy — by the shift operation described
above, we can perturb it only slightly and map it to an exponentially large collection of
independent sets. But before exploiting this fact to show that π1(Ispec) is small, we have
to account for a high entropy term — there are exponentially many possible cutsets of
sizeci that could be associated with anI ∈ Ispec. There are aboutexp{Ω(ci log d/d)}
cutsets of sizeci (this count comes from [17]), each one giving rise to aboutexp{Θ(ci/d)}
independent sets, so the entropy term exceeds the energy term and the Peierl’s argument
cannot succeed. One way to overcome this problem is to allowλ to grow exponentially with
d, increasing the energy term (the independent sets obtainedfrom the shift are larger than
the pre-shifted sets, and so have greater weight) while not changing the entropy term. This
is the approach taken in [5]. Alternatively we could try to salvage the argument forλ = 1
by somehow decreasing the entropy term. This is where the idea of approximate cutsets
comes in. Instead of specifying a cutsetγi by itsci edges, we specify a connected collection
of roughlyci/d3/2 vertices nearby (in a sense to be made precise) to the cutset,from which
a good approximation to the cutset can be constructed in a specified (algorithmic) way. Our
entropy term drops to roughlyexp{O(ci log d/d

3/2)}, much lower than the energy term; so
much lower, in fact, that we can rescue the Peierl’s argumentfor values ofλ tending to0 as
d grows. The boundexp{O(ci log d/d

3/2)} on the number of connected subsets ofTL,d of
sizeO(ci/d

3/2) is based on the fact that a∆-regular graph has at most2O(n log∆) connected
induced subgraphs of sizen passing through a fixed vertex.

The precise statement of Lemma 3.5 appears in Section 3.2 andthe proof appears in
Section 4. It is here that the precise notion of approximation used is given, together with
the verification that there is aν that satisfies our diverse requirements. We defer a more
detailed discussion of the proof to that section.

Given Lemma 3.5, the proof of Theorem 1.5 is relatively straightforward. We begin
by using a naive count to observe that the total measure of thoseI ∈ Ib,ρ with min{|I ∩
E|, |I ∩ O|} ≤ Ld/4d1/2 is exponentially small inLd. This drives our specification ofρ,
which is chosen as large as possible so that the naive count gives an exponentially small
bound. This allows us in the sequel to consider only thoseI ∈ I(TL,d) with min{|I ∩
E|, |I ∩ O|} > Ld/4d1/2. The naive count consists of considering those subsetsX of TL,d

with min{|X∩E|, |X∩O|} ≤ Ld/4d1/2 andmax{|X∩E|, |X∩O|} ≤ Ld/4d1/2+ρLd/2,
without regard for whetherX ∈ I(TL,d).

It remains to consider the case where balancedI satisfiesmin{|I ∩ E|, |I ∩ O|} >
Ld/4d1/2. In this case the isoperimetric inequality in the torus allows us to conclude that
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Γ(I) contains a small subset of cutsets, all with similar lengths, the sum of whose lengths is
essentiallyLd−1. We then use Lemma 3.5 and a union bound to say that the measureof the
large balanced independent sets is at most the product of a term that is exponentially small
in Ld−1 (from Lemma 3.5), a term corresponding to the choice of a fixedvertex in each
of the interiors, and a term corresponding to the choice of the collection of lengths. The
second term will be negligible because our special collection of contours is small and the
third will be negligible because the contours all have similar lengths. The detailed proof
appears in Section 3.3.

3 Proof of Theorem 1.5

3.1 Cutsets

We describe a way of associating with eachI ∈ I(TL,d) a collection of minimal edge
cutsets, following the approach of [5]. Much of the discussion is valid for any bipartite
graph, so we present it in that generality.

Let Σ = (V,E) be a connected bipartite graph on at least3 vertices with partition
classesE andO. ForX ⊆ V , write ∇(X) for the set of edges inE which have one end
in X and one end outsideX; X for V \ X; ∂intX for the set of vertices inX which are
adjacent to something outsideX; ∂extX for the set of vertices outsideX which are adjacent
to something inX; X+ for X ∪ ∂extX; XE for X ∩ E andXO for X ∩ O. Further, for
x ∈ V set∂x = ∂ext{x}. In what follows we abuse notation slightly, identifying sets of
vertices ofV and the subgraphs they induce.

For eachI ∈ I(Σ), each componentR of (IE)+ or (IO)+ and each componentC of
R, setγ = γRC(I) = ∇(C) andW = WRC(I) = C. EvidentlyC is connected, and
W consists ofR, which is connected, together with a number of other components ofR,
each of which is connected and joined toR, soW is connected also. It follows thatγ is a
minimal edge-cutset inΣ. Define thesizeof γ to be|γ| = |∇C| (= |∇(W )|). Defineint γ,
theinterior of γ, to be the smaller ofC,W (if |W | = |C|, takeint γ = W ) and say thatγ is
envelopingif int γ = W (so thatR, the component that gives rise toγ, is contained in the
interior of γ). Say thatI is even(respectively,odd) if it satisfies the following condition:
for every componentR of (IE)+ (respectively,(IO)+) there exists a componentC of R
such thatγRC(I) is enveloping. Note that there must be an unique suchC for eachR since
the components ofR are disjoint and each one that gives rise to an enveloping cutset must
have more than|V |/2 vertices.

Lemma 3.1 EachI ∈ I(Σ) is either odd or even.

Proof: Suppose thatI is not even. Then there is a componentR of (IE)+ such that for all
componentsC of R, |C| < |V |/2. Consider a componentR′ of (IO)+. It lies inside some
componentC of R, so one of the components ofR′, sayC ′, containsC. Since|C| ≥ |V |/2
the cutsetγR′C′(I) is enveloping. It follows thatI is odd. ✷
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Lemma 3.2 For each evenI ∈ I(Σ) there is an associated collectionΓ(I) of enveloping
cutsets with mutually disjoint interiors such thatIE ⊆ ∪γ∈Γ(I)int γ.

Proof: LetR1, . . . , Rm be the components of(IE)+. For eachi there is one component,Ci

say, ofRi such thatγi = γRiCi
is enveloping. We haveIE ⊆ ∪m

i=1int γi.
We claim that for eachi 6= j one ofint γi ⊆ int γj, int γi ⊇ int γj, int γi ∩ int γj = ∅

holds. To see this, we consider cases. IfRj ⊆ C ′ for some componentC ′ 6= Ci of Ri

thenint γj ⊆ C ′ ⊆ int γi (= Ci). Otherwise,Rj ⊆ Ci. In this case, eitherCj ⊆ Ci (so
int γj ⊇ int γi) orCj ⊇ Ci (soint γj ∩ int γi = ∅). We may take

Γ(I) = {γi : for all j 6= i eitherint γj ⊆ int γi or int γi ∩ int γj = ∅}.

✷

The following lemma identifies some key properties ofγ ∈ Γ(I) for evenI. In the
proof of Theorem 1.5 these properties only come into play through Lemma 3.5.

Lemma 3.3 For each evenI andγ ∈ Γ(I), we have the following.

∂intW ⊆ O and ∂extW ⊆ E ; (6)

∂intW ∩ I = ∅ and ∂extW ∩ I = ∅; (7)

∀x ∈ ∂intW, ∂x ∩W ∩ I 6= ∅ (8)

and
WO = ∂extW

E and W E =
{

y ∈ E : ∂y ⊆ WO
}

. (9)

Proof: We begin by noting that∂intW ⊆ ∂intR (specifically,∂intW = ∂intR ∩ ∂extC =
∂extC) and∂extW = ∂intC. Since∂intR ⊆ O and∂intC ⊆ E , (6) follows immediately
from these observations.

By construction,R ∩ O ∩ I = ∅, so∂intW ∩ I = ∅. If there isx ∈ ∂intC ∩ I then,
sincex ∈ E and there isy ∈ R adjacent tox, we would havex ∈ R, a contradiction; so
∂intC ∩ I = ∅, giving (7).

It is clear that for allx ∈ ∂intR there isy ∈ R ∩ I with x adjacent toy; so (8) follows
from ∂intW ⊆ ∂intR.

Since∂intW ⊆ O, we haveWO ⊇ ∂extW
E . If there isy ∈ WO with ∂y∩W E = ∅, then

the connectivity ofW implies thatW = WO (and thatWO consists of a single vertex).
But W E is non-empty; so we get the reverse containmentWO ⊆ ∂extW

E .
The containmentW E ⊆ {y ∈ E : ∂y ⊆ WO} follows immediately fromWO ⊇

∂extW
E . For the reverse containment, consider (for a contradiction) y ∈ E with ∂y ⊆ WO

buty 6∈ W E . We must havey ∈ C; buty is not adjacent to anything else inC, and|C| > 1
(indeed,|C| ≥ |V |/2 > 1 sinceγ is enveloping), a contradiction sinceC is connected. So
we haveW E ⊇ {y ∈ E : ∂y ⊆ WO}. ✷

We now return toTL,d. SetIeven = {I ∈ I(TL,d) : I even} and defineIodd analogously.
The next lemma establishes some of the geometric propertiesof TL,d that we will need.
Before stating it we need some more notation.
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For k ≥ 1, we say thatS ⊆ V (TL,d) is k-clusteredif for every x, y ∈ S there is a
sequencex = x0, . . . , xm = y of vertices ofS such thatd(xi−1, xi) ≤ k for all i = 1, . . .m,
whered(·, ·) is the usual graph distance. Note thatS can be partitioned uniquely into
maximalk-clustered subsets; we refer to these as thek-componentsof S.

For a cutsetγ, we define a graphGγ as follows. The vertex set ofGγ is the set of
edges ofTL,d that compriseγ. Declaree, f ∈ γ to be adjacent inGγ if eithere andf share
exactly one endpoint and if the coordinate on which the endpoints of e differ is different
from the coordinate on which the endpoints off differ (i.e., e andf are not parallel) or
if the endpoints ofe andf determine a cycle of length four (a square) inTL,d. (This is
equivalent to the following construction, well known in thestatistical physics literature:
for e ∈ γ, let e⋆ be the dual (d − 1)-dimensional cube which is orthogonal toe and bisects
it whenTL,d is considered as immersed in the continuum torus. Then declare e, f ∈ γ to
be adjacent ife⋆ ∩ f ⋆ is a (d− 2)-dimensional cube.) We say that a cutsetγ is trivial if Gγ

has only one component.

Lemma 3.4 For eachI ∈ Ieven andγ ∈ Γ(I),

|γ| ≥ |W |1−1/d; (10)

for large enoughd, |γ| ≥ d1.9; (11)

if γ is not trivial then each component ofGγ has at leastLd−1 edges (12)

and

either∂intW is 2-clustered or each of its2-components has size at leastLd−1/2d. (13)

Proof: For (10) and (11) we appeal to an isoperimetric inequality ofBollobás and Leader
[4] which states that ifA ⊆ V (TL,d) with |A| ≤ Ld/2, then

|∂extA| ≥ min
{

2|A|1−1/rrL(d/r)−1 : r = 1, . . . , d
}

.

From this (10) follows easily, as does (11) once we observe that |W | ≥ 2d + 1 (since
W E 6= ∅) and that|γ| ≥ |∂extW |.

From [5, Lemma 3] we have (12). Finally we turn to (13). LetC1, . . . , Cℓ be the
components ofGγ, and for eachi let C ′

i be the vertices of∂intW which are endpoints of
edges ofCi. It is readily checked that eachC ′

i is 2-clustered and that∂intW = ∪iC
′
i. If

ℓ = 1 we therefore have that∂intW is 2-clustered. Ifℓ > 1, we have (by (12)) that eachCi

has at leastLd−1 edges. Since each vertex inTL,d has degree2d, it follows that eachC ′
i has

size at leastLd−1/2d. Since theC ′
i’s are2-clustered, each2-component of∂intW has size

at leastLd−1/2d, establishing (13). ✷
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3.2 The main lemma

For c ∈ N andv ∈ V (TL,d) set

W(c, v) =
{

γ : γ ∈ Γ(I) for someI ∈ Ieven, |γ| = c, v ∈ W E
}

and setW = ∪c,vW(c, v). A profile of a collection{γ1, . . . , γℓ} ⊆ W is a vectorp =
(c1, v1, . . . , cℓ, vℓ) with γi ∈ W(ci, vi) for all i. Given a profile vectorp set

I(p) = {I ∈ Ieven : Γ(I) contains a subset with profilep}.

Our main lemma is the following.

Lemma 3.5 There are constantsc, c′, d0 > 0 such that the following holds. For all even
L ≥ 4, d ≥ d0, λ satisfying (2) and profile vectorp,

πλ(I(p)) ≤ exp

{

−c′β(λ)
∑ℓ

i=1 ci
d

}

, (14)

whereβ(λ) = 2 log(1 + λ)− log(1 + 2λ).

This may be thought of as an extension of the main result of [12], which treats only
ℓ = 1 and in a slightly less general setting. We will derive Theorem 1.5 from Lemma 3.5
in Section 3.3 before proving the lemma in Section 4. From here on we assume that the
conditions of Theorem 1.5 and Lemma 3.5 are satisfied (withc andd0 sufficiently large
to support our assertions). All constants implied inO andΩ statements will be absolute.
When it makes no difference to do otherwise, we assume that all large numbers are integers.
We note for future reference that forλ satisfying (2) we have

λ

1 + λ
= ω

(

1

d1/4

)

and β(λ) = ω

(

1

d1/2

)

. (15)

3.3 The proof of Theorem 1.5

We begin with an easy count that dispenses with small balanced independent sets. Set

Ismall =
{

I ∈ Ib,ρ : min{|IE |, |IO|} ≤ Ld/4d1/2
}

.

andIlarge = Ib,ρ \ Ismall.

Lemma 3.6

πλ(Ismall) ≤ exp

{

− 3Ld−1

d4 log2 L

}

.
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Proof: We need a well-known result of Chernoff [6] (see also [3], p.11). LetX1, . . . , Xn

be i.i.d. Bernoulli random variables withP(X1 = 1) = p. Then fork ≤ pn

P

(

n
∑

i=1

Xi ≤ k

)

≤ 2nHp( k
n)

whereHp(x) = x log2(p/x) + (1− x) log2((1− p)/(1− x)). Note thatHp(x) = H(x) +
x log2 p + (1 − x) log2(1 − p) whereH(x) is the usual binary entropy function. Taking
p = λ/(1 + λ) we see that for a setX with |X| = n and forc ≤ λ/(1 + λ),

∑

A⊆X, |A|≤cn

λ|A|

(1 + λ)n
≤ 2nHλ/(1+λ)(c)

= 2n(H(c)+c log2
λ

1+λ
+(1−c) log2

1
1+λ)

= 2n(H(c)+c log2 λ−log2(1+λ))

from which it follows that
∑

A⊆X, |A|≤cn

λ|A| ≤ 2n(H(c)+c log2 λ). (16)

Now using(1 + λ)L
d/2 as a trivial lower bound on

∑

I∈I(TL,d)
λ|I| and with the subse-

quent inequalities justified below, we have

πλ(Ismall) ≤ 2





∑

A⊆E, |A|≤Ld/4d1/2

λ|A|









∑

B⊆O, |B|≤(1/2d1/2+ρ)Ld/2

λ|B|



 (1 + λ)−Ld/2

≤
2 exp2

{

Ld

2

(

H
(

1
2d1/2

)

+H
(

1
2d1/2

+ ρ
)

+
(

1
d1/2

+ ρ
)

log2 λ
)

}

(1 + λ)Ld/2
(17)

≤ exp

{

− 2Ld−1

d4 log2 L

}

. (18)

In (17) we use (16) (legitimate since1/2d1/2 ≤ λ/(1 + λ) and1/2d1/2 + ρ ≤ λ/(1 + λ),
the former by (15) and the latter by (3)); (18) follows from (4). ✷

Set Ilarge, even = Ilarge ∩ Ieven and defineIlarge, odd analogously. By Lemma 3.1
Ilarge = Ilarge, even ∪ Ilarge, odd and by symmetryπλ(Ilarge, even) = πλ(Ilarge, odd). In
the presence of Lemma 3.6, Theorem 1.5 reduces to bounding (say)

πλ(Ilarge, even) ≤ exp

{

− 3Ld−1

d4 log2 L

}

. (19)

SetInon−trivial
large, even = {I ∈ Ilarge, even : there isγ ∈ Γ(I) with |γ| ≥ Ld−1} andItrivial

large, even =

Ilarge, even \ Inon−trivial
large, even . With the sum below running over all vectorsp of the form(c, v)
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with v ∈ V (TL,d) andc ≥ Ld−1, and with the inequalities justified below, we have

πλ(Inon−trivial
large, even ) ≤

∑

p

πλ(I(p))

≤ L2d exp

{

−Ω

(

Ld−1β(λ)

d

)}

(20)

≤ exp

{

−Ω

(

Ld−1

d3/2

)}

(21)

We have used Lemma 3.5 in (20) and the factor ofL2d is for the choices ofc andv. In (21)
we have used (15).

For I ∈ Itrivial
large, even andγ ∈ Γ(I) we have|γ| ≥ |int γ|1−1/d (by (10)) and so

∑

γ∈Γ(I)

|γ|d/(d−1) ≥
∑

γ∈Γ(I)

|int γ| ≥ |IE | ≥ Ld/4d1/2.

The second inequality is from Lemma 3.2 and the third followssinceI 6∈ Ismall.
SetΓi(I) = {γ ∈ Γ(I) : 2i−1 ≤ |γ| < 2i}. Note thatΓi(I) is empty for2i < d1.9

(recall (11)) and for2i−1 > Ld−1 so we may assume that

1.9 log d ≤ i ≤ (d− 1) logL+ 1. (22)

Since
∑∞

m=1 1/m
2 = π2/6, there is ani such that

∑

γ∈Γi(I)

|γ| d
d−1 ≥ Ω

(

Ld

d1/2i2

)

. (23)

Choose the smallest suchi setℓ = |Γi(I)|. We have
∑

γ∈Γi(I)
|γ| ≥ Ω(ℓ2i) (this follows

from the fact that eachγ ∈ Γi(I) satisfies|γ| ≥ 2i−1) and

O

(

dLd

2i

)

≥ ℓ ≥ Ω

(

Ld

2
id

d−1 i2d1/2

)

. (24)

The first inequality follows from that fact that
∑

γ |γ| ≤ dLd = |E(TL,d)|; the second
follows from (23) and the fact that eachγ has|γ|d/(d−1) ≤ 2di/(d−1). We therefore have
I ∈ I(p) for somep = (c1, v1, . . . , cℓ, vℓ) with ℓ satisfying (24), with

ℓ
∑

j=1

cj ≥ O(ℓ2i), (25)

with
cj ≤ 2i (26)
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for eachj and withi satisfying (22). With the sum below running over all profile vectorsp
satisfying (22), (24), (25) and (26) we have

πλ(Itrivial
large, even) ≤

∑

p

πλ(I(p))

≤ d logL max
i satisfying (22)

2ℓi
(

Ld

ℓ

)

exp

{

−Ω

(

ℓ2iβ(λ)

d

)}

. (27)

In (27) we have used Lemma 3.5. The factor ofd logL is an upper bound on the number
of choices fori; the factor of2ℓi is for the choice of thecj ’s; and the factor

(

Ld

ℓ

)

is for
the choice of theℓ (distinct) vj ’s. By (22), the second inequality in (24) and the second
inequality in (15) we have (ford sufficiently large)

2ℓi
(

Ld

ℓ

)

≤ 2ℓi
(

Ld

ℓ

)ℓ

≤ 2ℓi
(

O
(

2
id

d−1 i2d1/2
))ℓ

≤ 24ℓi

= exp

{

o

(

2iβ(λ)

d

)}

.

Inserting into (27) we finally get

πλ(Itrivial
large, even) ≤ d logL max

i
exp

{

−Ω

(

2iβ(λ)ℓ

d

)}

≤ d logL max
i

exp

{

−Ω

(

2iβ(λ)Ld

d2
id

d−1 i2d1/2

)}

(28)

≤ exp

{

− 4Ld−1

d4 log2 L

}

. (29)

In (28) we have takenℓ as small as possible, and in (29) we have takeni as large as possible
and used (15).

Combining (29) and (21) we obtain (19) and so Theorem 1.5.

4 Proof of Lemma 3.5

Our strategy is the following. Let a profile vectorp = (c1, v1, . . . , cℓ, vℓ) be given. Set
p′ = (c2, v2, . . . , cℓ, vℓ). We will show

πλ(I(p))
πλ(I(p′))

≤ exp

{

−Ω

(

c1β(λ)

d

)}

. (30)
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Then by a telescoping product

πλ(I(p)) ≤
πλ(I(p))
πλ(Ieven)

≤ exp

{

−Ω

(

β(λ)
∑ℓ

i=1 ci
d

)}

as claimed. To obtain (30) we employ a general strategy to bound πλ(S)/πλ(T ) for S ⊆
T ⊆ I(TL,d) (note thatI(p) ⊆ I(p′)). We define a one-to-many mapϕ from S to T . We
then define a flowν : S × T → [0,∞) supported on pairs(I, J) with J ∈ ϕ(I) satisfying

∀I ∈ S,
∑

J∈ϕ(I)

ν(I, J) = 1 (31)

and
∀J ∈ T ,

∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J) ≤ M. (32)

This gives
∑

I∈S

λ|I| =
∑

I∈S

λ|I|
∑

J∈ϕ(I)

ν(I, J)

=
∑

J∈T

λ|J |
∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J)

≤ M
∑

J∈T

λ|J |

and soπλ(S)/πλ(T ) ≤ M . So our task is to defineϕ andν for S = I(p) andT = I(p′)
for which (32) holds withM given by the right-hand side of (30).

Much of what follows is modified from [12]. The main result of [12] has already been
described in Section 1. It will be helpful here to describe the main technical work of that
paper. LetΛL be the box[−L, L]d in Z

d with boundary∂⋆ΛL = [−L, L]d \ [−(L− 1), L−
1]d. WriteJ for the set of independent sets inΛL which extend∂⋆ΛL ∩ O and, for a fixed
vertexv0 ∈ ΛL∩E , writeI for thoseI ∈ J with v0 ∈ I. The stated aim of [12] is to show,
using a similar strategy to that described above, thatπλ(I)/πλ(J ) ≤ (1 + λ)−2(d−o(1)).
More specifically, for eachI ∈ I let γ′(I) be the cutset associated with that component of
(IE)+ that includesv0. For eachwo, we write I(wo, we) for thoseI ∈ I with |W E | = we

and|WO| = wo, whereW is the subset ofΛL associated withγ′(I) as described in Section
3.1. It is shown in [12] (inequalities (62) and (63) of that paper) that forλ satisfying (2) we
have

πλ(I(wo, we))

πλ(J )
≤
{

exp{−Ω(λ2(wo − we))} for λ < 2 and
λ−Ω(wo−we) for largerλ

(33)

from which the stated bound onπλ(I)/πλ(J ) is easily obtained by a summation. The
remainder of this paper is devoted to an explanation of how the proof of (33) needs to be
augmented and modified to obtain our main lemma, and we do not state the proofs of many
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of our intermediate lemmas, since they can be found in the generality we need in [12]. The
main technical issue we have to deal with in moving from (33) to Lemma 3.5 relates to
dealing withγ that are non-trivial (in the sense defined before the proof ofLemma 3.4);
this is not an issue in [12] because it is shown there that the cutsetsγ′(I) described above
are always trivial.

One technical issue aside, the specification ofϕ is relatively straightforward. For each
s ∈ {±1, . . . ,±d}, defineσs, theshift in directions, by σs(x) = x + es, wherees is the
sth standard basis vector ifs > 0 andes = −e−s if s < 0. ForX ⊆ V (TL,d), write σs(X)
for {σs(x) : x ∈ X}. For a cutsetγ ∈ W setW s = {x ∈ ∂intW : σ−1

s (x) 6∈ W}. We will
obtainϕ(I) by shiftingI insideW in a certain directions and adding arbitrary subsets of
W s to the result, whereW is associated with a cutsetγ ∈ Γ(I) ∩W(c1, v1). The success
of this process depends on the fact thatI is disjoint from the vertex set ofγ. We now
formalize this.

Lemma 4.1 Let I ∈ I(p) be given. Letγ ∈ Γ(I) be such that|γ| = c1 and v1 ∈ W E

whereW = int γ. For any choice ofs, it holds that

I0 := (I \W ) ∪ σs(I ∩W ) is in I(p′)

and has the same size asI. Moreover, the setsI0 andW s are mutually disjoint and

I0 ∪W s ∈ I(p′).

Proof: ThatI0 ∪W s is an independent set and thatI0 is the same size asI is the content
of [12, Proposition 2.12]. Becauseint γ is disjoint from the interiors of the remaining
cutsets and the shift operation that createsI0∪W s only modifiesI insideW it follows that
I0, I0 ∪W s ∈ I(p′). ✷

For I ∈ I(p) we define

ϕ(I) = {I0 ∪ S : S ⊆ W s}

for a certains to be chosen presently. In light of Lemma 4.1,ϕ(I) ⊆ I(p′) regardless of
this choice.

To defineν ands we employ the notion of approximation also used in [12] and intro-
duced by Sapozhenko in [21]. Forγ ∈ W we say thatA ⊆ V (TL,d) is anapproximationof
γ if

AE ⊇ W E and AO ⊆ WO, (34)

dAO(x) ≥ 2d−
√
d for all x ∈ AE (35)

and
dE\AE (x) ≥ 2d−

√
d for all y ∈ O \ AO, (36)

wheredX(x) = |∂x ∩X|. Note that sinceWO = ∂WE , W is an approximation ofγ.
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To motivate the definition of approximation, note that by (9)if u is in W E then all of
its neighbors are inWO, and ifu′ is in O \WO then all of its neighbors are inE \W E . If
we think ofAE as approximate-W E andAO as approximate-WO, (35) says that ifu ∈ E
is in approximate-W E then almost all of its neighbors are in approximate-WO while (36)
says that ifu′ ∈ O is not in approximate-WO then almost all of its neighbors are not in
approximate-W E .

Before stating our main approximation lemma, which is a slight modification of [12,
Lemma 2.18], it will be convenient to further refine our partition of cutsets. To this end set

W(we, wo, v) = {γ : γ ∈ Γ(I) for someI ∈ Ieven, |WO| = wo, |W E | = we, v ∈ W E}.
Note that (by (9))

|γ| = |∇(W )| = 2d(|WO| − |W E |)
soW(we, wo, v) ⊆ W((wo − we)/2d, v).

Lemma 4.2 For eachwe, wo andv there is a familyA(we, wo, v) satisfying

|A(we, wo, v)| ≤ exp
{

O
(

(wo − we)d
− 1

2 log
3
2 d
)}

and a mapΠ : W(we, wo, v) → A(we, wo, v) such that for eachγ ∈ W(we, wo, v), Π(γ)
is an approximation forγ.

The proof of this lemma is deferred to Section 4.1. Our bound on the number of ap-
proximate cutsets with parameterswe, wo andv is much smaller than any bound we are
able to obtain on the number of cutsets with the same set of parameters. This is where we
make the entropy gain discussed in Section 2.

We are now in a position to defineν ands. Our plan for each fixedJ ∈ I(p′) is to fix
we, wo andA ∈ W(we, wo) and to consider the contribution to the sum in (32) from those
I ∈ ϕ−1(J) with Π(γ(I)) = A. We will try to defineν in such a way that each of these
individual contributions to (32) is small; to succeed in this endeavour we must first choose
s with care. To this end, givenγ ∈ W(we, wo, v), set

QE = AE ∩ ∂ext(O \ AO) and QO = (O \ AO) ∩ ∂extA
E ,

whereA = Π(γ) in the map guaranteed by Lemma 4.2. To motivate the introduction ofQE

andQO, note that forγ ∈ Π−1(A) we have

AE \QE ⊆ W E

E \ AE ⊆ E \W E

AO ⊆ WO

and

O \ (AO ∪QO) ⊆ O \WO

(all using (9) and (34)). It follows that for eachγ ∈ Π−1(A), QE ∪ QO contains all of the
vertices whose location in the partitionTL,d = W ∪W is as yet unknown.
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Lemma 4.3 For γ ∈ W(we, wo, v), there is ans ∈ {±1, . . . ,±d} such that both of

|W s| ≥ .8(wo − we) and |σs(Q
E) ∩QO| ≤ 5|W s|√

d

hold.

Proof: [12, (49) and (50)]. ✷

We choose the smallest suchs to be the lattice direction associated withγ. Note thats
depends onγ but not onI.

Now for eachI ∈ I(p) let γ ∈ Γ(I) be a particular cutset withγ ∈ W(c1, v1). Let
ϕ(I) be as defined before, withs as specified by Lemma 4.3. Define

C = W s ∩AO ∩ σs(Q
E)

and
D = W s \ C,

and for eachJ ∈ ϕ(I) set

ν(I, J) = λ|J∩W s|

(

λ

(1 + λ)2

)|C∩J |(
1 + 2λ

(1 + λ)2

)|C\J |(
1

1 + λ

)|D|

.

Note that forI ∈ ϕ−1(J), ν(I, J) depends onW but not onI itself.
Noting thatC ∪D partitionsW we have

∑

J∈ϕ(I)

ν(I, J) =
∑

A⊆C, B⊆D

λ|A|+|B|

(

λ

(1 + λ)2

)|A|(
1 + 2λ

(1 + λ)2

)|C|−|A|(
1

1 + λ

)|D|

=
∑

B⊆D

λ|B|

(1 + λ)|D|

∑

A⊆C

(

λ2

1 + 2λ

)|A|(
1 + 2λ

(1 + λ)2

)|C|

=
(1 + λ)|D|

(1 + λ)|D|

(

1 + 2λ+ λ2

1 + 2λ

)|C|(
1 + 2λ

(1 + λ)2

)|C|

= 1,

soν satisfies (31). To obtain (14) we must establish (32) withM given by the right-hand
side of (30).

Fix we, wo such that2d(wo −we) = c1. Fix A ∈ A(we, wo, v1) ands ∈ {±1, . . . ,±d}.
For I with γ(I) ∈ W(we, wo, v1) write I ∼s A if it holds thatΠ(γ) = A ands(I) = s.
The next lemma, which bounds the contribution to the sum in (32) from thoseI ∈ ϕ−1(J)
with I ∼s A, is the heart of the whole proof, and perhaps the principal inequality of [12].
We extract it directly from [12]; although the setting here is slightly different, the proof is
identical to the equivalent statement in [12].
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Lemma 4.4 For J ∈ I(p′),

∑

{

λ|I|−|J |ν(I, J) : I ∼s A, I ∈ ϕ−1(J)
}

≤
(
√
1 + 2λ

1 + λ

)wo−we

.

Proof: [12, Section 2.12]. ✷

We are now only a short step away from (14). With the steps justified below we have
that for eachJ ∈ I(p′)

∑

I∈ϕ−1(J)

λ|I|−|J |ν(I, J) ≤
∑

we,wo

∑

s,A

∑

{

λ|I|−|J |ν(I, J) : I ∼s A, I ∈ ϕ−1(J)
}

≤ 2dc
2d
d−1

1 |A(we, wo, v1)|
(
√
1 + 2λ

1 + λ

)

c1
2d

(37)

≤ 2dc
2d
d−1

1 exp

{

−Ω

(

c1β(λ)

d

)}

(38)

≤ exp

{

−Ω

(

c1β(λ)

d

)}

(39)

completing the proof of (32). In (37), we note that there are|A(we, wo, v1)| choices for the
approximationA, 2d choices fors andcd/(d−1)

1 choices for each ofwe, wo (this is because
c1 ≥ (we + wo)

1−1/d by (10)), and we apply Lemma 4.4 to bound the summand. In (38)
use Lemma 4.2 and the fact that for anyc > 0 we can choosec′ > 0 such that whenever
λ > c′d−1/4 log3/4 d andd = d(c) is sufficiently large we have

exp
{

cd−
1
2 log

3
2 d
}

√
1 + 2λ

1 + λ
≤ exp

{

−β(λ)

4

}

.

Finally in (39) we usec1 ≥ d1.9 (by (11)) and the second inequality in (15) to bound
2dc

2d/(d−1)
1 = exp{o(c1β(λ)/d)}.

4.1 Proof of Lemma 4.2

We obtain Lemma 4.2 by combining a sequence of lemmas. Lemma 4.5, which we ex-
tract directly from [12], establishes the existence for each γ of a very small set of vertices
nearby toγ whose neighbourhood can be thought of as a coarse approximation to γ. (We
will elaborate on this after the statement of the lemma.) Lemma 4.6 shows that there is a
small collection of these coarse approximations such that every γ ∈ W(we, wo, v) is ap-
proximated by one of the collection. Our proof of this lemma for γ trivial is from [12],
but we need to add a new ingredient to deal with non-trivialγ. Finally Lemma 4.7, which
we extract directly from [12], turns the coarse approximations of Lemma 4.6 into the more
refined approximations of Lemma 4.2 without increasing the number of approximations
too much.
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Givenγ ∈ W(we, wo, v) set

∂′
intW = {x ∈ ∂intW : dW E (x) ≤ d} and ∂′

intC = {x ∈ ∂intC : dCO(x) ≤ d}.

(Recall thatdX(x) = |∂x ∩X|.)

Lemma 4.5 For eachγ ∈ W(we, wo, v) there is aU with the following properties.

U ⊆ N(∂′
intW ∪ ∂′

intC) (40)

N(U) ⊇ ∂′
intW ∪ ∂′

intC (41)

and

|U | ≤ O

(

(wo − we)

√

log 2d

2d

)

(42)

whereN(X) = ∪x∈X∂x.

To motivate Lemma 4.5, let us point out that in [12, (34)] it isobserved that forU satisfying
(40) and (41) the removal ofN(U) fromV (TL,d) separatesW fromC. U may therefore be
thought of a coarse approximation toγ: removingU and its neighbourhood achieves the
same effect as removingγ. However,U is very much smaller thanγ (γ has2d(wo − we)
edges). By focusing on specifyingU instead ofγ, we lose some information, but we gain
because fewer choices have to be made to specifyU . The engine driving the proof of
Lemma 3.5 is the fact that the gain far outweighs the loss. Lemma 4.5 is [12, Lemma 2.15]
and we omit the proof.

Lemma 4.6 For eachwe, wo andv there is a familyU(we, wo, v) satisfying

|U(we, wo, v)| ≤ exp
{

O
(

(wo − we)d
− 1

2 log
3
2 d
)}

and a mapΠU : W(we, wo, v) → U(we, wo, v) such that for eachγ ∈ W(we, wo, v),ΠU(γ)
satisfies (40), (41) and (42).

Proof: It is observed in [12, paragraph after (35)] that forU satisfying (40) and (41) we
have

for all x ∈ ∂intW , d(x, U) ≤ 2 (43)

and
for all y ∈ U , d(y, ∂intW ) ≤ 2. (44)

Let U satisfy (43), (44) and (42) for someγ ∈ W(we, wo, v) and letW1, . . . ,Wk be the
2-components of∂intW . For eachj = 1, . . . , k let

Uj = {y ∈ U : d(y, x) ≤ 2 for somex ∈ Wj}.

21



We claim that eachUj is6-clustered. To see this, fixu, v ∈ Wj and takexu ∈ Wj at distance
at most2 from u andxv ∈ Wj at distance at most2 from v. Let xu = x0, . . . , xℓ = xv

be a sequence of vertices inWj with d(xi−1, xi) ≤ 2 for eachi. For i = 1, . . . , ℓ − 1,
takeui ∈ Wj with d(ui, xi) ≤ 2. Then the sequenceu = u0, u1, . . . , uℓ−1, uℓ = v has the
property thatd(ui−1, ui) ≤ 6 for eachi, establishing the claim.

To bound the number of possibilities forU we first consider the case2d(wo − we) ≤
Ld−1. In this case, by (13), allγ under consideration are trivial (in the sense defined before
the statement of Lemma 3.3) andk = 1.

We show that there is a small (sizeO(wod
2)) set of vertices meeting all possibleU ’s in

this case. Fix a linear ordering≪ of O satisfying

d(v, y1) < d(v, y2) =⇒ y1 ≪ y2,

and letT be the initial segment of≪ of sizewo. We claim thatT ∩∂intW 6= ∅. If T = WO,
this is clear; if not, consider a shortesty − v path inTL,d for somey ∈ T \WO. This path
intersectsWO (since∂v ⊆ WO). Let y′ be the largest (with respect to≪) vertex ofWO

on the path; theny′ ∈ ∂intW ∩T , establishing our claim. There are at mostwo possibilities
for y′ ∈ ∂intW ∩ T , so at mostO(wod

2) possibilities for a vertexx′ with d(x′, y′) ≤ 2; and
by (43)U must contain such anx′.

In this case we may takeU(we, wo, v) to be the collection of all6-connected subsets of
V (TL,d) of size at mostO((wo − we)

√

log 2d/2d) containing one of theO(wod
2) vertices

described in the last paragraph. Using the fact that in any graph with maximum degree∆
the number of connected, induced subgraphs of ordern containing a fixed vertex is at most
(e∆)n (see,e.g., [12, Lemma 2.1]) we infer that

|U(we, wo, v)| ≤ O(wod
2)(d7)

O
(

(wo−we)
√

log 2d
2d

)

(45)

≤ exp
{

O
(

(wo − we)d
− 1

2 log
3
2 d
)}

, (46)

as required. The factor ofO(wod
2) in (45) accounts for the choice of a fixed vertex in

U ; the exponentO((wo − we)
√

log 2d/2d) is from (42); and thed7 accounts for the fact
thatU is connected in a graph with maximum degree at most65d6. In (46) we use (10)
to bound2d(wo − we) ≥ (wo + we)

1−1/d ≥ w
3/4
o and so (sincewo ≥ 2d) log(wod

2) =
o((wo − we)d

−1/2 log3/2 d).
In the case where2d(wo−we) > Ld−1, by (13) each of the components ofγ has at least

Ld−1 edges, soγ has at mostdLd/Ld−1 = dL components andU at mostdL 6-components.
In this case we may takeU(we, wo, v) to be the collection of all subsets ofV (TL,d) of size
at mostO((wo−we)

√

log 2d/2d) containing at mostdL 6-components. As in the previous
case we have

|U(we, wo, v)| ≤ (Ld)dL(d7)
O
(

(wo−we)
√

log 2d
2d

) dL
∑

j=1

(O

(

((wo − we)
√

log 2d
2d

)

+ j − 1

j − 1

)

≤ exp
{

O
(

(wo − we)d
− 1

2 log
3
2 d
)}

, (47)
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as required, the extra factors in the first inequality accounting for the choice of a fixed vertex
in each of the at mostdL 6-components and of the sizes of each of the6-components. To ob-

tain (47) we usewo ≤ Ld to bound(Ld)dL
∑dL

j=1

(O((wo−we)
√

log 2d/2d)+j−1

j−1

)

≤ 2O(d2L logL)

and2d(wo − we) ≥ Ld−1 to boundd2L logL = o((wo − we)d
−1/2 log3/2 d). ✷

The next lemma turnsU(we, wo, v) into the collection of approximations postulated in
Lemma 4.2. It is a straightforward combination of [12, Lemmas 2.16, 2.17, 2.18], and we
omit the proof. Combining Lemmas 4.6 and 4.7 we obtain Lemma 4.2.

Lemma 4.7 For eachU ∈ U(we, wo, v) there is a familyV(we, wo, v) satisfying

|V(we, wo, v)| ≤ exp
{

O
(

(wo − we)d
− 1

2 log
3
2 d
)}

and a mapΠV : U(we, wo, v) → V(we, wo, v) such that for eachγ ∈ W(we, wo, v) and
U ∈ U(we, wo, v) with ΠU(γ) = U , ΠV(U) is an approximation ofγ.

Acknowledgment: We thank Dana Randall for numerous helpful discussions.
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