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Abstract

The even discrete torus is the graph, on vertex sef0,...,L — 1} (with L
even) in which two vertices are adjacent if they differ onakaone coordinate and
differ by 1 (mod L) on that coordinate. Thieard-core measure with activityon77y, 4
is the probability distributiornry on the independent sets (sets of vertices spanning no
edges) ofl7, 4 in which an independent sétis chosen with probability proportional
to Al. This distribution occurs naturally in problems from sttitial physics and the
study of communication networks.

We study Glauber dynamics, a single-site update Markovncbaithe set of in-
dependent sets dfy, ; whose stationary distribution is,. We show that for\ =
w(d~Y*1og®* d) and d sufficiently large the convergence to stationarity is (esse
tially) exponentially slow inL¢~!. This improves a result of Borgst al, who had
shown slow mixing of Glauber dynamics fargrowing exponentially withi.

Our proof, which extends tp-local chains (chains which alter the state of at most
a proportionp of the vertices in each step) for suitableclosely follows the conduc-
tance argument of Borgst al., adding to it some combinatorial enumeration meth-
ods that are modifications of those used by Galvin and Kahiaw ghat the hard-
core model with parameter on the integer lattic& exhibits phase coexistence for
A = w(d Y410g3* d).

The discrete even torus is a bipartite graph, with partittassest (consisting
of those vertices the sum of whose coordinates is even)@nd®ur result can be
expressed combinatorially as the statement that for edthisntly large \, there is
a p(\) > 0 such that if] is an independent set chosen accordingrio then the
probability that||7 N | — |I N O]| is at mostp(A) Le is exponentially small ir.4—1.

Key words and phrases: Glauber dynamics, mixing time, iaddpnt sets, hard-core model, conduc-
tance, discrete torus, Peierl's argument.
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In particular, we obtain the combinatorial result that ftbr=a> 0 the probability that a
uniformly chosen independent set frdy 4 satisfied|INE|— [INO|| < (.25 —¢)L4
is exponentially small ir.?—!.

1 Introduction and statement of theresult

Let > = (V, E) be a simple, loopless, finite graph on vertex 8eand edge sek. (For
graph theory basics, seeg. [2], [7].) Write Z(X) for the set of independent sets (sets of
vertices spanning no edges)inh For A > 0 we define théhard-core probability measure
with activity A onZ(X) by

1|
(%)

whereZ,(¥) = >, Ml'is the appropriate normalizing constantgartition function
Note thatr; is uniform measure ofi(X%).

The hard-core measure originally arose in statistical gsyseee.g. [8, [1]) where it
serves as a model of a gas with particles of non-negligizke Sihe vertices of we think
of as sites that may or may not be occupied by particles; tleeafuoccupation is that
adjacent sites may not be simultaneously occupied. In tmgext the activity\ measures
the likelihood of a site being occupied.

The measure also has a natural interpretation in the coatenulticast communica-
tions networks (see.g.[16]). Here the vertices df are thought of as locations from which
calls can be made; when a call is made, the call location is@cted to all its neighbours,
and throughout its duration, no call may be placed from arth@heighbours. Thus at any
given time, the set of locations from which calls are beinglenia an independent setih
If calls are attempted independently at each vertex as a®ozocess of rate® and have
independent exponential meatengths, then the process has stationary distributjon

m({I}) = Zi for I € Z(3)

UnlessL andd are small, it is unfeasible to explicitly compute the péastitfunction
Z and the distributionr,. It is therefore of great interest to understand the effeatss
of algorithms which approximatg, and/orr,. In this paper we studglauber dynamics
a Monte Carlo Markov chain (MCMC) which simulateg. MCMC'’s occur frequently
in computer science in algorithms designed to sample fromstimate the size of large
combinatorially defined structures; they are also usedaitissical physics and the study of
networks to help understand the behavior of models of ph/sigstems and networks in
equilibrium. Glauber dynamics is the single-site updatekda chain M, = M, (%) on
state spac&(X) with transition probabilities?\ (7, J), I, J € Z(X), given by

0 if [IAJ]>1
1A if[IAJ=1,1CJ
(1, ) A if[IAJ =1, JCI

1= penm AT 0 T=1.
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We may think ofM, dynamically as follows. From an independent 5ethoose a vertex
v uniformly fromV. Then add to I with probability proportional to\, and remove it with
probability proportional td; that is, set

7= ITu{v} with probabilityHLA
| I\ {v} with probabilitylﬁ.

Finally, move to/’ if I” is an independent set, and stay attherwise.

It is readily checked thaM , is an ergodic Markov chain with (unique) stationary dis-
tribution,. A natural and important question to ask abauj is how quickly it converges
to its stationary distribution. It is traditional to defirfeetmixing timer,,, sy of M, (X) to
be

TMy(Z) = Irenzz&( min Z |PY(I,J) —ma(J)] < % Vit >ty o,
JGI(E

where P(I,-) is the distribution of the chain at timg given that it started in staté.
The mixing time of M, captures the speed at which the chain converges to itsrsaayio
distribution: for everye > 0, in order to get a sample frof(X) which is withine of 7,
(in variation distance), it is necessary and sufficient tothe chain from some arbitrarily
chosen distribution for some multiple (dependingepof the mixing time. For surveys of
issues related to the mixing time of a Markov chain, egp[19,20].

Here we studyru, (r, ,), WhereTy 4 is the even discrete torus. This is the graph on
vertex set{0,..., L — 1} (with L even) in which two strings are adjacent if they differ
on only one coordinate, and differ ly(mod L) on that coordinate. Fak > 4 thisis a
2d-regular bipartite graph with unique bipartitiénu O where€ is the set of even vertices
of 17, 4 (those strings the sum of whose coordinates is evenfaisdhe set of odd vertices.

Much work has been done on the question of bounding above for various classes
of graphs. The most general results available to date aréodugby and Vigodal[18] and
Dyer and Greenhill[11], who have shown that for any grapwith maximum degreé\,
T, (x) IS @ polynomial in|V (X)| whenever\ < 2/(A — 2), which implies thatr, (7, ,)
is a polynomial inL¢ whenever\ < 1/(d — 1). More recently, Weitz[[22] has improved
this general bound in the case of graphs with sub-exporignaaith, and in particular has
shown thatry, (1, ,) is a polynomial inL¢ wheneven < (2d —1)*'/(2d —2)*! ~ ¢/2d.

Recently, attention has been given to the question of regofi@efficiencyof Glauber
and other dynamics. Dyer, Frieze and Jerrum [10] considdr@dase\ = 1 and showed
that for each\ > 6 a random (uniform)A-regular,n-vertex bipartite: almost surely (with
probability tending tol asn tends to infinity) satisfies,, (X) > 27" for some absolute
constanty > 0. The first result in this vein that applied specifically’p ; was due to
Borgset al. [5], who used a conductance argument to obtain the following

Theorem 1.1 There isc(d) > 0 (independent of.) such that for\ sufficiently large and
allevenL > 4,
c(d) Lt }

TMA(T,a) = exp{ logzL
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An examination of[[5] reveals that “sufficiently large” mag Quantified as\ > ¢ for
a suitable constant > 1. One motivation for[[5] was to show that for values Joffor
which the hard-core model on the integer lattieexhibits multiple Gibbs phases (to be
explained below), the mixing of the Glauber dynamicsi@n, should be slow. Dobrushin
[8] showed that as long asis sufficiently large, there are indeed multiple Gibbs pkase
the hard-core model. Specifically, wrifeandO for the sets of even and odd vertice<Zjf
(defined in the obvious way). Equif with the usual nearest neighbour adjacency and set

Ap =[-L,L]* and 0Ap = [-L,L]*\ [-(L —1),L — 1]%
For\ > 0, choosdl from Z(A ;) with Pr(I = I) « A!l. Dobrushin showed that forlarge
hmIP(ﬁEI[H[Q@ALﬁE) >1imP<5€H\H28ALﬁO> )
L—oo L—oo

where( = (0,...,0). Thus, roughly speaking, the influence of the boundary omtieh
at the origin persists as the boundary recedes. Informially,suggests that fok large,
the typical independent set chosen fr@in, according to the hard-core measure is either
predominantly odd or predominantly even, and so there iglalyunlikely bottleneck set
of balanced independent sets separating the predomirmaitlyets from the predominantly
even ones. It is the existence of this bottleneck that shcadde the mixing of the Glauber
dynamics chain to be slow. No explicit bound is giverin [8]t beveral researchers report
that Dobrushin’s argument works far> ¢? for a suitable constanrt> 1. A key tool in the
proof of Theoreni 111 is an appeal to a (suitable generadizptf a lemma of Dobrushin
from [9], and our main lemma, Lemrha 8.5, is of a similar flavour

In light of a recent result of Galvin and Kahn [12], it is tenmgf to believe that slow
mixing on 7}, 4, should hold for smaller values of; even for values of\ tending to0
asd grows. The main result of [12] is that the hard-core modeFdrexhibits multiple
Gibbs phases fok = w(d~'/*1og®* d). Specifically, Galvin and Kahn show that far>
cd=Y/*10g>* d for sufficiently larger, (@) holds.

In [13], some progress was made towards establishing sloangon 77, ; for small
\. Let Q, be the usual discrete hypercube (the grapH{@n }¢ in which two strings are
adjacent if they differ on exactly one coordinate). Note thg,; is isomorphic toQ),;. A
corollary of the main result of [13] is that for = w(d~'/*10g>? d),

2d
TMA(Qd) Z exp {Q <E) } .

In the present paper, using different methods, we show tivad sufficiently large
Glauber dynamics does indeed mix slowly ®p, for all evenL > 4 for some small
values of\.

Theorem 1.2 There are constants d, > 0 for which the following holds. For

A > ed V1 og* d, (2)
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d > dyand L > 4 even, the Glauber dynamics chail, onZ(17}, ;) satisfies

Ld—l
TMy(T1,,0) = €XP {m} :

Our techniques actually apply to the classdbcal chains (considered in/[5] and also
in [10], where the terminology|V/ |-cautiousis employed) for suitablg. A Markov chain
M on state spacé is p-local if in each step of the chain the states of at mgst| vertices
are changed; that is, if

Our main theorem is the following.

Theorem 1.3 There are constanis d, > 0 for which the following holds. Fok satisfying
@), d > dy, L > 4 even ang satisfying

1 A
< 3
PEoaR = T ®)
and
H 1 H L L log, A 10 <1 1+X) (4
sqiz ) THN\ P ogm ) T\ e T ) log +m_0g2(+ ) (4
(WhereH (o) = —alogy a — (1 — «) logy (1 — «) is the usual binary entropy function), if

M is an ergodicp-local Markov chain on state spadg17, ;) with stationary distribution
7y then

d—1
o 29 i)

With p = L¢, (@) is satisfied for all\ satisfying [2) (for sufficiently largel). An
L~-local chain is a single-site update chain and so Theérelis h 2orollary of Theorem
[1.3. Takingh = 1 we may satisfy[(4) witlp any constant less than'2 by takingd large
enough (as a function ¢f). We therefore obtain a further corollary of Theorlem 1.3.

Corollary 1.4 Fix p < 1/2. There is a constant, = dy(p) > 0 for which the following

holds. ForL > 4 even andl > d,, if M is an ergodicp-local Markov chain on state space
(T}, 4) with uniform stationary distribution then

d—1
7--/\/t(TL,d) Z exp {d4 10g2 L} :

We prove Theorern 11.3 via a well-known conductance arguniemo@uced in[[15]). A
particularly useful form of the argument was given by Dyeie#e and Jerrum [10]. Lett



be an ergodic Markov chain on state sp&ceith transition probabilities® and stationary
distribution7. Let A C QandM C Q \ A satisfyn(A) < 1/2 and

w1 EA,CUQEQ\(AUM)@P(OJMWQ):O.

Then from [10] we have
m(A)
> .
M = 8 (M) ®)

The intuition behind[(5) is that if we start the chain at sortegesin A, then in order to
mix, it must at some point leavé and so pass through/. The ratio ofr(A) to 7(M) is
a measure of how long the chain must run before it transititome A to M. So we may
think of M as a bottleneck set through which any run of the chain must pasrder to
mix; if the bottleneck has small measure, then the mixingtisnhigh.

Now let us return to the setup of Theorem|1.3. Set
Typ = Top(Tra) = {I € I(Tpa) : |IINE| ~ [INO| < pL/2}
(Zs,, is the set obalancedndependent sets) and
Tep,=Te (Tra) = {1 € Z(Tpa) : INE| > |INO| + pL?/2}.

By symmetry,m\(Z¢,) < 1/2. Notice that sinceM changes the state of at mgst?
vertices in each step, we have that/if € Z¢ , and I, € Z(T1q) \ (Zg, U L) then
Pum(1, 1) = 0. From [5) we obtain

v > WA(I&/)) _ 1- 7T/\(Ib,p)

=8y | 16m(Dy)

Theoreni1.B thus follows from the following theorem, whosegb will be the main busi-
ness of this paper.

Theorem 1.5 There are constants d, > 0 for which the following holds. Fok satisfying
@), d > dy, L > 4 even ang satisfying[(B) and{4),

2Ld—1
7T)\<Ib7p> S exp {—m} .

Theoreni 15 is the statement that if an independentisathosen front (77}, ;) accord-
ing to the hard-core distribution,, then, as long as is sufficiently large, it is extremely
unlikely that! is balanced. In particular, if we take= 1 we obtain the following appealing
combinatorial corollary.

Corollary 1.6 Fix ¢ > 0. There is a constand, = dy(¢) > 0 for which the following
holds. ForL > 4 even andl > d,, if I is a uniformly chosen independent set fr@iy,
then

] 241
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2 Overview of the proof of Theorem (1.5

Consider an independent de& Z(77, ;). Some regions df;, ;, consist predominantly of
even vertices frond together with their neighbours (tleen-occupiedegions) and some
regions consist predominantly of odd vertices fromith their neighbours. These regions
are separated by a collection of connected unoccupied dy@r-Imoats ocutsetsy. In
Sectiori 3.11 we follow/[5] and describe a procedure whichctgle collectiod’(7) of these
+'s with the properties that) the interiors of those € T'(I) are mutually disjoint (the
interior of ~ is the smaller of the two parts into which its deletion breakgraph) and
i7) either the interiors of ally € I'(/) are predominantly even-occupied or they are all
predominantly odd-occupied. We do this in the setting of duiti@ry bipartite graph. We
also point out some propertiesgthat are specific to the torus, including an isoperimetric
inequality that gives a lower bound ¢n (the number of edges i) in terms of the number
of vertices it encloses.

Our main technical result, Lemnia 8.5, is the assertion thiaeéch specification of
cutset sizes, ..., ¢, and vertices, . . ., v, the probability that an independent gdtas
among its associated cutséid) a collectiony,, . .., 7, with |y;| = ¢; and withv; in the
interior of -, is exponentially small in the sum of thg's. The cas¢ = 1 is essentially
contained in[[1R2], and our generalization draws heavilyhat paper. It may be worthwhile
to compare our Lemnia 3.5 with![5, Lemma 6] in which is obtaiaadexponential bound
on the probability off having aparticular collection of cutsets.

We use a Peierl’'s argument (seqy. [14]) to prove Lemma_3]5. For simplicity, we
describe the argument here for= 1. For fixedecy, ..., ¢, v1,. .., v, let Zg,.. be the
collection of I € Z(7Ty4) which have a collection of associated cutsgts. . ., ~, with
|7:| = ¢, and withv; in the interior of,. For anI € Z,,., fix one such collection
1, --.,7- By modifying I carefully in the interior of each; (specifically, by shifting/
one unit in a carefully chosen direction) we can identify demion of subsets; of the
vertices ofy; with |S;| = ¢;/2d which can be added to the modifiéd the resulting set
still being independent. (Here we exploit the fact that thiset can be thought of as two
unoccupied layers separating the interior from the exteri®y adding arbitrary subsets of
eachs; to the modified/, we get a one-to-many mapfrom Z,.. to Z(1}, 4) with |¢o(1)|
exponential in the sum of the's.

If the ¢ (I)’s would be disjoint for distinct’’s, we would essentially be done, having
shown that there are exponentially more (in the sum ofdts independent sets than
sets inZ,,... To deal with the issue of overlaps between hd)'s, we define a flow
v Lopee X (11, 4) — [0, 00) supported on pairgl, J) with J € (/) in such a way that
the flow out of everyl € Z;,.. is 1. Any uniform bound we can obtain on the flow into
vertices ofZ(T7}, ,) is then easily seen to be a boundmfiZ;,..).

We define the flow via a notion of approximation modified fran2][1 To each cut-
sety we associate a set(y) which approximates the interior of in a precise sense, in
such a way that as we run over all possip)e¢he total number of approximate sets used is
small (and in particular, much smaller than the total nundferutsets). There is a clear



trade-off here: the more precise the notion of approxinmatised, the greater the number
of approximate sets needed. Then for edck Z(77, ) and each collection of approxi-
mationsAy, ..., A, we consider the set of thosec Z,.. with J € ¢(I) and with A; the
approximation toy;. We define the flow in such a way that if this set is large, th@h .J)

is small for eachl in the set. In this way we control the flow intbcorresponding to each
collection of approximations!,, ..., A,; and since the total number of approximations is
small, we control the total flow intd.

In the language of statistical physics, there is a tradeetffvbenentropyand energy
that we need to control. Eadhe Z;,.. has high energy — by the shift operation described
above, we can perturb it only slightly and map it to an expdiaéy large collection of
independent sets. But before exploiting this fact to shaat #h(Z,..) is small, we have
to account for a high entropy term — there are exponentiabyynpossible cutsets of
size¢; that could be associated with dne Z,,... There are aboutxp{€2(c;logd/d)}
cutsets of size; (this count comes from [17]), each one giving rise to akapf{ O(c;/d)}
independent sets, so the entropy term exceeds the enengyatef the Peierl’s argument
cannot succeed. One way to overcome this problem is to alkmgrow exponentially with
d, increasing the energy term (the independent sets obt&ioedthe shift are larger than
the pre-shifted sets, and so have greater weight) whilelmanging the entropy term. This
is the approach taken in|[5]. Alternatively we could try tdvege the argument fox = 1
by somehow decreasing the entropy term. This is where tteeafl@pproximate cutsets
comes in. Instead of specifying a cutsgby itsc; edges, we specify a connected collection
of roughlyc; /d®? vertices nearby (in a sense to be made precise) to the dutsetwhich
a good approximation to the cutset can be constructed inafigak(algorithmic) way. Our
entropy term drops to roughlp{O(c; log d/d*/?)}, much lower than the energy term; so
much lower, in fact, that we can rescue the Peierl’s argufioenalues ofA tending to0 as
d grows. The boundxp{O(c;logd/d**)} on the number of connected subsetdpf; of
sizeO(c;/d*?) is based on the fact that®regular graph has at maz?("'°e2) connected
induced subgraphs of sizepassing through a fixed vertex.

The precise statement of Lemimal3.5 appears in Selction 3.tharroof appears in
Sectior 4. It is here that the precise notion of approxinmatised is given, together with
the verification that there is & that satisfies our diverse requirements. We defer a more
detailed discussion of the proof to that section.

Given Lemmd_ 355, the proof of Theordm11.5 is relatively gindfiorward. We begin
by using a naive count to observe that the total measure sttha& 7, , with min{|/ N
E|,|INOJ} < L?/4d*? is exponentially small inL?. This drives our specification ¢f,
which is chosen as large as possible so that the naive couedg gnh exponentially small
bound. This allows us in the sequel to consider only thbse Z(17, ;) with min{|/ N
El,IINO|} > L?/4d"?. The naive count consists of considering those subsesé 7}, 4
with min{| X NE&|, | XNO|} < L/4d"? andmax{| X NE|, | X NO|} < L?/4d'/?+ pL?/2,
without regard for whethek € Z(77 ).

It remains to consider the case where balantedtisfiesmin{|/ N &|, [/ N O|} >
L?/4d2. In this case the isoperimetric inequality in the toruswaiais to conclude that



I'(I) contains a small subset of cutsets, all with similar lengths sum of whose lengths is
essentiallyL¢~!. We then use Lemnia 3.5 and a union bound to say that the mezf¢hee
large balanced independent sets is at most the product ohahat is exponentially small
in L' (from Lemma3.56), a term corresponding to the choice of a fixatex in each
of the interiors, and a term corresponding to the choice efctbilection of lengths. The
second term will be negligible because our special cotheatif contours is small and the
third will be negligible because the contours all have samiéngths. The detailed proof
appears in Sectidn 3.3.

3 Proof of Theorem[15

3.1 Cutsets

We describe a way of associating with eathe Z(77 ,) a collection of minimal edge
cutsets, following the approach of [5]. Much of the discaasis valid for any bipartite
graph, so we present it in that generality.

Let X = (V, F) be a connected bipartite graph on at leastertices with partition
classes€ andO. For X C V, write V(X) for the set of edges i which have one end
in X and one end outsid&; X for V \ X; 0,,,X for the set of vertices itk which are
adjacent to something outsidg 0.,; X for the set of vertices outsid€ which are adjacent
to something inX; X+ for X U 0.,,.X; X¢ for X N & and X© for X N O. Further, for
x € V setoxr = 0.{z}. In what follows we abuse notation slightly, identifyingsef
vertices ofl” and the subgraphs they induce.

For eachl € Z(X), each componenk of (I°)* or (I1°)* and each componeiit of
R, sety = ype(I) = V(C) andW = Wge(I) = C. EvidentlyC' is connected, and
W consists ofR, which is connected, together with a number of other comptsnef R,
each of which is connected and joinedRpso WV is connected also. It follows thatis a
minimal edge-cutset ill. Define thesizeof v to be|vy| = |VC| (= |[V(W)]). Defineint ~,
theinterior of v, to be the smaller of, W (if |IW| = |C], takeint v = W) and say that is
envelopingf int v = W (so thatR, the component that gives rise49is contained in the
interior of ). Say that/ is even(respectivelypdd) if it satisfies the following condition:
for every componentz of (1¢)* (respectively,(I°)*) there exists a component of R
such thatyr-(7) is enveloping. Note that there must be an unique suébr eachR since
the components aR are disjoint and each one that gives rise to an envelopirsgtuatust
have more thafi/|/2 vertices.

Lemma3.1 Each/ € Z(X) is either odd or even.

Proof: Suppose that is not even. Then there is a componéhof (Z¢)* such that for all
component¥’ of R, |C| < |V|/2. Consider a componedi’ of (Z°). It lies inside some
component” of R, so one of the components Bf, say(C’, containg”’. Since|C| > |V]/2
the cutsetyz (1) is enveloping. It follows that is odd. a
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Lemma 3.2 For each everd € Z(X) there is an associated collectidi{/) of enveloping
cutsets with mutually disjoint interiors such thet C U, cp(;)int .

Proof: Let Ry, ..., R,, be the components ¢f¢)*. For each there is one component;
say, of R; such thaty; = vz,¢, is enveloping. We havé® C U™ int ;.

We claim that for each # j one ofinty; C inty;, inty; 2 int~y;, int 5 Ninty; = (0
holds. To see this, we consider casesRJf C C’ for some component” # C; of R;

thenint; C C' C inty; (= C;). Otherwise,R; C C;. In this case, eithe€; C C; (so
inty; D int ;) or C; O C; (sointy; Nint; = ). We may take

I'(I) = {v; : forall j # i eitherinty; C int~; orint~; Ninty; = 0}.

O
The following lemma identifies some key propertiesyof I'(7) for even!. In the
proof of Theorenh 115 these properties only come into plagugh Lemma 315.

Lemma 3.3 For each everT and~ € I'(/), we have the following.

aintW g @ and ae:ctW g ga (6)
@MW NI= (Z) and 8eth NI= (Z), (7)
Vo € OpyW, Oz NW NI #0 (8)
and
WO = 0., W® and W8 = {y e &:0y CW°}. (9)

Proof: We begin by noting thad;,, W C 0,,;R (specifically,0;,;,W = 0;pt R N 00t C =
OeztC) aNd 0ot W = 0;,,C. Sinced;,R C O andd,,,C C &, (6) follows immediately
from these observations.

By construction RN O NI = 0, s00;,,W NI = (. If there isxz € 9;,,C N I then,
sincer € £ and there i3y € R adjacent tor, we would haver € R, a contradiction; so
0;mC N I = 0, giving ().

It is clear that for all: € 0;,,; R there isy € R N I with x adjacent tay; so (8) follows
from 0;,, W C 0;,+ R.

Sinced,,, W C O, we haveV® D 9,,,W¢. Ifthereisy € W© with dynW¢ = (), then
the connectivity ofit’ implies thatiV = W© (and thati’® consists of a single vertex).
But ¢ is non-empty; so we get the reverse containm&tt C 9., W°¢.

The containmentVé¢ C {y € £ : 9y C W} follows immediately fromi/© D
D..:W€. For the reverse containment, consider (for a contradiygios £ with oy C W°
buty ¢ W¢. We must have € C; buty is not adjacent to anything else@ and|C| > 1
(indeed,|C| > |V]/2 > 1 sincey is enveloping), a contradiction sincéis connected. So
we havelVé D {y € £ : 9y C W}, O

We now returntd’y, 4. SetZ,,., = {I € Z(114) : I ever} and defin€,;; analogously.
The next lemma establishes some of the geometric propeftiés ; that we will need.
Before stating it we need some more notation.
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Fork > 1, we say thatS C V(1},) is k-clusteredif for every z,y € S there is a
sequence = xy, ..., x,, = y of vertices ofS such thatl(z;_,z;) < kforalli =1,...m,
whered(-, ) is the usual graph distance. Note tttattan be partitioned uniquely into
maximalk-clustered subsets; we refer to these asittemponentsf S.

For a cutsety, we define a grapli-., as follows. The vertex set df., is the set of
edges ofl;, ; that comprisey. Declaree, f € « to be adjacent iid7, if eithere and f share
exactly one endpoint and if the coordinate on which the emdpof ¢ differ is different
from the coordinate on which the endpoints fotliffer (i.e., ¢ and f are not parallel) or
if the endpoints ok and f determine a cycle of length four (a square)lin,. (This is
equivalent to the following construction, well known in th&tistical physics literature:
for e € ~, lete* be the duald — 1)-dimensional cube which is orthogonald@nd bisects
it whenTy, 4 is considered as immersed in the continuum torus. Thenmecld € ~ to
be adjacent it* N f* is a (d — 2)-dimensional cube.) We say that a cutgés trivial if G,
has only one component.

Lemma 3.4 Foreach! € Z.,., and~y € I'(]),

| > (W (10)
for large enought, |y| > d**; (11)
if v is not trivial then each component 6f, has at least.~! edges (12)

and
eitherd,,,, W is 2-clustered or each of it8-components has size at ledst ! /2d. (13)

Proof: For (10) and[(1l1) we appeal to an isoperimetric inequalitBotfobas and Leader
[4] which states that ifd C V (T}, 4) with |A] < L¢/2, then

|Oeat Al > min {2\A|1_1/T7"L(d/r)_1 r=1,...,d}.

From this [(10) follows easily, as dods [11) once we obserae|th| > 2d + 1 (since
W€ # () and thaty| > |0epW|.

From [B, Lemma 3] we havé (12). Finally we turn f013). &t ..., C, be the
components o7, and for each let C; be the vertices of),,,,J// which are endpoints of
edges ofC;. Itis readily checked that eact{ is 2-clustered and thad;,,)V = U,;C!. If
¢ =1 we therefore have thak,,; 1V is 2-clustered. I > 1, we have (by[(12)) that eaat};
has at least?~* edges. Since each vertexih ; has degreéd, it follows that eachC! has
size at leasf.¢~! /2d. Since theC!’s are2-clustered, eack-component ob);,,;IV has size
at leastZ~1 /2d, establishing(13). O
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3.2 Themainlemma
Forc € Nandv € V (1} 4) set
W(c,v) ={y : v €I(I)forsomel € Z.pen, |7| = ¢, v € W¥}

and setV = U, ,W(c,v). A profile of a collection{~y,...,v,} € W s a vectorp =
(c1,v1, ..., ¢, v0) With y; € W(c;, v;) for all i. Given a profile vectop set

Z(p) = {I € Zeven : T'(I) contains a subset with profijg .

Our main lemma is the following.

Lemma 3.5 There are constants ¢, d, > 0 such that the following holds. For all even
L > 4,d > dy, X satisfying[(2) and profile vectgr,

T (Z(p)) < exp {—%} , (14)

wheref(A) = 2log(1 + ) — log(1 + 2)).

This may be thought of as an extension of the main result df MBich treats only
¢ = 1 and in a slightly less general setting. We will derive TheokeS from Lemma 315
in Section 3.8 before proving the lemma in Secfibn 4. Frone loer we assume that the
conditions of Theorern 1.5 and Lemral3.5 are satisfied (wihd d, sufficiently large
to support our assertions). All constants impliedJrand(? statements will be absolute.
When it makes no difference to do otherwise, we assume tHatg® humbers are integers.
We note for future reference that farsatisfying (2) we have

3.3 Theproof of Theorem

We begin with an easy count that dispenses with small bathimciependent sets. Set
Toman = {1 € Ty, : min{|I°|, |I®|} < L /4d"/?} .

andz—large = Ib,p \Ismall-

Lemma 3.6

3141
T (Lsmai) < €xp {—m} .

12



Proof: We need a well-known result of Chernofi [6] (see alsb [3],1).1Let X, ..., X,
be i.i.d. Bernoulli random variables wilA(X; = 1) = p. Then fork < pn

P <iX < k:) < o7 (3)

i=1

whereH,(z) = zlogy(p/z) + (1 — z)logy((1 — p)/(1 — z)). Note thatH,(z) = H(z) +
xlogyp + (1 — x)logy(1 — p) where H(x) is the usual binary entropy function. Taking
p=A/(1+ \) we see that for a sef with | X| = n and forc < /(1 + \),

|A]
Z A < onHy/a4x)(9)

ACX, |A|<en (1 + )‘)n B
_ 2n(H(c)+clog2 1+Lk—i-(l—c) logy H%)
2n(H(c)+clog2 A—log, (14X))
from which it follows that
Z A < gn(H(e)telog; ) (16)
ACX, |Al<en

Now using(1 + A)“*/2 as a trivial lower bound o}, ., A/l and with the subse-
guent inequalities justified below, we have ’

7"-)\(-,Z:small> < 2 Z )\‘Al Z )\|B| (1 4 )\)—Ld/Z
ACE, |A|<L4/4d1/2 BCO, |B|<(1/2d"/2+p)L4/2

2 exp, {L?d (H (5572) + H (52 + ) + (52 + ) logZA)}

= ; (17)
(1 N)E/2
2Ld—1

B : 18
eXp{ d4log2L} (18)

In (I7) we usel(16) (legitimate sindg2d'/? < \/(1 + \) and1/2d"? + p < \/(1 + ),
the former by[(1b) and the latter by (3));_(18) follows fran).(4 O

SetZiarge, cven = ZLiarge N Leven @nd defin€Zq, . .44 @analogously. By Lemmpa 3.1
-,Zlarge = -,Z.lar’ge7 even U -,Z.large7 odd and by SymmetrWA(Ilarge, even) = WA(:Z.IaT’ge, odd)- In
the presence of Lemnia 8.6, Theorem 1.5 reduces to boundiny (s

3L
7T)\(-,Z:la7"ge, even) S €xXp _M . (19)

SetZ; 7 = {I € Tiarge, even © thereisy € T(I) with |y| > L4} andZjrviel - =

large, even

Zpon-trivial \With the sum below running over all vectgrof the form(c, v)

-,Z.large7 even \ large, even

13



with v € V(T 4) ande > L4~1, and with the inequalities justified below, we have

A Tiggereoen’) < D m(Z(p)

< L¥exp {—Q <%) } (20)

d—1
< exp {—Q (53/2 )} (22)

We have used Lemnia 3.5 in {20) and the factoE#fis for the choices of andv. In (21)
we have used(15).
Forl ¢ Ti™vial  andy € I'(I) we havely| > |int v|'~'/? (by (10)) and so

large, even

Z |’7|d/(d_1) > Z |int7| > |[€| > Ld/4d1/2,

~yel'(I) ~yel'(I)

The second inequality is from Lemrna 3.2 and the third follemeel & Z,,,.i-
Setl’;(I) = {y € T(I) : 27! < || < 2}. Note thatl';(/) is empty for2’ < a'°
(recall (11)) and foei~! > L¢~! so we may assume that

1.9logd <i<(d—1)logL+ 1. (22)
Sinced_°_, 1/m* = n?/6, there is an such that
Ld
Z 77 >9<d1/22)- (23)
~vyel'; (I

Choose the smallest suciset? = [I';(1)|. We haved_ . ;) [v| > Q(¢2°) (this follows
from the fact that each € I';(/) satisfiegy| > 2-!) and

d d
O(ﬂ)zﬁz@(zfi). (24)
2 9d142J1/2

The first inequality follows from that fact thaC_ |y| < dL? = |E(Ty4)|; the second

follows from (23) and the fact that eachhas|y|% (@~ < 24/(4=1) We therefore have
I € Z(p) for somep = (c1, vy, .. ., ¢, ) With £ satisfying [24), with

l
> e =02, (25)
j=1

with '
Cj S 22 (26)
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for each;j and with: satisfying [22). With the sum below running over all profikectorsp
satisfying [(22),[(24)[(25) and(26) we have

AT ) <> mA(Z(p)
P

ot () {0 (537))
< dlogL zsatisfﬁng@; <€ exp q —{2 7 . (27)

In (24) we have used Lemnha B.5. The factokldbg L is an upper bound on the number
of choices fori; the factor of2“ is for the choice of the;’s; and the factor(L;) is for

the choice of the (distinct) v;'s. By (22), the second inequality in_(24) and the second
inequality in [15) we have (faf sufficiently large)

) < =(2)
ofi (0 (zfdlﬁdlﬂ))é

24&'

_ 2'8())
N exp{o( d >}
Inserting into [(2V) we finally get

m(Zirivial ) < dlog L max exp {—Q <W>}

IA

IN

large, even d
2i Ld
< dlog L maxexp {—Q (5(1(7)\)) } (28)
i 27T 2412
4L
< i —— 29
- exp{ d4log2L} (29)

In (28) we have takefias small as possible, and in{29) we have takaslarge as possible
and used (15).
Combining [29) and (21) we obtain (19) and so Theadrem 1.5.

4 Proof of Lemmal3.5

Our strategy is the following. Let a profile vectpr= (cy,v1,..., ¢, v,) be given. Set
P = (c2,va,...,cp,vp). We will show

m\(Z(p)) { <clﬁ()\)) }

n@Zp) ~ d (30)
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Then by a telescoping product

m(Z(p)) BN ¢
i) 5 22D o ()|

- (DY (Ieven

as claimed. To obtaih (B0) we employ a general strategy tadbay(S) /7, (7) for S C
T C Z(T14) (note thatZ(p) C Z(p')). We define a one-to-many mapfrom Sto 7. We
then define aflow : S x T — [0, c0) supported on pair§l, .J) with .J € (1) satisfying

Vies, > wul.J)=1 (31)

Jep(I)

and
vieT, > ANFVrg) <M (32)
Tep—1(J)

This gives

SN = NN (1)

IeS IeS Jep(I)

— S Z NS

JeT Tep—1

< MZ)\U\

JeT

and somy (S)/mA(T) < M. So our task is to defing andv for S = Z(p) and7T = Z(p')
for which (32) holds with\/ given by the right-hand side df (BO0).

Much of what follows is modified from_[12]. The main result dZ] has already been
described in Sectidn 1. It will be helpful here to describe mhmain technical work of that
paper. Let\; be the boX—L, L]¢ in Z* with boundaryp*A; = [-L, L]¢\ [-(L — 1), L —

1]4. Write 7 for the set of independent setsAn which extend*A; N O and, for a fixed
vertexvy, € ApNE, write Z for thosel € 7 with vy € I. The stated aim of [12] is to show,
using a similar strategy to that described above, thal)/m\(J) < (1 + X)~2d—e),
More specifically, for eacli € Z let~'(1) be the cutset associated with that component of
(I¢)* that includesy,. For eachw,, w, write Z(w,, w.) for thosel € T with |IW¢| = w,
and|W°| = w,, wherelV is the subset of ;, associated with’(I) as described in Section
[3.1. Itis shown in[[12] (inequalities (62) and (63) of thappa) that for\ satisfying (2) we
have

WA(I(wwwe» <

m(J) T

from which the stated bound on\(Z)/m\(J) is easily obtained by a summation. The
remainder of this paper is devoted to an explanation of h@ptioof of [3B) needs to be
augmented and modified to obtain our main lemma, and we ddatetthe proofs of many

{ exp{—Q(\*(w, —w,))} for\ < 2and (33)

A\~ $Uwo—we) for larger\
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of our intermediate lemmas, since they can be found in thergéity we need in[12]. The
main technical issue we have to deal with in moving from (38Lémmal 3.6 relates to
dealing with~ that are non-trivial (in the sense defined before the prodfeshmal3.4);
this is not an issue in [12] because it is shown there thattleetsy’(7) described above
are always trivial.

One technical issue aside, the specification @ relatively straightforward. For each
s € {£1,...,+xd}, defineo,, theshift in directions, by o4(z) = = + e5, wheree, is the
sth standard basis vectordf> 0 ande; = —e_; if s < 0. ForX C V(T}, 4), write o(X)
for {o,(x) : z € X}. Foracutsety € W setW® = {z € 0;,, W : o' (z) & W}. We will
obtainy(7) by shifting I insideW in a certain directiors and adding arbitrary subsets of
W* to the result, wherél” is associated with a cutsete I'(1) N W(¢y,v1). The success
of this process depends on the fact thas disjoint from the vertex set of. We now
formalize this.

Lemmad4.l Let! € Z(p) be given. Lety € I'(1) be such thaty| = ¢; andv, € W*
wherelV = int . For any choice o, it holds that

Iy:=I\W)Uo,(INW) isin Z(p')
and has the same size &sMoreover, the set§, andW* are mutually disjoint and
LyuW? e Z(p').

Proof: Thatl, U W* is an independent set and thigtis the same size akis the content
of [12, Proposition 2.12]. Becauset v is disjoint from the interiors of the remaining
cutsets and the shift operation that credtgs W ¢ only modifies/ insidelV it follows that
Io, Iy UW?* € Z(p'). O

ForI € Z(p) we define
o(Il)={I,uS: S CW?}

for a certains to be chosen presently. In light of LemmaldAJ) C Z(p') regardless of
this choice.

To definer ands we employ the notion of approximation also used.in [12] aritbin
duced by Sapozhenko in [21]. Fere W we say thatd C V (17, 4) is anapproximatiorof

~ if
A DW¢ and A° C WO, (34)
dyo(z) > 2d —Vd forall z € A% (35)

and
dg\ e (x) > 2d — v/d forally € O\ A°, (36)

wheredx (x) = |0x N X|. Note that sincél», = W, W is an approximation of.
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To motivate the definition of approximation, note that bl i9) is in W¢ then all of
its neighbors are ifi’®, and ifv’ is in O \ W then all of its neighbors are i\ W¢. If
we think of A¢ as approximaté¥¢ and A® as approximaté¥ ©, (358) says that ifi € £
is in approximatgd’¢ then almost all of its neighbors are in approximé&ité> while (36)
says that if’ € O is not in approximatéd © then almost all of its neighbors are not in
approximatel/¢.

Before stating our main approximation lemma, which is ahdlimodification of [12,

Lemma 2.18], it will be convenient to further refine our péot of cutsets. To this end set
W(we, w,,v) = {7y : v € T(I) for somel € Zopen, |W°| = w,, [W¢| = we, v € WE}.

Note that (by[(®))

Y= IV(W)] = 2d(|W°| - [W*])
SOW(We, Wy, v) € W((w, — we)/2d,v).

Lemma 4.2 For eachw,, w, andv there is a familyA(w., w,, v) satisfying
Al w,0)] < exp {0 ((w, — we)d Hlogh d) }

and a mapll : W(we, w,,v) — A(we, w,, v) such that for eachy € W(w., w,, v), I1(7)
is an approximation fory.

The proof of this lemma is deferred to Sectlonl4.1. Our boumdhe@ number of ap-
proximate cutsets with parameters, w, andv is much smaller than any bound we are
able to obtain on the number of cutsets with the same set ahpgters. This is where we
make the entropy gain discussed in Sedfion 2.

We are now in a position to defineands. Our plan for each fixed € Z(p’) is to fix
w,, w, andA € W(w,, w,) and to consider the contribution to the sum[in| (32) from those
I € o7 1(J) with TI(y(I)) = A. We will try to definer in such a way that each of these
individual contributions to[(32) is small; to succeed irstendeavour we must first choose
s with care. To this end, given € W(w., w,, v), set

Qg = Ag N 8emt(0 \ AO) and QO = (O \ AO) N 8€$tAg7

whereA = II(~) in the map guaranteed by Lemmal4.2. To motivate the intragluof Q¢
andQ®, note that fory € TI-1(A) we have

AS\Q&' C WS
ENA®S C g\W¢

and

O\ (A°uUQR% < o\w°
(all using [9) and[(34)). It follows that for eache I17'(A), Q* U Q° contains all of the
vertices whose location in the partitidi ; = W U W is as yet unknown.
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Lemma4.3 For v € W(w., w,,v), thereis ans € {£1, ..., +d} such that both of

W2 S ) and @9 %) < L
hold.

Proof: [12, (49) and (50)]. O

We choose the smallest sugho be the lattice direction associated withNote thats
depends or but not on/.

Now for eachl € Z(p) lety € I'(I) be a particular cutset with € W(cy,v,). Let
©(I) be as defined before, withas specified by Lemnia4.3. Define

C = W* N A° N o, (QF)

and
D =W?*\C,

and for eachy € ¢(I) set

Note that for € o=1(J), v(I, J) depends o®V but not on/ itself.
Noting thatC' U D partitionsiV we have

J;I)V(I,J) — ACCZBCDAAHB (ﬁ)m <%)IC—|A (H%)D
R ()

B (1+A)|D| 1+22+ A2\ 9/ 1420\
(1+ )P 142X (1+ )2
= 1,

sov satisfies[(31). To obtaif (14) we must establish (32) wiflgiven by the right-hand
side of [30).

Fix w,, w, such thakd(w, — w.) = ¢1. Fix A € A(w,, w,,v1) ands € {£1,..., £d}.
For I with v(1) € W(w,, w,,v,) write I ~ A if it holds thatIl(y) = A ands(I) = s.
The next lemma, which bounds the contribution to the suh2) {®m thosel € p=1(J)
with I ~, A, is the heart of the whole proof, and perhaps the principadurlity of [12].
We extract it directly from([12]; although the setting heseslightly different, the proof is
identical to the equivalent statement(in[12].
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Lemma4.4 For J € Z(p'),

S ANV, gy i T~ A T €7 H(J)

< VI 20\
- 14+ X ’

Proof: [12, Section 2.12]. O

We are now only a short step away from1(14). With the step#figgtoelow we have
that for each/ € Z(p')

S NIV gy < Y ON S NIV, g) T~ A T e T ()}

Iep=1(J) we,wo 5,A

2d_ 2d
< 2deT | Awe, we, v1)| < 1+2 ) (37)

+
< 2dc texp { ( ) } (38)

< exp{—Q (Clﬁd( ))} (39)

completing the proof of(32). In_(37), we note that there [atéw., w,, v1)| choices for the
apprOX|mat|onA 2d choices fors andcd/ @=1 choices for each ob., w, (this is because
c1 > (we + w,) "¢ by (10)), and we apply Lemnia 4.4 to bound the summand_In (38)
use Lemma 412 and the fact that for any- 0 we can choose > 0 such that whenever

A > dd~"*10g¥* d andd = d(c) is sufficiently large we have

exp {cd_% log% d} 4

Finally in (39) we use:; > d'? (by (11)) and the second inequality in {15) to bound
24V = exp{o(c1f(N)/d)}.

4.1 Proof of Lemmal4d.2

We obtain Lemma& 412 by combining a sequence of lemmas. LemBamhich we ex-
tract directly from[12], establishes the existence formeaof a very small set of vertices
nearby toy whose neighbourhood can be thought of as a coarse approxmtaty. (We
will elaborate on this after the statement of the lemma.) inefdl.6 shows that there is a
small collection of these coarse approximations such thatyey € W(w., w,,v) iS ap-
proximated by one of the collection. Our proof of this lemma-+ trivial is from [12],
but we need to add a new ingredient to deal with non-triyiaFinally Lemmd_4.7, which
we extract directly from [12], turns the coarse approximsiof Lemma 416 into the more
refined approximations of Lemnia 4.2 without increasing thmber of approximations
too much.
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Giveny € W(w., w,, v) set

/
aint

W =A{z € OyuW : dye(x) <d} and 9.,,C ={x € 0;,C : dpo(x) < d}.
(Recall thatdy (z) = |0x N X]|.)

Lemma4.5 For eachy € W(w., w,, v) there is aU with the following properties.

N(U) 2 8,,W Ud,,C (41)
and
vl<o ((wo ) 1°§d2d> 42)

whereN (X)) = Uex 0.

To motivate LemmA& 415, let us point out thatlin[12, (34)] ibisserved that fol/ satisfying
(40) and[(41) the removal of (U) from V (T}, 4) separate$l’ from C. U may therefore be
thought of a coarse approximation+4o removingU and its neighbourhood achieves the
same effect as removing However,U is very much smaller tham (v has2d(w, — w.)
edges). By focusing on specifyirig instead ofy, we lose some information, but we gain
because fewer choices have to be made to spécifyThe engine driving the proof of
Lemmd3.b is the fact that the gain far outweighs the loss.rhef#.5 is[[12, Lemma 2.15]
and we omit the proof.

Lemma 4.6 For eachw,, w, andv there is a family/ (w., w,, v) satisfying
U(we, wo, 0)| < exp {0 ((w, — we)d 1o d) |

and amagdl” : W(w,, w,,v) = U(w., w,, v) such that for each € W(w., w,,v), II¥(y)

satisfies[(40)[(41) and (42).

Proof: It is observed in[[12, paragraph after (35)] that {orsatisfying (40) and (41) we
have
forall z € 0, W, d(z,U) <2 (43)

and
forally € U, d(y, ;W) < 2. (44)

Let U satisfy (43), [(44) and_(42) for some € W(w,, w,,v) and letWy, ... W, be the
2-components of;,,;WW. Foreachj =1, ..., k let

Uj={yeU:d(y,x) <2 for somex € W;}.
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We claim that eacly; is 6-clustered. To see this, fix v € W, and taker,, € W, at distance

at most2 from v andz, € W, at distance at mogt fromv. Letz, = zo,..., 2, = x,
be a sequence of vertices Wi; with d(z;_;,z;) < 2 for eachi. Fori = 1,...,¢0 —1,
takeu; € W; with d(u;, z;) < 2. Then the sequenee= ug, uy, ..., us_1,u, = v has the

property thatl(u; 1, u;) < 6 for eachi, establishing the claim.

To bound the number of possibilities for we first consider the casel(w, — w.) <
L4=1, In this case, by[(13), aff under consideration are trivial (in the sense defined before
the statement of Lemnia3.3) ahd-= 1.

We show that there is a small (sigkw,d?)) set of vertices meeting all possililés in
this case. Fix a linear ordering of O satisfying

dw,y1) <d(v,1p) = y1 <o,

and letT be the initial segment ok of sizew,. We claim thal’'Nd;,,, W # 0. If T = W©,

this is clear; if not, consider a shortest- v path inT7, ; for somey € T\ W©. This path
intersects?® (sincedv C WO). Lety' be the largest (with respect t&) vertex of ¢

on the path; then’ € 0;,,W NT, establishing our claim. There are at mastpossibilities
fory’' € 0;,,W NT, so at mosO(w,d?) possibilities for a vertex’ with d(z',y’) < 2; and
by (43) U must contain such ar.

In this case we may také(w., w,, v) to be the collection of alt-connected subsets of
V(T q) of size at mosO((w, — w.)+/log 2d/2d) containing one of th€® (w,d?*) vertices
described in the last paragraph. Using the fact that in aaglgwith maximum degrea
the number of connected, induced subgraphs of oraemntaining a fixed vertex is at most
(eA)"™ (seee.g, [12, Lemma 2.1]) we infer that

U(wo,we,v)| < O(wyd?)(d)C(womwov/ ) (45)
< exp {O <(wo — we)d_% log% d)} , (46)

as required. The factor a(w,d?) in (@8) accounts for the choice of a fixed vertex in
U; the exponenO((w, — w.)+/log 2d/2d) is from (42); and thel” accounts for the fact
thatU is connected in a graph with maximum degree at n66gf. In (48) we use[(10)
to bound2d(w, — w.) > (w, + we) "¢ > w¥* and so (sincev, > 2d) log(w,d?) =
o((wy — we)d~?10g? d).

In the case whered(w, —w,.) > L, by (I3) each of the componentsphas at least
L' edges, sa has at mosiL¢/L¢~! = dL components antl at mostiL 6-components.
In this case we may také(w., w,,v) to be the collection of all subsets &7}, ;) of size
at mostO ((w, — w,)+/log 2d/2d) containing at mosiL 6-components. As in the previous
case we have

log 2d .
o) < PV 5 (7 (- o )+ )
Jj=1 J—
S exp {O <(w0 - we)d_% log% d } , (47)

22



as required, the extra factors in the first inequality actiogrior the choice of a fixed vertex
in each of the at mostL 6-components and of the sizes of each ofttedmponents. To ob-

tain (@7) we usev, < L? to bound(L4)4 39 (O((w"‘“’e)le_olgzd/zd)“‘l) < 90(d*Llog L)

and2d(w, — w,) > L' to boundd?L log L = o((w, — we)d~"/?1og®? d). O

The next lemma turn® (w,, w,, v) into the collection of approximations postulated in
Lemmad4.2. Itis a straightforward combination of[[12, Lensn2al6, 2.17, 2.18], and we
omit the proof. Combining Lemmas 4.6 adndl4.7 we obtain Lemi@a 4

Lemma 4.7 For eachU € U(w.,w,,v) there is a family(w., w,, v) satisfying
[V (we, w,, v)| < exp {O <(wo — w,)d" % log? d) }

and a mapll¥ : U(w.,w,,v) — V(w.,w,,v) such that for eachy € W(w., w,,v) and
U € U(we, w,,v) With IT¥(v) = U, I1Y(U) is an approximation of.

Acknowledgment: We thank Dana Randall for numerous helpful discussions.
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