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Abstract

We determine under which conditions certain natural models of random constraint satisfac-
tion problems have sharp thresholds of satisfiability. These models include graph and hypergraph
homomorphism, the (d, k, t)-model, and binary constraint satisfaction problems with domain size
three.

1 Introduction

Random 3-SAT and its generalizations have been studied intensively for the past decade or so (see
e.g. [1, 5, 7, 16, 27, 2, 6, 12, 15, 34, 8]). One of the most interesting things about these models, and
arguably the main reason that most people study them, is that many of them exhibit what is called
a sharp threshold of satisfiability1, a critical clause-density at which the random problem suddenly
moves from being almost surely1 satisfiable to almost surely unsatisfiable. Most of the work on these
problems is, at least implicitly, an attempt to determine the precise locations of their thresholds. At
this point, these locations are known only for a handful of the problems, such as [2, 6, 12, 15, 34, 8].
Just proving the existence of a sharp threshold for random 3-SAT was considered a major breakthrough
by Friedgut[16]. The vast majority of these generalizations appear to have sharp thresholds, but there
are exceptions which are said to have coarse thresholds1.

The ultimate goal of the present line of enquiry is to determine precisely which of these models
have sharp thresholds, but this appears to be quite difficult; in Section 2 we show that it is at least
as difficult as determining the location of the threshold for 3-colourability, something that has been
sought after for more than 50 years (see e.g. [13, 30, 11]). A more fundamental goal is to obtain a better
understanding of what can cause some problems to have coarse thresholds rather than sharp ones.

Molloy[31] and independently Creignou and Daudé[9] introduced a wide family of models for random
constraint satisfaction problems which includes 3-SAT and many of its generalizations. This permits
us to study them under a common umbrella, rather than one-at-a-time. Molloy determined precisely
which models from this family have any threshold at all ([9] provides the same result for those models
with domain1 size 2). But he left open the much more important question of which models have
sharp thresholds. In this paper, we begin to address this question. We answer it for two of the most
natural subfamilies - the so-called (d, k, t)-family1 (Theorem 3), and the family of graph and hypergraph

1Defined formally below.
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homomorphism problems (Theorem 5). We also study binary constraint satisfaction problems with
domain size 3.

The standard example of a problem with a coarse threshold is 2-colourability. Here, there is a
coarse threshold precisely because unsatisfiability (i.e. non-2-colourability) can be caused only by the
presence of odd cycles. Roughly speaking, Friedgut’s theorem[16] implies that a problem exhibits a
coarse threshold iff unsatisfiability is approximately equivalent to having one of a set of unicyclic1

subproblems. It is not hard to see that if there are unsatisfiable unicyclic instances of a problem then
that problem exhibits a coarse threshold (or exhibits no threshold at all). This makes it quite natural
to pose the following rule-of-thumb:

Hypothesis A: If a random model from the family in [31] is such that: (a) it exhibits a threshold,
and (b) every unicyclic instance is satisfiable, then that threshold is sharp.

However, reality is not that simple. [31] presents a counterexample to Hypothesis A; others are
presented in this paper. Nevertheless, the hypothesis holds for certain subfamilies of models. Creignou
and Daudé[9] conjectured that Hypothesis A holds for problems with domain-size two. Special cases
of this conjecture were proven by Istrate[25] and independently Creignou and Daudé[10]; the proofs of
each paper can be extended to cover the entire conjecture. Theorems 3 and 5 in this paper show that
Hypothesis A holds for the (d, k, t)-models and for homomorphisms to connected graphs.

In general, coarse thresholds can be caused by much more subtle and insidious reasons than unsat-
isfiable unicyclic instances. In this paper we begin to understand some of these reasons by focusing on
the case where the constraint size is two and the domain size is three (a natural next step after the
well-understood domain-size-two case). In this paper, we identify a particular subtle property that must
hold whenever Hypothesis A fails (Theorem 17). If we permit either greater domain sizes or greater
constraint sizes then this is no longer true.

1.1 The random models

In our setting, the variables of a constraint satisfaction problem (CSP) all have the same domain of
permissable values, {1, ..., d}, and all constraints will have size k, for some fixed integers d, k. Given a
k-tuple of variables, (x1, ..., xk), a restriction on (x1, ..., xk) is a k-tuple of values R = (δ1, ...δk) where
1 ≤ δi ≤ d for each i. For each k-tuple (x1, ..., xk), the set of restrictions on that k-tuple is called
a constraint. The empty constraint is the constraint which contains no restrictions. We say that an
assignment of values to the variables of a constraint C satisfies C if that assignment is not one of the
restrictions in C. An assignment of values to all variables in a CSP satisfies that CSP if every constraint
is simultaneously satisfied. A CSP is satisfiable if it has such a satisfying assignment.

It will be convenient to consider a set of canonical variables X1, ..., Xk which are used only to describe
the “pattern” of a constraint. These canonical variables are not variables of the actual CSP. For any d, k

there are dk possible restrictions and 2d
k

possible constraints over the k canonical variables. We denote
this set of constraints as Cd,k. For our random model, one begins by specifying a particular probability
distribution, P over Cd,k. We use supp(P) to denote the support of P ; i.e. the set of constraints C
with P(C) > 0. Different choices of P give rise to different instances of the model.

We now define our random models. The “Gn,M” model, where the number of constraints is fixed to
be M , is the most common. But in this paper, it will be much more convenient to focus on the “Gn,p”
model where each k-tuple of variables is chosen independently with probability p = c/nk−1 to receive
a constraint. The two models are, in most respects, equivalent when M = (c/k!)n. In particular, it is
straightforward to show that one exhibits a sharp threshold iff the other does.

The CSPn,p(P) Model: Specify n, p and P (typically p = c/nk−1 for some constant c; note that
P implicitly specifies d, k). First choose a random k-uniform hypergraph on n variables where each of
the

(
n
k

)
potential hyperedges is selected with probability p. Next, for each hyperedge e, we choose a

constraint on the k variables of e as follows: we take a random permutation from the k variables onto
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{X1, ..., Xk} and then we select a random constraint according to P and map it onto the k variables.

A property holds almost surely (a.s) if the limit as n → ∞ of it holding is 1. In [9, 31] it was
shown that for every P , either: (i) CSPn,p(P) is a.s. satisfiable for every c ≥ 0, (ii) CSPn,p(P) is a.s.
unsatisfiable for every c > 0, or (iii) there is some c1 < c2 such that CSPn,p(P) is a.s. satisfiable for
every 0 ≤ c ≤ c1 and CSPn,p(P) is a.s. unsatisfiable for every c > c2. We say that CSPn,p(P) has
a sharp threshold of satisfiability if there is some positive-valued function c(n) = Θ(1) such that for
every ǫ > 0, if p = (1 − ǫ)c(n)/nk−1 then CSPn,p(P) is a.s. satisfiable and if p = (1 + ǫ)c(n)/nk−1

then CSPn,p(P) is a.s. unsatisfiable. This is often abbreviated to just sharp threshold. We say that
CSPn,p(P) has a coarse threshold if for all c in some interval c1(n) < c < c2(n), CSPn,p(P) is neither
a.s. satisfiable nor a.s. unsatisfiable. It is easy to see that every P satisfying case (iii) above must have
either a coarse threshold or a sharp threshold.

Each k-tuple of vertices can have at most one constraint in CSPn,p(P). When applying Friedgut’s
theorem, it will be convenient to relax this condition, and allow k-tuples to possibly receive multiple
constraints. Thus up to k! × |supp(P)| constraints can appear on a k-tuple of variables.

The ĈSPn,p(P) Model: Specify n, p and P . For each of the n(n− 1)...(n− k+ 1) ordered k-tuples
of variables and each constraint C ∈ supp(P), we assign C to the ordered k-tuple with probability
P(C) × p/k!.

Note that the expected total number of constraints is the same under each model. Furthermore,
it is easy to calculate that the probability of at least one k-tuple receiving more than one constraint
in ĈSPn,p(P) is for k ≥ 3, o(1) and for k = 2, an absolute constant 0 < α < 1. It follows that if a

property holds a.s. in ĈSPn,p(P) then it holds a.s. in CSPn,p(P). As a corollary, we have:

Lemma 1 If ĈSPn,p(P) has a sharp threshold then so does CSPn,p(P). The reverse is true for k ≥ 3.

So for the remainder of the paper, whenever we wish to prove that CSPn,p(P) has a sharp threshold,

we will work in the ĈSPn,p(P) model.

We often focus on the constraint hypergraph of a CSP; i.e. the hypergraph whose vertices are the
variables and whose edges are the tuples of variables that have constraints. A tree-CSP is a CSP whose
constraint hypergraph is a hypertree. A CSP is unicyclic if its constraint hypergraph is unicylic; i.e.
has exactly one cycle. (Hypertree and cycle are defined below).

F1 is said to be a sub-CSP of F2 if every variable of F1 is a variable of F2 and every constraint of
F1 is a constraint of F2.

We close this subsection with some hypergraph definitions. A hypergraph consists of a set of vertices
and a set of hyperedges, where each hyperedge is a collection of vertices. If every hyperedge has size
exactly k then the hypergraph is k-uniform. In a simple hypergraph, no vertex appears twice in any one
hyperedge, and no two edges are identical. So, for example, the constraint hypergraph of CSPn,p(P) is

simple, but the constraint hypergraph of ĈSPn,p(P) may have multiple edges. Neither model permits
multiple copies of a vertex in a single edge, but such edges are possible when we discuss hypergraph
homomorphism problems. The edge (v, v, ..., v) is called a loop.

A walk P of length r is a sequence of r hyperedges and r + 1 vertices (v0, e1, v1, e2, v2 . . . , er, vr)
such that ei contains both vi−1 and vi. A walk is a path if the vi are distinct. A walk is a cycle of size
r if for i = 1, . . . , r the vi and ei are distinct, and v0 = vr. The distance from a vertex u to a vertex v
is the minimum r such that there exists a walk of length r, (v, e1, v1, . . . , er, u); the distance of a vertex
from itself is defined to be 0. The distance from a vertex v to a set of vertices is the minimum distance
from v to any vertex in the set. A hypergraph is a hypertree if it has no cycles and it is connected.

By contracting two vertices u and v into a new vertex w, we mean (i) adding a new vertex w to the
set of the vertices, (ii) replacing u and v in every hyperedge by w, and (iii) removing u and v. Note
that this may result in a hyperedge containing multiple copies of w.
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1.2 Two special families

The ultimate goal of this research is to characterize all distributions P for which CSPn,p(P) exhibits a
sharp threshold. However, in section 2, we will show that this is very difficult by proving the following:

Observation 2 If one can determine which distributions P yield sharp thresholds for CSPn,p(P) then
one can determine the locations of each of those thresholds.

Determining the locations of some of these thresholds, eg the 3-SAT threshold or the 3-colourability
threshold, is notoriously difficult (see [30] for a survey on those two thresholds). So Observation 2
suggests that we should set our sights lower and focus on some important classes of distributions.

Perhaps the most natural choice for P is the distribution obtained by selecting each of the dk possible
restrictions independently with probability q for some constant q. However, as noted in [4], every such
choice of P yields a model that is a.s. unsatisfiable for any non-trivial choice of p. So this is a rather
uninteresting family of models, particularly as far as the study of thresholds goes.

The next most natural choice for P is to fix t, the number of restrictions per clause, and to make
every constraint with exactly t restrictions equally likely. (Note that for d = 2, t = 1 this yields random
k-SAT.) This is often called the (d, k, t)-model and has received a great deal of study, both from a
theoretical perspective [28, 32] and from experimentalists (see [19] for a survey of many such studies).
In [4] it is shown that when t ≥ dk−1, this model is problematic in the same way as the previously
mentioned one, as it is a.s. unsatisfiable even for values of p = o(1/nk−1) (i.e. when the number of
constraints is o(n)). However, it was proven in [19] that for every 1 ≤ t < dk−1, the (d, k, t)-model does
not have that problem. One of the main contributions of this paper is to show that for this case, the
model exhibits a sharp threshold:

Theorem 3 For every d, k ≥ 2 and every 1 ≤ t < dk−1, the (d, k, t)-model has a sharp threshold.

Note that this generalizes the well-known result that k-SAT has a sharp threshold ([6, 20] for k = 2;
[16] for k ≥ 3), as can be seen by setting d = 2, t = 1.

From a different perspective, it is quite natural to consider the case where every constraint is
identical, i.e. |supp(P)| = 1. It is not hard to see that every such problem is equivalent to a hypergraph
homomorphism problem, as defined below:

For two k-uniform hypergraphs, G,H , a homomorphism from G to H is a mapping h from V (G)
to V (H) such that for each edge (v1, v2, . . . , vk) of G, (h(v1), h(v2), . . . , h(vk)) is an edge of H . We
say that G is homomorphic to H , if there exists such a homomorphism. When k = 2 and H is the
complete graph with no loops, we are simply asking whether G has a |H |-colouring. Homomorphisms
are an important generalization of graph colouring (see e.g. [24]). They are often also referred to as
H-colourings (e.g. [23, 21]).

Suppose that H is a fixed undirected k-uniform hypergraph, and G is a random k-uniform hyper-
graph on n vertices where each of the

(
n
k

)
potential hyperedges is selected with probability p. Set d to

be equal to the number of vertices in H and define a constraint C with domain size d and constraint
size k by saying that C permits X1 = δ1, ..., Xk = δk iff (δ1, ..., δk) is a hyperedge of H . Treat each
vertex of G as a variable with domain {1, .., d} and assign C to each hyperedge of G. We call this the
H-homomorphism problem.

Thus we have an instance of CSPn,p(P) where C is the only constraint in supp(P) and furthermore
C is symmetric under permutations of the canonical variables; in other words, all constraints are
identical even under permutations of variables. It is easy to see that every such P corresponds to a
homomorphism problem; just take H to be the hypergraph where (δ1, ..., δk) is a hyperedge iff C permits
X1 = δ1, ..., Xk = δk. Note that here a hyperedge in H may contain multiple copies of a vertex.
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Thus, these H-homomorphism problems are not only important as a fundamental graph problem,
but also because they form a very natural subclass of our family of random CSP models. In this paper,
we prove that Hypothesis A holds for every connected undirected H .

It is easy to see that if H has a loop (δ, δ, ..., δ) then every hypergraph is trivially homomorphic to H
(just map every vertex to δ); so the H-homomorphism problem has no threshold at all. The other trivial
case is where H has no hyperedges at all and so no non-trivial hypergraph has an H-homomorphism.

Lemma 4 Suppose that H is a nontrivial k-uniform hypergraph with no loops. We have the following:

(a) For k ≥ 3, every unicylic k-uniform hypergraph is homomorphic to a single hyperedge, and hence
to H.

(b) For k = 2: if the triangle is homomorphic to H, then so is every unicyclic graph; and the triangle
is homomorphic to H iff H contains a triangle.

Proof. To prove part (1), let (v0, e1, v1, e2, v2 . . . , er, v0) be the unique cycle of the hypergraph, and
let (w0, . . . , wk−1) be a single hyperedge. Define h(vi) = w(i mod 2), for every 0 ≤ i ≤ r − 2 and
h(vr−1) = w2. It is easy to see that one can extend h to a homomorphism from the unicyclic hypergraph
to H .

Part (2) easily follows from the easy and well-known fact that every cycle is homomorphic to the
triangle, and the triangle is not homomorphic to any cycle of size greater that 3.

From Lemma 4 we conclude that proving that Hypothesis A holds whenever H is connected and
undirected is equivalent to proving:

Theorem 5 If H is a connected undirected loopless k-uniform hypergraph with at least one edge, then
the H-homomorphism problem has a sharp threshold iff (a) k ≥ 3 or (b) k = 2 and H contains a
triangle.

Note that this generalizes the well-known result that c-colourability has a sharp threshold for c ≥ 3[3],
as can be seen by setting k = 2 and taking H = Kc.

We do not have a strong feeling as to whether the “connected” condition is necessary here; we
discuss the possibility of extending Theorem 5 to disconnected graphs in Section 3. In section 3.2, we
provide a disconnected directed graph H for which the H-homomorphism problem is a counterexample
to the analogue of Hypothesis A in the ĈSPn,p(P) model but not in the CSPn,p(P) model.

1.3 Tools

Our main tool is distilled from Friedgut’s main theorem in [16]. Friedgut reported to us[private com-
munication] that his proof can be adapted to the setting of this paper; for completeness, the first
author worked out the details of such an extension in [22] as they did not appear in print. To provide
Friedgut’s theorem for CSP’s in its full power instead of being restricted to the unsatisfiability property,
we consider, as Friedgut did, properties that are preserved under constraint addition; such properties
are called monotone. A property on CSP’s is called monotone symmetric if it is monotone and invariant
under CSP automorphisms. For a property A, An denotes the restriction of A on CSP’s with exactly n
variables. Roughly speaking, Friedgut’s theorem says that for a value of p that is “within” the coarse
threshold, there is a constant sized instance M such that τ < Pr[M ⊆ ĈSPn,p(P)] < 1 − τ for some
constant τ which does not depend on n, and adding M to our random CSP boosts the probability of
being in A by at least 2α > 0, whereas adding a linear number of new random constraints only boosts
it by at most α. First, we must formalize what we mean by “adding M”. Given two CSP’s M,F where
M has r variables, and F has at least r variables, we define F ⊕M to be the CSP obtained by choosing
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a random r-tuple of variables in F and then adding M on those r variables. Now we can formally state
an adaptation of Friedgut’s theorem to the setting of this paper. A proof can be found in [22]:

Theorem 6 Let A be a monotone symmetric property in ĈSPn,p(P) which has a coarse threshold.
There exist p = p(n), τ, α, ǫ > 0, and a CSP M whose constraints are chosen from supp(P) such that
for an infinite number of n:

(a) α < Pr[ĈSPn,p(P) ∈ A] < 1 − 2α.

(b) Pr[ĈSPn,(1+ǫ)p(P) ∈ A] < 1 − 2α.

(c) Pr[ĈSPn,p(P) ⊕M ∈ A] > 1 − α.

(d) τ < Pr[M ⊆ ĈSPn,p(P)] < 1 − τ .

Since in our setting p(n) = c(n)/nk−1 where c(n) = θ(1), Theorem 6(d) implies that M has exactly
one cycle.

Corollary 7 For any P, if ĈSPn,p(P) has a coarse threshold of satisfiability then there exist p = p(n),
α, ǫ > 0, and a unicyclic CSP M on a constant number of variables whose constraints are chosen from
supp(P) such that:

(a) α < Pr[ĈSPn,p(P) is unsatisfiable] < 1 − 2α.

(b) Pr[ĈSPn,(1+ǫ)p(P) is unsatisfiable] < 1 − 2α.

(c) Pr[ĈSPn,p(P) ⊕M is unsatisfiable] > 1 − α.

Our next tool proves some properties for local parts of a random CSP.

Lemma 8 Suppose that p < cn1−k for some positive constant c, and let G be an instance of ĈSPn,p(P).
Let t be a positive constant integer and choose a set T of t random variables. Then for every ǫ > 0, and
integer r > 0 there exists an integer L(c, t, r, ǫ) such that with probability at least 1 − ǫ:

(i): No constraint of G contains more than one variable of T .

(ii): G induces a forest on the set of the variables that are of distance at most r from T .

(iii): There are at most L variables that are of distance at most r from T .

Proof. Let E1, E2, and E3 denote the events (i), (ii), and (iii) respectively. Trivially

Pr[E1] ≥ 1 −
k∑

i=2

nk−i

(
t

i

)
k!p = 1 − o(1). (1)

The expected number of the cycles of size at most 2r which contain at least one variable in T is at most
t
∑2r

i=2 n
ik−i−1pi. Thus

Pr[E2] ≥ 1 − t

2r∑

i=2

nik−i−1pi ≥ 1 −
2tr(1 + c)2r

n
= 1 − o(1). (2)
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The expected number of the variables in a distance of at most r from T is at most t
∑r

i=1 n
ik−ipi.

So by Chebychev’s inequality, for sufficiently large L:

Pr[E3] ≥ 1 −
t
∑r

i=1 n
ik−ipi

L
≥ 1 −

ǫ

2
. (3)

The lemma follows from (1), (2), and (3).

Our third tool is easily proven with a straightforward first moment calculation and concentration
argument (via e.g. the second moment method or Talagrand’s inequality); we omit the details.

Lemma 9 Let T be a tree-CSP whose constraints are in supp(P). There exists z = o(n1−k) such that

a.s. ĈSPn,z(P) contains T as a sub-CSP.

2 Difficulty

Here we prove Observation 2, thus showing that characterizing those distributions P for which CSPn,p(P)
has a sharp threshold is at least as difficult as determining the location of all such thresholds.

Suppose, for example, that one wanted to know the 3-colourability threshold; i.e. the value c = c(n)
such that for all ǫ > 0, χ(Gn,p=c(n)−ǫ) is a.s. 3-colourable and χ(Gn,p=c(n)+ǫ) is a.s. not 3-colourable.
(The existence of this threshold was proven in [3].) We will construct a family of distributions P
such that determining which of those distributions have sharp thresholds is sufficient to determine the
3-colourability threshold.

We set d = 5 and k = 2, and define two constraints by listing their pairs of forbidden values:

C1 = {(4, 4), (5, 5)} ∪ ({1, 2, 3} × {4, 5})∪ ({4, 5} × {1, 2, 3}),

C2 = {(1, 1), (2, 2), (3, 3)} ∪ ({1, 2, 3} × {4, 5}) ∪ ({4, 5} × {1, 2, 3}).

Note that each constraint forces the endpoints of every edge to take values that are either both in
{1, 2, 3} or both in {4, 5}. A C1 constraint says that they have to be different values if they are both in
{4, 5}. A C2 constraint says that they have to be different values if they are both in {1, 2, 3}.

We let C1 occur with probability q and C2 occur with probability 1 − q in P . Set c(q) = (1 − q)/q.

Fact 10 (a) If Gn,p=c(q)/n is a.s. 3-colourable, then CSPn,p(P) has a sharp threshold.

(b) If there is some ǫ > 0 such that Gn,p=(c(q)−ǫ)/n is a.s. not 3-colourable, then CSPn,p(P) has a
coarse threshold.

Thus, determining the type of the threshold for all such models CSPn,p(P) requires the knowledge
of for which values of c, G(n, c

n ) is a.s. 3-colourable, and for which values it is a.s. not 3-colourable.

Proof Choose our CSPn,p(P) by first taking Gn,p=c/n and then setting each edge to be C1 with
probability q and C2 otherwise. Let G1, G2 be the subgraphs formed by the edges chosen to be C1, C2

respectively. If c < 1 then all components of Gn,p=c/n are trees or unicycles and the CSP is trivially
satisfiable. So we can focus on the range c > 1 and we let T denote the giant component of Gn,p=c/n.
Note that the variables of T must either all take values from {1, 2, 3} or all take values from {4, 5}.

Case 1: c > 1
q . Then G1 is equivalent to Gn,p=c1/n for c1 = cq > 1 and it follows easily that a.s. G1

contains a giant component which is not 2-colourable. This giant component is a subgraph of T and
so the variables of T must all take values from {1, 2, 3}. It follows that the CSP is satisfiable iff G2 is
3-colourable. Note that G2 is equivalent to Gn,p=c2/n for c2 = c× (1 − q) > c(q).

Case 2: c < 1
q . Then G1 is equivalent to Gn,p=c1/n for c1 = cq < 1 and G2 is equivalent to Gn,p=c2/n

for c2 = c × (1 − q) < c(q). If G2 is a.s. 3-colourable then the CSP is a.s. satisfiable. If G2 is a.s.
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not 3-colourable then the CSP is satisfiable iff T is 2-colourable; i.e., if G1 does not have an odd cycle
lying within T . Since c1 < 1, G1 is a random graph with edge-density below the critical point. So
with probability at least some positive constant, it has no odd cycle at all, let alone one lying within
T . On the other hand, the distribution of the number of triangles in G1 is asymptotically Poisson with
mean c31/6 (see, eg Section 3.3 of [26]), and so the probability of containing at least one triangle tends

to 1 − ǫ−c3
1
/6. If we condition on u, v, w forming a triangle in G1, then the probability that they are

all in the giant component T is easily seen to not increase, and so is at least (|T |/n)3 which tends to
a positive constant. Therefore, the probability that G1 has an odd cycle in T is at least some positive
constant. This implies that the CSP is neither a.s. satisfiable nor a.s. unsatisfiable.

Fact 10 now follows. If Gn,p=c(q)/n is a.s. 3-colourable, then CSPn,p(P) has a sharp threshold which

lies somewhere above 1
q . If there is some ǫ > 0 such that Gn,p=(c(q)−ǫ)/n is a.s. not 3-colourable, then

for all 1
q −

ǫ
1−q < c < 1

q , we are in Case 2 where c2 > c(q)− ǫ and so G2 is a.s. not 3-colourable. In that

range of c, CSPn,p=c/n(P) is neither a.s. satisfiable nor a.s. unsatisfiable. So CSPn,p(P) has a coarse

threshold running from 1
q − δ to 1

q for some δ > ǫ/(1 − q). ✷

It is straightforward to adapt this example so that, instead of 3-colourability, we use any model
CSPn,p(P) which has a sharp threshold. Suppose that P is over constraints of size k with domain-size
d. We will create a distribution P ′ over constraints of size k and with domain-size d+2. All constraints
will enforce:

(1) All k variables take values in {1, ..., d} or all k variables take values in {d + 1, d + 2}.

Constraint C∗ also enforces:

(2) The first two variables cannot both be d + 1 and they cannot both be d + 2

For each constraint Ci ∈ supp(P) we have a constraint C′
i which has the same restrictions as Ci, and

also enforces (1). We set P ′(C′
i) = (1 − q)P(Ci) and we set P ′(C∗) = q.

Note that if P is simply the 3-colouring CSP then this yields the example from above. Similar
reasoning to that above shows that we cannot know which values of q yield a sharp threshold for P ′

without knowing the location of the threshold for P . This yields Observation 2.

3 Homomorphisms

In this section, we prove Theorem 5 which concerns H-homomorphisms. Let Gk
n,p denote the random

k-uniform hypergraph on n vertices where each k-tuple is present as a hyperedge with probability p.

We begin with a technical lemma:

Lemma 11 Let H be a connected graph which contains a triangle. Let u be a vertex of H and M be a
unicyclic graph with unique cycle C. Denote the vertices of M in a distance of exactly r ≥ |V (H)| + 3
from C by U . There is a homomorphism from M to H such that all vertices in U are mapped to u.

Proof. Let h be a homomorphism from C to the triangle (v1, v2, v3) of H . Observe that for i = 1, 2, 3,
there exist walks (vi =)vi,0, . . . , vi,r(= u) of length exactly r in H . Let w be a vertex in M in the
distance of j ≤ r from C, and w′ be the vertex of C which has the distance j from w. Extend h by
assigning h(w) = vij where h(w′) = vi. Observe that h is a partial homomorphism from M to H which
maps every vertex in U to u. Trivially h can be extended to a homomorphism from M to H .

Proof of Theorem 5. Let H be some k-uniform hypergraph, and assume that the H-homomorphism
problem has a coarse threshold. Let M,p, α, ǫ be as guaranteed by Corollary 7. In this setting, M is
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a k-uniform unicyclic hypergraph, such that adding M to Gk
n,p boosts the probability of not having a

homomorphism to H by at least 2α.

Our strategy will be to show that adding M to Gk
n,p does not increase the probability of not having

a homomorphism to H by more than adding a copy of Gk
n,z for some z(n) = o(n1−k). We are assuming

that the former boosts that probability to at least 1 − α and thus so must the latter. But that will
contradict Corollary 7(b). To show this, we will construct a hypertree T such that the probability that
Gk

n,p ⊕M has no homomorphism to H is at most the probability that Gk
n,p ⊕ T has no homomorphism

to H . Then we simply apply Lemma 9 to obtain our desired z.

We begin with the case k ≥ 3.

Consider G = Gk
n,p ⊕M . Let M+ be the subgraph of G consisting of all hyperedges that contain

at least one vertex of M (and, of course all vertices in those hyperedges); in other words, M+ is the
subhypergraph induced by the vertices of M and all their neighbours. Lemma 8 implies that there is
some constant L such that, defining E to be the event that “M+ is unicyclic and has at most L vertices,
no hyperedge of Gk

n,p contains more than one vertex of M , and the vertices of distance at most 2 from
M+ induce a forest”, we have Pr(E) ≥ 1 − α

2 .

Since M is unicylic and k ≥ 3, by Lemma 4(a) there exists a homomorphism h from M to a single
edge, say (v1, . . . , vk). Let hi be the set of the vertices in M that are mapped by h to vi. Obtain the
hypergraph G′ from G by (i) removing all edges in M ; (ii) contracting all of the vertices in hi into one
single new vertex ui, for each 1 ≤ i ≤ k; (iii) adding the single hyperedge (u1, . . . , uk).

Suppose that h′ is a homomorphism from G′ to H . Then a mapping from the vertices of G to
the vertices of H which maps every vertex v in G −M to h′(v), and every vertex in hi to h′(ui) is a
homomorphism from G to H . Thus, if G′ is homomorphic to H then so is G.

We define our hypertree T as follows: T has a hyperedge (t1, ..., tk), and each ti lies in L other
hyperedges. Only t1, ..., tk lie in more than one edge of T . Thus, T has k+k(k−1)L vertices and kL+1
hyperedges. If E holds, then the subgraph of G′ induced by all edges containing {u1, . . . , uk} forms a
tree; note that it is a subtree of T . It follows that Gk

n,p ⊕ T is at least as likely to be non-homomorphic
to H as G′ is, so:

Pr[Gk
n,p ⊕M is not homomorphic to H ] ≤ Pr[Gk

n,p ⊕M is not homomorphic to H|E] + Pr(E)

≤ Pr[Gk
n,p ⊕ T is not homomorphic to H ] +

α

2
.

By Lemma 9, there is some z = o(n) such that increasing p by an additional z a.s. results in the
addition of a copy of T . Thus for every ǫ > 0:

Pr[Gk
n,p ⊕ T is not homomorphic to H ] ≤ Pr[Gk

n,(1+ǫ)p is not homomorphic to H ]

which yields a contradiction to Corollary 7(b).

This proves the case where k ≥ 3, so we now turn to the case k = 2. If H contains no triangle, then
K3 is not homomorphic to H . Thus, K3 forms a unicyclic unsatisfiable CSP using the H-colouring
constraints and so we do not have a sharp threshold, since for any 0 < c < 1

2 :(i) with probability at
least some positive constant, Gn,p=c/n is a forest, and hence has a homomorphism to H ; and (ii) with
probability at least some positive constant, Gn,p=c/n contains a triangle and hence has no homomor-
phism to H . So we will focus on graphs H that contain a triangle. Our proof follows along the same
lines as the case k ≥ 3, but is complicated a bit since we can no longer assume that M is homomorphic
to a single edge. We only highlight the differences.

Define M+ to be the subgraph of G = Gk
n,p ⊕ M induced by all vertices within distance r =

|V (H)| + |V (M)| + 3 of the unique cycle of M . By Lemma 8 there is some constant L such that with
probability at least 1 − α

2 : M+ is unicyclic and has at most L vertices, no hyperedge of Gk
n,p contains

more than one vertex of M , and the vertices of distance at most 2 from M+ induce a forest.
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Define U to be the set of vertices of G that are of distance exactly r = |V (H)| + |V (M)| + 3 from
the unique cycle of M . Consider any vertex u ∈ H . By Lemma 11, if M+ is unicyclic then there is a
homomorphism from M+ to H such that all vertices in U are mapped to u.

Obtain the graph G′ from G by (i) removing all of the vertices of distance less than r from the unique
cycle of M , and (ii) contracting U into a single new vertex u. Suppose that h′ is a homomorphism from
G′ to H . Then by the previous paragraph, h′ can be extended to a homomorphism from G to H where
each vertex v ∈ V (G′) − u is mapped to h′(v), and every vertex in U is mapped to h′(u). Thus, if G′

is homomorphic to H then so is G.

We now define T to be the tree which consists of a vertex adjacent to L leaves. Since the degree
of u in G′ is at most L, and using the fact that all vertices of M are deleted when forming G′ (here is
where we require r > |M |), the rest now follows as in the k ≥ 3 case. ✷

3.1 Disconnected Graphs

In this subsection we discuss the possibilities of extending Theorem 5 to the case where H is discon-
nected. We will focus on graphs, i.e. the k = 2 case.

When considering disconnected graphs, it is helpful to note that if the H ′-homomorphism problem
has a sharp threshold for every component H ′ of H , then the H-homomorphism problem has a sharp
threshold. In fact, it is simply the smallest of the thresholds for its components. To see this, note first
that for each component H ′, since the H ′-homomorphism problem has a sharp threshold, every tree
or unicyclic graph must have a homomorphism to H ′. Gn,p=c/n a.s. has at most one component with
more than one cycle (i.e. a giant component). So a.s. Gn,p is homomorphic to H iff either (i) there is
no giant component or (ii) the giant component is homomorphic to H . Since the giant component is
connected, it is homomorphic to H iff it is homomorphic to at least one component of H . That giant
component will a.s. be homomorphic to at least one component of H iff it is a.s. homomorphic to the
one with the smallest satisfiability threshold.

We now show that if there is at least one graph H such that Hypothesis A does not hold for the
H-homomorphism problem, then there must be such a graph with two components: a triangle and a
graph that is triangle-free and not 3-colourable.

Assume that Hypothesis A does not hold for H . That is, every unicyclic graph has a homomorphism
to H , and the H-homomorphism problem has a coarse threshold.

First note that a triangle is not homomorphic to any triangle-free graph. Also, Lemma 4(b) says that
every unicyclic graph is homomorphic to a triangle. So “every unicyclic graph has a homomorphism to
H” is equivalent to “H contains a triangle”.

Since the H-homomorphism problem has a coarse threshold, there is some component Hi of H , such
that the Hi-homomorphism problem has a coarse threshold. By Theorem 5, Hi has no triangle.

Let H1 be the subgraph of H which consists of all triangle-free components and H2 be the subgraph
consisting of the remaining components of H ; we have argued that neither H1 nor H2 is empty. Since
each component Hi of H2 has a triangle, Theorem 5 implies that the Hi-homomorphism problem has
a sharp threshold. Therefore, the H2-homomorphism problem has a sharp threshold.

Suppose that H1 is 3-colourable. Then every graph homomorphic to H1 is also homomorphic to a
triangle, and hence is homomorphic to H2. It follows that being homomorphic to H is equivalent to
being homomorphic to H2. But this contradicts the facts that H-homomorphism has a coarse threshold
and H2-homomorphism has a sharp threshold. Therefore χ(H1) > 3.

Also, we know that H1-homomorphism has a coarse threshold since H1 is triangle-free.

Let c3(n) denote the 3-colourability threshold, and let c′(n) be the H2-homomorphism threshold.
Every 3-colourable graph is homomorphic to a triangle and thus is homomorphic to H2. Therefore
c′(n) ≥ c3(n). For every c < c′(n), Gn,p=c/n a.s. has a homomorphism to H2 and hence to H . Since
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H-homomorphism has a coarse threshold, there must be some c = c(n) > c′(n) for which Gn,p=c/n is
not a.s. non-H-homomorphic. With probability bounded away from zero, the non-giant components
of Gn,p=c/n are trees and hence are homomorphic to H1 and H2. Therefore a.s. the giant component
of Gn,p=c/n is not H2-homomorphic as otherwise Gn,p=c/n would not be a.s. non-H2-homomorphic.
Therefore the giant component must not be a.s. non H1-homomorphic as otherwise Gn,p=c/n would be
a.s. non-H-homomorphic. Therefore Gn,p=c/n is not a.s. non-H1-homomorphic.

Replacing H2 by a triangle has the effect of replacing c′(n) by c3(n). Since this does not increase
c′(n), we still have some c∗ = c∗(n) > c′(n) for which Gn,p=c∗/n is not a.s. non-H1-homomorphic. If
H1 is disconnected, add some edges so that it is connected but remains triangle-free; call the resulting
subgraph (H1)′, and call the resulting graph, i.e. (H1)′ plus a triangle component, H ′. Any graph that
is H1-homomorphic is (H1)′-homomorphic and so Gn,p=c∗/n is not a.s. non-(H1)′-homomorphic. Since
H1 is triangle-free, Theorem 5 implies that (H1)′-homomorphism has a coarse threshold. The range of
this threshold either includes c∗(n) or lies higher than c∗(n); either way, it contains a range of values
that is higher than c3(n). In that range of values of c, Gn,p=c∗/n a.s. has no homomorphism to the
triangle component of H ′. It follows that that range of values lies within the range of a coarse threshold
for H ′.

Therefore, H ′ has a triangle but H ′-homomorphism has a coarse threshold and so violates Hypothesis
A.

So the question of whether there is any undirected graph H for which the H-homomorphism problem
violates Hypothesis A is equivalent to the following:

Question 12 Is there any triangle-free graph H1 with χ(H1) > 3 such that for some values of n and
some c > c3(n), Gn,p=c/n is not a.s. non-H1-homomorphic, where c3(n) is the threshold value of
3-colorability?

3.2 Directed Graphs

Earlier in this section, we discussed whether there exist any connected graphs H for which the H-
homomorphism problem violates Hypothesis A. Now we turn our attention to directed graphs. We
provide an example of a disconnected directed graph H which comes close to violating Hypothesis A.
It has the properties:

1. every unicyclic digraph has a homomorphism to H , and

2. the H-homomorphism problem under the ĈSPn,p(P) model has a coarse threshold.

This does not actually violate Hypothesis A. The coarse threshold is under the ĈSPn,p(P) model
rather than the CSPn,p(P) model.

For a directed graph D, let D̃ denote the undirected graph that is obtained from D by removing
the directions from the edges and then replacing each double edge by a single edge. We define Dn,p

to be the random digraph on n vertices where each of the n(n− 1) potential directed edges is present
with probability p. Thus Dn,p possibly contains both edges uv and vu for some pair of vertices v, u,
i.e. a 2-cycle; in fact, if p = c/n for a constant c, then it is straightforward to show that the probability
that D contains at least one 2-cycle is ζ + o(1) for some constant ζ = ζ(c) < 1. This is the reason that

we need to use the ĈSPn,p(P) model rather than the CSPn,p(P) model; the digraphs formed by the
CSPn,p(P) model cannot have any 2-cycles since they cannot have more than one constraint on the
same pair of variables.

H consists of a specific connected digraph H1, defined below, and a pair of vertices u1, u2, where
the edges u1, u2 and u2, u1 are both present. There are no edges between {u1, u2} and H1. H1 has the
following properties:
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(i): every unicyclic digraph which does not contain a 2-cycle a.s. has a homomorphism to H1; and

(ii): For some c1 > 1/2, Dn,p=c1/n is not a.s. non-H1-homomorphic.

It is easy to see that any unicyclic digraph, whose cycle is a 2-cycle, has a homomorphism to the
2-cycle. By (i), every other unicyclic digraph has a homomorphism to H1. Thus, every unicyclic digraph
has an H-homomorphism, as claimed. We will show that, for every 1/2 < c < c1, Dn,p=c/n is neither
a.s. H-homomorphic nor a.s. non-H-homomorphic. Thus, we have a coarse threshold. Condition (ii)
above implies the latter, so we just need to prove the former.

The graph D̃ for D = Dn,p, a.s. has a giant component, since it is equivalent to Gn,p where
p = 1 − (1 − c

n )2 = 2c
n − o( 1

n ) and 2c > 1. The number of 2-cycles in D are easily shown to have a
Poisson distribution with constant mean, using the same analysis as in, eg., Section 3.3 of [26]. Also,
each edge of D̃ is equally likely to correspond to a 2-cycle in D. Therefore, with probability bounded
away from zero, D has a 2-cycle which lies in the giant component of D̃. It is not hard to see that
a.s. if D has such a 2-cycle then there is no H-homomorphism: That 2-cycle must be mapped onto
u1, u2. Since H has no edges between H1 and {u1, u2}, any vertex that can be reached in D̃ from
that 2-cycle must also be mapped onto u1 or u2. So the entire giant component must be mapped onto
{u1, u2}. It is well-known that a.s. a giant component is not 2-colourable and hence has an odd cycle.
(This follows, eg. from the facts that: (i) D̃ is a.s. not 2-colourable and (ii) with probability at least
some positive constant, all components of D̃ other than the giant one are trees and hence 2-colourable.)
Thus a.s. D̃ has an odd cycle and no odd cycle can be mapped onto a 2-cycle. Therefore, D is not a.s.
H-homomorphic.

It remains only to prove the existence of some H1 satisfying (i), (ii). We will choose H1 to be a
tournament (i.e. for every pair of vertices, exactly one of the possible edges between them is present)
which contains every loopless 2-cycle-free directed graph on k0 vertices as a subgraph where k0 is a

constant defined below. This can be done trivially if |H1| ≥ k02(k0
2 ); simply place each tournament on

k0 vertices on a different set of vertices of H1.

For an undirected graph G which does not contain any multiple edges, the oriented chromatic
number χo of G is the minimum number k such that every loopless 2-cycle-free directed graph D
satisfying D̃ = G is homomorphic to a loopless 2-cycle-free directed graph H with at most k vertices.
The acyclic chromatic number of a graph G is the least integer k for which there is a proper coloring of
the vertices of G with k colors in such a way that every cycle of G contains at least 3 different colors.
It was proved in [33] that if the acyclic chromatic number of a graph G is at most k, then its oriented
chromatic number is at most k × 2k−1. We also need the following:

Lemma 13 There exists a number c > 1 such that a.s. the acyclic chromatic of Gn,p=c/n is at most 5.

Proof. Let G = Gn,p. A pendant path in G is a path in which no vertices other than the endpoints
lie in any edge of the graph off the path. It was proven in [29] (see the proof of Lemma 6) that there
exists c > 1 such that a.s. after removing the internal vertices of pendant paths of length at least 4
from G every component is either a tree or it is unicyclic. One can use 3 colors to color the vertices in
these components and then use 2 other colors to color the removed vertices such that every cycle in G
is colored by at least 3 colors.

When D = Dn,p=c1/n every edge is present in D̃ with probability 2p − p2 and independent of the
other edges. Thus, if c1 = c/2, where c is the constant obtained from Lemma 13, a.s. the acyclic
chromatic number of D̃ is at most 5 and so χo(D̃) ≤ 5 × 24 = k0. Therefore, a.s. if D is 2-cycle-free
then D is homomorphic to some loopless 2-cycle-free digraph H on at most k0 vertices. Since every
such H is a subgraph of H1, this would mean D is homomorphic to H1. Since D does not a.s. have a
2-cycle, this establishes that H1 satisfies (ii).
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4 The (d, k, t)-model

In this section, we prove Theorem 3 which says that the (d, k, t)-model has a sharp threshold whenever
d, k ≥ 2 and 1 ≤ t < dk−1; i.e. whenever d, k, t are not such that the model is a.s. unsatisfiable for all
c > 0.

Proof of Theorem 3 Suppose that the (d, k, t)-model exhibits a coarse threshold. Then consider
p, α, ǫ and M as guaranteed by Corollary 7. As in the proof of Theorem 5, we will find some hypertree
T such that adding T to the random CSP increases the probability of unsatisfiability by a constant.
This time, adding T may not boost the probability as much as M does; but it will boost it by a small
constant, and that will be enough.

Gent et.al.[19] proved that for k = 2: if t < dk−1 and M is unicyclic, then M is satisfiable (see their
Theorem 1 and Corollaries 1 and 2). Their argument easily extends to the case where k ≥ 3. So we
can assume that M is satisfiable. Suppose that V (M) = u1, ..., ur and let ai be the value of ui in some
particular satisfying assignment A of M . Given a CSP F on at least r variables, we define F ⊕A to be
the CSP formed by choosing a random ordered r-tuple of variables v1, ..., vr in F and for each 1 ≤ i ≤ r,
forcing vi to take the value ai by adding a one-variable constraint on vi. Clearly the probability that
ĈSPn,p(P)⊕A is unsatisfiable is at least as high as the probability that ĈSPn,p(P)⊕M is unsatisfiable.

Lemma 8 implies that there exists some constant L such that, defining E1 to be the event that
“every vi has at most L neighbours and no hyperedge contains two vi, vj”, Pr(E1) ≥ 1 − α

2 . Suppose
that E1 holds.

Consider a particular vi and expose the ℓ ≤ L edges containing it, e1, ..., eℓ and the corresponding
constraints C1, ..., Cℓ. For each Cj , let C′

j be the (k−1)-variable constraint obtained by restricting vi to
be ai; i.e. a (k− 1)-tuple of values is permitted for C′

j iff Cj permits that same (k− 1)-tuple along with
vi = ai. Thus, we can remove Cj and add the constraint C′

j on the k − 1 other variables. After doing
so for every Cj , we can remove the restriction that vi = ai, since vi no longer lies in any constraints.
(Note that, since E1 holds, no constraint will contain some pair vi, vj and thus be reduced twice.)

It is useful now to consider choosing ĈSPn,p(P)⊕A by first selecting the random variables v1, ..., vr
and then choosing ĈSPn,p(P). Thus, carrying out the operation described in the previous paragraph
is equivalent to, for each vi: expose ℓ, choose ℓ random (k− 1)-tuples of variables from V −{v1, ..., vr};
for each selected (k − 1)-tuple, choose a random Cj with exactly t restrictions and place C′

j on the
(k − 1)-tuple; then remove vi. Note that since Cj has t restrictions, C′

j has at most t restrictions.

For convenience, we modify the experiment in a manner that increases the probability of unsatisfi-
ability. For each vi, instead of randomly exposing ℓ, we simply assume ℓ = L; i.e. we choose L random
(k − 1)-tuples. Next, if C′

j has fewer than t restrictions, we add more restrictions to it so that it has
exactly t restrictions. Our final modification is that instead of picking a random (k − 1)-tuple and

randomly selecting C′
j as described above, we choose

(
dk−1

t

)
random (k − 1)-tuples and place each of

the
(
dk−1

t

)
possible constraints on k − 1 variables and with t restrictions on one of the (k − 1)-tuples.

The last modification may appear to be a bit of an overkill, but it has the (minor) convenience that
the added constraints are not randomly selected. Finally, we wish to do without the fact that v1, ..., vr
are not permitted to be selected as members of the (k − 1)-tuples. So we choose the (k − 1) tuples
randomly from amongst all vertices and let E2 be the event that none of them use any of the vertices
in v1, ..., vr. Since r = O(1) and we are choosing a total of O(1) (k − 1)-tuples, Pr(E2) = 1 −O(n−1).

So we let G be a random CSP formed as follows: start with a random ĈSPn,p(P) and then for

each of the
(
dk−1

t

)
possible constraints on k − 1 variables and with t restrictions, choose rL random

ordered (k − 1)-tuples of variables and place that constraint on them. Pr(G is unsatisfiable|E2) ≥

Pr(ĈSPn,p(P)⊕A is unsatisfiable , as described in the preceding paragraph. Since Pr(E2) = 1− o(1),

this implies that adding those
(
dk−1

t

)
rL constraints boosts the probability of unsatisfiability by at least
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2α − o(1). We say that a collection of
(
dk−1

t

)
rL (k − 1)-tuples is bad if adding the constraints to

that set results in an unsatisfiable CSP. So, consider the following random experiment: pick a random

ĈSPn,p(P) and then pick
(
dk−1

t

)
rL ordered (k−1)-tuples of the variables. The probability that we pick

a bad collection is at least 2α. Since
(
dk−1

t

)
rL = O(1), a simple first moment calculation shows that

a.s. the choice of (k− 1)-tuples will be vertex disjoint. Thus, the probability of picking a bad collection
is at least 2α− o(1) even if we condition on the (k − 1)-tuples being vertex-disjoint.

Now we are finally ready to define our hypertree T as follows: (i) take the hypergraph consisting of

a vertex v lying in rL
(
dk

t

)
edges where no other vertex lies in more than one of the edges (i.e. a star),

and (ii) place each of the
(
dk

t

)
possible (d, k, t)-constraints on rL of the edges. This, of course, is where

we take advantage of the fact that we are using the (d, k, t)-model.

Now consider adding a copy of T to ĈSPn,p(P). For each 1 ≤ δ ≤ d, let Tδ denote the collection of
(k − 1)-tuples obtained by removing v from every edge of T that contains a constraint in which every
restriction has v = δ; note that Tδ consists of rL copies of every constraint on k − 1 variables with

exactly t restrictions and so |Tδ| =
(
dk−1

t

)
rL. The probability that for each 1 ≤ δ ≤ d, Tδ is a bad set is

at least (2α− o(1))d. Note that if every Tδ is a bad set, then the resulting CSP is unsatisfiable because
setting v = δ requires the set of (k − 1)-constraints on Tδ to be enforced.

So by Lemma 9, there is some z = o(n1−k) such that the probability that ĈSPn,p=p+z(P) is
unsatisfiable is at least (2α − o(1))d. By considering adding x copies of T , we see that the probability

that ĈSPn,p=p+xz(P) is satisfiable is at most (1−(2α−o(1))d)x which is less than α for some sufficiently

large constant x. Since z = o(n1−k), this implies that Pr(ĈSPn,(1+ǫ)p(P) is unsatisfiable) > 1−α which
contradicts Corollary 7(b). ✷

5 Binary CSP’s with domain size 3

Recall that the arguments from Istrate[25] and from Creignou and Daudé[10] can show that when the
domain size d = 2, then Hypothesis A holds; i.e. if every unicyclic CSP is satisfiable, then CSPn,p(P)
has a sharp threshold. This result does not extend to d = 3. Consider the following example, with
d = 3, k = 2:

Example 14 We have two constraints. C1 says that either both variables are equal to 1, or neither is
equal to 1. C2 says that the variables cannot both have the same value. P(C1) = 2

3 ,P(C2) = 1
3 .

Observe that every unicyclic CSP that uses only constraints C1, C2 is satisfiable.

Consider any 3
2 < c < 3. Thus, a.s. the sub-CSP formed by the C1 constraints has a giant

component, and the sub-CSP formed by the C2 constraints does not. We will show that CSPn,p(P) is
neither a.s. satisfiable nor a.s. unsatisfiable.

To see that it is not a.s. unsatisfiable, note that the subgraph induced by the C2 constraints is
2-colourable with probability at least some positive constant. This follows from the well known fact[13]
that for c < 1 the random graph G(n, c

n ) is a forest with probability at least some positive constant. If
it is 2-colourable, then we can satisfy all the C2 constraints by assigning every variable either 2 or 3;
this will not violate any C1 constraints.

To see that it is not a.s. satisfiable, note that the subgraph formed by the C1 constraints has a giant
component T . So either every variable in T is assigned 1 or none of them are. A.s. at least one C2

constraint has both variables in T , and so they cannot both be assigned 1. Thus, a.s. no variables in T
can be assigned 1. This implies that if the C2 constraints form an odd cycle using variables of T then
the CSP is not satisfiable. That event occurs with probability at least some positive constant, because
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the graph formed by the C2 constraints that use only variables of T is G
n′,

1/3

n′

where n′ = |T | = Θ(n)

and so it is not 2-colourable with probability at least some positive constant.

It is instructive to look at this example in light of Corollary 7. Here, the subgraph M is a triangle
whose edges are all C2 constraints. If M appears, then at least one of its variables must be assigned
the value 1. However, with probability at least some ζ > 0, the remainder of the CSP has a structure
implying that if at least one of those variables has the value 1 then some specific set of Θ(n) other
variables all must be assigned the value 1. But a.s. there is a C2 constraint between at least two of
those variables and thus they can’t all be assigned 1. This enables the appearance of M to boost the
probability of unsatisfiability by at least some positive constant.

The main result of this section shows that when d = 3 and k = 2, if Hypothesis A fails on some model,
then there must be an M as in Corollary 7 whose presence boosts the probability of unsatisfiability for
essentially the same reason as that in Example 14.

Before presenting our theorem, we begin with a few preliminaries. To simplify, we will take k = 2.

Consider a CSP where every constraint is on 2 variables. Suppose there is some constraint on
variables v, u which implies that if v is assigned δ then u must be assigned γ; we say that v : δ → u : γ.
Moreover if there is a sequence of variables v1, . . . , vr and values δ1, . . . , δr such that vi : δi → vi+1 : δi+1

for i = 1, . . . , r − 1 then we say that v1 : δ1 → vr : δr.

For each variable v and each pair of (possibly equal) values δ, γ we define Fδ,γ(v) to be the set of
variables u such that v : δ → u : γ, and we define Fδ(v) = ∪1≤γ≤dFδ,γ(v). Thus Fδ(v) is the set of
variables u such that if v is assigned δ then there is a path of constraints which imply that u must
be assigned a particular value. Assigning δ to v may force assignments to other variables w via a
combination of more than one path of constraints. But the locally tree-like nature of CSPn,p(P) will
imply that such variables are not a significant concern.

In CSPn,p(P), we can expose Fδ(v) by using a simple breadth-first search from v. This allows us
to analyze the distribution of the size of Fδ(v) and Fδ,γ(v) using a standard branching-process analysis
(see e.g. Chapter 5 of [26]). Straightforward branching-process arguments yield:

Lemma 15 With the exception of at most d2 constants c, if p = (c + o(1))/n then for every pair δ, γ,
one of these cases holds:

(a) Exp(|Fδ,γ(v)|) = O(1); or

(b) Exp(|Fδ,γ(v)|) = Θ(n).

We omit the standard proofs. We remark only that those d2 constants are the so-called critical
points for each Fδ,γ .

We say that Fδ,γ is subcritical if case (a) holds and supercritical if case (b) holds. We say that Fδ

is supercritical if Fδ,γ percolates for at least one γ, and is subcritical otherwise. Markov’s Inequality
immediately implies:

Lemma 16 (a) If Fδ,γ is subcritical, then for every ξ > 0 there is a constant L such that
Pr(|Fδ,γ(v)| ≤ L) > 1 − ξ.

(b) If Fδ,γ is supercritical, then there are constants ζ, β > 0 such that Pr(|Fδ,γ(v)| ≥ βn) > ζ.

We can now state the main result of this section:

Theorem 17 Consider some P with d = 2, k = 3 such that CSPn,p(P) has a coarse threshold and
every unicyclic CSP formed from supp(P) is satisfiable. Then there exist p, α, ǫ,M as in Corollary 7
such that for some value 1 ≤ δ ≤ 3 we have:
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(a) M cannot be satisfied using only the two values other than δ; and

(b) Fδ,δ is supercritical.

E.g., in Example 14 we can take M to be a triangle of C2 constraints and δ = 1.

This theorem does not extend to d = 4, k = 2 nor d = 3, k = 3; in each of these cases, we have
counterexamples. Before proving our theorem, we start with a helpful lemma.

Lemma 18 Suppose p = (c + o(1))/n where c is not one of the 9 exceptional constants from Lemma
15. If Fδ is supercritical then either (i) Fδ,δ is supercritical or (ii) there is some µ such that Fµ,µ is
supercritical and there is a sequence of constraints in supp(P) through which v : δ → u : µ.

Proof: If Fδ,δ is supercritical then (i) holds; so assume otherwise. Thus there is some γ 6= δ such that
Fδ,γ is supercritical. Thus there is a sequence of constraints in supp(P) through which v : δ → u : γ.
So if Fγ,γ is supercritical then (ii) holds with µ = γ; so assume otherwise.

Let α be the third value. Consider any vertex v and any constant ζ > 0.

Case 1: there is no sequence of constraints in supp(P) through which v : δ → u : α. Thus
Fδ,α(v) = ∅. By Lemma 16(a) there is some constant L1 such that with probability at least 1 − ζ/3,
|Fδ,δ(v)| ≤ L1. If that bound holds, then by Lemma 8, there is a constant L2 such that with probability
at least 1− ζ/3, the set of variables u such that there is some w ∈ Fδ,δ(v) and some constraint implying
w : δ → u : γ has size at most L2; call the set of such variables X . If that second bound holds,
then applying Lemma 16(a) again, there is a constant L3 such that with probability at least 1 − ζ/3,
| ∪x∈X Fγ,γ(x)| < L3. Therefore, with probability at least 1 − ζ, |Fδ,γ(v)| < L3; since this holds for
every ζ > 0, this contradicts Lemma 16(b) and the fact that Fδ,γ is supercritical.

Case 2: there is a sequence of constraints in supp(P) through which v : δ → u : α. Then the same
argument that showed Fγ,γ is subcritical shows that Fα,α is also subcritical. We proceed as in Case 1:

By Lemma 16(a) there is some constant L1 such that with probability at least 1− ζ/5, |X | ≤ L1. If
that bound holds, then by Lemma 8, there is a constant L2 such that with probability at least 1− ζ/5,
the set of variables u such that there is some w ∈ Fδ,δ(v) and some constraint implying w : δ → u : α
has size at most L2; call the set of such variables X1. If that second bound holds, then applying Lemma
16(a) again, there is a constant L3 such that with probability at least 1 − ζ/5, | ∪x∈X1

Fα,α(x)| < L3.
If that bound holds, then again by Lemma 8, there is a constant L4 such that with probability at
least 1 − ζ/5, the set of variables u such that either (i) there is some w ∈ Fδ,δ(v) and some constraint
implying w : δ → u : γ or (ii) there is some w ∈ ∪ (∪x∈X1

Fα,α(x)) and some constraint implying
w : α → u : γ has size at most L4; call the set of such variables X2. Finally, if all those bounds hold,
then applying Lemma 16(a) again, there is a constant L5 such that with probability at least 1 − ζ/5,
| ∪x∈X2

Fγ,γ(x)| < L5. Therefore, with probability at least 1 − ζ, |Fδ,γ(v)| < L5; since this holds for
every ζ > 0, this contradicts Lemma 16(b) and the fact that Fδ,γ is supercritical. ✷

We are now ready to prove our theorem.

Proof of Theorem 17: Suppose that ĈSPn,p(P) has a coarse threshold and consider M, ǫ, α, p =
p(n) from Corollary 7. If p = (c+o(1))/n where c is one of the 9 exceptional constants from Lemma 15,
then we can increase p by some small ǫ′/n, and decrease ǫ slightly, so that the conditions of Corollary 7
still hold. This allows us to apply Lemmas 15, 18.

As defined in [31], a value 1 ≤ δ ≤ 3 is bad if there is a constraint in supp(P) which forbids a
variable from receiving δ; i.e. if there is a constraint C which contains the restrictions (δ, 1), (δ, 2), (δ, 3)
or the restrictions (1, δ), (2, δ), (3, δ). A value δ is also said to be bad if there is a sequence of constraints
in supp(P) joining variables u, v for which v : δ → u : γ where γ is a bad value. It is easy to see
that if there is a unicyclic CSP M formed from the constraints of supp(P) such that every satisfying
assignment to M uses at least one bad value, then M can be modified to an unsatisfiable unicyclic CSP
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M ’ formed from supp(P): we simply attach paths of constraints to each variable of M which forbid
those variables from receiving any bad values. (See [31] for the details.) Therefore, if every unicyclic
CSP formed from supp(P) is satisfiable, then every such CSP can be satisfied without using any bad
values. Thus, M can be satisfied without using any bad values.

Case 1: There is a value δ such that (i) every satisfying assignment of M must use δ or a bad value
on at least one variable and (ii) Fδ is supercritical.

If there are any bad values, then the above construction produces a unicyclic M ′ ⊃ M such that
every satisfying assignment of M ′ must use δ on at least one variable. (Otherwise, set M ′ = M .) If
Fδ,δ is supercritical then M ′, δ satisfy Theorem 17. Otherwise, by Lemma 18, there is a value µ 6= δ
such that Fµ,µ is supercritical and there is a sequence of constraints so that v : δ → u : µ. Attaching
that sequence to every variable of M ′ yields a unicyclic CSP M ′′ for which every satisfying assignment
must use µ on at least one variable. Thus M ′′, µ satisfy Theorem 17.

Case 2: There is a satisfying assignment A of M in which every value δ used is such that δ is
not bad and Fδ is not supercritical. Suppose that M has r variables x1, ..., xr and that A assigns ai
to xi. Recall from Section 4 that CSPn,p(P) ⊕ A is formed by taking CSPn,p(P) and then choosing
r random variables v1, ..., vi and adding one-variable constraints that force vi to take ai. Clearly
Pr(CSPn,p(P) ⊕A is unsatisfiable) ≥ Pr(CSPn,p(P) ⊕M is unsatisfiable).

Expose F = ∪r
i=1Fai(vi), and U , the set of variables outside of F that lie in a constraint with a

variable in F . Since all of the Fai are subcritical, Lemmas 8 and 16(a) imply that there is some L such
that with probability at least 1 − α/2, |U | < L and F ∪ U is a forest with r trees, one containing each

ai. Since adding M to ĈSPn,p(P) increases the probability of unsatisfiability by at least α, it must be

that the probability that ĈSPn,p(P) is satisfiable, |U | ≤ L, Φ∪U is such a forest and ĈSPn,p(P) ⊕A
is unsatisfiable is at least α/2.

Suppose that ĈSPn,p(P) is satisfiable, |U | ≤ L and F ∪ L is a forest of r treees, one for each ai.
Note that the forest structure of F ∪ U implies that every variable whose value is determined by the
assignment A lies in F . Consider some u ∈ U sharing a constraint with w ∈ F where A forces w to
take the value µ. Let Ω = Ω(u) be the set of values which can be assigned to u which, in conjunction
with assigning µ to w do not violate their constraint. We know that |Ω| 6= 0 since otherwise µ is a bad
value and hence some ai is a bad value. We know that |Ω| 6= 1 since otherwise u ∈ F . So |Ω(u)| ≥ 2
for each u ∈ U . Suppose that u1, ..., uℓ are the variables in U with |Ω| = 2, and let δi be the value not

in Ω(ui). Consider taking a random CSP formed as follows: first take a ĈSPn,p(P) and then choose ℓ
random variables u1, ..., uℓ and force ui to not take value δi using a one-variable constraint. We have
proved that the one-variable constraints boost the probability of unsatisfiability by at least α/2.

We have now reached a stage where the rest of the proof is by now standard. We can use the
techniques in any of [16, 3, 18] to show that if ℓ 1-variable constraints, each of the form “vi cannot
receive δi” boost the probability of unsatisfiability by at least α/2, then so does the addition of some
constant number of additional random constraints. This will lead to a contradicton of Corollary 7(c).
We will take the most concise of these techniques, the one from [18] (which was proposed by Alon).
The main tool is a variant of a theorem of Erdős and Simonovits [14], as stated in [17]:

Lemma 19 For all positive integers k, ℓ and real 0 < γ ≤ 1, there exists γ′ > 0 such that for sufficiently
large n, if H ⊆ [n]ℓ is such that |H | ≥ γnℓ then with probability at least γ′ a random choice of ℓ k-tuples
of integers between 1 and n: (v11 , ..., v

k
1 ), ..., (v1ℓ , ..., v

k
ℓ ) yields a complete ℓ-partite system of elements of

H; i.e. for every function f : [ℓ] → [k], the ℓ-tuple (v
f(1)
1 , ..., v

f(ℓ)
ℓ ) ∈ H.

To apply this lemma, we set k = 2 and we let H be the set of bad ℓ-tuples of variables in CSPn,p(P);
i.e. those ℓ-tuples v1, ..., vℓ such that if we forbid each v1 from receiving δi then the CSP will be
unsatisfiable. We have shown that choosing a random ℓ-tuple v1, ..., vℓ and forbidding each vi from
receiving δi boosts the probability of unsatisfiability by at least α/2. That random choice will only
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make the CSP unsatisfiable if we choose a bad t-tuple of variables. Therefore, |H | ≥ (α/2)nℓ, and so
Lemma 19 applies to H .

Now suppose that instead of adding those ℓ 1-variable constraints to CSPn,p(P), we instead add ℓ
new random constraints selected according to P ; call these constraints C1, ..., Cℓ. For each value δ, there
is at least one constraint Cδ ∈ supp(P) which does not allow both variables to recieve δ; otherwise
CSPn,p(P) would be trivially satisfiable by setting every variable equal to δ. The probability that for

each 1 ≤ i ≤ ℓ, Ci = Cδi is
∏ℓ

i=1 P(Cδi) = ζ > 0. If this event occurs, then we can treat each Ci as
a pair (i.e. 2-tuple) of variables at least one of which cannot take the value δi. By Lemma 19, with
probability at least some γ′ > 0 this collection of ℓ pairs forms a complete ℓ-partite system of elements
of H . If so, then the resulting CSP is unsatisfiable: To see this, consider any satisfying assignment and
for each 1 ≤ i ≤ ℓ, set φ(i) to be a variable of Ci which does not have the value δi. Then the ℓ-tuple
(φ(1), ..., φ(ℓ)) is a member of H and hence is bad. Thus there is no satisfying assignment in which each
φ(i) does not receive δi.

Therefore, adding ℓ random constraints increases the probability of unsatisfiability by at least ζγ′ >
0. So adding a sufficiently large constant number of additional random constraints will boost it by
arbitarily close to 1. Increasing p by ǫ/n will a.s. result in at least that many extra constraints. So this
contradicts Corollary 7(c). This establishes Claim 4 and hence our Lemma. ✷

We close this section by noting why this proof cannot be extended to general d. The problem is that
possibly some of the variables in U would have their domain sizes reduced by two instead of one and so
some of the 1-variable constraints would be of the form “vi cannot receive δi or γi”. This would prevent
us from using Lemma 19 and any of the other known techniques for establishing sharp thresholds.

6 Future Directions

There is clearly much work still to be done along these lines of research. The big problem still remains
- determine precisely which models from [31] have a sharp threshold. Of course, Section 2 indicates
that this may be overly ambitious. In the example of Section 2, supp(P) is disconnected in that the
values can be partitioned into two parts (namely {1, 2, 3} and {4, 5} such that no constraint permits its
variables to take members of different parts. In [29], it was noted that when supp(P) is disconnected
CSPn,p(P) can behave strangely. So perhaps it is more feasible to determine precisely which models
with supp(P) connected have sharp thresholds. An important subgoal would be to do this for binary
CSP’s, i.e. the case where k = 2. Another reasonable goal to pursue would be the d = 3 case.

As far as more specific classes of models go, one should try to extend the work in Section 3 and
examine whether Hypothesis A holds for H-homomorphism problems when H is a directed hypergraph.
Such homomorphism problems are equivalent to CSP’s in which every constraint is identical under some
permutation of the variables. Of course, we showed in Section 3.2 that this is not always true in the
ĈSPn,p(P) model. But there is a chance that it is true for the CSPn,p(P) model. Also, the example in
Section 3.2 is not connected. So perhaps Hypothesis A holds for H-homomorphism problems whenever
H is a connected directed hypergraph. Or perhaps one needs to require that H is strongly connected.
And of course, it would be good to determine whether the “connected” condition can be removed from
Theorem 5 by answering Question 12.
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