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ON THE GIRTH OF RANDOM CAYLEY GRAPHS

A. GAMBURD, S. HOORY, M. SHAHSHAHANI, A. SHALEV, AND B. VIRÁG

Abstract. We prove that random d-regular Cayley graphs of the symmetric group asymp-

totically almost surely have girth at least (logd−1
|G|)1/2/2 and that random d-regular Cay-

ley graphs of simple algebraic groups over Fq asymptotically almost surely have girth at

least logd−1
|G|/ dim(G). For the symmetric p-groups the girth is between log log |G| and

(log |G|)α with α < 1. Several conjectures and open questions are presented.

1. Introduction

The girth of a graph is the length of a shortest cycle. Finite regular graphs of large

girth are a natural analogue to the infinite tree. While random regular graphs have nice

expansion properties, their girth tends to be small, as small cycles can appear at many

places independently. The objects of study of this paper, random Cayley graphs, overcome

this problem. While being random, they are vertex-transitive, giving short cycles fewer

opportunities to appear.

Graphs of large girth. Let g = g(n, d) be the largest possible girth of a d-regular graph of

size at most n. Deriving good bounds on g(n, d) for any d ≥ 3 is a notoriously hard problem.

If we consider d ≥ 3 fixed and growing n, the best asymptotic estimates known are:

(2 + o(1)) · logd−1 n ≥ g(n, d) ≥ (
4

3
− o(1)) · logd−1 n.(1)

While it may appear that the problem is essentially solved, the constant factor gap is crucial

here. Clearly, when considering the inverse of g the constant factor gap becomes an exponent

gap. Also, it is a small miracle that the lower bound constant 4/3 is greater than 1, see

Conjecture 5.

The first inequality in (1) is a version of the Moore bound. It is a consequence of a simple

counting argument stating that a ball of radius ⌊(g − 1)/2⌋ around a vertex (or an edge) is

a tree, and therefore must have Ω((d− 1)g/2) distinct vertices.

For a family of d-regular graphs Gi of logarithmic girth, let γ({Gi}) = lim inf i→∞
girth(Gi)

logd−1(|Gi|)
.

Erdős and Sachs [16] described a simple procedure yielding families of graphs with large

girth with γ = 1. The first explicit construction of an infinite degree 4 family with γ ≈ 0.83
1
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was given by Margulis [31], who also gave examples of infinite families with arbitrary large

degree and γ ≈ 0.44; the constructions in question are Cayley graphs of SL2(Fp). Imrich [20],

extending the work of Margulis, constructed a family of Cayley graphs of arbitrary degree

with γ ≈ 0.48, and cubic graphs with γ ≈ 0.96. A family of geometrically defined cubic

graphs introduced by Biggs and Hoare [11] was proven to have γ ≥ 4/3 by Weiss [39].

Examples of graphs of arbitrarily large degree satisfying γ ≥ 4/3 where given by Lubotzky,

Phillips and Sarnak [27] and by by Margulis [32]: these are celebrated Ramanujan graphs

Xp,q - Cayley graphs of PGL2(q) with respect to a very special choice of (p+ 1) generators,

where p and q are primes congruent to −1 mod p with the Legendre symbol
(

p
q

)

= −1. A

similar result was obtained by Morgenstern [34] for any prime power in place of p. Biggs and

Bosher [10] proved that the constant γ = 4
3
for Xp,q is essentially the best possible, namely

they showed that

girth(Xp,q) ≤ 4 logp q + logp 4 + 2.

For every prime power q Lazebnik, Ustimenko, and Woldar [27] constructed families of q-

regular graphs with γ ≥ 4
3
logq(q − 1).

Random Cayley graphs. Let G be a finite group and let S ⊂ G. The (undirected) Cayley

graph G(G, S) is the undirected graph with the vertex set G and the edge set {(g, gs) : g ∈

G, s ∈ S ∪S−1}. Given some group G, a random 2k-regular Cayley graph of G is the Cayley

graph G(G, S ∪ S−1) where S is a set of k elements from G, selected independently and

uniformly at random.

The properties of this model for random graphs received considerable attention in the last

decade. The expansion of such graphs (for |S| growing with |G|) was considered by Alon-

Roichman [4], Pak [35] and Landau-Russell [25]. The diameter of random Cayley graphs on

the symmetric group was considered by Babai et al. [8, 6, 7].

In this work we consider the girth of random Cayley graphs on various groups. It turns

out that random Cayley graphs of the symmetric group and of the algebraic groups over

finite fields, tend to have high girth. This is in contrast to random d-regular graphs that

tend to have constant girth [21, 33].

Fixed walks in random graphs. In the classical models for random walks in random

environment, an environment is created by some random process, then a particle performs

a random walk on this environment.
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Normally, there are two ways to look at such walks; quenched properties of the random

walk are for the typical environment, and annealed properties of the random walk are

averaged over environments.

The model of random Cayley graphs allows for a third interpretation, as the random walk

(a sequence of symbols w = w1w2 · · ·wn from S) can be fixed in advance of generating the

random graphs. Thus, for a random Cayley graph model we can always talk about the fixed

walk on the random graph, which, equivalently, is a random evaluation of the word w.

All of our girth results are based on bounds on the return probability of fixed walks on

random graphs. More precisely, given a sequence of groups, we will show that

(2) sup
|w|≤ ℓn

PGn
(w = 1) = o

(

(d− 1)−ℓn
)

,

See Section 2 for further details and discussion.

Results in this paper. We study the girth of random Cayley graphs for three natural

classes of groups. The methods used to prove (2) are unique to each class. While the first-

order asymptotics of the girth is still an open problem in all cases, our results give bounds

of varying precision.

The most general such result is a simple corollary of the following theorem, due to Dixon,

Pyber, Seress and Shalev [14]:

Theorem 1. [14] Let Gn be a sequence of simple groups with increasing order, and let w be

a word. Then as n → ∞, P (w = 1 in Gn) → 0.

Corollary 2. For k random generators, girth(Gn) → ∞ in probability.

In the case of the symmetric group, we show the following in section 3.

Theorem 3. As n → ∞, a.a.s. the girth of the d-regular random Cayley graph of Sn is at

least (1/2− o(1)) ·
√

logd−1 |Sn|.

However, we conjecture that the girth is equal to O(log |Sn|).

In section 4 we consider families of simple groups of Lie type; in this case representations

as matrices is very helpful and we can get stronger bounds.

Theorem 4. As q → ∞ a.a.s. the girth of the d-regular random Cayley graph of G(Fq),

where G is a simple group of fixed Lie type and fixed rank over Fq is at least (γ−o(1)) logd−1 |G(Fq)|

with γ = 1/dim(G).
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The bound in Theorem 4 is optimal except for the crucial constant γ. It should be noted

that the construction yielding the lower bound in (1) is a Cayley graph of PGL2(p). However,

it seems from computer experiments (section 4.2), that such a result (or even a lower bound

of 1 · logd−1 |G|) is unlikely for a random Cayley graph of PGL2(p). In fact, achieving better

girth than logd−1 |G| seems to be a barrier for many combinatorial constructions such as the

result of Erdős and Sachs [16].

The γ = 1 threshold can be obtained as a consequence of the following appealing heuristics.

Let w(x1, . . . , xk) be a fixed word in a free group on k generators x1, . . . , xk. Let fw(g1, . . . , gk)

be an element in G obtained by substituting xi = gi. Define

(3) PG(w) = Prob[fw(g1, . . . , gk) = 1].

Suppose that for a fixed short words w we have PG(w) ∼ 1/|G|, and that the events [fw1
= 1]

and [fw2
= 1] are independent for “generic” w1 and w2. Then by counting words we could

easily get that girth(G)/ logd−1 |G| → 1 as |G| → ∞ a.a.s.

Both of these assumptions are false. It seems that it is not possible to decrease the

satisfaction probability for a sufficiently large number of words, but it is possible to increase

it, for example in Abelian groups.

The independence assumption is not needed for the lower bound (where the union bound

can be used), but problematic positive correlations arise when one tries to prove upper

bounds. Yet we believe that for random Cayley graphs, a stronger version of the Moore

bound holds (with constant 1 instead of 2).

Conjecture 5. Let {Gn} be a sequence of groups. As n → ∞, a.a.s. the girth of the

d-regular random Cayley graph of Gn is at most (1 + o(1)) logd−1 |Gn|.

The third family of groups we are considering are p-groups, which may be thought of as an

intermediate class between Abelian groups (where the girth is at most 4) and simple groups

(where the girth can be logarithmic). This is the only case where we have an upper bound

better than Moore’s.

The symmetric p-groupWn(p) of height n is the n-fold iterated wreath product of Z/(pZ).

It is isomorphic to the Sylow p-subgroup of the symmetric group Sym(pn). It plays the role

analogous to the symmetric group in the realm of p-groups: it is a basic family of groups

containing all finite p-groups as subgroups.
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Theorem 6. As n → ∞, a.a.s. the girth gn of the d-regular random Cayley graph of the

symmetric p-group G = Wn(p) satisfies

(1− o(1))β log log |G| ≤ gn ≤ (1 + o(1))(log |G|)α

where α < 1 is a constant depending on p only, and β depends on p and d.

In Section 5, we present the proof of Theorem 6, as well as heuristics to show why the

upper bound should be closer to the truth. It turns out that it helps to relate this problem

to a simple toy model for genetics.

A basic question in this direction is

Question 7. Does there exist a sequence of p-groups of increasing order with random Cayley

graphs of logarithmic girth?

We conclude the paper in section 6 by commenting on the analog of large girth property

in the case of compact Lie groups.

2. The union bound and worst case analysis

In all of our proofs we estimate the probability that a given word evaluates to the identity,

thus creating a short cycle. All of our girth results are based on bounding the probability

of random elements to satisfy a given word. More precisely, given a sequence of groups Gn,

and a word w in d generators for a fixed d > 2, we show that

sup
|w|≤ ℓn

PGn
(w = 1) = o

(

(d− 1)−ℓn
)

,

for some sequence ℓn. Summing over all words we get that

P (girthGn ≤ ℓn) = P (w = 1 in Gn for some |w| ≤ ℓn)

≤
∑

|w|≤ℓn

P (w = 1 in Gn)(4)

≤ #{w : |w| ≤ ℓn} sup
|w|≤ℓn

P (w = 1 in Gn)(5)

=

(

1 + d

ln
∑

l=0

(d− 1)l

)

o((d− 1)ℓn)

= o(1)

We believe that the sup bound (5) is wasteful; see Remark 1 in the next section.

The other potentially wasteful part is the union (4) bound, which is not far off when

events are not positively correlated. However, it seems that at least in some cases, there are
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correlations. For example, consider words w and w′ in two generators, a, b. In a significantly

large portion of such words, the exponent sum of a equals 0. Thus w = w′ = 1 if b = 1, giving

P (w = w′ = 1) ≥ 1/|G|. Typically, we expect P (w = 1) ≍ 1/|G|, and so the uncorrelated

case would be P (w = w′ = 1) ≍ 1/|G|2. We don’t know how to take advantage of these

correlations for lower bounds. Moreover, they have blocked our attempts for upper bounds

on girth via the second moment method.

2.1. Limits of the union bound. The expression in the union bound (4) can be written

as a double sum
∑

|w|≤ℓn

P (w = 1 in Gn) = |G|−k
∑

|w|<ℓn

∑

g1,...,gk

1(w(g1, . . . , gk) = 1)

where 1 is 1 if its argument is true and zero otherwise. Switching the order of summation

and changing back to probabilities gives

|G|−kd(d− 1)ℓ−1
∑

g1,...,gk

P (w = 1)

where w now is a uniform random reduced word of length ℓ. If w was just a uniformly chosen

word , then P (w = 1) would mean the chance that a random walk on G with generators {gk}

is at the origin at time n. It is easy to check (and well-known, see [5] p.139) that for even ℓ this

probability is at least 1/|G|. Using this it is possible to show that if ℓn ≥ (1+ ǫ) logd−1 |Gn|,

then (4) cannot be o(1), and no proof using the union bound could work to show that the

girth is at least (1 + ǫ) logd−1 |G|.

2.2. Random evaluation of words. Bounds on P (w = 1) have appeared in the literature

[14]. A nice bound, using transitivity properties of groups appears in [1]. In [22] it is shown

that only finitely many finite simple groups satisfy a given non-trivial law w. Word maps

are studied in [26, 37].

It is also natural to ask (in context of the last paragraph) for which groups do we have

P (w = 1) ≥ 1/|G|. Perhaps surprisingly, It turns out that this is always true for all words in

one or two generators, but not necessarily for three. See [2] for many counterexamples and

discussion.

3. Random Cayley graphs of Sn

For some k ≥ 2, let σ1, . . . , σk be independent uniform random permutations from Sn.

Let d = 2k, and S = {σ±1
1 , . . . , σ±1

k }. We prove for G = C(Sn, S) that a.a.s girth(G) ≥

c ·
√

n logn/ log(d− 1) for any constant c < 1/2.
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Remark 1. The crucial bound used in our proof of Theorem 3 is the upper bound on PG(w),

which holds for all non-trivial words of length at most l. We observe that, for the power

word w = al, this bound is almost tight. Indeed, PG(w) is at least the probability that the

first ⌊n/l⌋ cycles of a random permutation in Sn have length l. Therefore

PG(w) ≥

⌊n/l⌋−1
∏

i=0

1/(n− il) ≥ (1/n)
n
l .

Therefore in order to improve upon Theorem 3, by more than a constant factor, one needs

either to avoid the union bound on w or refine the upper bound on PG(w) to incorporate

more information on the structure of w.

Proof of Theorem 3. Our first observation is that the girth of G is the length of the shortest

non-trivial relation between σ1, . . . , σk. Therefore, girth(G) ≥ g with high probability, if for

most choices of σ1, . . . , σk, no non-trivial word in σ1, . . . , σk of length smaller than g is the

identity permutation. Clearly, it suffices to check only non-trivial cyclically reduced words

of length ℓ < g. Namely words w = s0 · · · sℓ−1, satisfying si 6= s−1
i+1 (mod ℓ) for 0, . . . , ℓ − 1.

We denote the set of such words by Irredg; clearly |Irredg| ≤ (d − 1)g. The probability

of girth(G) < g is bounded by
∑

w∈Irredg
PG(w), where PG(w), defined in (3) denotes the

probability that w is the identity permutation. That is PG(w) is the probability that w fixes

all the n points 1, . . . , n.

Given a word w = s0 · · · sℓ−1 and some starting point x1, we trace the path x1, x1s0, x1s0s1, . . .,

exposing the necessary entries of the permutations σ1, . . . , σk one by one. In order that w will

fix x1, some coincidence must occur. That is, when exposing the entries of the path starting

at x1, there has to be a first time when the path arrives at x1 by some permutation different

from s−1
0 . The probability of such an event occurring at any specific step i is bounded by

1/(n − e), where e is the number of entries exposed so far. Since e is at most ℓ, and since

there are at most ℓ choices for i, we have Pr[x1w = x1] ≤ ℓ/(n− ℓ).

Suppose that we already verified that w fixes x1, . . . , xm−1 by exposing the necessary

entries. Then we have exposed at most (m − 1) · ℓ entries. As long as this number is

smaller than n, we can choose a point xm such that no entry involving xm was exposed yet.

Repeating the previous argument, yields an upper bound of ℓ/(n −mℓ) on the probability

that w fixes xm, even when conditioning on the previously exposed entries. Therefore the

probability that w is the identity permutation is bounded by (ℓ/(n − mℓ))m, as long as

mℓ < n. Substituting m = n/(2ℓ), yields the bound

P (w) ≤ (2ℓ/n)n/(2ℓ).(6)
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Therefore

Pr[girth(G) < g] ≤ |Irredg| · (2g/n)
n/(2g) ≤ (d− 1)g · (2g/n)n/(2g).

Setting g = c ·
√

n log n/ log(d− 1) for any constant c < 1/2, yields the required result:

Pr[girth(G) < g]) ≤ exp(−Ω(
√

n logn log(d− 1) )).

�

4. Random Cayley graphs of simple groups of Lie type

Before proving Theorem 4 in general (in section 4.4), we give an elementary proof for the

group SL2(Fp) (in section 4.1) and discuss computer experiments (section 4.2) and connection

between girth and expansion (section 4.3) in the case of this group.

4.1. Random Cayley graphs of SL2(Fp). We begin by giving an elementary proof of the

lower bound on the girth of a random 2k-regular Cayley graph of the group PGL2(Fp) for

prime p; the proof for SL2(Fp) is similar. The Cayley graph is constructed with respect to

the set S = {g±1
1 , . . . , g±1

k }, where d = 2k and g1, . . . , gk are independent uniform random

elements from PGL2(Fp).

Theorem 8. As p → ∞, a.a.s.the girth of the d-regular random Cayley graph of G =

PGL2(Fp) or of G = SL2(Fp) is at least (1/3− o(1)) · logd−1 |G|.

Before proceeding with the proof of Theorem 8 we recall the upper bound on the number

of projective zeros of a polynomial.

Theorem 9 (Serre [36], Sørensen [38]). Homogeneous polynomial in m variables in Fp of

degree d has at most dpm−2 + (pm−2 − 1)/(p− 1) projective zeros, and this is sharp.

To prove Theorem 8, we start with the following lemma:

Lemma 10. Let w be a word of length ℓ in the free group Fk. If w is not identically 1 for

every substitution of values from PGL2(p), then for a random substitution

Pr[w = 1] ≤ ℓ/p+O(p−2)

where implied constant depends on k only.

Proof. The word w(g1, . . . , gk) evaluated in GL2 is a matrix whose entries are rational func-

tions of the entries of the gi. The reason they are not polynomials is that w may contain

inverses of the form g−1
i , so that a factor of 1/ det(gi) appears. Nevertheless, the equation
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w = I×constant (i.e. w = 1 in PGL) reduces to three homogeneous polynomial equations

of degree ℓ in 4k variables, corresponding to the equations a11 = a22, a12 = 0 and a21 = 0.

By our assumptions at least one of these equations is not identically zero. So by Theorem 9

it has at most ℓp4k−1+O(p4k−2) solutions among all possible matrices g1, . . . , gk, and therefore

there are at most this many in the subset (GL2(p))
k. Since multiplication by constant

matrices preserves solutions, it follows that there are at most ℓp4k−1(p − 1)−k + O(p3k−2)

solutions to w = 1 in PGL2(p)
k. Dividing by the k-th power of |PGL2(p)| = p(p− 1)(p+1),

completes the proof. �

Proof of Theorem 8. Let d = 2k. The number of words of length ℓ or less is at most (d−1)ℓ+1.

The probability of each such word is at most ℓ/p + O(p−2). So by the union bound all we

need is that (d− 1)ℓ+1ℓ/p = o(1), which holds if

ℓ = logd−1 p− 2 logd−1 logd−1 p = (1/3− o(1)) · log2k−1 |PGL2(p)|.

We made the assumption that words of length ℓ or less do not yield the identity for all

substitutions; this follows from the following proposition: �

Proposition 11. For any k the length of the shortest non-trivial word w(x1, . . . , xk) such

that fw(g1, . . . , gk) = 1 for all g1, . . . , gk in SL(2,Fp) is at least Ω(p/ log p).

Proposition 11 follows from Lemma 12 and Corollary 14 proved below.

Lemma 12. The length of the shortest non-trivial word w(x1, x2) such that fw(g1, g2) = 1

for all g1, g2 in SL(2,Fp) is at least p.

Proof. Suppose we have a word in two generators g, h and let g =

(

1 0

x 1

)

, h =

(

1 x

0 1

)

.

By a simple inductive argument, for all integers l1, k1, . . . , ln, kn we have

gl1hk1gl2hk2 . . . glnhkn =

(

f11 f12

f21 f22 + l1k1 . . . lnknx
2n

)

,

where f11, f12, f21, f22 are polynomials of degree at most 2n − 1. If the length of the word

is less than p then all li and ki are less than p in absolute value, and hence l1k1 . . . lnkn is

not congruent to zero modulo p. Consequently we have that (f22 + l1k1 . . . lnknx
2n)− 1 is a

nontrivial polynomial of degree 2n, which has at most 2n roots. Since 2n is clearly also less

than p, there is choice of x for which the polynomial is not zero modulo p; hence for such x

we have that gl1hk1gl2hk2 . . . glnhkn 6=

(

1 0

0 1

)

mod p.
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Similarly, we obtain that

gl1hk1gl2hk2 . . . glnhkngln+1 =

(

v11 v12

v21 + l1k1 . . . lnknln+1x
2n+1 v22

)

,

where v11, v12, v21, v22 are polynomials of degree at most 2n; and apply the preceding argu-

ment. �

Lemma 13. Let ω be a non-empty length l reduced word in the k letters S = {g±1
1 , g±1

2 , . . . , g±1
k }.

Then for any k > k′ ≥ 2, one can find words ω1, . . . , ωk in the letters S ′ = {g±1
1 , g±1

2 , . . . , g±1
k′ }

so that the word ω′ obtained from ω by substituting g±1
i by ω±1

i for i = 1, . . . , k, does not

reduce to the empty word. Moreover, one can find such words with |ωi| ≤ 3+2 log2k′−1 / log l.

Corollary 14. Let l be the length of the shortest non-trivial word in two letters over the

group G. Then the length of the shortest non-trivial word over G in any number of letters

is at least Ω(l/ log l).

Proof of Lemma 13. Given the word ω as above, we set ωi = ωi,Lxiωi,R, where ωi,L and ωi,R

are uniform independent random reduced words of length s, and xi is chosen from S ′ so that

no cancellations occur in ωi. We claim that for a sufficiently large length s, the resulting

word ω′ does not reduce to the empty word with probability greater than zero.

Suppose that ω′ reduces to the empty word. Then, one can obtain the empty word

from ω′ by repeatedly deleting consecutive pairs of a letter and its inverse. Since, no letter

xi can cancel until one of the half-words ωi,L or ωi,R cancels, two half words that appear

consecutively in the expanded word must cancel. Since two independent length s reduced

words cancel with probability 2k′(2k′ − 1)−(s−1), and since there are only l − 1 consecutive

pairs of half words in the expanded word ω′, one obtains by union bound that ω′ reduces to

the empty word with probability at most l(2k′)(2k′ − 1)−(s−1), which is less than one for the

claimed value of s. �

4.2. Computer experiments for PGL2(p). In contrast to the permutation group Sn and

the iterated wreath product Wn, the size of PGL2(p) grows moderately with p. This allows

getting some intuition on the asymptotic girth of PGL2(p) from computer experiments.

We conducted experiments on random 4-regular Cayley graphs over G = PGL2(p). The

experiments where conducted for varying primes p, where each experiment was repeated

1000 times. In each case, our computer program either returned the length of the shortest

cycle, or announced it to be greater than 30.

In light of the experimental data, we make the following two conjectures:
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Conjecture 15. The girth of such graphs is almost surely even.

Conjecture 16. The girth of such graphs is (c+o(1)) log3 |G|, for some constant c, satisfying

1/3 < c < 1. Furthermore, a.a.s. the girth is one of two consecutive even numbers.

We give the following excerpt of our experimental data. As mentioned, for each value of

p we computed the girth of 1000 random 4-regular Cayley graphs over PGL2(p). In the first

table nodd is the number of graphs with odd girth (out of thousand).

p 101 331 1009 2003 4001 10007 20011 40009 100003

nodd 146 138 66 42 22 16 8 7 1

The second table lists, the number of times each even girth was attained (out of thousand).

The two most abundant values of the girth where marked in bold. Normalizing these two

values by dividing the girth by log3 |PGL2(p)| yields: 0.85, 0.95 for p = 1009; 0.87, 0.95 for

p = 10007; and 0.83, 0.89 for p = 100003.

girth ≤ 10 12 14 16 18 20 22 24 26 28 30 > 30

p = 1009 52 71 111 224 295 172 9 0 0 0 0 0

p = 10007 9 7 18 38 93 198 296 296 29 0 0 0

p = 100003 0 0 1 5 8 39 60 148 317 342 79 0

4.3. Girth and expansion. In [13] it is shown that if Σp is a symmetric generating set for

PSL2(Fp) (p prime) such that girth(G(PSL2(Fp),Σp)) ≥ c log p, where c is independent of p,

then G(PSL2(Fp),Σp) form a family of expanders. Combined with Theorem 4 this implies

that Cayley graphs of PSL2(Fp) are expanders with respect to generators chosen at random

in PSL2(Fp). The following conjecture, combined with the result in [13], would imply that

Cayley graphs of SL2(Fp) are expanders with respect to any choice of generators.

Conjecture 17. Suppose 〈Σp〉 = PSL2(Fp). There is a constant C, independent of p,

satisfying the following property: the ball of radius C in the generating set Σp contains two

elements g, h such that girth(G(PSL2(Fp), {g, h})) ≥
1
C
log p.

4.4. Proof of Theorem 4. Note first, that, by [28], almost all d-tuples of elements in G(q)

generate G as q → ∞.

Let d = 2k. Let Fk be the free group on x1, . . . , xk. For w ∈ Fk and a group G set

Vw(G) = {(g1, . . . , gk) : gi ∈ G,w(g1, . . . , gk) = 1}.
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Suppose G(q) is a Chevalley group, coming from the simple algebraic group G. The set

Vw is an algebraic set in Gk; by Borel’s theorem [12] for a nontrivial word w, Vw is a proper

subvariety of Gk.

Set e = dimG. Then we have

dim Vw(G) ≤ ke− 1.

Note however that Vw(G) may well be a reducible subvariety.

Now, suppose w has length at most l. We can view elements of G as matrices (in a

natural way if G is classical, or using a minimal faithful module if G is exceptional). Then

the requirement w(g1, . . . , gk) = 1 translates into polynomial equations of degree at most l

in the matrix entries. Denoting by r the rank of G the number of such equations is bounded

above by ar2 for some absolute constant a. To define Vw(G) over the affine space of matrices

we need to add say f(r, k) fixed equations defining Gk there.

It is known that an affine variety V of dimension D defined by m equations of degrees ≤ l

has at most lm(q+1)D q-rational points. This follows from Bezout theorem and intersection

theory. Moreover, the same applies if, instead of taking fixed points of Frobenius, we count

solutions to xq = h(x), which define the finite twisted groups of Lie type. See Section 10 of

Hrushovski [19] for these facts.

Combining this with the information in the previous paragraph regarding Vw we obtain

|Vw(G(q))| ≤ b1l
ar2(q + 1)ke−1,

where b1 = b1(r, k) depends on r and k. Since |G(q)| ∼ qe we have

(7) |Vw(G(q))|/|G(q)k| ≤ blar
2

/q,

where b = b(r, k) is a constant.

Now noting that the expression on the left-hand side of (7) is the probability of the word

w being equal to identity and applying the union bound of section 2 completes the proof of

Theorem 4.

5. Girth for p-groups and toy genetics

The symmetric p-groupWn(p) of height n is the n-fold iterated wreath product of Z/(pZ).

It is isomorphic to the Sylow p-subgroup of the symmetric group Sym(pn). Also, it is

isomorphic to the automorphism group of the height n rooted p-ary tree. The group Wn

plays the analogous role to the symmetric group in the realm of p-groups: It is a basic
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family of groups containing all finite p-groups as subgroups. The size of this group satisfies

logp |Wn(p)| = (pn − 1)/(p− 1).

In this section, we study the girth of the symmetric p-group; we restrict our attention

to p = 2, as it is conceptually and notationally more clear. Analogous results hold for

other primes p. The symmetric 2-group is also the graph automorphism group of the rooted

binary tree of height n. Each element g of Wn = Wn(2) can be written as (g1, g2)×g , where

gi ∈ Wn−1 are elements of the automorphism groups of the two subtrees T1, T2 of T with

roots at level 1, and ×g ∈ Z/(2Z) either switches T1 and T2 (active) or equals the identity

(inactive).

We start with a word w in some letters a, b, . . . and their inverses a−1 = ã, b−1 = b̃ . . ..

Assume that the values of ×a , ×b , . . . are known. Then w1 and w2 can be expressed in terms

a1, a2, b1, b2 . . ..

It is also clear that if g is a uniform random element in Wn, then g1, g2 ∈ Wn−1 and ×g

are independent uniform choices.

The following toy genetics model describes the way words w1 and w2 (and their recursive

offsprings) are determined.

A toy genetics model. Here we describe a biologically incorrect model for the genome

evolution of a strictly asexual organism, henceforth referred to as an “amoeba”.

The DNA of an amoeba is a sequence of length l of “forward” bases, and their inverses, or

“backward” pairs. Backward and forward versions of the same base cannot be next to each

other in the DNA.

At each integer time, each amoeba undergoes fission into two offspring, and its DNA is

inherited as follows. First, two fresh copies of the DNA are created. Then, “crossing over”

symbols are introduced as follows. Each pair of forward and backward bases introduces

its own crossover symbol into the sequence: the forward alleles after their occurrence; the

backwards ones, before.

Each crossover symbol is active or inactive, with equal probability, independently of others.

Crossovers happen at the active symbols.

For example, starting with the word w = ãbcaac̃ (where ã = a−1 denotes the backward

pair of a) the two fresh copies are ã1b1c1a1a1c̃1 and ã2b2c2a2a2c̃2. With the introduction of

the crossover symbols, the word becomes

ãbcaac̃ ⇒ ×a ãb×b c×c a×a a×a ×c c̃.
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Say the random settings activate the symbols ×a and ×b , but not ×c . Then the DNA of the

two offspring are:

w1 = ã2b2c1a1a2c̃1,

w2 = ã1b1c2a2a1c̃2.(8)

We are interested in how fast the DNA diversifies. Call an amoeba free if its DNA consists

of all different bases. Starting from a given DNA w, how many generations does it take until

a free amoeba is born? In the above example l = |ω| = 6 and ω has 3 different bases. After

one generation ω1 and ω2 have 5 different bases each, so they are not free.

Heuristic. Very roughly speaking, in each generation, the number of bases doubles. Thus

within a logarithmic number of steps, an amoeba should emerge with all different bases in

its DNA.

Conjecture 18. There exists a constant c > 0 so that starting with any DNA configuration

of length n, the probability that there is an amoeba at generation c logn with all different

bases in her DNA is at least 1/2.

In fact, there is a simple conjecture that would imply this and more. We call an integer-

valued function from the space of words a complexity function if it satisfies the following

properties. Note that w1 and w2 denote the random DNA of the offspring as in (8).

(1) χ(wi) ≤ χ(w) for i = 1, 2

(2) χ(w) ≤ 0 iff w consists of different bases

(3) Given w with χ(w) ≥ 1 we have Pr[min(χ(w1), χ(w2)) ≤ χ(w)− 1] ≥ 1/2.

We define

χ̄(ℓ) = sup
|w|≤ℓ

χ(w)

It is not true that the number of bases in the DNA doubles in each generation with fixed

probability. But we believe that there “the log number of bases” can be replaced by some

other function of the DNA so that we get this behavior.

Conjecture 19. There exists a complexity function χ with χ̄(ℓ) ≤ β log ℓ for a fixed β ≥ 1

and all n ≥ 1.

Here we show that

Lemma 20. The function χ(w) = |w| −m(w), where m(w) is the number of distinct bases

used by w is a complexity function.
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Clearly, χ̄(l) = l− 1, and the first two properties are satisfied. For the third, it suffices to

prove the following.

Lemma 21. The probability that a given offspring of a given amoeba with some fixed DNA w

has at least one more base in her DNA than her parent (given that the parent has a repeated

base) is at least 1/2.

Proof. We consider a repeated base, say a, for which the two repetitions are closest to each

other in the DNA.

If they have the same orientation, then at the time of fission there will be a single crossover

symbol ×a in between the two. Given the values of all the other crossover symbols, this

symbol is independent and random, and is active with probability 1/2. Thus, in the child,

the first occurrences of a are from the same copy of the DNA or a different copy, with

probability 1/2 each.

If they have different orientation, then there must be at least another base, say b, in

between the two occurrences; there, b has to appear a single time, otherwise the pair of a’s

could not be closest. Thus a single b-crossover symbol ×b appears between the pair of a-s.

The proof concludes as in the first case, except we condition on the value of all crossover

symbols but ×b . �

Lemma 22. If χ is a complexity function, then the probability, starting with DNA w, that

there is no free amoeba at generation n is at most p1(n, |w|), where:

p1(n, l) = exp

(

−
n

4

(

1−
2χ̄(l)

n

)2
)

.

Proof. Let ℓ = |w|. We consider the evolution of the DNA w = w(0) let w(n + 1) be

the the one of the two children of w(n) with lower complexity. By property (3) of the

complexity function, the process χ(w(n)) is stochastically dominated by χ̄(ℓ) − Sn, where

Sn is a binomial(n, 1/2) random variable, i.e. the sum of n independent random variables

taking the values {0, 1} with probability 1/2 each. For such independent “coin tosses”, we

have the well-known Chernoff (large deviation) bound

P [Sn ≤ γn/2] ≤ e−n(1−γ)2/4.

Setting γn/2 = χ̄(|w|) completes the proof. �

After this brief digression into genetics we turn our attention to the symmetric 2-groups.
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Proposition 23. There exists βk > 0 so that for any word w of length at most ℓ = ⌊βkn⌋

in k generators we have

P (w = 1 in Wn) = o((2k − 1)ℓ).

As a consequence, for k random generators, we have

girth(Wn) ≥ βk log2 log2 |Wn| a.a.s.

Proof. Let n0 < n. By Lemmas 20 and 22 with probability 1−p1(n0, ℓ) there is a free amoeba

at generation n0.

If level n0 of the tree is not fixed by w, then w 6= 1 in Wn and we are done. If it is fixed by

w, then the DNA w′ of the free amoeba describes the action of w on T ′, one of the subtrees

of height n− n0 rooted at level n0.

Since all bases in w′ are different, when the random evaluation of w′ gives a uniform

random element of Aut(T ′). Thus the conditional probability of w = 1 in Wn is at most

p2(n− n0) = P (w′ = 1 in Aut(T ′)) = |Aut(Tn−n0
)|−1.

Given some value of ℓ, we set n0, n so that both p1(n0, ℓ) and p2(n−n0) are o((2k−1)−ℓ). First,

we set n0 = αkℓ where αk is a sufficiently large constant to make p1 small. It is not difficult

to verify that αk > 4(log(2k−1)+1) suffices. Second, we take n−n0 sufficiently large so that

p−1
2 = |Wn−n0

| ≫ (2k−1)ℓ. Here the situation is much better, and n−n0 = Θ(log ℓ) suffices.

Putting the two bounds together yields the lemma, for any βk < [4(log(2k − 1) + 1)]−1. �

It was shown in [3] that typical elements have order 2αn+o(1) with α < 1. This implies the

following.

Proposition 24. Even for a single random generator, we have girth(Wn) ≤ (log |Wn|)
α+o(1)

a.a.s.

So the symmetric two-group gives an interesting example of intermediate girth groups.

Based on the heuristic argument before Conjecture 18, we have

Conjecture 25. For k random generators, there is β = βk so that we have girth(Wn) =

(log |Wn|)
β+o(1) a.a.s.

Another conjecture by Abért and the last author is closely related to this problem.

Conjecture 26. Let w be a word of length 2m. If m < n, then P (w = 1) < 1 in Wn.

The m < n condition is sharp, as w = a2
n

is satisfied by all elements in Wn.

In general, we believe that the power word is the easiest to satisfy.
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Conjecture 27. Let w be a word of length 2m. Then P (w = 1) ≤ P (a2
m

= 1) in Wn.

If true, this conjecture implies that the length of the shortest non-trivial word satisfied in

Wn is 2n.

We leave it for the reader to check that this conjecture implies that the upper bound in

Proposition 24 has a lower bound of the same form (with a different constant α′).

6. Noncommutative diophantine property

In closing we mention the continuous analog of the notion of large girth suitable for

elements in the group ring of a compact group. It was introduced in [17] (with G = SU(2))

and called there noncommutative diophantine property.

Definition 28 ([17]). For k ≥ 2, we say that g1, g2, . . . , gk ∈ G satisfy noncommutative

diophantine property if there is a D = D(g1, . . . , gk) > 0 such that for any m ≥ 1 and a

word Wm in g1, g2, . . . , gk of length m with Wm 6= e (where e denotes the identity in SU(2))

we have

(9) ||Wm − e|| ≥ D−m.

Here
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

a b

c d

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= |a|2 + |b|2 + |c|2 + |d|2.

Recall that θ ∈ R is called diophantine if there are positive constants C1, C2 such that for

all (k, l) ∈ Z
2 with k 6= 0 we have |kθ− l| ≥ C1k

−C2 . Equivalently, letting g = e2πθ ∈ SO(2),

we may reexpress this condition as follows: |gk − 1| ≥ C ′
1k

−C′

2 . A classical result [24] asserts

that diophantine numbers θ are generic in measure in R. Given diophantine θ1, . . . , θk and

g1 = e2πθ1 , . . . , gk = e2πθk ∈ SO(2), for any word W in g1, . . . , gk of length m we have

|Wm − 1| ≥ C̃1m
−C̃2 for some C̃1, C̃2. In the case of SO(3), given g1, . . . , gk generating a free

subgroup, a pigeonhole argument shows that for any m ≥ 1 there is always a word W in

g1, g
−1
1 , . . . , gk, g

−1
k of length at most m satisfying

‖W − e‖ ≤
10

(2k − 1)m/6
,

so the exponential behavior in the definition above is the appropriate one.

As was first exploited by Hausdorff, for G = SU(2) [18] the relation

Wm(g1, g
−1
1 , . . . , gk, g

−1
k ) = e
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where Wm is a reduced word of length m ≥ 1 is not satisfied identically in G(k). Hence the

sets

V (Wm) := {(g1, . . . , gk)|Wm(g) = e}

are of codimension at least one in G(k). It follows that ∪m≥1V (Rm) is of zero measure in

G(k) and also it is of the first Baire category in G(k). Thus the generic (g1, . . . , gk) ∈ G(k) (in

both senses) generates the free group.

This holds quite generally: for G connected, finite-dimensional non-solvable Lie group it

was proved by D.B.A. Epstein [15] that for each k > 0, and for almost all k-tuples (g1, . . . , gk)

of elements of G, the group generated by g1, . . . , gk is free on these k elements.

Now the set of (g1, . . . , gk) ∈ G(k) for which 〈g1, . . . , gk〉 is not free is clearly dense in

G(k) so it follows easily that the set of (g1, . . . , gk) ∈ G(k) which are not diophantine is of

the second (Baire) category in G(k). That is to say the topologically generic (g1, . . . , gk) is

free but not diophantine. On the other hand in [17] it was proved that the elements with

algebraic number entries are diophantine and the following conjecture was made:

Conjecture 29. Generic in the measure sense (g1, . . . , gk) is diophantine.

Kaloshin and Rodnianski [23] established the following result towards conjecture 29 for

almost every pair (A,B) ∈ SO(3)×SO(3) there is a constant D > 0 such that for any n and

any word Wn(A,B) of length n in A and B the following weak diophantine property holds:

‖Wn(A,B)− e‖ ≥ D−n2

.
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