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Clique percolation
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Abstract

Derényi, Palla and Vicsek introduced the following dependent perco-
lation model, in the context of finding communities in networks. Starting
with a random graph G generated by some rule, form an auxiliary graph
G′ whose vertices are the k-cliques of G, in which two vertices are joined
if the corresponding cliques share k − 1 vertices. They considered in par-
ticular the case where G = G(n, p), and found heuristically the threshold
function p = p(n) above which a giant component appears in G′. Here
we give a rigorous proof of this result, as well as many extensions. The
model turns out to be very interesting due to the essential global depen-
dence present in G′.

1 Cliques sharing vertices

Fix k ≥ 2 and 1 ≤ ℓ ≤ k − 1. Given a graph G, let Gk,ℓ be the graph whose
vertex set is the set of all copies of Kk in G, in which two vertices are adjacent if
the corresponding copies of Kk share at least ℓ vertices. Starting from a random
graph G = G(n, p), our aim is to study percolation in the corresponding graph
Gk,ℓ

p , i.e., to find for which values of p there is a ‘giant’ component in Gk,ℓ
p ,

containing a positive fraction of the vertices of Gk,ℓ
p .

For ℓ = k− 1, this question was proposed by Derényi, Palla and Vicsek [10],
motivated by the study of ‘communities’ in real-world networks, but independent
of the motivation, we consider it to be an extremely natural question in the
theory of random graphs. Indeed, it is perhaps the most natural example of
dependent percolation arising out of the model G(n, p).

As we shall see in a moment, it is not too hard to guess the answer; simple
heuristic derivations based on the local analysis of Gk,ℓ

p were given in [10] and
by Palla, Derényi and Vicsek [17]. (For a survey of related work see [16].) Note,
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however, that Gk,ℓ
p may well have many more than n2 edges, so Gk,ℓ

p is not
well approximated by a graph with independence between different edges: there
is simply not enough information in G(n, p). Thus it is not surprising that
it requires significant work to pass from local information about Gk,ℓ

p to global
information about the giant component. Nonetheless, it turns out to be possible
to find exactly the threshold for percolation, for all fixed k and ℓ.

Given 0 < p = p(n) < 1, let

µ = µ(n, p) =

((
k

ℓ

)
− 1

)(
n

k − ℓ

)
p(k

2)−(ℓ
2), (1)

so µ is
(
k
ℓ

)
− 1 times the expected number of Kks containing a given copy of

Kℓ. Intuitively, this corresponds to the average number of new Kℓs reached in
one step from a given Kℓ, so we expect percolation if and only if µ > 1. Since(
k
2

)
−
(
ℓ
2

)
= ℓ(k − ℓ) +

(
k−ℓ
2

)
= (k − ℓ)(k + ℓ − 1)/2, we have µ = Θ(1) if and

only if

p = Θ
(
n− 2

k+ℓ−1

)
; (2)

we shall focus our attention on p in this range.
In addition to finding the threshold for percolation, we shall also describe the

asymptotic proportion of Kks in the giant component in terms of the survival
probability of a certain branching process. Set M =

(
k
ℓ

)
−1. Given λ > 0, let Zλ

have a Poisson distribution with mean λ/M . Let X(λ) = (Xt)
∞
t=0 be the Galton–

Watson branching process which starts with a single particle in X0, in which
each particle in Xt has children in Xt+1 independently of the other particles
and of the history, and in which the distribution of the number of children of a
given particle is given by MZλ. Let ρ = ρ(λ) denote the probability that X(λ)
does not die out. Then a simple calculation shows that ρ satisfies the equation

ρ = 1 − exp
(
−(λ/M)(1 − (1 − ρ)M )

)
.

From standard branching process results, ρ is the largest solution to this equa-
tion, ρ(λ) is a continuous function of λ, and ρ(λ) > 0 if and only if λ, the
expected number of children of each particle, is strictly greater than 1.

Let X′(λ) denote the union of
(
k
ℓ

)
independent copies of the branching process

X(λ) described above, and let σ = σ(λ) denote the survival probability of X′(λ),

so σ = 1 − (1 − ρ)(
k
ℓ). Our main result is that when µ = Θ(1), the largest

component of Gk,ℓ
p contains whp a fraction σ(µ) + o(1) of the vertices of Gk,ℓ

p ,
where µ is defined by (1). Here, as usual, an event holds with high probability,
or whp, if its probability tends to 1 as n → ∞.

Let ν =
(
n
k

)
p(k

2) denote the expected number of copies of Kk in G(n, p), i.e.,
the expected number of vertices of Gk,ℓ

p . Let us write Ci(G) for the number of
vertices in the ith largest component of a graph G.

Theorem 1. Fix 1 ≤ ℓ < k, and let p = p(n) be chosen so that µ = Θ(1),
where µ is defined by (1). Then, for any ε > 0, whp we have

(σ(µ) − ε)ν ≤ C1(Gk,ℓ
p ) ≤ (σ(µ) + ε)ν
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and C2(Gk,ℓ
p ) ≤ εν.

It is well known that |Gk,ℓ
p | is concentrated around its mean ν whenever

ν → ∞, so Theorem 1 simply says that the largest component of Gk,ℓ
p contains

a fraction σ(µ) + o(1) of the vertices whp. The extension to the case where
µ → 0 or µ → ∞ is essentially trivial, and will be discussed in Subsection 1.3.

We shall prove Theorem 1 in two stages, considering the subcritical case in
the next subsection, and the supercritical case in Subsection 1.2. Very roughly
speaking, to handle the subcritical case (and to prove the upper bound on the
giant component in the supercritical case) we shall show approximate domina-
tion of a suitable component exploration in Gk,ℓ

p by the branching process X′(λ),
λ = (1 + ε)µ. Due to the dependence in the model, we have to be very careful
exactly how we explore Gk,ℓ

p to make this argument work. For the upper bound
we first show (by approximate local coupling with the branching process) that
roughly the right number of vertices are in large components, even if p is reduced
slightly, i.e., even if we omit some edges. Then we use a multi-round ‘sprinkling’
argument, putting back the omitted edges in several rounds, and showing that it
is very likely that the sprinkled edges join these large components. The details
of both arguments turn out to be less simple that one might like.

1.1 The subcritical case

We shall start by considering the subcritical case, proving the following much
stronger form of Theorem 1 in this case.

Theorem 2. Let 1 ≤ ℓ ≤ k − 1 and ε > 0 be given. There is a constant

C = C(k, ℓ, ε) such that, if p = p(n) is chosen so that µ ≤ 1 − ε for all large

enough n, then C1(Gk,ℓ
p ) ≤ C logn whp.

Proof. Since the event C1(Gk,ℓ) > C logn, considered as a property of the
underlying graph G, is an increasing event, we may assume without loss of
generality that µ = 1 − ε for every n. Thus (2) holds.

Fixing a set V0 of k vertices of G = G(n, p), we shall show that, given that V0

forms a complete graph in G, the probability that the corresponding component
C(V0) of Gk,ℓ

p has size more than C logn is at most n−k−1, provided C is large

enough. Since the probability that V0 forms a complete graph in G is p(k
2), while

there are
(
n
k

)
possibilities for V0, it then follows that P(C1(Gk,ℓ

p ) ≥ C logn) ≤
(
n
k

)
p(k

2)n−k−1 = o(1).
From now on we condition on V0 forming a Kk in G = G(n, p). The strat-

egy is to show domination of a natural component exploration process by the
branching process described earlier. We shall show essentially that the average
number of new Kℓs reached from a given Kℓ in G via Kks in G is at most
µ + o(1), though there will be some complications.

In outline, our exploration of the component C(V0) ⊂ Gk,ℓ
p proceeds as

follows. At each stage we have a set Vt of reached vertices of G, starting with
V0; we also keep track of a set E of reached edges, initially the edges spanned
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by V0. At the end of stage t of our exploration, E will consist of all edges of
G[Vt]. Within Vt, every Kℓ is labelled as either ‘tested’ or ‘untested’. We start
with all

(
k
ℓ

)
Kℓs in V0 marked as untested. The exploration stops when there

are no untested Kℓs.
As long as there are untested Kℓs, we proceed as follows. Pick one, S, say.

One by one, test each set K of k vertices with S ⊂ K 6⊂ Vt to see whether all
edges induced by K are present in G. If so, we add any new vertices to Vt, i.e.,
we set Vt+1 = Vt ∪ V (K). We now add all edges of K not present in Vt to E;
we call these edges regular. Any new Kℓs formed in E are marked as untested.
Note that any such Kℓ must contain at least one vertex of Vt+1 \ Vt, and hence
must lie entirely inside K.

Next, we test all edges between Vt and V (K)\Vt to see if they are present in
G, adding any edge found to E, and marking any new Kℓs formed as untested.
Edges added during this operation are called exceptional. At this point, we have
revealed the entire subgraph of G induced by Vt+1, i.e., we have E = E(G[Vt+1]).
We then continue through our list of possible sets K containing S, omitting any
set K contained in the now larger set Vt+1. Once we have considered all possible
K ⊃ S, we mark S as tested, and continue to another untested Kℓ, if there is
one.

The algorithm described above can be broken down into a sequence of steps
of the following form. At the ith step, we test whether all edges in a certain set
Ai are present in G = G(n, p); the future path of the exploration depends only
on the answer to this question, not on which particular edges are missing if the
answer is no. Although this is wasteful from an algorithmic point of view, it is
essential for the analysis. We write Ai for the event Ai ⊂ E(G). After i steps,
we will have ‘uncovered’ a set Ei of edges (called E above). The set Ei consists
of the edges spanned by V0 together with the union of those sets Aj for which
Aj holds.

The event that the algorithm reaches a particular state, i.e., receives a certain
sequence of answers to the first i questions, is of the form U∩D, where U = {Ei ⊂
E(G)} is an up-set, and D is a down-set, formed by the intersections of various
Ac

j . The key point is that U is a principal up-set, so U ∩ D may be regarded

as a down-set D′ in the product probability space Ω′ = {0, 1}E(Kn)\Ei with
the appropriate measure. Hence, for any Ai+1 disjoint from Ei, the conditional
probability that Ai+1 holds given the current state of the algorithm is

P(Ai+1 | U ∩ D) = P(A′
i+1 | D′) ≤ P(A′

i+1) = p|Ai+1|, (3)

where A′
i+1 is the event in Ω′ corresponding to Ai+1, and the inequality follows

from Harris’s Lemma [13] applied in Ω′.
Let us write Xi for the number of new Kℓs found as a result of adding

regular edges when testing the ith Kℓ, Si, say; we shall deal with exceptional
edges separately in a moment. Recall that we add regular edges when we find a
new Kk with at most k − ℓ and at least 1 vertex outside the current vertex set
Vt.

Let η > 0 be a constant such that (1 + η)µ ≤ (1 − ε/2). When testing Si,
there are at most

(
n

k−ℓ

)
possibilities for new Kks with k− ℓ vertices outside the
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current Vt. Given the history, by (3) each such Kk is present with probability

at most p(k
2)−(ℓ

2), so the number of such Kks we find is stochastically dominated

by the Binomial distribution Bi
((

n
k−ℓ

)
, p(k

2)−(ℓ
2)
)

, and hence, for n large, by a

Poisson distribution with mean (1 + η/2)
(

n
k−ℓ

)
p(k

2)−(ℓ

2). [ Here we use the fact
that a Poisson distribution with mean −N log(1 − π) dominates a Binomial
Bi(N, π), which, as pointed out to us by Svante Janson, follows immediately
from the same statement for N = 1. ]

For 1 ≤ j ≤ k − ℓ − 1, we may also find new Kks containing Si together
with j other vertices of the current set Vt, and hence with only k− ℓ− j vertices
outside Vt. Assuming |Vt| ≤ k(log n)100k

3 ≤ (log n)101k
3

, say, the number of

possibilities for a fixed j is crudely at most (logn)101k
3jnk−ℓ−j , and each of

these tests succeeds with probability at most p(k

2)−(ℓ+j

2 ). A simple calculation

shows that nk−ℓ−jp(k
2)−(ℓ+j

2 ) is at most n−δ for some δ > 0, so the expected
number of Kks of this type is at most n−δ/2, say. Moreover, the distribution
of the number found is stochastically dominated by a Poisson distribution with
mean 2n−δ/2.

Each Kk we find consisting of k − ℓ − j new vertices and ℓ + j old vertices,
j ≥ 0, generates

(
k
ℓ

)
−
(
ℓ+j
ℓ

)
≤ M new Kℓs, where M =

(
k
ℓ

)
− 1. It follows

that, given the history, the conditional distribution of Xi/M is stochastically
dominated by a Poisson distribution with mean

(1 + η/2)

(
n

k − ℓ

)
p(k

2)−(ℓ
2) + 2n−δ/2 = (1 + η/2)µ/M + o(1), (4)

which is at most (1 + η)µ/M < (1 − ε/2)/M if n is large enough.
Turning to exceptional edges, we claim that the jth exceptional edge added

creates at most
(
k−1+j
ℓ−1

)
new Kℓs; all we shall use about this bound is that

it depends only on j, k and ℓ, not on n. Indeed, we add exceptional edges
immediately after adding a Kk that includes a certain set N of new vertices.
At this point, the degree in E (the uncovered edges) of every vertex in N is
exactly k− 1. We now add one or more exceptional edges joining N to Vt. Any
such edge e has one end, x, say, in N . If e is the jth exceptional edge in total,
then just after adding e the vertex x has degree at most k − 1 + j. Any new
Kℓs involving e consist of x together with ℓ− 1 neighbours of x, so there are at
most

(
k−1+j
ℓ−1

)
such Kℓs.

Assuming |Vt| ≤ k(logn)100k
3

, the number of potential exceptional edges
associated to a new Kk is at most (k− ℓ)|Vt| = O⋆(1), where, as usual, g1(n) =
O⋆(g2(n)) means that there is a constant a such that g1(n) = O(g2(n)(logn)a).
It follows that, for fixed r, the probability that we find at least r such edges at
a given step is O⋆(pr). Furthermore, the probability that we find j exceptional

edges in total during the first (logn)100k
3

steps is O⋆(pj), since there are O⋆(1)
possibilities for the set of at most j steps at which we might find them. Let
us choose a constant J so that pJ ≤ n−100k3

(here, pJ ≤ n−k−2 would do;
the stronger bound is useful later), and let B be the ‘bad’ event that we find
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more than J exceptional edges in the first (logn)100k
3

steps. Then we have

P(B) = O⋆(pJ) = O⋆(n−100k3

) = o(n−99k3

).
As long as B does not hold, we create at most J ′ =

∑
j≤J

(
k−1+j
ℓ−1

)
= O(1)

new Kℓs when adding exceptional edges in the first (logn)100k
3

steps; let us note
for later that we also create at most

∑
j≤J

(
k−1+j
k−1

)
Kks when adding exceptional

edges. We view our exploration as a set of branching processes: we start one
process for each of the initial Kℓs. Whenever we add a Kℓ in the normal way,
we view it as a child of the Kℓ we were testing. When we add a Kℓ as a result
of adding an exceptional edge, we view it as the root of a new process. As long
as |Vt| ≤ k(logn)100k

3

holds, from (4) the branching processes we construct
are stochastically dominated by independent copies Xi of the Galton–Watson
process X(λ) described earlier, where λ = (1 + η)µ < (1 − ε/2). If B does not
hold, then we start in total at most J ′′ =

(
k
ℓ

)
+ J ′ = O(1) processes in the first

(logn)100k
3

steps.
Recall that the offspring distribution in X(λ) is given by MZλ, where Zλ has

a Poisson distribution with mean λ/M , so E(MZλ) = λ. Here, λ = (1 + η)µ <
1 − ε/2. Since MZλ has an exponential upper tail, it follows from standard
branching process results that there is a constant a > 0 such that the probability
that the total size of Xi exceeds m + 1 is at most exp(−am) for any m ≥ 0.
Taking C large enough, it follows that with probability 1 − o(n−k−1), each of
X1, . . . ,XJ′′ has size at most (C/J ′′) logn. If this event holds and B does not
hold, then our exploration dies having reached a total of at most C logn vertices.
Hence, the probability that C(V0) contains more than C logn ≤ (logn)100k

3

vertices of G = G(n, p) is o(n−k−1) + o(n−99k3

) = o(n−k−1).
At this point the proof of Theorem 2 is almost complete: we have shown

that whp, any component of Gk,ℓ
p involves Kks meeting at most C logn vertices

of G = G(n, p). To complete the proof, it is an easy exercise to show that
if p ≤ n−δ for some δ > 0, then whp any C logn vertices of G(n, p) span at
most C′ logn copies of Kk, for some constant C′. Alternatively, note that the
number of Kks found involving new vertices is at most the final number of
vertices reached, while all other Kks are formed by the addition of exceptional
edges, and if B does not hold, then, arguing as for the bound on the number
of Kℓs formed by adding exceptional edges, the number of Kks so formed is
bounded by a constant.

In the proof above, subcriticality only came in at the end, where we used it to
show that the branching processes Xi were very likely to die; in the supercritical
case, the proof gives a domination result that we shall state in a moment. For
this, the order in which we test the Kℓs matters – we proceed in rounds, in
round 0 testing the

(
k
ℓ

)
initial Kℓs, and then in round i ≥ 1 testing all Kℓs

created during round i. Let H = H(Gk,ℓ
p ) be the bipartite incidence graph

corresponding to Gk,ℓ
p : the vertex classes are V1, the set of all Kks in Gk,ℓ

p ,
and V2, the set of all Kℓs. Two vertices are joined if one of the corresponding
complete graphs is contained in the other. Given a vertex v0 ∈ V1 of H , let
Ni = Ni(v0) denote the number of Kℓs whose graph distance in H from v0 is

6



at most 2i+ 1. If v0 is the vertex of H corresponding to the complete subgraph
on V0, then after i rounds of the above algorithm we have certainly reached all
Ni Kℓs within distance 2i + 1 of v0.

The domination argument in the proof of Theorem 2 thus also proves the
lemma below, in which J ′′ is a constant depending only on k and ℓ, X1, . . . ,XJ′′

are independent copies of our Galton–Watson branching process as above, and
M≤t(X1, . . . ,XJ′′) denotes the total number of particles in the first t generations
of X1, . . . ,XJ′′ .

Lemma 3. Let η > 0 be fixed, let p = p(n) satisfy (2), and let V0 be a fixed set

of k vertices of G = G(n, p). Condition on V0 spanning a complete graph in G,

and let v0 be the corresponding vertex of H. Then we may couple the random

sequence N1, N2, . . . with J ′′ independent copies Xi of X((1 + η)µ) so that with

probability 1 − o(n−99k3

) we have Nt ≤ M≤t = M≤t(X1, . . . ,XJ′′) for all t such

that M≤t ≤ (logn)100k
3

. �

We finish this subsection by presenting a consequence of a much simpler ver-
sion of the domination argument above. If we are prepared to accept a larger
error probability, we may abandon the coupling the first time an exceptional
edge appears. As shown above, the probability that we find any exceptional
edges within O⋆(1) steps is at most n−δ for some δ > 0. Abandoning our cou-
pling if this happens, we need only consider the original

(
k
ℓ

)
branching processes,

one for each copy of Kℓ in V0. In other words, we may compare our neighbour-
hood exploration process with the branching process X′(λ), λ = (1+η)µ, which
starts with

(
k
ℓ

)
particles in generation 0, and in which, as in X(λ), the offspring

distribution for each particle is given by M times a Poisson distribution with
mean λ/M .

Lemma 4. Let η > 0 be fixed, let p = p(n) satisfy (2), and let V0 be a fixed

set of k vertices of G = G(n, p). Condition on V0 spanning a complete graph in

G, and let v0 be the corresponding vertex of H. Then there is a constant δ > 0
such that we may couple the random sequence N1, N2, . . . with X

′ = X
′((1+η)µ)

so that, with probability at least 1 − n−δ, we have Nt ≤ Mt for all t such that

M≤t ≤ (logn)100k
3

, where Mt is the number of particles in generation t of X′,

and M≤t = M0 + M1 + · · · + Mt.

In the next subsection we shall show that when µ > 1, the graph Gk,ℓ
p does

contain a giant component, and moreover that this giant component is of about
the right size; Lemma 4 will essentially give us the upper bound, but we have
to work a lot more for the lower bound.

1.2 The supercritical case

Recall that |Gk,ℓ
p |, the number of Kks in G(n, p), is certainly concentrated about

its mean ν =
(
n
k

)
p(k

2). For the moment, we concentrate on the case where (2)
holds; we return to larger p later.
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One bound in Theorem 1 is easy, at least in expectation: Lemma 4 gives
an upper bound on the expected size of the giant component. In fact, it gives
much more, namely an upper bound on the expected number of vertices in
‘large’ components. It is convenient to measure the size of a component by the
number of Kℓs rather than the number of Kks.

Let N≥a(Gk,ℓ
p ) denote the number of vertices of Gk,ℓ

p whose component in
the bipartite graph H contains at least a vertices of V2, i.e., at least a copies of
Kℓ.

Lemma 5. Let p = p(n) be chosen so that µ is constant, and let ε > 0 be fixed.

For any ω = ω(n) tending to infinity we have E(N≥ω(Gk,ℓ
p )) ≤ (σ(µ) + ε)ν if n

is large enough.

Proof. We may assume without loss of generality that ω ≤ logn. From standard
branching process results, for any fixed λ, the probability that X

′(λ) contains
at least a particles but does not survive forever tends to 0 as a → ∞. Thus,
P(|X′(λ)| ≥ ω) = σ(λ) + o(1).

Fix a set V0 of k vertices of G = G(n, p), and condition on V0 forming a Kk

in G, which we denote v0. Let λ = (1 + η)µ where, for the moment, η > 0 is
constant. Since ω ≤ logn, Lemma 4 tells us that the probability π that the
component of v0 in H contains at least ω Kℓs is at most P(|X′((1 + η)µ)| ≥
ω) + o(1) = σ((1 + η)µ) + o(1). Letting η → 0 and using continuity of σ, it

follows that π ≤ σ(µ) + o(1) as n → ∞. Since E(N≥ω) is simply π
(
n
k

)
p(k

2), this
proves the lemma.

As in Bollobás, Janson and Riordan [5], for example, a simple variant of
Lemma 4 also gives us a second moment bound.

Lemma 6. Let p = p(n) be chosen so that µ is constant, and let ε > 0 be fixed.

For any ω = ω(n) tending to infinity we have E
(
N≥ω(Gk,ℓ

p )2
)
≤ (σ(µ)2 + ε)ν2.

Proof. The expected number of pairs of overlapping Kks in G = G(n, p) is

k−1∑

i=1

(
n

k

)(
k

i

)(
n− k

k − i

)
p2(

k

2)−(i

2),

which, by a standard calculation, is o(ν2). Hence, it suffices to bound the
expected number of pairs of vertex disjoint Kks each in a ‘large’ component.
We may do so as in the proof of Lemma 5, using a variant of Lemma 4 in which
we start with two disjoint Kks, and explore from each separately, abandoning
each exploration if it reaches size at least logn, and abandoning both if they
meet, an event of probability o(1).

Let us turn to our proof of the heart of Theorem 1, namely the lower bound.
In proving this we may assume that µ > 1 is constant. We start with a series
of simple lemmas.

Let V0 be a set of k vertices of G = G(n, p), and let A = A(V0) be the event
that V0 spans a Kk in G. Let Q = Q(V0) be the event that Gk,ℓ

p contains a tree
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T with ⌈(logn)5k
3⌉ vertices, one of which, v0, is the clique corresponding to V0,

with the following additional property: ordering the vertices of T so that the
distance from the root v0 is increasing, each corresponding Kk meets the union
of all earlier Kks in exactly ℓ vertices. Equivalently, the union of the cliques in
T contains exactly k + (k − ℓ)(|T | − 1) vertices of G.

Recall that µ = µ(n, p) is defined by (1).

Lemma 7. Fix ε > 0, and let p = Θ(n− 2
k+ℓ−1 ) be chosen so that µ is a constant

greater than 1. If n is large enough, then P(Q | A) ≥ σ(µ) − ε.

Proof. Throughout we condition on A = A(V0), writing v0 for the corresponding
vertex of Gk,ℓ

p . We start by marking all
(
k
ℓ

)
copies of Kℓ in V0 as untested;

we shall then explore part of the component of Gk,ℓ
p containing the vertex v0

corresponding to V0. At the ith step in our exploration, we consider an untested
copy Si of Kℓ, and test for the presence of certain Kks consisting of Si plus
exactly k− ℓ ‘new’ vertices not so far reached in our exploration. For each such
Kk we find, we mark the M =

(
k
ℓ

)
− 1 new Kℓs created as untested; having

found all such Kks, we mark Si as tested. We abandon our exploration if there
is no untested Si left, or if we reach more than (logn)5k

3

Kks. Note that the
total number of vertices reached is exactly |V0| plus k − ℓ times the number of

Kks found, so if we find more than (log n)5k
3

Kks, then Q(V0) holds.
The exploration above corresponds to the construction of

(
k
ℓ

)
random rooted

trees whose vertices are the Si, in which the children of Si are the new Kℓs
created when testing Si. The number of children of Si is MXi, where Xi is
the number of Kks we find when testing Si. Let 0 < η < 1 be a constant to
be chosen later. Let Z1, Z2, . . . be a sequence of iid Poisson random variables
with mean (1 − η)µ/M < µ/M . Our aim is to show that as long as we have

found at most (log n)5k
3

copies of Kk in total, the conditional distribution of
Xi given the history may be coupled with Zi so that Xi ≥ Zi holds with
probability 1 − o(n−δ), for some δ > 0. The Galton–Watson branching process
X

′((1 − η)µ) defined by Z1, Z2, . . . is supercritical, and so survives forever with
probability σ((1 − η)µ). It then follows that Q(V0) holds with probability at
least σ((1−η)µ)−o(1). Using continuity of σ and choosing η small enough, the
conclusion of the lemma follows.

In order to establish the coupling above, we must be a little careful with the
details of our exploration. At step i, before testing Si, we will have a certain
set Vi of reached vertices, consisting of all vertices of all Kks found so far, and
a certain set Di ⊃ Vi of ‘dirty’ vertices. The remaining vertices are ‘clean’; we
write Ci for the set of these vertices. At the start, V0 is our initial set of k
vertices, while D0 = V0 and C0 = V (G) \ V0.

We test Si as follows: for each v ∈ Ci, let Ev,i be the event that all ℓ possible
edges joining v to Si are present in G = G(n, p). First, for every vertex v ∈ Ci,
we test whether Ev,i holds, writing Wi for the set of v ∈ Ci for which Ev,i does
hold. We then look for copies of Kk−ℓ inside G[Wi], writing Ni for the maximum
number of vertex disjoint copies. Taking a particular set of Ni disjoint copies,
we then add each of the corresponding Kks to our component, defining Vi+1

9



appropriately. We then set Di+1 = Di ∪Wi, and Ci+1 = V (G) \Di+1.
The structure of the algorithm guarantees the following: given the state at

time i, all we know about the edges between Vi and Ci is that certain sets of
ℓ edges are not all present: more precisely, we know exactly that none of the
events Ev,j holds, for v ∈ Ci and j < i. Let ni = |Wi|, a random variable.
Having found Wi, it follows that the edges within Wi are untested, so each is
present with its unconditional probability, and G[Wi] has the distribution of the
random graph G(ni, p). Let η′ > 0 be a very small constant to be chosen below.
Let Ei be the event that ni ≥ (1 − 2η′)npℓ.

We shall show in a moment that Ei holds with very high (conditional) prob-
ability, given the history; first, let us see how this enables us to complete the
proof. If Ei does hold, then the conditional expected number of Kk−ℓs in G[Wi]

is exactly
(

ni

k−ℓ

)
p(k−ℓ

2 ). Provided we choose η′ small enough, this expectation is

at least (1 − η/2)τ , where τ = (npℓ)k−ℓp(k−ℓ
2 )/(k − ℓ)! ∼ µ/M . Since τ = Θ(1),

by a result of Bollobás [2], the number N ′
i of Kk−ℓs in G[Wi] is asymptotically

Poisson with mean τ . Indeed, N ′
i may be coupled with a Poisson distribution Z

with mean (1 − η)µ/M so that N ′
i ≥ Z holds with probability 1 − o(n−δ). Fur-

thermore, by the first moment method, with probability 1 − o(n−δ), the graph
G[Wi] does not contain two Kk−ℓs sharing a vertex, so Ni = N ′

i .
It remains only to prove that Ei does indeed hold with high conditional

probability. Recall that at the start of stage i, all we know about the edges
between Ci and Vi is that none of the events Ev,j, v ∈ Ci, j < i holds. This
information may be regarded as a separate condition Fv for each v ∈ Ci, where
Fv =

⋂
j<i Ec

v,j depends only on edges between v and Vi. Given this information,
the events Ev,i are independent, and each holds with probability r = P(Ev,i | Fv).
Now Ev,i is an up-set and Fv is a down-set, so r ≤ P(Ev,i) = pℓ. Hence, whatever
|Ci| is, the conditional probability that ni ≥ 2pℓn is exponentially small. Since

|Ci+1| = |Ci| − ni, and we stop after at most (log n)5k
3

steps, we may thus
assume in what follows that |Ci| ≥ n− o(n).

Regarding the sets Sj , j ≤ i, as fixed, and forgetting our present condition-
ing, if all we assume about the edges from v to Vi is that Ev,i holds, i.e., that all
edges from v to Si are present, then each Ev,j , j < i, has conditional probability

p|Sj\Si| ≤ p. Recalling that we abandon our exploration after at most (log n)5k
3

steps, it follows that

P(Fc
v | Ev,i) = P




⋃

j<i

Ev,j | Ev,i



 ≤
∑

j<i

P(Ev,j | Ev,i) ≤ ip ≤ (log n)5k
3

p ≤ η′,

if n is large enough. Hence P(Fv | Ev,i) ≥ 1− η′. In other words, P(Fv ∩Ev,i) ≥
(1 − η′)P(Ev,i). This trivially implies that P(Fv ∩ Ev,i) ≥ (1 − η′)P(Fv)P(Ev,i),
i.e., that P(Ev,i | Fv) ≥ (1 − η′)P(Ev,i) = (1 − η′)pℓ.

It follows that ni stochastically dominates a Binomial distribution with pa-
rameters |Ci| and (1 − η′)pℓ. Since |Ci| ≥ n − o(n), we get the required lower
bound on ni, completing the proof.
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Let N denote the number of Kks in G = G(n, p) for which the corresponding
event Q holds, and let N ′ = N≥(logn)5k3 (Gk,ℓ

p ) be the number of Kks in large

components of Gk,ℓ
p , that is, components containing at least (logn)5k

3

copies of
Kℓ. If V0 spans a Kk for which Q holds, then by definition the corresponding
component of Gk,ℓ

p contains a tree with at least (logn)5k
3

vertices; furthermore,

exploring this tree from the root, for each new vertex we find M =
(
k
ℓ

)
− 1 ≥ 1

new Kℓs. Hence the component is large, so N ≤ N ′.

Lemma 8. Fix ε > 0, and let p = Θ(n− 2
k+ℓ−1 ) be chosen so that µ is a constant

greater than 1. Then

(σ(µ) − ε)ν ≤ N ≤ N ′ ≤ (σ(µ) + ε)ν

holds whp.

Proof. Fixing a set V0 of k vertices of G = G(n, p), recall that A = A(V0)
is the event that V0 spans a Kk in G. We have E(N) =

(
n
k

)
P(A)P(Q | A),

which is at least (σ(µ) − o(1))
(
n
k

)
p(k

2) = (σ(µ) − o(1))ν by Lemma 7. As noted
above, N ≤ N ′ always holds. Thus E(N2) ≤ E((N ′)2). But E((N ′)2) ≤
(σ(µ)2 + o(1))ν2 by Lemma 6. Hence E(N2) ≤ (1 + o(1))E(N)2, which implies
that N is concentrated around its mean. Furthermore, E(N) ≤ E(N ′) ∼ σ(µ)ν,
so we have E(N) ∼ σ(µ)ν, and the result follows.

Remark 9. It is perhaps interesting to note that there is an alternative proof
of the bounds on N ′ given in Lemma 8, using the a sharp-threshold result of
Friedgut [12] instead of the second moment method. Let us briefly outline the
argument. Let U be the event that the number N ′ = N≥(logn)5k3 (Gk,ℓ

p ) of Kks

in large components satisfies N ′ ≥ (σ(µ) − ε)ν. In the light of the expectation
bound given by Lemma 5, it suffices to prove that U holds whp.

We view U as an event in the probability space G(n, p), in which case it
is clearly increasing and symmetric. We shall consider Pp′(U), the probability
that G(n, p′) has the property U . When we do so, we keep the definition of U
fixed, i.e., the definition of U refers (via µ and ν) to p, not to p′.

Fix η > 0 such that σ(µ − η) > σ(µ) − ε/4. Applying Lemma 7 with p′

reduced by an appropriate constant factor, we find that Ep′(N ′) ≥ Ep′(N) ≥
(σ(µ − η) − ε/4)

(
n
k

)
(p′)(

k

2), which is at least (σ(µ) − 3ε/4)ν if we choose p′

correctly. Since N ′ is bounded by the total number of Kks, which is very
unlikely to be much larger than its mean ν, it follows that Pp′(U) is bounded
away from zero.

Since p/p′ is a constant larger than 1, if U has a sharp threshold, we have
Pp(U) → 1 as required. Otherwise, Theorem 1.2 of Friedgut [12] applies. We
conclude that there is a constant C such that Pp(U | E) → 1, where E is the
event that a fixed copy of KC is present in G = G(n, p). Of course, conditioning
on E is equivalent to simply adding the edges of KC to G. Hence, whp, G(n, p)
has the property that after adding a particular copy of KC to G, the event U
holds. But the expected number of Kks in G∪KC that share at least ℓ vertices
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with a Kk in G ∪KC not present in G turns out to be less that n−δν for some
δ > 0. Hence, G ∪KC contains at most n−δ/2ν such Kks whp. Whenever this
holds, removing the edges of KC from G splits existing components into at most
n−δ/2ν new components. It follows that G has whp at most n−δ/2ν(log n)5k

3

fewer Kks in large components that G∪KC . Since G∪KC has property U whp,
it follows that G has the same property with a slightly increased ε whp.

At this point, we have shown that whp we have the ‘right’ number of Kks
in ‘large’ components; it remains to show that in fact almost all such Kks are
in a single giant component. In the special case k = 2, ℓ = 1, i.e., when Gk,ℓ

p

is simply G(n, p), there are many simple ways of showing this, most of them
based on ‘sprinkling’ of one form or another: following the original approach
of Erdős and Rényi [11] to the study of the giant component of G(n, p), one
chooses p′ slightly smaller than p, and views G(n, p) as obtained from G(n, p′) by
‘sprinkling’ in a few extra edges. Using independence of the sprinkled edges from
G(n, p′), it is easy to show that whp the sprinkled edges join up almost all large
components of G(n, p′) into a single giant component. Unfortunately, most of
these approaches do not carry over to the present setting; the essential problem
is that, depending on the parameters, Gk,ℓ

p may well have many more vertices
than G(n, p). In fact, it may have many more than n2 vertices. Approaches
such as forming an auxiliary graph on the large components, joining two if they
are connected by sprinkled edges, and then comparing this graph to G(n′, p′)
for suitable n′ and p′, do not seem to work: here n′ is much larger than n, and
there is not nearly enough independence for such a comparison to be possible.
For the same reason, we cannot count cuts between largish components, and
estimate the number not joined by sprinkled edges: we may have many more
than 2n

2

cuts, while the probability that a given cut is not joined will certainly
be at least 2−n2

.
Fortunately, we can get another version of the sprinkling argument to work:

the key result is the following rather ugly lemma. In stating this we write p0
for n− 2

k+ℓ−1 , so µ(n, p) = Θ(1) is equivalent to p = Θ(p0). We write ν0 for

ν(p0) =
(
n
k

)
p
(k
2)

0 .

Lemma 10. Fix constants ε > 0 and A > 0, let G0 be any graph on [n], and let

C1, C2, . . . , Cr list all components of the corresponding graph Gk,ℓ
0 that contain

one or more Kks in G0 with property Q. Suppose that

1. between them the Ci contain at least 2εν0 copies of Kk in G0,

2. no single Ci contains all but εν0 copies of Kk in G0,

3. G0 contains at most Aν0 copies of Kk,

4. for 1 ≤ s < k we have

Zs ≤ An2k−sp
2(k

2)−(s

2)
0 ,

where Zs is the number of pairs of Kks in G0 sharing exactly s vertices,

and
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5. no vertex of G0 lies in more than ν0/
√
n copies of Kk in G0.

Set γ = (logn)−4, let G = G(n, γp0) be a random graph on the same vertex

set as G0, and let Gk,ℓ
1 ⊃ Gk,ℓ

0 be the graph Gk,ℓ derived from G1 = G0 ∪ G.

Then, for any fixed i, the probability that there is some j such that Ci and Cj

are contained in a common component of Gk,ℓ
1 is at least c, for some constant

c = c(A, ε) > 0 depending only on A and ε.

In other words, roughly speaking, and ignoring all the conditions for a mo-
ment, sprinkling in extra edges with density γp0 is enough to give any given
‘large’ component of Gk,ℓ

0 at least probability c of joining up with another such
component, for some c > 0 that does not depend on n.

We shall prove Lemma 10 later; first, we show that Theorem 1 follows.

Proof of Theorem 1. Let p = p(n) be chosen so that µ = µ(n, p) is constant and
µ > 1. It suffices to show that for any ε > 0,

C1(Gk,ℓ
p ) ≥ N0 = (σ(µ) − 2ε)ν = (σ(µ) − 2ε)

(
n

k

)
p(k

2) (5)

holds whp: letting ε → 0, (5) implies that C1(Gk,ℓ
p ) ≥ (σ(µ) − op(1))ν, while

Lemma 5 immediately implies that E(C1(Gk,ℓ
p )) ≤ (σ(µ) + o(1))ν. Together,

these two statements imply that C1(Gk,ℓ
p ) = (σ(µ) + op(1))ν, which is what the

first statement of Theorem 1 claims. For the second, we simply observe that
the same argument gives C1(Gk,ℓ

p ) + C2(Gk,ℓ
p ) = (σ(µ) + op(1))ν.

To establish (5), let us choose p′ < p so that (σ(µ(p′)) − ε/3)(p′/p)(
k

2) ≥
σ(µ) − ε. From continuity of σ, we can choose such a p′ with p − p′ = Θ(p0).
By Lemma 8, applied with p′ in place of p and ε/3 in place of ε, whp at least

N1 = N0 + ε
(
n
k

)
p(k

2) copies of Kk in G(n, p′) have property Q; let V1, . . . , VN1

be (the vertex sets of) N1 such copies.
Let T = (logn)3, and let H1, . . . , HT be independent copies of G(n, γp0) that

are also independent of G0 = G(n, p′), with the vertex sets of H1, . . . , HT and
of G0 identical. Set Gt = G0 ∪

⋃t
i=1 Hi, and note that GT has the distribution

of the random graph G(n, p′′) for some p′′. Since p′ + Tγp0 ≤ p if n is large
enough, we have p′′ ≤ p if n is large enough, so we may couple GT and G(n, p)
so that the latter contains the former. Hence, it suffices to prove that whp
there is a single component of Gk,ℓ(GT ) containing at least N0 of the k-cliques
V1, . . . , VN1 .

As the reader will have guessed, we shall sprinkle in edges in T rounds,
applying Lemma 10 successively with each pair (Gt−1, Ht) in place of (G0, G),

and ε′ = εν/ν0 = ε(p/p0)
(k
2) in place of ε. As noted above, by Lemma 8, whp

G0 contains at least N1 = (σ(µ) − ε)ν copies of Kk with property Q. We may
assume that ε < σ(µ)/3, in which case N1 ≥ 2εν = 2ε′ν0. Since the event that
Vi has property Q is increasing, and G0 ⊂ Gt for all t, whp the first assumption
of Lemma 10 holds for G0 and hence for all Gt.
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If the second assumption fails at some point, then we are done: Gt and hence
GT ⊃ Gt already contains a single component containing at least N1 − ε′ν0 =
N1 − εν = N0 copies of Kk, as required. The remaining assumptions are down-
set conditions, bounding the number of copies of certain subgraphs in Gt from
above. Standard results tell us that G(n, p) satisfies these conditions whp if we
choose A large enough; it follows that whp GT and hence every Gt does too.

From the comments above, we may assume that the conditions of Lemma 10
are satisfied at each stage. Suppose that after t rounds, i.e., t applications
of Lemma 10, the sets V1, . . . , VN1 are now contained in r = r(t) components

C1, . . . , Cr of Gk,ℓ
t . By Lemma 10, each Ci has a constant probability c >

0 of joining up with some other Cj in each round, so after (logn)2 further
rounds, the probability that a particular Ci has not joined some other Cj is

at most (1 − c)(logn)2 = o(n−2). It follows that with probability 1 − o(n−1),
after (log n)2 rounds every Ci has joined some other Cj . If this holds, the
number r′ of components containing V1, . . . , VN1 is now at most r/2. Hence,
after log r ≤ logn sets of (logn)2 rounds, either an assumption is violated, or
there is a single component containing all Vi. But as shown above, there is only
one assumption that can be violated with probability bounded away from zero,
and if this assumption is violated at some stage, we are already done.

It remains only to prove Lemma 10.

Proof of Lemma 10. We assume without loss of generality that i = 1. Let
a = ⌈(log n)5k

3⌉. Since C1 contains a Kk with property Q, C1 contains at least
a distinct copies of Kℓ, each lying in a Kk in C1. Let S1, . . . , Sa be a such
copies.

From Assumptions 1 and 2, C2, . . . , Cr between them contain at least εν0
copies of Kk. The set V0 = V (S1) ∪ · · · ∪ V (Sa) has size O(a) = O⋆(1), and so,
using Assumption 5, meets at most o(ν0) copies of Kk in G0. It follows that we
may find b = εν0/3 copies D1, . . . , Db of Kk in C2, . . . , Cr such that each Dj is
vertex disjoint from V0. (We round b up to the nearest integer, but omit this
irrelevant distraction from the formulae.)

It suffices to show that with probability bounded away from zero, there is
a path of Kks in Gk,ℓ

1 joining some Si to some Dj . We shall do this using the
second moment method. For this, it helps to count only paths with a simple
form.

By a potential k-path we mean a sequence V1, . . . , Vk of sets of k vertices
of G0 with the following properties: V1 contains some Si, all other vertices of⋃k

t=1 Vt lie outside V0 (and hence outside Si), Vk coincides with some Dj , and
for 2 ≤ t ≤ k, Vt consists of k − ℓ vertices outside

⋃
1≤s<t Vs together with ℓ

vertices of Vt−1, not all of which lie in
⋃

s<t−1 Vs.
A potential k-path starting at Si and ending at Dj contains exactly k(k −

ℓ) − k vertices outside Si ∪Dj : starting with Si we add k − ℓ new vertices for
each set Vt in the path, but this count includes the vertices of Dj . It follows
that the number of potential k-paths joining Si to Dj is Θ(nk(k−ℓ)−k), so the
total number of potential k-paths is Θ(abnk(k−ℓ)−k).
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A potential k-path (Vt)
k
t=1 joining Si to Dj is a k-path if all edges contained

in each Vt but not in Si or Dj are present in G = G(n, γp0). Note that any

potential k-path contains exactly r = k(
(
k
2

)
−
(
ℓ
2

)
) −

(
k
2

)
such edges: for each

t there are
(
k
2

)
−
(
ℓ
2

)
edges spanned by Vt but by no earlier Vs, but this count

includes all edges of Dj .
Let X denote the number of k-paths. If any k-path is present, then some

Si is joined to some Dj in the graph Gk,ℓ
1 formed from G0 ∪G, so it suffices to

show that P(X > 0) is bounded away from zero.
Since each potential k-path is present with probability exactly (γp0)r, we

have

E(X) = Θ
(
abnk(k−ℓ)−k(γp0)k((

k
2)−(ℓ

2))−(k
2)
)

= Θ

(
ab

(
nkp

(k
2)

0

)−1(
nk−ℓp

(k
2)−(ℓ

2)
0

)k

γr

)
.

Now the bracket raised to the power k in the last line above is Θ(1) by definition

of p0, while b = εν0/3 = Θ
(
nkp

(k

2)
0

)
. Thus we have E(X) = Θ(aγr). Since,

crudely, r ≤ k
(
k
2

)
≤ k3/2, while a ≥ (logn)3k

3

and γ = (logn)−4, we have
E(X) → ∞.

It remains to estimate the second moment of X . For this, it turns out to be
easier to consider a related random variable Y .

A potential free k-path is defined exactly as a potential k-path, except that
we omit the condition that Vk coincides with some Dj . It is easy to see
that the fraction of potential free k-paths that are potential k-paths is exactly

b/
(
n−|V0|

k

)
= Θ(b/nk) = Θ

(
p
(k

2)
0

)
.

A free k-path is a potential free k-path in which all edges except those con-
tained in the starting set Si are present in G = G(n, γp0). Note that there are
r′ = r +

(
k
2

)
such edges, so each potential free k-path is an actual free k-path

with probability (γp0)r+(k

2). Let Y denote the number of free k-paths. It follows
that

E(Y ) = Θ

(
E(X)p

−(k

2)
0 (γp0)(

k
2)
)

= Θ
(
E(X)γ(k

2)
)

= Θ(aγr′). (6)

For 0 ≤ s ≤ k, let Zs denote the number of ordered pairs of copies of
Kk in G0 sharing exactly s vertices, and let Z ′

s ≤ Zs denote the number of
such pairs lying entirely outside V0. Let Xs denote the number of ordered
pairs of k-paths whose destinations (final sets Vk) share exactly s vertices, and
Ys the number of ordered pairs of free k-paths with this property. Among or-
dered pairs (P1, P2) of potential free k-paths whose destinations share s vertices,
the fraction of pairs in which P1 and P2 are also potential k-paths is exactly

Z ′
s

((
n−|V0|

k

)(
k
s

)(
n−|V0|
k−s

))−1

= Θ(Z ′
sn

−(2k−s)). Moreover, this statement remains

true if we restrict our attention to pairs (P1, P2) with a certain number of com-
mon edges. Indeed, under any sensible assumption on (P1, P2), the pair (Vk, V

′
k)
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of destinations of a random pair (P1, P2) is uniform on all pairs of k-sets in [n]\V0

sharing s vertices.
Given a pair of paths with destinations sharing s vertices, for both paths to

be present as free k-paths requires the presence of 2
(
k
2

)
−
(
s
2

)
more edges in G

than required by their presence as k-paths. It follows that

E(Xs)/E(Ys) = Θ
(
Z ′
sn

−(2k−s)(γp0)
−2(k

2)+(s

2)
)
.

By Assumption 4 we have Zs = O
(
n2k−sp

2(k
2)−(s

2)
0

)
for 1 ≤ s ≤ k − 1. This

also holds for Zk by Assumption 3, and hence also for Z0 ≤ Z2
k . Hence, for

0 ≤ s ≤ k,

E(Xs)/E(Ys) = O
(
γ−2(k

2)+(s

2)
)

= O
(
γ−2(k2)

)
.

Since E(X2) =
∑k

s=0 E(Xs) and E(Y 2) =
∑k

s=0 E(Ys), it follows immediately

that E(X2)/E(Y 2) = O(γ−2(k
2)). We claim that E(Y 2) = O(E(Y )2). Recalling

from (6) that E(X)/E(Y ) = Θ(γ−(k

2)), it then follows that E(X2) = O(E(X)2),
and hence that P(X > 0) is bounded away from zero.

To evaluate E(Y 2), we could argue from the fact that free k-paths are bal-
anced in a certain sense, but rather than make this precise, it turns out to be
easier to simply use our coupling results from Subsection 1.1.

We may evaluate Y , and hence Y 2, as follows. Start with our set V0 of
‘reached’ vertices, namely V0 =

⋃a
i=1 V (Si). Also, mark S1, . . . , Sa as untested

copies of Kℓ. Now explore as in the proofs of Theorem 2 and Lemma 3, except
that we only look for new vertices outside V0; note that our edge probability is
now γp0 rather than Θ(p0), so the corresponding branching process is strongly
subcritical. We stop the exploration after k ‘rounds’, in the terminology of
Lemma 3; of course it may well die earlier.

We consider three cases. Firstly, let A be the event that in the exploration
just described, we find no exceptional edges. Since |V0| = O⋆(1), and the total
size of the relevant branching processes is also O⋆(1) whp, we have P(Ac) =
O⋆(γp0) = O(n−δ) for some δ > 0 depending only on k and ℓ. When A holds, we
obtain a coupling of our exploration with a independent copies of the branching

process X(λ), where λ = µ(γp0) = Θ(γ(k2)−(ℓ
2)). If A holds, the number of

Kks reached in the final round is equal to Nk/M , where Nk is the number of
particles in generation k of the combined branching process, and we divide by
M =

(
k
ℓ

)
− 1 since we add M copies of Kℓ for each Kk we find.

Now from standard branching process results, E(N2
k ) = Θ(a2λ2k) = Θ(a2γ2r′),

recalling that r′ = k(
(
k
2

)
−
(
ℓ
2

)
) is the number of edges of G0 in a free k-path.

It follows that E(Y 21A) = O(a2γ2r′).
We claim that there is a constant K such that the chance of finding more

than K exceptional edges is o(n−10k3

). To see this, first note that the probability
that a Poisson random variable with mean at most 1 exceeds logn is of order
(logn)− log n = o(n−20k3

). Hence, with probability 1 − o(n−10k3

), the first k
generations of a + logn copies of X(λ) contain at most (a + logn)k(logn)k =
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O⋆(1) particles – simply crudely bound the number of children of each particle
by logn. Now arguing as in the proof of Theorem 2, given that we have reached
O⋆(1) vertices, the chance of finding an exceptional edge is at most n−δ for some
δ > 0. Hence, the chance of finding K such edges within the first O⋆(1) steps

is O⋆(n−δK) which is o(n−10k3

) if we pick K large enough. But if we find no
more than K exceptional edges within O⋆(1) steps, and the first k generations of
a+K ≤ a+logn branching processes have total size O⋆(1), then (recalling that
we stop after k rounds), our coupling succeeds, with a+K branching processes
as the upper bound.

Let B be the event that we do find more than K exceptional edges, so
P(B) = o(n−10k3

). The number of pairs of free k-paths present in the complete

graph on Kn is easily seen to be at most n2k3

, so we have E(Y 21B) ≤ P(B)n2k3

=

o(n−8k3

) = o(a2γ2r′).
Finally, let C = (A ∪ B)c. If C holds then, as above, with very high

probability we have reached O⋆(1) vertices in our exploration. The picture
given by our exploration may be complicated by the exceptional edges, but
O⋆(1) vertices in any case contain O⋆(1) (pairs of) free k-paths, so we have
E(Y 21C) = O⋆(P(C)) = O⋆(P(Ac)) = o(1).

Putting it all together, E(Y 2) = E(Y 21A)+E(Y 21B)+E(Y 21C) = O(a2γ2r′).
From (6) we thus have E(Y 2) = O(E(Y )2). As noted earlier it follows that
E(X2) = O(E(X)2), and thus that P(X > 0) is bounded away from 0, as
required.

1.3 Far from the critical point

In the previous subsections we focused on the ‘approximately critical’ case,
where p is chosen so that the expected number of other Kks adjacent to (i.e.,
sharing at least ℓ vertices with) a given Kk is of order 1. In more standard perco-
lation contexts, one can make this assumption without loss of generality; using
monotonicity it follows that the fraction of vertices in the largest component
tends to 0 or 1 outside this range of p.

Here we do not have such simple monotonicity, because the number of ver-
tices of Gk,ℓ

p changes as p varies. However, it is still easy to deduce results for
values of p outside the range p = Θ(p0) from those for p inside this range.

For p = o(p0), this is essentially trivial; since the property of G corresponding
to Gk,ℓ containing a component of size at least C log n is monotone, Theorem 2
together with concentration of the number of Kks trivially implies that the
largest component of Gk,ℓ

p contains whp a fraction o(1) of the vertices of Gk,ℓ
p ,

as long as ν = ν(p) =
(
n
k

)
p(k

2), the expected number of vertices of Gk,ℓ
p , grows

faster than logn. When ν grows slower than logn (or indeed than
√
n), by

estimating the expected number of cliques sharing one or more vertices it is very
easy to check that whp Gk,ℓ

p contains no edges, and thus no giant component
(as long as ν does tend to infinity).

To handle the case p/p0 → ∞, we use a slightly different argument. Let N
denote the number of pairs of vertex disjoint cliques in G(n, p) that lie in the
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same component of Gk,ℓ
p . Let p = Θ(p0). Since the expected number of pairs of

cliques in G(n, p) sharing one or more vertices is o(ν2), Theorem 1 shows that
Ep(N) ≥

(
σ(µ(p))2 − o(1)

)
ν2, considering only pairs in the giant component.

Fix two disjoint sets V1, V2 of k vertices of G(n, p), and let πp be the probability
that V1 and V2 are joined in Gk,ℓ

p given that V1 and V2 are cliques in G(n, p).

Then we have Ep(N) =
(
n
k

)(
n−k
k

)
p2(

k

2)πp ∼ ν2πp. Hence, whenever µ(p) = Θ(1),
we have πp ≥ σ(µ(p))2 − o(1).

Now πp is the probability of an increasing event (in the product space cor-

responding to the
(
n
2

)
− 2
(
k
2

)
possible edges outside V0, V1), and is hence an

increasing function of p. Since σ(µ) → 1 as µ → ∞, it follows that πp → 1 if
p/p0 → ∞. Thus, the expected number of unconnected pairs of cliques in Gk,ℓ

p is
o(ν2) whenever p/p0 → ∞. Since the number of cliques is concentrated around
ν, it follows that whp almost all vertices of Gk,ℓ

p lie in a single component.

1.4 Near the critical point

Derényi, Palla and Vicsek [10] suggest that for ℓ = k− 1, ‘at the critical point’,
i.e., when p = ((k−1)n)−1/(k−1), the largest component in Gk,ℓ

p contains roughly

n vertices of Gk,ℓ
p , i.e., roughly n k-cliques. This is based both on computer

experiments, and on the heuristic that at the critical point, the giant component
in random graphs is roughly ‘treelike’. This latter heuristic seems extremely
weak: there is no reason why a treelike structure in Gk,ℓ

p cannot contain many
more than n k-cliques. Indeed, one would not expect whether or not two k-
cliques share a single vertex to play much role in the component structure of
Gk,ℓ

p .
It would be interesting to know whether the observation of [10] is in fact

correct, but there are several problems. Firstly, the question is not actually
that natural: why chose exactly this value of p? In G(n, p), it is natural to take
p = 1/(n − 1) (or p = 1/n; it turns out not to matter) as ‘the’ critical prob-
ability, since in this case one has at the beginning a very good approximation
by an exactly critical branching process. However, in general there is a scaling
window within which, for example, the largest and second largest components
are comparable in size. For G(n, p) the window is p = n−1 + O(n−4/3); see
Bollobás [3] and  Luczak [14]; see also the book [4]. For other random graph
models, establishing the behaviour of the largest component in and around the
scaling window can be very difficult; see, for example, Ajtai, Komlós and Sze-
merédi [1], Bollobás, Kohayakawa and  Luczak [6], and Borgs, Chayes, van der
Hofstad, Slade and Spencer [7, 8, 9].

In general, one would expect that inside the scaling window, the largest
component would have size of order N2/3, where N is the ‘volume’, which here
would presumably be ν = E(|Gk,ℓ

p |). Note that this need not contradict the
experimental results of Derényi, Palla and Vicsek [10]: it may simply be that
their choice of p is (slightly) outside the window.

Unfortunately, due to the dependence in the model, it seems likely to be
extremely difficult to establish results about the scaling window, or about the
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behaviour at p = ((k − 1)n)−1/(k−1). The problem is that there are o(1) errors
in the branching process approximation discussed above that appear right from
the beginning. On the one hand, for ℓ = k − 1, as soon as we find a new Kk

sharing k− 1 vertices with an earlier Kk, there is a probability of order p that a
single extra ‘exceptional’ edge is present forming a Kk+1, and thus forming extra
Kk−1s from which we need to explore at the next step. In the other direction,
after even one step of our exploration, we have tested whether any vertex v not
so far reached is joined to all vertices in certain Kk−1s. The negative information
that v is not so joined reduces the probability that v is joined to any new Kk−1

slightly; in fact by a factor of 1−Θ(p) for each Kk−1 previously tested. To study
the scaling window, or the behaviour at p = ((k − 1)n)−1/(k−1) or at µ(p) = 1,
say, one would presumably need to understand the net effect of these positive
and negative deviations from the branching process to an accuracy much higher
than the size of each effect. This seems a tall order even for the first few steps in
the branching process, let alone when the component has grown to size Θ(N2/3)
or even Θ(n).

2 Variants

In the rest of the paper we consider several variants of the clique percolation
problem discussed above. In most cases where we can prove results, the proofs
are minor modifications of those above, so to avoid trying the reader’s patience
too far we shall only briefly indicate the changes.

2.1 Oriented cliques

Given n ≥ 2 and 0 ≤ p ≤ 1, let
−→
G(n, p) be the random directed graph on [n]

in which each of the n(n− 1) possible directed edges is present with probability
p, independently of the others. Thus doubled edges are allowed: edges −→vw and−→wv may both be present (though this will turn out to be irrelevant), and the

simple graph underlying
−→
G(n, p) has the distribution of G(n, 2p− p2).

Let
−→
H be a fixed orientation of Kk; for the moment we shall take

−→
H to be

−→
Kk,

that is, Kk with a linear order: V (
−→
Kk) = [k] and E(

−→
Kk) = {−→ij : 1 ≤ i < j ≤ k}.

Given a directed graph
−→
G , let V = V−→

H
(
−→
G) denote the set of all copies of

−→
H

in
−→
G . To be totally formal, we may take V to be the set of all subsets of

(
k
2

)

edges of
−→
G that form a graph isomorphic to

−→
H . If a given set S of k vertices

of
−→
G contains double edges, then it may span several copies of

−→
H , while if S

spans no double edges it spans at most one copy of
−→
H . (For orientations

−→
H

with automorphisms, the latter statement would not be true if we considered

injective homomorphisms from
−→
H . This is the reason for the somewhat fussy

definition of a ‘copy’ of
−→
H .)

For 1 ≤ ℓ ≤ k−1, let
−→
Gk,ℓ =

−→
Gk,ℓ

−→
H

be the graph formed from
−→
G as follows: let

the vertex set of
−→
Gk,ℓ be V = V−→

H
(
−→
G), and join two vertices if the corresponding
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copies of
−→
H share at least ℓ vertices. Note that two copies may share k vertices

(if double edges are involved); this will turn out to be irrelevant. Our aim now

is to study the emergence (as p varies) of a giant component in
−→
Gk,ℓ

p , the graph
−→
Gk,ℓ defined on the copies of

−→
H in

−→
G(n, p).

2.1.1 Linearly ordered cliques

We start by restricting our attention to
−→
H =

−→
Kk. With ℓ = k − 1, the study

of this model was proposed by Palla, Farkas, Pollner, Derényi and Vicsek [18],
who predicted a critical point of p = (nk(k − 1))−1/(k−1). As we shall see, this
prediction is correct.

Let us consider the component exploration in
−→
Gk,ℓ

p analogous to that in Gk,ℓ
p

described in Section 1. The typical case is that we are looking for new
−→
Kks

containing a given
−→
Kℓ, say S, consisting of S together with k − ℓ new vertices.

As before, we expect to find a roughly Poisson number of such new
−→
Kks, but

now the mean is slightly different: in addition to choosing a set N of k− ℓ new
vertices, we must consider the k!/ℓ! linear orders on S ∪N consistent with the
order we already have on S. Given N and such an order, the probability that

this particular
−→
Kk is present is then p(k

2)−(ℓ
2) as before. As in the undirected

case, each new
−→
Kk we find typically gives rise to M =

(
k
ℓ

)
−1 new

−→
Kℓs to explore

from in the next step.
Let −→µ = −→µ (k, ℓ, p) be given by

−→µ =

((
k

ℓ

)
− 1

)
k!

ℓ!

(
n

k − ℓ

)
p(k

2)−(ℓ
2).

The proof of Theorem 1 goes through mutatis mutandis to give the result below.
One can also obtain analogues of the undirected results for the cases −→µ → 0
and −→µ → ∞; we omit these for brevity.

Theorem 11. Fix 1 ≤ ℓ < k and let p = p(n) be chosen so that −→µ = Θ(1).
Then, for any ε > 0, whp we have

(σ(−→µ ) − ε)ν ≤ C1(
−→
Gk,ℓ

p ) ≤ (σ(−→µ ) + ε)ν,

where ν =
(
n
k

)
k!p(k

2) is the expected number of copies of
−→
Kk in

−→
G(n, p).

Note that the function σ appearing here is the same function as in Theorem 1,
but now evaluated at −→µ rather than at µ. In particular, σ(−→µ ) > 0 if and only
if −→µ > 1, and the critical point is given by the solution to −→µ = 1. In the
special case ℓ = k − 1, we have −→µ (k, ℓ, p) = (k − 1)knpk−1, so the critical point
is exactly as predicted by Palla, Farkas, Pollner, Derényi and Vicsek [18].

As the proof really follows that of Theorem 1 very closely, we only briefly de-
scribe the differences. The argument in Subsection 1.1 is essentially unmodified;
it is still true that the first O(1) ‘exceptional’ edges give rise to the addition of
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O(1) extra
−→
Kℓs, arguing as before using the total degree of new vertices, rather

than in- or out-degree, say.
For the lower bound, we can argue much of the time using the underlying

undirected graph G rather than
−→
G =

−→
G (n, p). Indeed, when exploring from a−→

Kℓ Si, say, we let Wi be the set of ‘clean’ vertices joined in G to every vertex
of Si. We then look for undirected k-cliques in G[Wi]. Arguing as before,
the number we find can be coupled to agree (up to a negligible error term)
with a Poisson distribution with the appropriate mean, now (1 − η)

(
n

k−ℓ

)
(2p−

p2)(
k
2)−(ℓ

2). Moreover, as before, we may assume that the k-cliques we find are
vertex disjoint. Only at this point do we check the orientations of the

(
k
2

)
−
(
ℓ
2

)

new edges involved in each k-clique; the probability that we find one of the

k!/ℓ! orientations that gives a
−→
Kk extending Si is (k!/ℓ!)(1/2)(

k
2)−(ℓ

2) + o(1), so

the number of such
−→
Kks that we do find may be closely coupled to a Poisson

distribution with mean −→µ as required.
Finally, the argument joining up large components goes through with only

trivial modifications to the definitions.

2.1.2 Cliques with arbitrary orientations

We now turn out attention to the phase transition in the graph
−→
Gk,ℓ

p defined on

the copies of
−→
H in

−→
G(n, p), where

−→
H is some non-transitive orientation of Kk.

Perhaps surprisingly, it turns out that something genuinely new happens in this
case.

bd

c

a

Figure 1: An orientation
−→
H of K4.

Let k = 4, ℓ = 3, let
−→
H be the orientation of K4 shown in Figure 1, and let−→

Gk,ℓ
p be defined as before. When exploring a component of

−→
Gk,ℓ

p , suppose that

we have found a certain copy of
−→
H , and are looking for new copies containing a

particular subgraph S of order 3. There are now four separate cases, although
one can combine them in pairs. First suppose the vertex set of S is {b, c, d}, so
S is an oriented triangle. If we find a vertex v joined to b, c and d, there are six

combinations of orientations of vb, vc and vd that lead to a copy of
−→
H : either

two edges are oriented towards v and one away, in which case v plays the role

of a in the new copy of
−→
H , or two are oriented away from v and one towards,
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in which case v plays the role of b. The same holds if V (S) = {a, c, d}, since S
is again an oriented triangle.

In the other two cases, S is a linearly ordered triangle, and either v sends
edges to the top two vertices of S and receives an edge from the bottom one,
and so plays the role of d, or v sends an edge to the top vertex and receives
edges from the bottom two, playing the role of c.

Suppose more generally that
−→
H is an orientation of Kk in which no two

vertices are equivalent (the orientation in Figure 1 has this property). Let

M(
−→
H ) be the k-by-k matrix whose ijth entry is the number of ways of orienting

the edges from a new vertex v to [k] \ {j} such that
−→
H − j ∪ {v} forms a graph

isomorphic to
−→
H with v playing the role of vertex i. For example, with

−→
H as in

Figure 1, numbering the vertices in the order a, b, c, d, we have

M =




3 3 0 0
3 3 0 0
0 0 1 1
0 0 1 1


 . (7)

Let us say that a copy in
−→
G of a subgraph of

−→
H induced by k − 1 vertices

is of type j if it is formed by omitting the vertex j. Also, let us say that a

copy of
−→
H found in our exploration by adding a new vertex v to a subgraph of−→

H with k − 1 vertices is of type i if the new vertex corresponds to vertex i of−→
H . Then, towards the start of our exploration, the expected number of type i

copies of
−→
H we reach from a type j subgraph is Mijnp

k−1. When we continue

the exploration, each type i copy of
−→
H gives rises to one new subgraph of each

type other than i, and this gives us our branching process approximation.
For the formal statement, less us pass to the general case 1 ≤ ℓ ≤ k − 1.

For simplicity, the reader may prefer to consider only graphs
−→
H such that all(

k
ℓ

)
sets of k − ℓ vertices of

−→
H are non-equivalent, so that when we extend an ℓ

vertex graph to a graph isomorphic to
−→
H we can identify which k − ℓ vertices

of [k] the new vertices correspond to. In general, we may resolve ambiguous
cases arbitrarily. (One could instead collapse the corresponding types in the
branching process, but this complicates the description.) Let M be the

(
k
ℓ

)
-by-(

k
ℓ

)
matrix defined as follows: given two ℓ-element subsets A and B of [k], let

S be the subgraph of
−→
H induced by the vertices in A, and consider a set N of

k − ℓ ‘new’ vertices joined to each other and to all vertices in A. Let MBA be
the number of ways of orienting these new edges so that A∪N forms a copy of−→
H , and the new vertices correspond to [k] \ B. For ℓ = k − 1, this generalizes
the definition above.

Let X = X−→
H

be the multi-type Galton–Watson branching process in which

each particle has a type from
(
[k]
ℓ

)
, started with one particle of each type,

in which children of a particle of type A are generated as follows: first gen-
erate independent Poisson random variables ZB, B ∈

(
[k]
ℓ

)
, with E(ZB) =

MBA

(
n

k−ℓ

)
p(k

2)−(ℓ
2). Then generate

∑
B 6=A′ ZB children of each type A′. Let
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σ−→
H

= σ−→
H

(p) denote the survival probability of X. The proof of Theorem 11
extends very easily to prove the following result.

Theorem 12. Fix 1 ≤ ℓ < k and an orientation
−→
H of Kk, and let p = p(n) be

chosen so that nk−ℓp(k

2)−(ℓ

2) = Θ(1). Then, for any ε > 0, whp we have

(σ−→
H

(µ) − ε)ν ≤ C1(
−→
Gk,ℓ

p ) ≤ (σ−→
H

(µ) + ε)ν,

where ν =
(
n
k

)
(k!/aut(

−→
H ))p(k

2) is the expected number of copies of
−→
H in

−→
G(n, p).

�

Theorem 12 is rather unwieldy, but it is not too hard to extract the critical
point. Indeed, in X the expected number of type-B children of a particle of type

A is XBA

(
n

k−ℓ

)
p(k

2)−(ℓ
2), where XBA = (J−I)M , with I the identity matrix and

J the matrix with all entries 1. From elementary branching process results, the
critical value of p is thus given by the solution to

λ

(
n

k − ℓ

)
p(k

2)−(ℓ
2) = 1,

where λ is the maximum eigenvalue of X = (XBA).

Note that this is consistent with Theorem 11: taking
−→
H to be

−→
Kk, that

is, Kk with a transitive order, it is easy to check that MBA = (k − ℓ)! for

every A,B ∈
(
[k]
ℓ

)
. Indeed, we must choose one of the (k − ℓ)! possible orders

on the new vertices. Then the relative order of the new and old vertices is
determined by the fact that the new vertices should play the role of [k] \ B in

the resulting
−→
Kk. It follows that X is the

(
k
ℓ

)
-by-

(
k
ℓ

)
matrix with all entries

equal to (
(
k
ℓ

)
− 1)(k − ℓ)!, so

λ =

(
k

ℓ

)((
k

ℓ

)
− 1

)
(k − ℓ)! =

((
k

ℓ

)
− 1

)
k!

ℓ
.

To give a non-trivial application of Theorem 12, let
−→
H be the orientation of

K4 shown in Figure 1. Then M is given by (7), so we have

X =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0







3 3 0 0
3 3 0 0
0 0 1 1
0 0 1 1


 =




3 3 2 2
3 3 2 2
6 6 1 1
6 6 1 1




It follows that λ, which may be found as twice the maximum eigenvalue of a

2-by-2 matrix, is equal to 2(2 +
√

13), so the critical p is
(
(4 + 2

√
13)n

)−1/3
.

2.2 Cliques joined by edges

In this subsection we return to unoriented graphs, and consider another natural
notion of adjacency for copies of Kk in a graph G: given a parameter 1 ≤ ℓ ≤ k2,
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two Kks are considered adjacent if they are vertex disjoint and there are at least
ℓ edges of G from one to the other. (One could omit the disjointness condition;
much of the time this will make little difference. Insisting on this condition
simplifies the picture slightly.) Let G̃k,ℓ(G) be the corresponding graph on the

copies of Kk in G, and let G̃k,ℓ
p = G̃k,ℓ(G(n, p)) be the graph obtained in this

way from G(n, p). For this notion of adjacency, the most natural special case
to consider is ℓ = 1; the other extreme case, ℓ = k2, of course corresponds to
considering copies of K2k sharing k vertices.

It turns out that we can fairly easily determine the percolation threshold
in G̃k,ℓ

p for those parameters (k, ℓ) for which, near the threshold, there are ‘not
too many’ copies of Kk in G(n, p); more precisely, there are o(n) copies. This
always includes the case ℓ = 1.

Let µ′ = µ′(n, k, ℓ, p) be given by

µ′ =

(
n

k

)(
k2

ℓ

)
p(k

2)+ℓ, (8)

and, as before, let ν = ν(n, k, p) =
(
n
k

)
p(k

2) be the expected number of copies of

Kk in G(n, p), so ν = E |G̃k,ℓ
p |. Let X0(λ) denote a Galton–Watson branching

process in which the offspring distribution is Poisson with mean λ, started with
a single particle, and let σ0(λ) denote the survival probability of X0(λ). Note
that σ0(λ)n is the asymptotic size (number of vertices) in the largest component
of G(n, λ/n).

The following result is analogous to Theorem 1, but, in part due to the extra
assumption on ν, much simpler.

Theorem 13. Fix k ≥ 3 and 1 ≤ ℓ ≤ k − 2. Let p = p(n) be chosen so that

µ′ = Θ(1) and ν = o(n). Then, for any ε > 0,

(σ0(µ′) − ε)ν ≤ C1(G̃k,ℓ
p ) ≤ (σ0(µ′) + ε)ν (9)

holds whp.

Note that there is a choice of p = p(n) satisfying the conditions of The-
orem 13 if and only if ℓ < k/2. Indeed, the main force of Theorem 13 is to

establish that in this case, the threshold for percolation in G̃k,ℓ
p is at the solu-

tion p0 to µ′(p) = 1, which satisfies p0 = Θ(n− 2k
k(k−1)+2ℓ ), with the constant given

by (8). As in Section 1, the proof of Theorem 13 will give an O(log n) bound
in the subcritical case, as well as an o(ν) bound on the 2nd largest component
in the supercritical case. The former applies also for ℓ ≥ k/2, but only under
the assumption that ν = o(n), i.e., well below what is presumably the critical
point in this case. One can also extrapolate to the highly supercritical case as
in Subsection 1.3. Here one needs the condition ν = o(n) only for the starting
value of p, and the conclusion is that for 1 ≤ ℓ < k/2 and any p with p/p0 → ∞
one has, as expected, almost all vertices of G̃k,ℓ

p in a single component.
After these remarks, we turn to the proof of Theorem 13.
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Proof. We start with the upper bound. Let us call a copy of Kk in G(n, p)
isolated if it shares no vertices with any other copies of Kk. Let N and M
denote the number of isolated and non-isolated copies of Kk in G(n, p). By a
standard calculation, the probability that a given copy of Kk is not isolated is
(1 + o(1))kν/n = o(1), so E(M) = o(ν), and whp we have M = o(ν). More
precisely, we may choose some ω = ω(n) → ∞ so that the event B that M ≥ ν/ω
has probability o(1). Since the number of copies of Kk in G(n, p) is concentrated
about its mean, choosing ω suitably, the event A that |N − ν| ≤ ν/ω also holds
whp.

Let S1, S2, . . . , SN list the vertex sets of all isolated copies of Kk in G(n, p),
and T1, . . . , TM those of all non-isolated copies. We condition on N , M , and
the sequences (Si) and (Ti). We assume that A \ B holds; we may do so since
P(A \ B) = 1 − o(1). Let E denote one of the specific events we condition on,
and let E+ denote the set of all edges lying within some Si or Ti, and E− the
set of all

(
n
2

)
− |E+| remaining potential edges of G. Let us call a non-empty

set F ⊂ E− forbidden if by adding zero of more edges of E+ to F one can
form a Kk; we write F for the collection of forbidden sets. The event E may
be represented as the intersection of an up-set condition U , that every edge in
E+ is present in G(n, p), and a down-set condition D, that no forbidden set is

present in E−. Note that D may be regarded as a down-set in {0, 1}E−

.
For the moment, we condition only on U . To be pedantic (while, at the same

time, committing the common abuse of using the same notation for a random
variable and its possible values), we fix sequences (Si) and (Ti) consistent with
A \ B, and condition on the event U = U((Si), (Ti)). Since we are conditioning
only on the presence of a fixed set of edges, every edge of E− is present inde-
pendently with probability p. Let H be the auxiliary graph with vertex set [N ]
in which i and j are joined if Si and Sj are joined by at least ℓ edges. The
probability p′ of this event satisfies

p′ =

(
k2

ℓ

)
pℓ + O(pℓ+1) ∼ µ′/ν ∼ µ′/N.

Since, given U , H has exactly the distribution of G(N, p′), it follows from the
classical result of Erdős and Rényi [11] that whp the largest component of H
has order within εN/2 of σ0(µ′)N . Note that this corresponds to the desired

number of Kks in the largest component C of G̃k,ℓ
p . The problem is that we have

not yet conditioned on D, or allowed for the possible presence of non-isolated
Kks in C.

To prove the upper bound in (9) we must account for the non-isolated Kks.
Let us say that Si and Tj form a bad pair if they are joined by ℓ edges in
G(n, p). Given U , the probability of this event is exactly p′, so the expected
number of bad pairs (Si, Tj) is p′NM = o(p′N2) = o(N). Similarly, Ti and Tj

form a bad pair if they are vertex disjoint, and joined by at least ℓ edges. The
expected number of bad pairs (Ti, Tj) is at most p′M2 = o(N). Let H ′ ⊃ H
be the graph on [N + M ] defined in the natural way: two vertices are joined if
the corresponding copies of Kk are disjoint and joined by at least ℓ edges. We
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have shown that E(H ′) \ E(H), which is exactly the number of bad pairs, has
expectation o(N).

It is well known that for λ fixed, the giant component in G(m,λ/m) is stable
upwards, in the sense that adding op(m) vertices and edges cannot increase its
size by more than op(m). Indeed, this follows from the qualitative form of the
distribution of the small components: for details, see, for example, Theorem 3.9
of Bollobás, Janson and Riordan [5], where the corresponding result is proved
for a more general model. (This result also shows ‘downwards stability’, which
we do not need here. Downwards stability is much harder to prove: Luczak
and McDiarmid [15] established this for the Erdős–Rényi model; in [5], their
argument is extended to the more general model considered there.) Applying
this stability result to H , we deduce that, given U , we have C1(H ′) = C1(H) +
op(N). For any n′, we have

P(C1(H ′) ≥ n′ | E) = P(C1(H ′) ≥ n′ | U ∩ D) ≤ P(C1(H ′) ≥ n′ | U),

where the inequality is from Harris’s Lemma applied in {0, 1}E−

. Since H ′ is

exactly the graph G̃k,ℓ
p , the upper bound in (9) follows.

Turning to the lower bound, we may now ignore the complications due to
non-isolated Kks, and confine our attention to H . However, we must now show
that conditioning on D, which tends to decrease C1(H), does not do so too much.
We shall use the same type of argument as in the proof of Lemma 7: exploring
H step by step, we shall show that conditioning on D does not decrease the
probability of finding an edge in H by showing that finding an edge in H would
not decrease the probability of D much. There will be some complications due,
for example, to the possible presence of Kks made up of edges in G = G(n, p)
corresponding to edges in H .

As before, we shall condition on (Si) and (Ti), assuming that A \ B holds,
i.e., that N ∼ ν and M = o(ν). In fact, we shall impose a further condition.
Let B′ be the event that there is a vertex of G(n, p) in more than (log n)2 copies
of Kk, noting that whether or not B′ holds is determined by the sequences (Si)

and (Ti). Since ν =
(
n
k

)
p(k

2) = o(n), it is easy to check that P(B′) = o(1): we
omit the standard calculation which is based on the fact that Kk is strictly
balanced, so having found a moderate number of Kks containing a given vertex
v does not significantly increase the chance of finding a further such Kk.

From now on we condition on the sequences (Si) and (Ti), assuming as we
may that A \ (B ∪ B′) holds. Defining U = U((Si), (Ti)) and D = D((Si), (Ti))
as before, this is again equivalent to conditioning on U ∩D. As before, since we
fix (Si) and (Ti), the event U is simply the event that every edge in the fixed
set E+ =

⋃
E(Si) ∪

⋃
E(Ti) is present in G(n, p). Note for later that, since B′

does not hold, we have
dE+(v) ≤ k(logn)2 (10)

for every v ∈ V (G), where dE+(v) is the number of edges of E+ incident with
v.

Let f1, f2, . . . be the
(
N
2

)
possible edges of H , listed in an arbitrary order.

We now describe an algorithm that reveals a subgraph H0 of H . During step

26



r, 1 ≤ r ≤
(
N
2

)
, we shall test whether fr is present in H , except that if fr,

together with some previously discovered edges of H0, would form a cycle in
H0, or would cause the degree of some vertex of H0 to exceed (logn)2, then we
omit step r. Step r consists of a series of sub-steps: in each we consider one of

the
(
k2

ℓ

)
sets I of ℓ potential edges of G = G(n, p) whose presence would give

rise to the edge fr in H , and test whether all edges in I are present in G. If
such a test succeeds, we add fr to H0, and omit further tests for the same fr,
i.e., continue to step r + 1.

Suppose that we have reached the tth sub-step of the algorithm described
above, and let I = It be the set of ℓ potential edges of G whose presence
we are about to test for. We claim that, given the history, the conditional
probability that all edges in I are is present is (1 + o(1))pℓ. More precisely, let
E+

t be the union of all sets Is, s < t, which we found to be present, and let
Ut = {E+

t ⊂ E(G)}. Also, let Ft be the set of sets Is, s < t, found to be absent,
and let Dt be the event that no F ∈ Ft is present in E(G). Recalling that we
start by conditioning on U∩D, the algorithm reaches its particular present state
if and only if U ∩ D ∩ Ut ∩ Dt holds, so our precise claim is that for any η > 0,
if n is large enough, then for any possible It, Ut and Dt we have

P
(
It ⊂ E(G) | U ∩ D ∩ Ut ∩ Dt

)
≥ (1 − η)pℓ. (11)

Before proving (11), let us see that the Theorem 13 follows. Let H1 be the
union of H0 and all edges fr which we omitted to test. Assuming (11), we
always have

P
(
fr ∈ E(H1) | E(H1) ∩ {f1, . . . , fr−1}

)

≥ (1 − η − o(1))

(
k2

ℓ

)
pℓ ∼ (1 − η)p′ ∼ (1 − η)µ′/N. (12)

Indeed, if fr is omitted, the conditional probability above is 1 by definition;

otherwise, we apply (11) to the
(
k2

ℓ

)
sub-steps associated to fr. Now (12) tells

us that for n large enough, H1 stochastically dominates G(N, (1 − 2η)µ′/N),
say. Taking η small enough, it follows that whp

C1(H1)/N ≥ σ0((1 − 2η)µ′) − ε/4 ≥ σ0(µ′) − ε/2. (13)

If ∆(H) ≤ (log n)2 − 1, then we only omit step r if adding fr would create
a cycle, so in this case H0 is the union of one spanning tree for each component
of H , and all edges of H1 join vertices of H0 that are already joined by paths
in H0. Hence C1(H0) = C1(H) = C1(H1). As noted earlier, given only U ,
the graph H has exactly the distribution of G(N, p′). Since U is a principal
up-set, and D is a down-set, it follows that the distribution of H given U ∩ D,
which is what we are considering here, is stochastically dominated by that of
G(N, p′). Since Np′ ∼ µ′ = Θ(1), it follows that whp ∆(H) ≤ (log n)2 − 1, so
whp C1(H) = C1(H1). Since N ∼ ν, this together with (13) gives the lower
bound in (9), completing the proof of Theorem 13.
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It remains only to prove (11). Let us start by observing that E+
t ∪ It cannot

contain any forbidden set F ∈ F , i.e., that the set E+ ∪E+
t ∪ It contains no Kk

other than S1, . . . , SN , T1, . . . , TM . This is true of E+ ∪ E+
t since we condition

on D, and we are assuming that the present state of the algorithm is a possible
one. Suppose then that adding It to E+ ∪E+

t creates a new copy K of Kk, and
let the edge fr we are testing be ij. Now E+

t contains edges between Si′ and
Sj′ if and only if we have already found the edge i′j′ in H0. If K meets three or
more of the Si′ , then H0 ∪ fr would contain a triangle, which is impossible by
definition of the algorithm. This leaves only the case that K meets exactly two
sets Si′ , which must be Si and Sj . But then the only edges of E+

t ∪ It between
Si and Sj are those of It. Now K contains at least k − 1 edges between these
sets, while |It| = ℓ < k − 1, so there is no such Kk.

There are two types of conditioning in (11), that on U ∩ Ut and that on
D∩Dt. The first type is trivial, since U ∩Ut is simply the event that every edge
in E+ ∪ E+

t is present. Let X = E(Kn) \ (E+ ∪ E+
t ). Then we may as well

work in P
X , the product probability measure on {0, 1}X in which each edge is

present with probability p. Let

F̃t = {F ∩X : F ∈ F ∪ Ft}, (14)

and let D̃ ⊂ {0, 1}X be the event that none of the ‘forbidden’ sets in F̃t is

present, so P
X(D̃) = P(D ∩ Dt | U ∩ Ut). Also, let It ⊂ {0, 1}X be the event

that all edges in It are present, noting that It ⊂ X . Then (11) is equivalent to

P
X(It | D̃t) ≥ (1 − η)PX(It). (15)

The key idea is to split F̃t into two sets, F̃ ′ and F̃ ′′, the first consisting of those
F that intersect It, and the second those that do not. It turns out that we can
ignore the ones that do not. More precisely, let D̃′ be the event that no F ∈ F̃ ′

is present, and D̃′′ the event that no F ∈ F̃ ′′ is present, so D̃t = D̃′ ∩ D̃′′.
We may rewrite (15) in any of the following forms, which are step-by-step

trivially equivalent: (we drop the superscript X at this point, since the events
we are now considering are in any case independent of edges outside X)

P(It | D̃′ ∩ D̃′′) ≥ (1 − η)P(It)
P(It ∩ D̃′ ∩ D̃′′) ≥ (1 − η)P(It)P(D̃′ ∩ D̃′′)

P(D̃′ ∩ D̃′′ | It) ≥ (1 − η)P(D̃′ ∩ D̃′′)

P(D̃′ | It ∩ D̃′′)P(D̃′′ | It) ≥ (1 − η)P(D̃′ | D̃′′)P(D̃′′)

P(D̃′ | It ∩ D̃′′) ≥ (1 − η)P(D̃′ | D̃′′). (16)

The only step which is not trivial from the definition of conditional probability
is the last one: for this we note that by definition D̃′′ depends only on edges of
X \ It.

We shall prove (16) by simply ignoring the conditional probability on the
right, showing that

P(D̃′ | It ∩ D̃′′) ≥ (1 − η).
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This clearly implies (16), and hence, from the argument above, implies (11).

Let Ũ ′ be the complement of D̃′, so our aim is to show that P(Ũ ′ | It ∩D̃′′) ≤ η.
Now It is again an event of a very simple form, that a certain particular set
It of edges is present. Since Ũ ′ is an up-set while D̃′′ is a down-set, applying
Harris’s Lemma in {0, 1}X\It, it follows that

P(Ũ ′ | It ∩ D̃′′) ≤ P(Ũ ′ | It),

so it suffices to prove that P(Ũ ′ | It) ≤ η.
At this point we have eliminated all non-trivial conditioning; all that is left

is counting. Indeed,

P(Ũ ′ | It) ≤
∑

F ′∈ eF ′

p|F
′\It|. (17)

Recalling (14), there are two contributions to the sum above. The first is from

sets F ′ ∈ F̃ ′ corresponding to sets Is ∈ Ft, i.e., to failed tests for previous Is.
By definition of F̃ ′, we have such an F ′ ∈ F̃ ′ if and only if Is ∩ It 6= ∅, in which
case Is and It correspond to the same potential edge fr of H . But then there are

at most
(
k2

ℓ

)
− 1 possibilities for Is, and for each we have |F ′ \ It| = |Is \ It| ≥ 1,

so the contribution to (17) is O(p) = o(1).
The remaining terms come from F ′ = F∩X with F ∈ F and with F ′∩It 6= ∅,

i.e., with F ∩ It 6= ∅. Recalling that F is a set of edges that, together with E+,
would create a Kk, it thus suffices to show that

∑

K

pE(K)\(E+∪E+
t ∪It) = o(1), (18)

where the sum runs over all copies of Kk on V (G) containing at least one edge
from It. Now H0 has maximum degree at most (logn)2 by the definition of our
algorithm. Hence dE+

t
(v) ≤ ℓ(logn)2 for every v ∈ V (G). Using (10) it follows

that the graph G′ on V (G) formed by the edges in E+ ∪E+
t ∪ It has maximum

degree at most (k + ℓ)(logn)2 + ℓ ≤ (logn)3, say. This is all we shall need to
prove (18).

Let Zi be the contribution to the sum in (18) from copies K of Kk such
that K ∩ G′ has exactly i components (including trivial components of size 1).
Since K must contain an edge of It ⊂ E(G′), we have 1 ≤ i ≤ k − 1. Let
∆ = ∆(G′) ≤ (logn)3, and set

zi = ℓni−1∆k−1−ip(k
2)−(k+1−i

2 ).

It is easy to check that for 1 ≤ i ≤ k − 1 we have Zi ≤ zi: there are ℓ choices
for (one of the) edges of It to include, then picking vertices one by one, either n
choices if we start a new component of K∩G′, or at most ∆ if we do not. Finally,
if K ∩G′ has i components, then considering the case where these components
are all complete, by convexity E(K ∩G′) is maximized if the components have
sizes k + 1 − i, 1, 1, . . . , 1, so |E(K) \E(G′)| ≥

(
k
2

)
−
(
k+1−i

2

)
. For i = 1 we may
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improve our estimate slightly: since G′ does not contain Kk, we gain at least a
factor of p, so Z1 ≤ pz1.

Now Z1 ≤ pz1 = pℓ∆k−2 ≤ p(log n)O(1) = o(1), so this contribution to (18)
is negligible. To handle the remaining cases, note that

zi+1/zi = n∆−1pk−i,

so zi+1/zi increases as i increases. Hence the maximum of zi for 2 ≤ i ≤ k − 1
is attained either at i = 2 or at i = k− 1. Now z2 = ℓn∆k−3pk−1, and it is easy

to check that this is o(1). Indeed, since µ′ = Θ(1) we have p = Θ(n− 2k
k(k−1)+2ℓ ),

and since 2k(k − 1) > k(k − 1) + 2ℓ we have that npk−1 is a constant negative
power of n.

At the other end of the range, zk−1 = ℓnk−2p(k
2)−1 = Θ(ν/(n2p)) = o(1/(np)),

and we have np → ∞. Thus both z2 and zk−1 are o(1), which gives zi = o(1)
for 2 ≤ i ≤ k − 1. Thus

∑

K

pE(K)\(E+∪E+
t ∪It) =

k−1∑

i=1

Zi ≤ pz1 +

k−1∑

i=2

zi = o(1),

proving (18). This was all that remained to prove the theorem.

It is natural to wonder whether Theorem 13 can be extended. For ℓ = 1,
the picture is complete: defining p0 by µ′(p0) = 1, since µ′ = Θ(νpℓ) = Θ(νp)
we have ν = Θ(1/p0) = o(n) whenever p = Θ(p0). As noted earlier, percolation

in G̃k,ℓ
p for p/p0 → ∞ follows by monotonicity arguments.

For general k and ℓ, the conditions of Theorem 13 can presumably be relaxed
at least somewhat. Unfortunately, the proof we have given relies on ν = o(n),
and hence on ℓ < k/2.

2.3 Copies of general graphs

We conclude this paper by briefly considering the graph Gℓ
H(p) obtained from

G(n, p) by taking one vertex for each copy of some fixed graph H with |H | = k,
and joining two vertices if these copies share at least ℓ vertices, where 1 ≤ ℓ ≤
k − 1. Ones first guess might be that the results in Section 1 extend at least
to regular graphs H without much difficulty, but this turns out to be very far
from the truth. In fact, it seems that almost all cases are difficult to analyze.

We start with the most interesting end of the range, where ℓ = k − 1, as in
the original question of Derényi, Palla and Vicsek [10]. To keep things simple,
let H be the cycle Ck. For k = 3, Ck is complete, so this case is covered in
Section 1. The case of C4 is already interesting: when moving from one copy of
C4 to another, we may change opposite vertices essentially independently of each
other. The appropriate exploration is thus as follows: suppose we have reached a
C4 with vertex set P0∪P1, where each of P0 and P1 is a pair of opposite vertices.
Furthermore, suppose we reached this C4 from another C4 containing P0. Then
we continue by replacing P0 by some other pair P2 of common neighbours of P1.
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Suppose that p = Θ(n−1/2); in particular, set p = λn−1/2. The number Z of
common neighbours of P1 outside P0 has essentially a Poisson distribution with
mean λ2. The number of choices for P2 6= P0 is

(
Z+2
2

)
−1, which has expectation

E

(
(Z + 2)(Z + 1)

2
− 1

)
= E

(
Z(Z − 1)

2
+ 2Z

)
= λ4/2 + 2λ2,

so we believe the critical point will be when this expectation is 1, i.e., at

p = p0 = n1/2

√√
6 − 2. (19)

Of course, it is not clear that the branching process approximation we have
implicitly described is a good approximation to the component exploration pro-
cess. However, it is not hard to convince oneself that this is the case, at least
at first. The key point is that when we have not yet reached many vertices,
the chance of finding a new vertex adjacent to three or more reached vertices
is very small. Hence the sets of common neighbours of two pairs P and P ′ are
essentially independent, even if P and P ′ share a vertex. We have not checked
the details, but we expect that it is not hard to show rigorously that p0 is in-
deed the threshold in this case, although unforeseen complications are of course
conceivable.

Taking things further, one might expect the argument above to work for C6,
say, but in fact it breaks down after one step. Suppose we start from aubvcw
and first replace a, b and c by other suitable vertices. Then we have sets A,
B and C of candidates for a, b, and c. The problem is at the next step: the
possibilities for u′, v′, w′ associated to different triples (a′, b′, c′) ∈ A × B × C
are far from independent: for triples (a′, b′, c′) and (a′, b′, c′′), the choices for u′

are exactly the same. In fact, not only can we not prove a result for any Ck,
k ≥ 5, but we do not even have a conjecture as to the correct critical probability,
although this is clearly of order Θ(n−1/2).

Although C4 is the simplest non-complete example, cycles turn out not to
be the easiest generalization: it is almost certainly not hard to adapt the outline
argument above to complete bipartite graphs Kr,s. If s = r, then setting p =
λn−1/r, and letting Zr denote a Poisson random variable with mean λr, the
critical point should be given by the solution to

E

((
Zr + r

r

)
− 1

)
= 1,

generalizing (19). If r 6= s, the situation is a little different, as alternate steps
in the exploration have different behaviour. Suppose that r < s, and set p =
λn−(s+1)/(rs+s). Then npr → ∞ and nps → 0, so on average a set of r vertices
has many common neighbours, and so lies in many copies of Kr,s, while a typical
set of s vertices has no common neighbours. Starting from a given Kr,s, with
vertex classes R and S of sizes r = |R| and s = |S|, let T denote the set of
common neighbours of R. Then E(|T \ S|) = (n − r)pr → ∞, and |T | will be

concentrated near npr. Replacing S by any of the other
(
|T |
s

)
− 1 ∼ nsprs/s!
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subsets S′ of T of size s, since sets of size s have few common neighbours,
the most likely way the exploration will continue is that some S′ will have one
common neighbour x outside R. Then for each vertex y of R we reach a new
Kr,s with R replaced by R \ {y} ∪ {x}. For each S′ we expect to find around
nps → 0 such vertices x, so overall the average number of new choices for
R′ is (1 + o(1))nsprss!−1npsr, and we expect the critical point to be given by
λn−(s+1)/(rs+s) where λ satisfies λrs+s = s!/r; we have not checked the details.

Finally, since the case ℓ = k−1 seems too hard in general, one could consider
the other extreme ℓ = 1. This is much easier, though also less interesting. If
H is strictly balanced, it is very easy to see that the critical point occurs when
(k− 1)µ = 1, where µ is the expected number of copies of H containing a given
vertex v. For non-balanced H things are a little more complicated: having
found a ‘cloud’ of copies of H containing a single copy of the (for simplicity
unique) densest subgraph H ′ of H , one next looks for a second cloud meeting
the current cloud, and the critical point should be when the expected number
of clouds meeting a given cloud is 1. This type of argument can probably be
extended to ℓ = 2, at least if we impose the natural condition in this case that
our copies of H should share an edge, rather than just two vertices. Beyond
this, the whole question seems very difficult.
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