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MINORS IN RANDOM REGULAR GRAPHS

NIKOLAOS FOUNTOULAKIS, DANIELA KÜHN AND DERYK OSTHUS

Abstract. We show that there is a constant c so that for fixed r ≥ 3 a.a.s. an r-regular
graph on n vertices contains a complete graph on c

√
n vertices as a minor. This confirms

a conjecture of Markström [17]. Since any minor of an r-regular graph on n vertices has at
most rn/2 edges, our bound is clearly best possible up to the value of the constant c. As
a corollary, we also obtain the likely order of magnitude of the largest complete minor in a
random graph Gn,p during the phase transition (i.e. when pn → 1).

1. Introduction

We say that a graph G contains a complete graph on k vertices (denoted by Kk) as a
minor if we can obtain a copy of Kk after a series of contractions of the edges and deletions
of vertices or edges of G. We write Kk ≺ G in this case. Equivalently, G has a Kk minor
if there are k pairwise disjoint non-empty subsets of V (G) (which we call branch sets) such
that each of them is connected and any two of them are joined by an edge. The contraction
clique number ccl(G) of G is the largest integer k such that G has a Kk minor.

Originally, the study of the order of the largest complete minor in a random graph was
motivated by Hadwiger’s conjecture which states that ccl(G) ≥ χ(G) for any graph G.
Bollobás, Erdős and Catlin [7] showed that the proportion of graphs on n vertices that
satisfy Hadwiger’s conjecture tends to 1 as n tends to infinity. For this, they determined
the likely value of ccl(Gn,p) for the random graph Gn,p with constant edge probability p and
compared this with known results on χ(Gn,p). Krivelevich and Sudakov [13] investigated
ccl(G) for expanding graphs G and derived the order of magnitude of ccl(Gn,p) from their
results when p is a polynomial in n. In [9], we extended these results to any p with pn ≥ c
for some constant c > 1, which answered a question from [13]. In particular, we showed that
if pn = c for some fixed c > 1 then a.a.s.

(1) ccl(Gn,p) = Θ(
√
n).

The upper bound is immediate, as for such p a.a.s. the random graph Gn,p has Θ(n) edges
and no minor of a graph G can contain more edges than G itself. Here we write that an
event regarding a graph on n vertices holds a.a.s. if the probability of this event tends to 1
as n tends to infinity.

Markström [17] had earlier conjectured a similar phenomenon as in (1) for the case of
random regular graphs. For any r ≥ 3 and n ≥ 4 such that rn is even, we denote by G(n, r)
a graph chosen uniformly at random from the set of r-regular simple graphs on n vertices.
Throughout, we consider the case where r is fixed. The number of edges of G(n, r) is rn/2
and so the same argument as above shows that ccl(G(n, r)) ≤ 2

√
rn. However the lower

bound in (1) does not imply that a random r-regular graph satisfies ccl(G(n, r)) = Ω(
√
n) as

the asymptotic structure of G(n, r) is quite different from that of Gn,r/n (see for example [20]
or Chapter 9 in [11]). Markström [17] proved that G(n, 3) a.a.s. contains a complete minor
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of order k, for any integer k ≥ 3 and conjectured that G(n, 3) contains a complete minor of
order Ω(

√
n). In this paper, we verify this conjecture for any r ≥ 3:

Theorem 1. There exists an absolute constant c > 0 such that for every fixed r ≥ 3 a.a.s.
c
√
n ≤ ccl(G(n, r)) ≤ 2

√
rn.

This result can be combined with results of  Luczak [15] to determine the likely order of
magnitude of ccl(Gn,p) during the phase transition, i.e. when pn → 1 (see Section 2 for
details).

Corollary 2. There exists an absolute constant c > 0 such that whenever np = 1 + λn−1/3,
where λ = λ(n) → ∞ but λ = o(n1/3), then a.a.s. cλ3/2 ≤ ccl(Gn,p) ≤ 4λ3/2.

 Luczak, Pittel and Wierman [16] previously showed that a.a.s. ccl(Gn,p) is unbounded

for p as in Corollary 2. For smaller p (i.e. when np ≤ 1 + λn−1/3 for some constant λ) they
showed that ccl(Gn,p) is bounded in probability, i.e. for every δ > 0 there exists C = C(δ)
such that P(ccl(Gn,p) > C) < δ. As described earlier, values of p which are larger than those
allowed for in Corollary 2 but bounded away from 1 are covered in [9]. So altogether, all
these results determine the likely order of magnitude of ccl(Gn,p) for any p which is bounded
away from 1.

The results in [16] were proved in connection with the following result on the limiting
probability g(λ) that Gn,p is planar in the above range. The authors proved that if λ is
bounded, then g(λ) is bounded away from 0 and 1. If λ → −∞, then g(λ) → 1, whereas if
λ → ∞, then g(λ) → 0.

The result in (1) and Theorem 1 raise the question of whether one can extend these results
to other (not necessarily random) graphs. A natural class to consider are expanding graphs:
A graph G on n vertices is an (α, t)-expander if any X ⊆ V (G) with |X| ≤ αn/t satisfies
|N(X)| ≥ t|X|, where N(X) denotes the external neighbourhood of X.

Problem 3. Is there a constant c > 0 such that for each r ≥ 3 every r-regular (1/3, 2)-
expander satisfies ccl(G) ≥ c

√
n?

An answer to the problem would indicate whether expansion alone is sufficient when
trying to force a complete minor of the largest possible order in a sparse graph, or whether
other parameters are also relevant. Krivelevich and Sudakov [13] showed that we do have

ccl(G) ≥ c
√

n/ log n if r ≥ 10. (They also considered the case when r is not bounded but
grows with n.) As observed in [13], this bound can also be deduced from a result of Plotkin,
Rao and Smith [19] on separators in graphs without a large complete minor. Kleinberg and
Rubinfeld [12] also considered the same problem but with a weaker definition of expansion.

One can ask similar questions as above for topological minors. Topological minors in
random graphs were investigated in [6, 7, 1]. An analogue of Problem 3 would be to ask for
which values of α, t, r an r-regular (α, t)-expander on n vertices contains a subdivision of a
Kr+1. We expect that this might not be difficult to prove for fixed r but harder if r is no
longer very small compared to n.

2. Proof of Corollary 2

The upper bound in Corollary 2 will follow from basic facts about minors as well as the
structure of Gn,p. Bollobás [5] (see also [3] or [11]) proved that a.a.s. all the components
of Gn,p, except from the largest one, are either trees or unicyclic. Therefore none of them
contains a K4 minor. Let L1(Gn,p) denote the largest component of Gn,p. Given a graph G,
we define its excess as exc(G) := e(G)−|G|+1. (exc(G) is also called the cyclomatic number
of G.) Observe that if H and G are connected graphs and H ≺ G then exc(H) ≤ exc(G).
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Since exc(Kr) =
(r
2

)

− r + 1 ≥ r2/16 for r ≥ 4 this implies that if Kr ≺ L1(Gn,p) for some

r ≥ 4 then r2/16 ≤ exc(L1(Gn,p)), or equivalently

(2) r ≤ 4
√

exc(L1(Gn,p)).

 Luczak [14] gave a tight estimate on exc(L1(Gn,m)), where Gn,m is a random graph with n
vertices and m edges (i.e. Gn,m is chosen uniformly at random among all such graphs).

He proved that if m = n/2 + λ̄n2/3, where λ̄ = λ̄(n) → ∞ but λ̄ = o(n1/3), then a.a.s.

exc(L1(Gn,m)) = (1 + o(1))16λ̄3/3. This trivially implies that if m = n/2 + λ̄n2/3 + O(
√
n)

then a.a.s. exc(L1(Gn,m)) ≤ 8λ̄3. Together with the fact that
(n
2

)

p = n/2 + λn2/3/2 + O(1)

and Proposition 1.12 in [11] this implies that a.a.s. exc(L1(Gn,p)) ≤ λ3. But if the latter

holds and Kr ≺ L1(Gn,p) for some r ≥ 4 then (2) gives r ≤ 4λ3/2. Thus a.a.s. ccl(Gn,p) ≤
4λ3/2.

For the lower bound in Corollary 2 we will use the following result of  Luczak which is
contained in the proof of Theorem 5∗ in [15].

Theorem 4. Suppose that m = n/2 + λn2/3, where λ → ∞ and λ = o(n1/3). Then there is
a procedure which in any given graph G with n vertices and m edges finds a subdivision of
a (possibly empty) 3-regular graph C = C(G) such that a.a.s. |C(Gn,m)| = (32/3 + o(1))λ3

and conditional on |C(Gn,m)| = s in this range the distribution of C(Gn,m) is the same
as G(s, 3).

Loosely speaking, Theorem 4 implies that a.a.s. L1(Gn,m) contains a subdivision of a
random 3-regular graph G(s, 3) where s = (32/3 + o(1))λ3. Together with Theorem 1 this
implies that a.a.s.

ccl(Gn,m) ≥ ccl(C(Gn,m)) ≥ cλ3/2.

Again Proposition 1.12 from [11] now yields the lower bound of Corollary 2.

3. Sketch of proof of Theorem 1

We will use a result of Janson [10] which implies that it suffices to find a complete minor
in the union of a random Hamilton cycle and a random perfect matching. We split the
Hamilton cycle into paths P1 and P2 of equal length. We further split P1 into k connected
candidate branch sets Bi, where k is close to

√
n. Each of these candidate branch sets has

size roughly
√
n. We now split P2 into sets Pi of disjoint paths. The lengths of the paths

in Pi is roughly 3i, whereas the number of paths in Pi is roughly n/9i. For each pair (B,B′)
of candidate branch sets we aim to find a path P in some Pi such that both B and B′ are
joined to P by an edge of the random perfect matching. We let Ui−1 denote the set of pairs
of candidate branch sets for which we were not able to find such a path P in

⋃

j<iPj . We will

show inductively that |Ui| ≤ |Ui−1|/27 (with sufficiently high probability). By continuing
this for (log3 n)/6 stages and discarding a few atypical branch sets, we eventually obtain the
desired minor. This strategy is similar to that of [9]. However, the proof that it works is
very different: the argument in [9] was based on a greedy matching algorithm whose analysis
crucially relied on the independence of certain events. In the current setting, this no longer
works. So instead, in each stage we use Hall’s theorem to find a large matching in the
bipartite auxiliary graph whose vertex classes are Ui−1 and Pi and where a pair (B,B′) is
adjacent to a path P ∈ Pi if P can be used to join B and B′ as above. (Actually, it turns
out that we need to consider suitable subsets U ′

i−1 ⊆ Ui−1 and S ⊆ Pi for the argument to
work.) Though the number |Pi| of paths decreases in each stage, the increasing path length
means that the average degree of a pair (B,B′) in this auxiliary graph remains large (but
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bounded) in each stage and so we can indeed expect to find a large matching. On the other
hand, one can show that there might be a significant number of pairs from Ui−1 which are
isolated in the auxiliary graph. So we cannot hope to get away with just a single stage.

4. Models of random r-regular graphs

The aim of this section is to show that it suffices to find our complete minor in the union
of a random Hamilton cycle and a random perfect matching. To do this, let us first describe
the configuration model which was introduced by Bender and Canfield [2] and independently
by Bollobás [4]. For n ≥ 1 let Vn := {1, . . . , n}. Also for those n for which rn is even, we
let P := Vn × [r]. A configuration is a perfect matching on P . If we project a configuration
onto Vn, then we obtain an r-regular multigraph on Vn. Let G∗(n, r) denote the random
multigraph that is the projection of a configuration on P which is chosen uniformly at
random. It can be shown (see e.g. [11, p. 236]) that if we condition on G∗(n, r) being simple
(i.e. it does not have loops or multiple edges), then this is distributed uniformly among the
r-regular graphs on Vn. In other words, G∗(n, r) conditional on being simple has the same
distribution as G(n, r). We also let G′(n, r) denote a random multigraph whose distribution
is that of G∗(n, r) conditional on having no loops. We will use the above along with the
following (see Corollary 9.7 in [11]):

(3) lim
n→∞

P(G∗(n, r) is simple) > 0.

(Of course the above limit is taken over those n for which rn is even.) Let An be a subset of
the set of r-regular multigraphs on Vn. Altogether the above facts imply that if P(G′(n, r) ∈
An) → 0 as n → ∞ then P(G(n, r) ∈ An) → 0. Indeed, suppose that the former holds. Then

P(G(n, r) ∈ An) = P(G∗(n, r) ∈ An |G∗(n, r) simple) =
P(G∗(n, r) ∈ An, G∗(n, r) simple)

P(G∗(n, r) simple)

≤ P(G∗(n, r) ∈ An, G∗(n, r) has no loops)

P(G∗(n, r) has no loops)P(G∗(n, r) simple)
=

P(G′(n, r) ∈ An)

P(G∗(n, r) simple)

(3)→ 0.(4)

This allows us to work with G′(n, r) instead of G(n, r) itself.
Let us first assume that r = 3. The reason for working with G′(n, 3) is that we may think

of it as being the union of a random Hamilton cycle on Vn and a random perfect matching
on Vn. This is made precise by the notion of contiguity. If (µn) and (νn) are two sequences of
probability measures such that for each n, µn and νn are measures on the same measurable
space Ωn, then we say that they are contiguous if for every sequence of measurable sets
(An) with An ∈ Ωn we have limn→∞ µn(An) = 0 if and only if limn→∞ νn(An) = 0. Now
let H(n) + G(n, 1) denote the random multigraph on Vn that is obtained from a Hamilton
cycle on Vn chosen uniformly at random by adding a random perfect matching on Vn chosen
independently from the Hamilton cycle. Janson [10] (see also Theorem 9.30 in [11]) proved
that H(n) + G(n, 1) is contiguous to G′(n, 3).

Theorem 5. The random 3-regular multigraphs H(n)+G(n, 1) and G′(n, 3) are contiguous.

So instead of proving Theorem 1 directly, it suffices to prove the following result.

Theorem 6. There exists an absolute constant c′ > 0 such that a.a.s. the random multigraph
H(n) + G(n, 1) contains a complete minor of order at least c′

√
n.

Together with (4) and Theorem 5 this then implies the lower bound of Theorem 1 for
r = 3. The lower bound for r > 3 follows from Theorem 9.36 in [11] which states that for
each s ≥ 3 an increasing property that holds a.a.s. for G(n, s) also holds a.a.s. for G(n, s+1).
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5. Notation and large deviation inequalities

5.1. Notation. Given a graph G and two disjoint sets A and B of vertices, we say that
an edge of G is an A-B edge if it joins a vertex in A to a vertex in B. Given disjoint
subgraphs H and H ′ of G, we define H-H ′ edges of G similarly. Given a, b ∈ R we write
[a ± b] for the interval [a − b, a + b]. We will write ln2 n for (lnn)2. We omit floors and
ceilings whenever this does not affect the argument.

5.2. A concentration inequality. In this subsection, we will state a concentration in-
equality which we will use several times during the proof of Theorem 6. This is Theorem 7.4
in [18]. We first describe the more general setting to which this theorem applies.

Let W be a finite probability space that is also a metric space with its metric denoted
by d. Suppose that F0, . . . , Fs is a sequence of partitions of W such that Fj+1 refines Fj , F0

is the partition consisting of only one part (i.e. F0 = {W}) and Fs is the partition where
each part is a single element of W . Suppose that whenever A,B ∈ Fj+1 and C ∈ Fj are
such that A,B ⊆ C, then there is a bijection φ : A → B such that d(x, φ(x)) ≤ c. Now, let
w ∈ W be chosen uniformly at random and let f : W → R be a function on W satisfying
|f(x) − f(y)| ≤ d(x, y). Then for all a > 0

(5) P (|f(w) − E (f(w)) | > a) ≤ 2 exp

(−2a2

sc2

)

.

5.3. The hypergeometric distribution. Let Z be a non-empty finite set and Z ′ ⊆ Z.
Assume that we sample a set Y uniformly at random among all subsets of Z having size y.
Recall that the size of Y ∩ Z ′ is a random variable whose distribution is hypergeometric
and whose expected value is λ := y|Z ′|/|Z|. We will often use the following concentration
inequality that follows e.g. from Theorem 2.10 and Inequalities (2.5) and (2.6) in [11]:

(6) P
(

||Y ∩ Z ′| − λ| ≥ a
)

≤ 2 exp

(

− a2

2(λ + a/3)

)

for all a ≥ 0.

6. Proof of Theorem 6

6.1. Setup. Let Vn be a set of n vertices. We will expose the random multigraph H(n) +
G(n, 1) on Vn in stages starting with the Hamilton cycle H(n). We split H(n) into two paths
P1, P2 of equal lengths each having n/2 vertices. As described in Section 3, the (candidate)
branch sets for our minor will be subpaths of P1 and we will use the edges of the random
perfect matching G(n, 1) as well as subpaths of P2 to join them. Let us now turn to G(n, 1).
So consider a perfect matching M∗ on Vn chosen uniformly at random. Our first aim is to
estimate the number of P1-P2 edges of M∗.

Lemma 7. With probability 1 − O(1/ ln2 n) the number of P1-P2 edges of M∗ lies in the
interval [n/4 ±√

n lnn].

Proof. This is a simple application of Chebyshev’s inequality. For each vertex v ∈ V (P1)
set Xv := 1 if M∗ matches v to a vertex of P2 and set Xv := 0 otherwise. Then X :=
∑

v∈V (P1)
Xv is the number of P1-P2 edges of M∗. Note that for every v we have

P(Xv = 1) =
n/2

n− 1
= 1/2 + O(1/n).
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So EX = (n/2)(1/2 + O(1/n)) = n/4 + O(1). Also, for distinct v,w ∈ V (P1) we have

P(Xv = 1 | Xw = 1) =
n/2 − 1

n− 3
= 1/2 + O(1/n).

This implies that

E(X2) =
∑

v∈V (P1)

P(Xv = 1) +
∑

v 6=w∈V (P1)

P(Xv = Xw = 1)

= EX +
n

2

(n

2
− 1
)

(

1

4
+ O(1/n)

)

=
n2

16
+ O(n) = (EX)2(1 + O(1/n)).

So Chebyshev’s inequality implies that

P
(

|X − n/4| ≥
√
n lnn

)

≤ P
(

|X − EX| ≥ (
√
n lnn)/2

)

=
O(1/n)(EX)2

n ln2 n
= O(1/ ln2 n),

as required. �

Fix a positive constant ε. Throughout the proof we will assume that ε is sufficiently small
for our estimates to hold. (All conditions on ε will involve only absolute constants, i.e. will
be independent of n.) Suppose that n is sufficiently large compared to 1/ε. Let k and t be
integers such that

(7)

(

k

2

)

= ε4n and t :=

√
n

ε
.

So k = (1+o(1))ε2
√

2n. Consider any X1 ⊆ V (P1) and X2 ⊆ V (P2) such that |X1| = |X2| ∈
[n/4 ±√

n lnn]. Let X ′
1 ⊆ X1 be the set of the first kt vertices on P1 in X1. Let X ′

2 ⊆ X2

be any subset of size kt. Let X denote the event that X1 and X2 are the set of endvertices
of the P1-P2 edges in our random perfect matching M∗ on Vn. Similarly, let X ′ be the
event that M∗ matches X ′

1 to X ′
2. In what follows, we will condition on both X and X ′.

All our probability bounds will hold regardless of what the sets X1,X2,X
′
1,X

′
2 actually are

(provided that |X1| = |X2| is in the specified range).
Pick k consecutive disjoint subpaths B1, . . . , Bk of P1 such that |V (Bi) ∩X1| = |V (Bi) ∩

X ′
1| = t for all i = 1, . . . , k. The Bi’s will be called candidate branch sets and the vertices

in V (Bi) ∩X ′
1 will be called the effective vertices of Bi. We will show that a.a.s. there is a

complete minor whose branch sets are almost all the Bi’s. Set

(8) i0 := (log3 n)/6.

Choose consecutive disjoint subpaths Q1, . . . , Qi0 of P2 such that

(9) |Qi|eff := |V (Qi) ∩X ′
2| =

|X ′
2|

3i
=

kt

3i
=

(1 + o(1))
√

2εn

3i
.

The vertices in V (Qi) ∩X ′
2 are the effective vertices of Qi and |Qi|eff is the effective length

of Qi. We further divide each Qi into a set Pi of consecutive disjoint subpaths, each of
effective length

(10) ℓi := 100 · 3i−1.

(So each of these subpaths meets X ′
2 in precisely ℓi vertices.) Note that

(11) ℓi0 ≤ 100 · 3i0 = 100n1/6

and

(12) |Pi| =
|Qi|eff
ℓi

=
kt

300 · 9i−1
.
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Thus |Pi0 | = Θ(n2/3). The strategy of our proof is to expose the neighbours of the (effective)
vertices from X ′

2 in our random perfect matching M∗ in i0 stages. More precisely, during the
ith stage we will expose the neighbours of the effective vertices in Qi (for every 1 ≤ i ≤ i0).
We will show that with high probability during each stage we can use the paths in Pi to join
a large proportion of all those pairs of candidate branch sets that are still unjoined after the
previous stages. More precisely, an unjoined pair (B,B′) of candidate branch sets can be
joined through P ∈ Pi if our random perfect matching M∗ contains both a B-P edge and a
B′-P edge. In this case we will say that P can be used to join the pair (B,B′). Of course, if
we use P to join (B,B′) then P cannot be used to join another unjoined pair of candidate
branch sets.

Let us make the above more precise. Given 1 ≤ i ≤ i0, let Ui−1 denote the set of pairs of
candidate branch sets that are still unjoined after the (i− 1)th stage. So U0 is the set of all
pairs of candidate branch sets. Note that

(13) U0 := |U0| =

(

k

2

)

= ε4n.

We will show that with high probability during the ith stage we can join 26|Ui−1|/27 pairs
in Ui−1 using the paths belonging to Pi. So inductively we will prove that with high proba-
bility

(14) Ui := |Ui| =
U0

27i
=

ε4n

27i
.

Suppose that (14) holds for all j < i and that we now wish to analyze the ith stage. It will
turn out that the pairs in Ui−1 which contain candidate branch sets lying in too many other
pairs from Ui−1 create problems. So we will ignore these pairs. More precisely, let Bi−1 be
the set of all those candidate branch sets that belong to more than

(15) ∆i−1 :=
(3/2)i−1Ui−1

ε1/8k
=

U0

ε1/8(2 · 9)i−1k

pairs in Ui−1. Note that since |Bi−1|∆i−1 ≤ 2Ui−1 we have

(16) |Bi−1| ≤
2Ui−1

∆i−1
≤ 2ε1/8k

(3/2)i−1
.

Let U∗
i−1 be the set of all those pairs in Ui−1 having at least one branch set in Bi−1. Call

these pairs bad. If |U∗
i−1| ≥ 26Ui−1/27, delete precisely 26Ui−1/27 bad pairs from Ui−1 to

obtain Ui. If |U∗
i−1| < 26Ui−1/27 we let U ′

i−1 := Ui−1 \ U∗
i−1. We will show that during the

ith stage with high probability we can join all but Ui−1/27 pairs in U ′
i−1. We let Ui be the

set of the remaining unjoined pairs in U ′
i−1. Thus in both cases Ui = |Ui| satisfies (14) with

high probability.
After the end of stage i0 will delete all the candidate branch sets in B0 ∪ · · · ∪Bi0−1 (see

Section 6.5). The number of these candidate branch sets is

(17)

i0
∑

i=1

|Bi−1|
(16)
≤
∑

i≥1

2ε1/8k

(3/2)i−1
= 6ε1/8k.

6.2. Bounds on the number of effective vertices still available. We will now estimate
the number of all those effective vertices in each candidate branch set that are joined to a
path in P1∪ · · · ∪Pi−1, i.e. that are matched after the first i−1 stages. The total number of
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effective vertices in the candidate branch sets that are matched after the first i− 1 stages is

(18)
∑

j≤i−1

|Qj|eff
(9)
= kt

i−1
∑

j=1

1

3j
=

kt

2

(

1 − 3−(i−1)
)

=: xi−1.

Each xi−1-subset of the union X ′
1 of all the effective vertices in the candidate branch sets

is equally likely to be the set of these matched vertices. Thus for every candidate branch
set B the distribution of the number eff ′

i(B) of all those effective vertices in B which are
matched to (effective vertices on) paths in P1∪· · ·∪Pi−1 is hypergeometric. Since in total B
contains t effective vertices and |X ′

1| = kt we can now use (6) to see that

P

(

|eff ′
i(B) − xi−1t/kt| ≥ n1/4 lnn | X ,X ′

)

≤ exp
(

−Ω(ln2 n)
)

.

Thus,

eff ′
i(B) ∈

[xi−1

k
± n1/4 lnn

]

⊆
[

t

2
(1 − 3−(i−1)) ± n1/3

]

,

with (conditional) probability 1 − exp
(

−Ω(ln2 n)
)

. Now, let effi(B) := t − eff ′
i(B) be the

number of all those effective vertices in B that are still unmatched after the first i − 1
stages and let Effi(B) denote the set of all those effective vertices. Thus with (conditional)
probability 1 − k exp

(

−Ω(ln2 n)
)

= 1 − exp
(

−Ω(ln2 n)
)

we have

(19) eff i(B) ∈
[

t

2
(1 + 3−(i−1)) ± n1/3

]

for all candidate branch sets B.
Let M∗

i−1 be any matching which matches the set Eff(Q1) ∪ · · · ∪ Eff(Qi−1) of effective
vertices on the paths Q1, . . . , Qi−1 (equivalently the set of effective vertices on the paths
in P1 ∪ · · · ∪ Pi−1) into the set of effective vertices in the candidate branch sets. Suppose
that M∗

i−1 is the submatching of our random matching M∗ exposed after the first i−1 stages.
Then M∗

i−1 determines Effi(B) for every candidate branch set B. Moreover, by considering
a fixed ordering of all the pairs in U0, we may assume that M∗

i−1 also determines Ui−1.
Call M∗

i−1 good if (19) holds for all candidate branch sets B and if (14) holds for i − 1.
Consider any good M∗

i−1 and let M∗
i−1 denote the event that M∗

i−1 is the submatching of our
random matching M∗ exposed after the first i−1 stages. From now on we will condition on X ,
X ′ and M∗

i−1 and we let Pi(·) denote the corresponding conditional probability measure that
arises from choosing a random matching from the set Eff(Qi) of effective vertices on Qi into

the set
⋃k

j=1 Effi(Bj) of all those effective vertices in the candidate branch sets which are

not already endvertices of edges in M∗
i−1 (i.e. into the set of all those effective vertices in the

candidate branch sets that are still unmatched after the first i− 1 stages).
Given S ⊆ Pi and a candidate branch set B, we let EffS(B) denote the set of all those

effective vertices in B that are matched to some (effective) vertex on a path in S (in our
random matching M∗). Assume that |S| = α|Pi| where 1/2 ≤ α ≤ 1. Let

(20) I(α) :=

[

αt

3i

(

1 ± 1

4

)]

and let ES denote the event that |EffS(B)| ∈ I(α) for every candidate branch set B. Let ES
denote the complement of ES .

Lemma 8. Pi(ES) = exp
(

−Ω(ln2 n)
)

.
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Proof. Consider any candidate branch set B. Note that |EffS(B)| is hypergeometrically
distributed with mean λ := effi(B)|S|ℓi/(kt − xi−1). But |S|ℓi = α|Pi|ℓi = α|Qi|eff and
kt− xi−1 = kt

2 (1 + 3−(i−1)) by (18). So (19) implies that

effi(B)

kt− xi−1
∈
[

t
2(1 + 3−(i−1)) ± n1/3

kt
2 (1 + 3−(i−1))

]

⊆
[

1

k

(

1 ± 1

5

)]

and thus

λ ∈
[

α|Qi|eff
(

1

k

(

1 ± 1

5

))]

(9)
=

[

αt

3i

(

1 ± 1

5

)]

.

In particular, together with (6) this implies that

Pi

(

∣

∣ |EffS(B)| − λ
∣

∣ ≥ n1/4 lnn
)

= exp
(

−Ω(ln2 n)
)

.

So with probability at most k exp
(

−Ω(ln2 n)
)

= exp
(

−Ω(ln2 n)
)

there is a candidate branch
set B with

|EffS(B)| /∈
[

αt

3i

(

1 ± 1

5

)

± n1/4 lnn

]

(7),(20)
⊆ I(α),

as required. �

6.3. A lower bound for the degrees of the pairs of candidate branch sets in Gi.

Recall that, as described in the paragraph after (16), when analyzing the ith stage, we may
assume that |U∗

i−1| < 26Ui−1/27 and thus U ′
i−1 is well defined. Given a candidate branch

set B and path P ∈ Pi, we write P ∼ B if some effective vertex on P is matched to some
vertex in Effi(B) (in our random matching M∗). Consider an auxiliary bipartite graph Gi

whose vertex classes are U ′
i−1 and Pi and in which a pair (B,B′) ∈ U ′

i−1 is adjacent to
P ∈ Pi if P can be used to join (B,B′), i.e. if P ∼ B and P ∼ B′. We will now estimate
the degrees of the vertices in U ′

i−1 in Gi. Given S ⊆ Pi, we let dGi(L,S) denote the degree
of a vertex/pair L ∈ U ′

i−1 into the set S (in Gi).

Lemma 9. Suppose that 1/2 ≤ α ≤ 1 (where α may depend on n). Fix L ∈ U ′
i−1 and

S ⊆ Pi with |S| = α|Pi|. Then Pi

(

dGi(L,S) ≤ 1/(2ε3)
)

< 3ε.

Proof. Let L = (B,B′). Our aim is to show that

(21) Pi

(

dGi(L,S) ≤ 1/(2ε3) | ES
)

< 2ε.

This implies the lemma since

Pi

(

dGi(L,S) ≤ 1/(2ε3)
)

≤ Pi

(

dGi(L,S) ≤ 1/(2ε3) | ES
)

+ Pi(ES)

(21), Lemma 8
≤ 2ε + exp

(

−Ω(ln2 n)
)

< 3ε.

To estimate the number of all those paths in S that are neighbours of both B and B′ in
the auxiliary graph Gi, we will first bound the number of paths in S that are neighbours
of B and then we will estimate how many of them are neighbours of B′. More precisely,
we will first show that most of the paths P ∈ S with P ∼ B are joined to B by exactly
one (matching) edge. Let us condition first on a particular realization EB of EffS(B) with
|EB | ∈ I(α). Denote the corresponding probability subspace of Pi (where we condition on
the event that EffS(B) = EB and on ES) by Pi,ES ,EB

. Assuming an arbitrary ordering of the
vertices in EB, we expose their neighbours (in the random matching) on the paths in S one
by one according to this ordering. We say that the jth vertex fails if its neighbour lies in a
path from S that already contains a neighbour of the previously exposed vertices. Note that
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the number of paths in S containing more than one neighbour of EB is bounded above by
the number of failures that occur during the exposure of the neighbours of EB . Suppose we
have exposed the neighbours of the first j − 1 vertices in EB. Let the corresponding event
be Cj−1. To estimate the probability that the jth vertex fails, observe that the number of
all those paths in S that already have a neighbour in EB is less than j and each of them
contains less than ℓi effective vertices which are still available. Note that this holds regardless
of what Cj−1 is. Thus

Pi,ES ,EB
(the jth vertex fails | Cj−1) <

jℓi
α|Pi|ℓi − (j − 1)

≤ |EB |ℓi
α|Pi|ℓi − |EB |

(8),(12)
≤ 2|EB |

α|Pi|
=: p̃.

In particular, let Dj−1 be any event which depends only on the neighbours of the first j − 1
vertices in EB . Then

(22) Pi,ES ,EB
(the jth vertex fails | Dj−1) ≤ p̃.

Now let A = {a1, . . . , ar} be any set of vertices in EB (where aq precedes aq+1 in the ordering
of EB) and let FailA denote the event that the set of failure vertices equals A. Then

Pi,ES ,EB
(FailA) ≤

r
∏

q=1

Pi,ES ,EB
(aq fails | a1, . . . , aq−1 fail)

(22)
≤ p̃r.

This in turn implies that

Pi,ES ,EB
(≥ f failures) ≤

|EB|
∑

r=f

∑

A⊆EB
|A|=r

Pi,ES ,EB
(FailA) ≤

|EB|
∑

r=f

(|EB |
r

)

p̃r ≤
|EB|
∑

r=f

(

e|EB |
r

2|EB |
α|Pi|

)r

.

Since |EB | ∈ I(α) we have

(23)
|EB |2
α|Pi|

(12),(20)
∈

[

(1 ± 1/4)2
α2t2

9i
1

α

300 · 9i

9kt

]

(7)
⊆
[

(1 ± 2/3)
100α

3
√

2ε3

]

.

Let FB denote the event that at least 1000/ε3 failures occur when we expose the neighbours
of the vertices in EB . Thus by setting f := 1000/ε3, we obtain

(24) Pi,ES ,EB
(FB) = Pi,ES ,EB

(≥ f failures) ≤
∑

r≥f

(

5
√

2 · 100eα

9ε3r

)r

≤
∑

r≥f

(1/2)r ≤ ε.

Let FB denote the complement of FB . Note that if FB occurs, then there are at least
|EB | − 1000/ε3 paths in S that are joined to EB ⊆ B by exactly one (matching) edge. Let
S(B) denote the set of these paths. So

(25) |EB | − 1000/ε3 ≤ |S(B)| ≤ |EB |
(for the second inequality we need not assume that FB holds). Now we additionally condition
on a specific realization EB′ of EffS(B′) with |EB′ | ∈ I(α). As above, we fix an arbitrary
ordering on the vertices in EB′ according to which we expose their neighbours in S. We say
that the jth vertex of EB′ is useful if it is adjacent to a vertex lying on a path from S(B)
such that none of the previous vertices in EB′ is joined to this path. Note that if U(B′)
denotes the set of vertices in EB′ that are useful, then

(26) |U(B′)| ≤ dGi(L,S).

Given FB , we will show that with high probability |U(B′)| ≥ 1/(2ε3).
Note that there are exactly R := α|Pi|ℓi − |EB | effective vertices on the paths in S that

are still available to be matched to the vertices of EB′ . Put s := |S(B)|(ℓi − 1) and let C
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be any subset of EB′ with c := |C| ≤ 1/(2ε3). Suppose that C is the set of useful vertices
in EB′ . Then the vertices in C are matched to effective vertices on different paths in S(B).
So there are |S(B)|c(ℓi − 1)c ≤ sc choices for the neighbours of C. Moreover, each vertex
x ∈ EB′ \C is either matched to an effective vertex on a path in S(B) which already contains
a neighbour of C or x is matched to an effective vertex on a path in S \ S(B). There are
less than cℓi choices for a neighbour of x having the first property and R − s choices for
a neighbour of x having the second property. Thus in total the number of choices for the
neighbours of EB′ \ C is at most

|EB′ |−c
∑

q=0

(|EB′ | − c)q(cℓi)
q(R− s)|EB′ |−c−q ≤ (R − s)|EB′ |−c

|EB′ |−c
∑

q=0

(

cℓi|EB′ |
R/2

)q

≤ (R − s)|EB′ |−c

∑

q≥0

(

1

2

)q

= 2(R − s)|EB′ |−c.

(Here we used that |EB′ | = O(
√
n) = o(|Pi|) and so s = o(R) as well as |EB′ |ℓi = o(R).)

Setting p := s/R we obtain

Pi,ES ,EB
(U(B′) = C | FB ,EffS(B′) = EB′) ≤

2sc (R− s)|EB′ |−c

(R)|EB′ |

≤ 2sc
(

R− s

R

)|EB′ |−c ( 1

R− |EB′ |

)c

= 2

(

s

R− |EB′ |

)c
(

1 − s

R

)|EB′ |−c

≤ 2

(

10

9

)c
( s

R

)c (

1 − s

R

)|EB′ |−c
= 2

(

10

9

)c

pc(1 − p)|EB′ |−c.

(In the second inequality we used that a−j
b−j < a

b , for 0 < j < a < b and in the last inequality

we again used that |EB′ | = o(R).) Thus

Pi,ES ,EB
(|U(B′)| ≤ 1/(2ε3) | FB ,EffS(B′) = EB′)

≤ 2(10/9)1/(2ε
3 )

∑

c≤1/(2ε3)

(|EB′ |
c

)

pc(1 − p)|EB′ |−c.(27)

Observe that the sum on the right-hand side is the probability that a binomial random
variable Y with parameters |EB′ |, p is at most 1/(2ε3). To bound this probability from
above, we will use the following Chernoff bound (see e.g. Inequality (2.9) in [11]):

(28) P(Y ≤ EY/2) ≤ 2 exp (−EY/12) .

Note that by (25) and the definition of R, we have

p =
s

R
=

|S(B)|(ℓi − 1)

R
≥
(

|EB | − 1000/ε3
)

(ℓi − 1)

α|Pi|ℓi
>

|EB |
α|Pi|

98

100
,

where the last inequality holds since ℓi ≥ 100. Moreover, the bound (23) also holds if we
replace |EB |2 by |EB ||EB′ |. So altogether we have

EY = |EB′ |p ≥ 98

100

|EB′ ||EB |
α|Pi|

(23)
≥ 2α

ε3
≥ 1

ε3
.

Thus (28) implies that

∑

c≤1/(2ε3)

(|EB′ |
c

)

pc(1 − p)|EB′ |−c ≤ 2 exp
(

−1/(12ε3)
)

.
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Substituting this bound into (27), we obtain

Pi,ES ,EB
(|U(B′)| ≤ 1/(2ε3) | FB ,EffS(B′) = EB′) ≤ 4

(

(10/9)6/e
)1/(12ε3) ≤ (9/10)1/(12ε

3) ≤ ε.

Since EB′ was an arbitrary realization of EffS(B′) with |EB′ | ∈ I(α), this implies that

Pi,ES ,EB
(|U(B′)| ≤ 1/(2ε3) | FB) ≤ ε

and thus

Pi,ES ,EB
(|U(B′)| ≤ 1/(2ε3)) ≤ Pi,ES ,EB

(|U(B′)| ≤ 1/(2ε3) | FB) + Pi,ES ,EB
(FB)

(24)
≤ 2ε.(29)

Finally, since EB was an arbitrary realization of EffS(B) with |EB | ∈ I(α) it follows that

Pi(dGi(L,S) ≤ 1/(2ε3) | ES)
(26)
≤ Pi(|U(B′)| ≤ 1/(2ε3) | ES)

(29)
≤ 2ε,

as required. �

Now given S ⊆ Pi, we let U(S) be the set of all those pairs in U ′
i−1 that have degree at

most 1/(2ε3) into S (in our auxiliary graph Gi). So if 1/2 ≤ α ≤ 1 and |S| = α|Pi| then
Lemma 9 implies that

(30) Ei(|U(S)|) ≤ 3ε|U ′
i−1| ≤

Ui−1

2 · 27
,

where Ei(·) denotes the expectation that arises from the probability measure Pi(·).
Lemma 10. Let 1/2 ≤ α ≤ 1. Then every S ⊆ Pi with |S| = α|Pi| satisfies

(31) Pi

(

|U(S)| > Ui−1

27

)

≤ 2 exp

(

− 2ε8n

(3i−1)7

)

as well as

(32) Pi

(

|U(S)| > Ui−1

27

)

≤ 2 exp
(

−ε43(i−1)/4
)

.

Proof. Our aim is to apply (5) to show that |U(S)| is concentrated around its expected
value. We first prove (31). Here W will be the space of all those matchings which match

the set Eff(Qi) of effective vertices on Qi into the set
⋃k

j=1 Effi(Bj) of all those effective
vertices in the candidate branch sets that are still unmatched after the first i − 1 stages
(equipped with the uniform distribution). (Recall that Effi(B) is fixed since we condition
on Mi−1.) So each matching in W consists of |Qi|eff edges. The metric d on W is defined by
d(M,M ′) := 2ℓi|M△M ′| for all M,M ′ ∈ W . It is easy to see that this is indeed a metric.

So let us now define the partitions F0, . . . , F|Qi|eff . F0 := {W} and each part of F|Qi|eff will
consist of a single matching in W . To define Fj for 1 ≤ j < |Qi|eff , fix a linear ordering on
the vertices in Eff(Qi). Given a matching M ∈ W , the j-prefix of M is the set of all edges
in M adjacent to the first j vertices in Eff(Qi). Each part of the partition Fj will consist of
all those matchings in W having the same j-prefix. Clearly Fj+1 refines Fj .

To define the bijection φ, consider any two parts A 6= B of Fj+1 and any part C of Fj such
that A,B ⊆ C. So if M ∈ A and M ′ ∈ B, then M and M ′ have the same j-prefix and they
differ at the edge that is adjacent to the (j + 1)th vertex in Eff(Qi). Let vA and vB be the
neighbours of the (j + 1)th vertex in M and M ′, respectively. Note that vA does not depend
on the choice of M ∈ A and similarly for vB . We define φ : A → B by saying that for all
M ∈ A the matching φ(M) is obtained from M as follows: the (j + 1)th vertex in Eff(Qi) is
now matched to vB and vA is matched to the neighbour of vB in M , every other edge of M
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remains unchanged. Thus the size of the symmetric difference of M and φ(M) is 4 and so
d(M,φ(M)) ≤ 8ℓi. So we can take c := 8ℓi.

Now note that |U(S)| is a function whose value is determined by a matching from W
chosen uniformly at random. So we take f : W → R to be the function defined by setting
f(M) to be the value of |U(S)| on M (for all M ∈ W ). We have to show that for any
M,M ′ ∈ W we have |f(M) − f(M ′)| ≤ d(M,M ′). To do so, we will construct a sequence
M0,M1, . . . ,Mq of matchings in W such that M0 := M , Mq := M ′ and such that Mj and M ′

agree on the first j vertices in Eff(Qi) (i.e. Mj and M ′ have the same prefix). Suppose that
we have constructed Mj for some j < q and that we now wish to construct Mj+1. Let v
be the first vertex in Eff(Qi) on which Mj and M ′ differ. Let b be its neighbour in M ′ and
let v′ be the neighbour of b in Mj . Define Mj+1 to be the matching obtained from Mj by
swapping the neighbours of v and v′ in Mj. So Mj+1 now agrees with M ′ on v and all (the at
least j) vertices preceding v in Eff(Qi). Note that |f(Mj) − f(Mj+1)| ≤ 4ℓi since swapping
two edges can change |U(S)| by at most 4ℓi. Indeed, to see the latter, note that for each
one of these two edges there are ℓi − 1 other edges starting from the same path in Pi, and
therefore each of these two edges contributes to the degree of at most ℓi pairs in U ′

i−1. If
we swap these edges, this might change the degree of at most 4ℓi pairs. So |U(S)| can be
increased or decreased by at most 4ℓi. Also observe that q ≤ |M△M ′|/2 since initially the
number of vertices in Eff(Qi) on which M and M ′ differ equals |M△M ′|/2 and in each step
this number decreases by at least 1. Therefore,

(33) |f(M) − f(M ′)| ≤
q−1
∑

j=0

|f(Mj) − f(Mj+1)| ≤ 4qℓi ≤ 2ℓi|M△M ′| = d(M,M ′).

Now, we are ready to apply (5): if |U(S)| > Ui−1/27, then by (30) we have |U(S)| −
E(|U(S)|) > Ui−1/(2 · 27) and (5) yields

Pi

(

|U(S)| > Ui−1

27

)

≤ 2 exp

(

−2
(Ui−1/(2 · 27))2

|Qi|eff82ℓ2i

)

(9),(10),(14)
= 2 exp

(

− 1

27 · 272
ε8n2

(27i−1)2
3i

(1 + o(1))
√

2εn

1

10029i−1

)

≤ 2 exp

(

− 2ε8n

(3i−1)7

)

.

Now we prove (32). In this case we can apply (5) with metric d(M,M ′) := 2∆i−1|M△M ′|
and c := 8∆i−1. Indeed, for each candidate branch set B and each P ∈ Pi the re-
moval/addition of a B-P edge can only affect the degrees of those pairs in U ′

i−1 which
contain B. But there are at most ∆i−1 such pairs. Thus

Pi

(

|U(S)| > Ui−1

27

)

≤ 2 exp

(

−2
(Ui−1/(2 · 27))2

|Qi|eff82∆2
i−1

)

(9),(15)
≤ 2 exp

(

− U2
i−1

27 · 272
3i

kt

ε1/4k2

(3/2)2(i−1)U2
i−1

)

(7)
≤ 2 exp

(

− 1

27 · 272
3ε1/4(1 + o(1))

√
2ε2

1/ε
(4/3)i−1

)

.

≤ 2 exp
(

−ε4(4/3)i−1
)

≤ 2 exp
(

−ε43(i−1)/4
)

,

as required. �
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Define β by

(34) β :=

(

ε8

2(3i−1)7

)2

.

Lemma 11. For each i with 3i−1 ≤ n2/33 let Yi denote the number of all those subsets S
of Pi with |S| = (1 − β)|Pi| for which |U(S)| > Ui−1/27. Then Pi(Yi > 0) ≤ n−1/34.

Proof. Note that (12) and the restriction on i together imply that β|Pi| = Ω(n/316i) =

Ω(n1/33) and so we may treat it as an integer. (31) implies that

(35) Ei(Yi) ≤
( |Pi|

(1 − β)|Pi|

)

2 exp

(

− 2ε8n

(3i−1)7

)

.

Note that |Pi| ≤ n. So
( |Pi|

(1 − β)|Pi|

)

=

( |Pi|
β|Pi|

)

≤
(

e

β

)β|Pi|
≤ β−2β|Pi| ≤ β−2βn.

Now note that if a > 0 is sufficiently small then a ln(a−1) ≤ a1/2. Thus
( |Pi|

(1 − β)|Pi|

)

≤ e2β
1/2n (34)

= exp

(

ε8n

(3i−1)7

)

.

So if 3i−1 ≤ n2/33 then

Pi(Yi > 0) ≤ Ei(Yi)
(35)
≤ 2 exp

(

− ε8n

(3i−1)7

)

= exp
(

−Ω
(

n19/33
))

≤ n−1/34,

as required. �

6.4. An upper bound on the degrees of the paths in Gi. Let d := 106. We now
estimate the probability that a given path P ∈ Pi joins at least d unjoined pairs in U ′

i−1.

Lemma 12. If d = 106, i ≤ i0 and i satisfies

(36) 3i−1 ≥ 1/ε,

then for every fixed P ∈ Pi we have Pi(dGi(P ) ≥ d) ≤ β/3i.

Proof. Suppose that C ⊆ U ′
i−1 is a set of size d which lies in the neighbourhood of P in the

auxiliary graph Gi. Let B(C) denote the set of candidate branch sets involved in the pairs
from C. Note that √

2d ≤ |B(C)| ≤ 2d.

Moreover, P ∼ B for each candidate branch set B ∈ B(C). (Recall that this means that
there is an effective vertex on P that is matched to some vertex in Effi(B), where Effi(B)
was the set of all those effective vertices in B that are still available after the (i−1)th stage.)
Now let B be the collection of all the sets B of candidate branch sets such that for each
B ∈ B there is a B′ ∈ B with (B,B′) ∈ U ′

i−1 and such that b := |B| satisfies

(37)
√

2d ≤ b ≤ 2d.

Thus B(C) ∈ B for any C as above and hence

(38) Pi(dGi(P ) ≥ d) ≤
∑

B∈B
Pi(P ∼ B ∀B ∈ B).
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To bound the latter probability, consider any B ∈ B, let b := |B| and s :=
∑

B∈B eff i(B) ≤ bt.
Recall that xi−1 was the total number of all those effective vertices in the branch sets that
are matched after the first i− 1 stages. So

Pi(P ∼ B ∀B ∈ B) ≤
(

ℓi
b

)

(s)b
(kt− xi−1)b

≤
(

eℓi
b

)b( s

kt− xi−1

)b

≤
(

eℓi
b

bt

kt− xi−1

)b (18)
≤
(

etℓi
kt/2

)b

=

(

2eℓi
k

)b

.

In the second inequality, we used that a−j
b−j < a

b , for 0 < j < a < b. To bound |B|, consider

an auxiliary graph Ai−1 whose vertex set is the set of candidate branch sets and whose
edges correspond to the pairs in U ′

i−1. Since Ai−1 involves only edges/pairs from U ′
i−1 its

maximum degree is at most ∆i−1. Consider any b as in (37). Note that each B ∈ B

with |B| = b corresponds to a subgraph F of Ai−1 which has order b and in which no vertex
is isolated. We claim that for all q ≤ b/2, the number of such subgraphs F having precisely q
components is at most U q

i−1(b∆i−1)
b−2q. To see this, note that each component of F has to

contain at least one edge (this is also the reason why it makes sense only to consider q ≤ b/2).
So each subgraph F as above can be obtained as follows. First choose q (independent) edges
of Ai−1. The number of choices for this is at most U q

i−1. Now successively add the remaining
b−2q vertices to the existing subgraph without creating new components. At each step there
are at most b vertices y to which a new vertex z can be attached and once we have chosen
y, there are at most ∆(Ai−1) ≤ ∆i−1 choices for z, which proves the claim.

Let Bb,q be the set of all those B ∈ B that have size b and induce q components in Ai−1.
Then

∑

B∈Bb,q

Pi(P ∼ B ∀B ∈ B)
(37)
≤ U q

i−1 (2d∆i−1)b−2q

(

2eℓi
k

)b

(10),(14),(15)
≤

(

U0

27i−1

1

4d2
ε1/4k281i−14i−1

U2
0

)q
(

2d
U0

ε1/8k9i−12i−1

2e · 100 · 3i−1

k

)b

(13)
≤ (12i−1)q

(

2000d

ε1/86i−1

)b

≤
(

4 · 106d2

ε1/43i−1

)b/2

≤
(

1

ε1/33i−1

)b/2 (36)
≤
(

ε1/6

3(i−1)/2

)b/2

.

Since b ≥
√

2d ≥ 4 · 48 by (37) this implies

Pi(dGi(P ) ≥ d)
(38)
≤

∑

√
2d≤b≤2d

b/2
∑

q=1

(

ε1/6

3(i−1)/2

)b/2

≤ 2d2

(

ε1/3

3i−1

)

√
2d/4

≤ 2d2

(

ε1/3

3i−1

)48

≤ β

3i
,

as required. �

Given d = 106 and i satisfying (36), let Si denote the set of paths in Pi which have degree
less than d in Gi. We will now use Lemma 12 to show that with high probability Si is large.

Lemma 13. Pi (|Si| ≥ (1 − β)|Pi|) ≥ 1 − n−1/34 for every i ≤ i0 which satisfies (36).

Proof. Let S̄i := Pi \ Si. Note that Lemma 12 implies

Ei(S̄i) = Pi(dGi(P ) ≥ d)|Pi| ≤
β

3i
|Pi|.
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If (log3 n)/34 ≤ i ≤ i0 then together with Markov’s inequality this yields

Pi(|S̄i| > β|Pi|) ≤
1

3i
≤ 1

n1/34

and thus Lemma 13 holds for all such i.
If i ≤ (log3 n)/34 we will use (5). As in the proof of Lemma 10, the underlying metric space

will be the set of all those matchings which match the set Eff(Qi) of effective vertices on Qi

into the set
⋃k

j=1 Effi(Bj) of all those effective vertices in the candidate branch sets that are
still unmatched after the first i− 1 stages. The series of partitions and the bijections φ are
also as defined there. However, the metric imposed on W now changes: for any M,M ′ ∈ W
we set d(M,M ′) = |M△M ′|. In particular this means that we can take c := 4. f : W → R

will be the function defined by taking f(M) to be the value of |S̄i| on M (for all M ∈ W ).
Note that the analogue of (33) is satisfied, since if we switch the endpoints of two edges of
a matching (as it is the case when we obtain Mj+1 from Mj as in the proof of Lemma 10)
|S̄i| changes by at most 2 as switching two edges only affects the degree of the (at most) two
paths involved. Thus

|f(M) − f(M ′)| ≤
q−1
∑

j=0

|f(Mj) − f(Mj+1)| ≤ 2q ≤ |M△M ′| ≤ d(M,M ′).

Hence applying (5) with a := β|Pi|/2 we obtain

Pi(|S̄i| ≥ β|Pi|) ≤ 2 exp

(

−2
β2|Pi|2

4 · 16|Qi|eff

)

.

So to complete the proof, it suffices to show that β2|Pi|2/|Qi|eff = Ω
(

n3/34
)

, as this gives

an error bound of exp(−Ω(n3/34)) ≤ 1/n34. To prove the former, note that by (9), (12) and
(34) we obtain

β2|Pi|2
|Qi|eff

= Θ

(

1

(3i−1)28

( n

9i−1

)2 3i

n

)

= Θ
( n

331(i−1)

)

= Ω
( n

331(log3 n)/34

)

= Ω
(

n3/34
)

,

as required. �

6.5. Finding a large matching of Gi. The next lemma shows that with high probability
we can join the required number of pairs from U ′

i−1 during the ith stage.

Lemma 14. For each i ≤ i0 we have Pi(|Ui| > Ui−1/27) ≤ 2n−1/34.

Proof. Recall that U ′
i−1 (defined after (16)) was obtained from Ui−1 by discarding all those

pairs containing a candidate branch set from Bi. By definition of Ui we may assume that
|U ′

i−1| ≥ Ui−1/27 and it suffices to show that in Gi we can find a matching which covers all
but at most Ui−1/27 vertices/pairs in U ′

i−1.

Case 1: 3i−1 < 1/ε.
In this case, we apply (31) with S := Pi (i.e. α = 1) to obtain that with probability at least

1−2 exp
(

−2ε8n/(3i−1)7
)

≥ 1−2n−1/34 we have the following: there is a set W ⊆ U ′
i−1 with

|W| = |U ′
i−1| − Ui−1/27 so that every pair in W has degree at least 1/(2ε3) in Gi. On the

other hand, clearly every path in Pi has degree at most ℓ2i = 1049i−1 < 104/ε2 in Gi. This
implies that the subgraph G′

i of Gi induced by W and Pi has a matching covering all of W.
To see this, consider any W ′ ⊆ W and let N(W ′) ⊆ Pi denote its neighbourhood in G′

i. Then
by counting edges between W ′ and N(W ′) we obtain that |W ′|/(2ε3) ≤ (104/ε2)|N(W ′)|.
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This in turn implies that |N(W ′)| ≥ |W ′| and so Hall’s condition is satisfied. But this means
that we can take Ui := U ′

i−1 \ W. Note that Ui = |U ′
i−1| − |W| = Ui−1/27, as required.

Case 2: 1/ε ≤ 3i−1 ≤ n2/33.

In this case we first apply Lemma 13 to see that with probability at least 1−n−1/34 we have
|Si| ≥ (1 − β)|Pi|. By taking a subset we may assume that |Si| = (1 − β)|Pi|. On the other

hand, Lemma 11 implies that with probability at least 1−n−1/34 any set S of this size satisfies
|U(S)| ≤ Ui−1/27. So with probability at least 1 − 2n−1/34 we have |U(Si)| ≤ Ui−1/27. But
if this is the case then there is a set W ⊆ U ′

i−1 with |W| = |U ′
i−1| − Ui−1/27 so that every

pair in W has degree at least 1/(2ε3) in the subgraph G′′
i of Gi induced by W and Si. On

the other hand, the definition of Si implies that in G′′
i , the degree of every vertex in Si is

at most d = 106. As in the previous case, this implies that G′′
i has a matching covering

all of W. Indeed, to verify Hall’s condition consider any W ′ ⊆ W and let N(W ′) ⊆ Si

denote its neighbourhood in G′′
i . Then |W ′|/(2ε3) ≤ 106|N(W ′)|. As before, we can take

Ui := U ′
i−1 \W.

Case 3: 3i−1 ≥ n2/33.
In this case, we apply (32) to S := Pi in order to obtain that with probability at least

1 − 2 exp
(

−ε43(i−1)/4
)

≥ 1 − 2 exp
(

−ε4n1/66
)

≥ 1 − n−1/34

we have the following: there is a set W ⊆ U ′
i−1 with |W| = |U ′

i−1| − Ui−1/27 so that every

pair in W has degree at least 1/(2ε3) in Gi. On the other hand, Lemma 12 implies that the
probability that Pi does not contain a path of degree at least d = 106 in Gi is at least

1 − β|Pi|
3i

(12),(34)
≥ 1 −O(n/317i) = 1 −O(n−1/33) ≥ 1 − n−1/34.

So we may assume that both events occur and we get a matching covering all of W in the
subgraph G′

i of Gi induced by W and Pi as before. So we again obtain a set Ui of the desired
size, with the required error bounds. �

To complete the proof of Theorem 6 it remains to combine all the error probabilities for
all the i0 = (log3 n)/6 stages. Recall that when analyzing the ith stage we conditioned
on M∗

i−1 (defined after (19)). However, all our probability bounds hold regardless of what

the actual value of M∗
i−1 is (as long as M∗

i−1 is good). So suppose that |Ui−1| = U0/27i−1

for some i ≤ i0. If |Ui| 6= U0/27i then either some candidate branch set violated (19) or we
had the undesired event that |Ui| > Ui−1/27 in Lemma 14. Thus

P(|Ui| = U0/27i | |Ui−1| = U0/27i−1,X ,X ′) ≥ 1 − exp(−Ω(ln2 n)) − 2n−1/34 ≥ 1 − 3n−1/34

and so

P(|Ui| = U0/27i ∀i ≤ i0 | X ,X ′) ≥ 1 − 3i0n
−1/34 ≥ 1 − n−1/35.

This bound holds regardless of what the choices of X1,X2,X
′
1,X

′
2 actually are (as long

as |X1| = |X2| is within the range determined in Lemma 7). The only other reason why
|Ui0 | 6= U0/27i0 is that we had an undesired event in Lemma 7. This happens with probability

O(1/ ln2 n). Altogether this shows that with probability 1− n−1/35 −O(1/ ln2 n) = 1− o(1)
after the i0th stage we are left with

(39) Ui0 =
U0

27i0
(8),(13)

= ε4n1/2
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unjoined pairs. We now discard a candidate branch set in each of these pairs as well as all
the candidate branch sets in B0 ∪ · · · ∪ Bi0−1. By (17) and (39) this gives a complete minor

on k − 6ε1/8k − ε4n1/2 ≥ ε2n1/2 vertices, as required.
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