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Merging percolation and classical random graphs:
Phase transition in dimension 1

TATYANA S. TUROVA1 and THOMAS VALLIER

Mathematical Center, University of Lund, Box 118, Lund S-221 00, Sweden.

Abstract

We study a random graph model which combines properties of the edge percolation
model on Zd and a classical random graph G(n, c/n). We show that this model, being
a homogeneous random graph, has a natural relation to the so-called ”rank 1 case” of
inhomogeneous random graphs. This allows us to use the newly developed theory of
inhomogeneous random graphs to describe completely the phase diagram in the case
d = 1. The phase transition is similar to the classical random graph, it is of the second
order. We also find the scaled size of the largest connected component above the phase
transition.

1 Introduction.

We consider a graph on the set of vertices V d
N := {1, . . . , N}d in Zd, where the edges between

any two different vertices i and j are presented independently with probabilities

pij =

{
q, if |i− j| = 1,
c/Nd, if |i− j| > 1,

where 0 ≤ q ≤ 1 and 0 < c < N are constants. This graph, call it Gd
N(q, c) is a mixture of

percolation model, where each pair of neighbours in Zd is connected with probability q, and
a random graph model, where each vertex is connected to any other vertex with probability
c/|V d

N |.
The introduced model is a simplification of the most common graphs designed to study

natural phenomena, in particular, biological neural networks [8]. Observe the difference
between this and the so-called ”small-world” models intensively studied after [9]. In the
”small-world” models where edges from the grid may be kept or removed, only finite number
(often at most 2d) of the long-range edges may come out of each vertex, and the probability
of those is a fixed number.

We are interested in the limiting behaviour of the introduced graph Gd
N(q, c) as N → ∞.

One can consider this model as a graph on Zd or on a torus, in the limit the results are the

1Research was supported by the Swedish Natural Science Research Council.
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same. The one-dimensional case which we study here, is exactly solvable. We shall write
G1

N(q, c) = GN(q, c).
Let X be a random variable with Fs(1 − q)-distribution, i.e.,

P {X = k} = (1 − q)qk−1, k = 1, 2, . . . , (1.1)

with

EX =
1

1 − q
.

Let further C1

(
G
)

denote the size of the largest connected component in a graph G.

Theorem 1.1. For any 0 ≤ q < 1 define

ccr(q) =
EX

EX2
=

1 − q

1 + q
. (1.2)

i) If c < ccr(q) then there exists a constant α = α(q, c) > 1
| log q| such that

P
{
C1

(
GN (q, c)

)
> α logN

}
→ 0, (1.3)

and for any α1 <
1

| log q|

P
{
C1

(
GN(q, c)

)
< α1 logN

}
→ 0, (1.4)

as N → ∞.

ii) If c ≥ ccr(q) then

C1

(
GN(q, c)

)

N

P→ β (1.5)

as N → ∞, with β = β(q, c) defined as the maximal solution to

β = 1 − 1

EX
E
{
Xe−cX β

}
. (1.6)

Observe the following duality of this result. For any c < 1 we know that the subgraph
induced in our model by the long-range edges may have at most O(logN) vertices in a
connected component. According to Theorem 1.1, for any c < 1 there is

qcr(c) =
1 − c

1 + c
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such that for all qcr(c) < q < 1 our model will have a giant component with a size of order
N , while any q < qcr(c) is insufficient to produce a giant component in GN(q, c) . Hence,
Theorem 1.1 may also tell us something about the ”distances” between the components of
a random graph when it is considered on the vertices of Z.

Remark 1.1. In the proof of (1.3) we will show how to obtain α(q, c), and will discuss how
optimal this value is. Statement (1.4) is rather trivial (and far from being optimal): it follows
from a simple observation (see the details below) that

P

{
C1

(
GN(q, c)

)
<

1

| log q| logN

}
≤ P

{
C1

(
GN(q, 0)

)
<

1

| log q| logN

}
→ 0.

Remark 1.2. For any fixed c function β(q, c) is continuous at q = 0: if q = 0, i.e., when our
graph is merely a classical Gn,c/n random graph, then X ≡ 1 and (1.6) becomes a well-known
relation. Equation (1.6) can be written in an exact form:

β = 1 − ecβ

(ecβ − q)2
(1 − q)2 .

It is easy to check that if c ≤ ccr then the equation (1.6) does not have a strictly positive
solution, while β = 0 is always a solution to (1.6). Therefore one can derive

β ′
c | c↓ccr= 2

(
E(X2)

)3
(
EX

)2
E(X3)

= 2
(1 − q2)2

q2 + 4q + 1
. (1.7)

This shows that the emergence of the giant component at critical parameter c = ccr becomes
slower as q increases, but the phase transition remains of the second order (exponent 1) for
any q < 1.

We conjecture that similar results hold in the higher dimensions if q < Qcr(d), where
Qcr(d) is the percolation threshold in the dimension d. More exactly, Theorem 1.1 (as well
as the first equality in (1.7)) should hold with X replaced by another random variable,
which is stochastically not larger than the size of the open cluster at the origin in the edge
percolation model with a probability of edge q. It is known from the percolation theory
(see, e.g., [3]) that the tail of the distribution of the size of an open cluster in the subcritical
phase decays exponentially. This should make possible to extend our arguments (where we
use essentially the distribution of X) to the general case.

Our result in the supercritical case, namely equation (1.6) looks somewhat similar to the
equation obtained in [2] for the ”volume” (the sum of degrees of the involved vertices) of the
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giant component in the graph with a given sequence of the expected degrees. Note, however,
that the model in [2] (as well as the derivations of the results) differs essentially from the one
studied here. In particular, in our model the critical mean degree when c = ccr and N → ∞
is given by

2q + ccr = 2q +
1 − q

1 + q
= 1 +

2q2

1 + q
(1.8)

which is strictly greater than 1 for all positive q. This is in a contrast with the model studied
in [2], where the critical expected average degree is still 1 as in the classical random graph.

Although our model (when considered on the ring or torus in higher dimensions) is a
perfectly homogeneous random graph, in the sense that the degree distribution is the same
for any vertex, we study it via inhomogeneous random graphs, making use of the recently
developed theory from [1]. The idea is the following. First, we consider the subgraph
induced by the short-range edges, i.e., the edges which connect two neighbouring nodes with
probability q. It is composed of the consecutive connected paths (which may consist just
of one single vertex) on VN = {1, . . . , N}. Call a macro-vertex each of the component of
this subgraph. We say that a macro-vertex is of type k, if k is the number of vertices in
it. Conditionally on the set of macro-vertices, we consider a graph on these macro-vertices
induced by the long-range connections. Two macro-vertices are said to be connected if there
is at least one (long-range type) edge between two vertices belonging to different macro-
vertices. Thus the probability of an edge between two macro-vertices vi and vj of types x
and y correspondingly, is

p̃xy(N) := 1 −
(

1 − c

N

)xy
. (1.9)

Below we argue that this model fits the conditions of a general inhomogeneous graph model
defined in [1], find the critical parameters and characteristics for the graph on macro-vertices,
and then we turn back to the original model. We use essentially the results from [1] to derive
(1.6), while in the subcritical case our approach somewhat differs from the one in [1]; we
discuss this in the end of Section 2.4. We shall also note that our graph on macro-vertices
is similar to the model studied in [5], and our results on the critical value agree with those
in [5].

Finally we comment that our result should help to study more general model for the
propagation of the neuronal activity introduced in [8]. Here we show that a giant component
in the graph can emerge from two sources, none of which can be neglected, but each of which
may be in the subcritical phase, i.e., even when both q < 1 and c < 1. In particular, for
any 0 < c < 1 we can find q < 1 which allows with a positive probability the propagation of
impulses through the large part of the network due to the local activity.
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2 Proof

2.1 Random graph on macro-vertices.

Denote X a random number of the vertices connected through short-range edges to the
vertex 1 on V 1

∞ = {1, 2, . . .}. Clearly, X has the First success distribution defined in (1.1).
Let X1, X2, . . . , be independent copies of X , and define for any N > 1

T (N) := min{n ≥ 0 :
n∑

i=1

Xi ≤ N,
n+1∑

i=1

Xi > N},

where we assume that a sum over an empty set equals zero.
Consider now the subgraph on VN = {1, . . . , N} induced by the short-range edges. This

means that any two vertices i and i+1 from VN are connected with probability q independent
of the rest. By the construction this subgraph, call it G

(s)
N (q), is composed of a random

number of connected paths of random sizes. We call here the size of a path the number of its
vertices. Clearly, there is a probability space (Ω,F ,P) where the number of paths in G

(s)
N (q)

equals T (N) if
∑T (N)

i=1 Xi = N , or T (N) + 1 if
∑T (N)

i=1 Xi < N . Correspondingly, the sizes of
the paths follow the distribution of

X = (X1, X2, . . . , XT (N), N −
T (N)∑

i=1

Xi) (2.1)

(where the last entry may take zero value).

On the other hand, the number of the connected components of G
(s)
N (q) exceeds exactly

by one the number of ”missed” short edges on VN . This means that on the same probability
space (Ω,F ,P) there is a random variable YN distributed as Bin(N − 1, 1 − q), such that
either T (N) = YN + 1 or T (N) + 1 = YN + 1, and in any case

0 ≤ T (N) − YN ≤ 1. (2.2)

This together with the Strong Law of Large Numbers implies

Proposition 2.1.
T (N)

N

a.s.→ 1 − q =
1

EX

as N → ∞. ✷
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Also the relation (2.2) allows us to use the large deviation inequality from [4] (formula
(2.9), p.27 in [4]) for the binomial random variables in order to obtain the following rate of
convergence

P

{∣∣∣∣
T (N)

N
− 1

EX

∣∣∣∣ > δ

}
≤ 2 exp

(
− δ2

12(1 − q)
N

)
(2.3)

for all δ > 0 and N > 2/δ.
Define for any k ≥ 1 an indicator function

Ik(x) =

{
1, if x = k,
0, otherwise.

As an immediate corollary of Proposition 2.1 and the Law of Large Numbers we also get the
following result.

Proposition 2.2. For any fixed k ≥ 1

1

T (N)

T (N)∑

i=1

Ik(Xi)
P→ P{X = k} = (1 − q)qk−1 =: µ(k) (2.4)

as N → ∞. ✷

Given a vector of paths X defined in (2.1), we introduce another graph G̃N(X, q, c) as

follows. The set of vertices of G̃N(X, q, c) we denote {v1, . . . , vT (N)}. Each vertex vi is said
to be of type Xi, which means that vi corresponds to the set of Xi connected vertices on VN .
We shall also call any vertex vi of G̃N(X, q, c) a macro-vertex, and write

vi =






{1, . . . , X1}, if i = 1;

{∑i−1
j=1Xj + 1, . . . ,

∑i−1
j=1Xj + Xi}, if i > 1.

(2.5)

With this notation the type of a vertex vi is simply the cardinality of set vi. The space of
the types of macro-vertices is S = {1, 2, . . .}. According to (2.4) the distribution of type

of a (macro-)vertex in graph G̃N(X, q, c) converges to measure µ on S. The edges between

the vertices of G̃N(X, q, c) are presented independently with probabilities induced by the
original graph GN(q, c). More precisely, the probability of an edge between any two vertices
vi and vj of types x and y correspondingly, is p̃xy(N) introduced in (1.9). Clearly, this
construction provides a one-to-one correspondence between the connected components in
the graphs G̃N(X, q, c) and GN(q, c): the number of the connected components is the same
for both graphs, as well as the number of the involved vertices from VN in two corresponding
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components. In fact, considering conditionally on X graph G̃N(X, q, c) we neglect only those
long-range edges from GN(q, c), which connect vertices within each vi, i.e., the vertices which
are already connected through the short-range edges.

Consider now

p̃xy(N) = 1 −
(

1 − c

N

)xy
=:

κ′
N(x, y)

N
. (2.6)

Observe that if x(N) → x and y(N) → y then

κ′
N(x(N), y(N)) → cxy (2.7)

for all x, y ∈ S. In order to place our model into the framework of the inhomogeneous
random graphs from [1] let us introduce another (random) kernel

κT (N)(x, y) =
T (N)

N
κ′
N (x, y),

so that we can rewrite the probability p̃xy(N) in a graph G̃N (X, q, c) taking into account the
size of the graph:

p̃xy(N) =
κT (N)(x, y)

T (N)
. (2.8)

(We use notations from [1] whenever it is appropriate.) According to Proposition 2.1 and
(2.7), if x(N) → x and y(N) → y then

κT (N)(x(N), y(N)) → κ(x, y) :=
c

EX
xy a.s. (2.9)

as N → ∞ for all x, y ∈ S .
Hence, in view of Proposition 2.2 we conclude that conditionally on T (N) = t(N), where

t(N)/N → 1/EX , our model falls into the so-called ”rank 1 case” of the general inhomoge-
neous random graph model GV(t(N), κt(N)) with a vertex space V = (S, µ, (X1, . . . , Xt(N))N≥1)
from [1] (Chapter 16.4). Furthermore, it is not difficult to verify with a help of the Proposi-
tions 2.1 and 2.2 that

κ ∈ L1(S × S, µ× µ), (2.10)

since ∞∑

y=1

∞∑

x=1

(1 − q)xqx−1(1 − q)yqy−1 =
( 1

1 − q

)2
,

and for any t(N) such that t(N)/N → 1/EX

1

t(N)
E{e(G̃N(X, q, c))|T (N) = t(N)} → 1

2

∞∑

y=1

∞∑

x=1

κ(x, y)µ(x)µ(y), (2.11)
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where e(G) denotes the number of edges in a graph G. According to Definition 2.7 from [1],
under the conditions (2.11), (2.10) and (2.9) the sequence of kernels κt(N) (on the countable
space S × S) is called graphical on V with limit κ.

2.2 A branching process related to G̃N(X, q, c).

Here we closely follow the approach from [1]. We shall use a well-known technique of branch-

ing processes to reveal the connected component in graph G̃N(X, q, c). Recall first the usual
algorithm of finding a connected component. Conditionally on the set of macro-vertices,
take any vertex vi to be the root. Find all the vertices {v1i1 , v1i2 , ..., v1in} connected to this

vertex vi in the graph G̃N(X, q, c), call them the first generation of vi, and then mark vi as
”saturated”. Then for each non-saturated but already revealed vertex, we find all the ver-
tices connected to them but which have not been used previously. We continue this process
until we end up with a tree of saturated vertices.

Denote τN(x) the set of the macro-vertices in the tree constructed according to the above
algorithm with the root at a vertex of type x.

It is plausible to think (and in our case it is correct, as will be seen below) that this
algorithm with a high probability as N → ∞ reveals a tree of the offspring of the following
multi-type Galton-Watson process with type space S = {1, 2, . . .}: at any step, a particle
of type x ∈ S is replaced in the next generation by a set of particles where the number
of particles of type y has a Poisson distribution Po(κ(x, y)µ(y)). Let ρ(κ; x) denote the
probability that a particle of type x produces an infinite population.

Proposition 2.3. The function ρ(κ; x), x ∈ S, is the maximum solution to

ρ(κ; x) = 1 − e−
∑

∞

y=1
κ(x,y)µ(y)ρ(κ;y). (2.12)

Proof. We have ∞∑

y=1

κ(x, y)µ(y) =
c

EX

x

1 − q
< ∞ for any x,

which together with (2.10) verifies that the conditions of Theorem 6.1 from [1] are satisfied,
and the result (2.12) follows by this theorem. ✷

Notice that it also follows by the same Theorem 6.1 from [1] that ρ(κ; x) > 0 for all x ∈ S
if and only if

c

EX

∞∑

y=1

y2µ(y) = c
EX2

EX
= c

1 + q

1 − q
> 1; (2.13)
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otherwise, ρ(κ; x) = 0 for all x ∈ S. Hence, the formula (1.2) for the critical value follows
from (2.13).

As we showed above, conditionally on T (N) (so that T (N)/N → 1/EX) the sequence
κT (N) is graphical on V. Hence, the conditions of Theorem 3.1 from [1] are satisfied and we
derive (first, conditionally on T (N), and therefore unconditionally) that

C1(G̃N(X, q, c))

T (N)

P→ ρ(κ),

where ρ(κ) =
∑∞

x=1 ρ(κ; x)µ(x). This together with Proposition 2.1 on the a.s. convergence
of T (N) implies

C1(G̃N (X, q, c))

N

P→ (1 − q)ρ(κ). (2.14)

Notice that here C1(G̃N(X, q, c)) is the number of macro-vertices in G̃N(X, q, c).

2.3 On the distribution of types of vertices in G̃N(X, q, c).

Given a vector of paths X (see (2.1)) we define a random sequence

N = {N1, . . .NN},

where

Nk = Nk(X) =

T (N)∑

i=1

Ik(Xi).

In words, Nk is the number of (macro-)vertices of type k in the set of vertices of graph

G̃N(X, q, c). We shall prove here a useful result on the distribution of N (which is stronger
than Proposition 2.2).

Lemma 2.1. For any fixed ε > 0

P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ N} = o(1) (2.15)

as N → ∞.

Proof. Let us fix ε > 0 arbitrarily. Observe that for any K > 1/ε

P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ N} (2.16)

≤ P{ max
1≤i≤T (N)

Xi > K}

9



+P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ K}.
Next we shall choose an appropriate K = K(N) so that we will be able to bound from above
by o(1) (as N → ∞) each of the summands on the right in (2.16).

Let us fix δ > 0 arbitrarily, and define an event

Aδ,N =

{∣∣∣∣
T (N)

N
− 1

EX

∣∣∣∣ ≤ δ

}
. (2.17)

Recall that according to (2.3)

P(Aδ,N) ≥ 1 − 2 exp

(
− δ2

12(1 − q)
N

)
= 1 − o(1) (2.18)

as N → ∞. Now we derive

P{ max
1≤i≤T (N)

Xi > K} ≤ P{ max
1≤i≤T (N)

Xi > K | Aδ,N}P(Aδ,N) + P{Aδ,N} (2.19)

≤
(

1

EX
+ δ

)
N P{X1 > K | Aδ,N}P(Aδ,N) + P{Aδ,N}

≤
(

1

EX
+ δ

)
N P{X1 > K} + P{Aδ,N}

as N → ∞. Making use of the formula (1.1) for the distribution of X1 we obtain from (2.19)
and (2.18)

P{ max
1≤i≤T (N)

≥ K} ≤ CNqK + 2 exp

(
− δ2

12(1 − q)
N

)
(2.20)

as N → ∞, where C = C(δ, q) is some finite positive constant. Let now ω1(N) < N be any
function tending to infinity with N , and set

K(N) =
1

| log q| logN + ω1(N). (2.21)

Clearly, bound (2.20) with K replaced by K(N) implies

P{ max
1≤i≤T (N)

Xi ≥ K(N)} = o(1) (2.22)

as N → ∞.
Now we consider the last term in (2.16). Let us define

k0 := max

{[
1

ε

]
,

[
1

| log q|

]}
+ 2. (2.23)
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Then we obtain making use of (2.18)

P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ K(N)} (2.24)

≤
k0∑

k=1

P{| 1

T (N)

T (N)∑

i=1

Ik(Xi) − µ(k)| > ε kµ(k)}

+

K(N)∑

k=k0+1

P{| 1

T (N)

T (N)∑

i=1

Ik(Xi) − µ(k)| > ε kµ(k) | Aδ,N}P(Aδ,N) + o(1)

=

K(N)∑

k=k0+1

P{| 1

T (N)

T (N)∑

i=1

Ik(Xi) − µ(k)| > ε kµ(k) | Aδ,N}P(Aδ,N) + o(1)

as N → ∞, where the last equality is due to Proposition 2.2. Notice that for each k > k0
we have ε k > 1 and therefore

P






∣∣∣∣∣∣
1

T (N)

T (N)∑

i=1

Ik(Xi) − µ(k)

∣∣∣∣∣∣
> ε kµ(k) | Aδ,N




 (2.25)

= P





1

T (N)

T (N)∑

i=1

Ik(Xi) − µ(k) > ε kµ(k) | Aδ,N





≤ P





1(
1

EX
− δ
)
N

[( 1

EX
+δ)N]+1∑

i=1

Ik(Xi) > µ(k) + ε kµ(k) | Aδ,N





=: P(k).

Set t(N) =
[(

1
EX

+ δ
)
N
]

+ 1. Then using the bound

(
1

EX
− δ
)
N

t(N)
> 1 − 5

2
EX δ

for all N > 2/δ, we derive

P(k) ≤ P





1

t(N)

t(N)∑

i=1

Ik(Xi) > µ(k)(1 + ε k)(1 − 5EX

2
δ) | Aδ,N




 (2.26)

11



for all N > 2/δ. Now for all k > k0 and 0 < δ < 1
10EX

we have (1 + ε k)(1− 5EX
2

δ) ≥ 1 + ε
2
k,

and therefore

P(k) ≤ P





1

t(N)

t(N)∑

i=1

Ik(Xi) > µ(k)(1 +
ε

2
k) | Aδ,N




 (2.27)

≤ P





1

t(N)

t(N)∑

i=1

Ik(Xi) > µ(k)(1 +
ε

2
k)




 /P(Aδ,N).

Note that
∑t(N)

i=1 Ik(Xi) follows the binomial distribution Bin(t(N), µ(k)). This allows us to
use the large deviation inequality from [4] (see (2.5), p.26 in [4]) and derive

P





1

t(N)

t(N)∑

i=1

Ik(Xi) > µ(k)(1 +
ε

2
k)



 (2.28)

≤ exp

(
− ( ε

2
kµ(k)t(N))2

1
3
εkµ(k)t(N) + 2µ(k)t(N)

)
≤ exp

(
− 1

10
εkµ(k)t(N)

)

for all k > k0. Substituting this into (2.27) we obtain

P(k) ≤ exp
(
− 1

10
εkµ(k)t(N)

)
/P(Aδ,N) (2.29)

for all k > k0. The last bound combined with (2.25) and (2.24) leads to

P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ K(N)}

≤
K(N)∑

k=k0+1

exp
(
− 1

10
εkµ(k)t(N)

)
+ o(1),

as N → ∞. Taking into account that function kµ(k) is decreasing for k > k0 we derive from
the last bound:

P{|Nk/T (N) − µ(k)| > ε kµ(k) for some 1 ≤ k ≤ K(N)} (2.30)

≤ exp
(
− 1

10
εK(N)µ(K(N))t(N) + logK(N)

)
+ o(1),

as N → ∞.
Setting now ω1(N) = log log logN in (2.21), it is easy to check that for

K(N) =
1

| log q| logN + log log logN

the entire right-hand side of the inequality (2.30) is o(1) as N → ∞. This together with the
previous bound (2.22) and inequality (2.16) finishes the proof of lemma. ✷

12



2.4 Proof of Theorem 1.1 in the subcritical case c < ccr(q) .

Let us fix 0 ≤ q < 1 and then c < ccr(q) arbitrarily. Given X let again vi denote the macro-

vertices with types Xi, i = 1, 2, . . . , respectively, and let L̃ denote a connected component
in G̃N(X, q, c). Firstly, for any K > 0 and 0 < δ < 1/EX we derive with help of (2.18)

P
{
C1

(
GN(q, c)

)
< K

}
≤ P

{
C1

(
GN(q, 0)

)
< K

}
= P

{
max

1≤i≤T (N)
Xi < K

}
(2.31)

≤ P

{
max

1≤i≤T (N)
Xi < K | Aδ,N

}
+ o(1) ≤ (1 −P {X ≥ K})N( 1

EX
−δ) + o(1),

as N → ∞, where X has the Fs(1 − q)-distribution. Since

P {X ≥ K} = qK−1,

we derive from (2.31) for any a1 <
1

| log q| and K = a1 logN

P
{
C1

(
GN(q, c)

)
< a1 logN

}
= o(1),

which proves statement (1.4).
Consider now for any positive constant a and a function w = w(N) ≥ logN

P
{
C1

(
GN(q, c)

)
> aw

}
= P



max

L̃

∑

vi∈L̃

Xi > aw



 . (2.32)

We know already from (2.14) that in the subcritical case the size (the number of macro-

vertices) of any L̃ is whp o(N). Note that when the kernel κ(x, y) is not bounded uniformly
in both arguments, which is our case, it is not granted that the largest component in the sub-
critical case is at most of order logN (see, e.g., discussion of Theorem 3.1 in [1]). Therefore
first we shall prove the following intermediate result.

Lemma 2.2. If c < ccr(q) then

P
{
C1

(
G̃N(X, q, c)

)
> N1/2

}
= o(1). (2.33)

Proof. Let us fix ε > 0 and δ > 0 arbitrarily and introduce the following event

BN := Aδ,N ∩
(

max
1≤i≤T (N)

Xi ≤
2

| log q| logN

)
∩
(
∩N
k=1

{∣∣∣∣
Nk

T (N)
− µ(k)

∣∣∣∣ ≤ εkµ(k)

})
. (2.34)
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According to (2.18), (2.22) and (2.15) we have

P {BN} = 1 − o(1) (2.35)

as N → ∞.
Recall that τN(x) denotes the set of the macro-vertices in the tree constructed according

to the algorithm of revealing of connected component described above. Let |τN(x)| denotes
the number of macro-vertices in τN (x). Then we easily derive

P
{
C1

(
G̃N(X, q, c)

)
> N1/2

}
≤ P

{
max

1≤i≤T (N)
|τN(Xi)| > N1/2 | BN

}
+ o(1) (2.36)

≤ N
N∑

k=1

(1 + εk)µ(k)
(
δ + 1/EX

)
P
{
|τN (k)| > N1/2 | BN

}
+ o(1)

as N → ∞. We shall use the multi-type branching process introduced above (Section 2.2)
to approximate the distribution of |τN(k)|. Let further X c,q(k) denote the number of the
particles (including the initial one) in the branching process starting with a single particle
of type k. Observe that at each step of the exploration algorithm, the number of new
neighbours of x of type y has a binomial distribution Bin(N ′

y , p̃xy(N)) where N ′
y is the

number of remaining vertices of type y, so that N ′
y ≤ Ny.

We shall explore the following obvious relation between the Poisson and the binomial
distributions. Let Yn,p ∈ Bin(n, p) and Za ∈ Po(a), where 0 < p < 1/4 and a > 0. Then for
all k ≥ 0

P{Yn,p = k} ≤ (1 + Cp2)nP{Zn p
1−p

= k}, (2.37)

where C is some positive constant (independent of n and p). Notice that for all x, y ≤
2

| log q| logN

p̃xy(N) = 1 −
(

1 − c

N

)xy
=

c

N
xy (1 + o(1)), (2.38)

and clearly, p̃xy(N) ≤ 1/4 for all large N . Therefore for any fixed positive ε1 we can choose
small ε and δ in (2.34) so that conditionally on BN we have

N ′
y

p̃xy(N)

1 − p̃xy(N)
≤ (1 + yε1)µ(y)κ(x, y) (2.39)

for all large N . Let us write further

µ(y) = µq(y), µq =
∑

y≥1

yµq(y) (= EX), κ(x, y) = κc,q(x, y)
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emphasizing dependence on q and c. Then for any ε2 > 0 and any q′ > q such that
1−q
q

q′

1−q′
< 1 + ε2 we can choose ε1 < log(q′/q), and derive from (2.39)

N ′
y

p̃xy(N)

1 − p̃xy(N)
≤ (1 + ε2)µq′(y)κc,q(x, y) = µq′(y)

(1 + ε2) c

µq
xy. (2.40)

Setting now c′ := (1 + ε2)
µq′

µq
c we rewrite (2.40) as follows

N ′
y

p̃xy(N)

1 − p̃xy(N)
≤ µq′(y)κc′,q′(x, y). (2.41)

Recall that above we fixed q and c < ccr(q), where ccr(q) is decreasing and continuous in q.
Hence, we can choose q′ > q and c′ := (1 + ε2)

µq′

µq
c so that

c < c′ < ccr(q′) < ccr(q), (2.42)

and moreover c′ and q′ can be chosen arbitrarily close to c and q, respectively.
Now conditionally on BN we can replace according to (2.37) at each (of at most N)

step of the exploration algorithm the Bin(N ′
y, p̃xy(N)) variable with Po(N ′

y
p̃xy(N)

1−p̃xy(N)
), and

further replace the last variables with the stochastically larger ones Po(µq′(y)κc′,q′(x, y))
(recall (2.41)). As a result we get the following bound using branching process:

P
{
|τN (k)| > N1/2 | BN

}
(2.43)

≤
(

1 + C

(
max

x,y≤2 logN/| log q|
p̃xy(N)

)2
)N2

P
{
X c′,q′(k) > N1/2

}
.

This together with (2.38) implies

P
{
|τN(k)| > N1/2 | BN

}
≤ eb(logN)4 P

{
X c′,q′(k) > N1/2

}
, (2.44)

where b is some positive constant. Substituting the last bound into (2.36) we derive

P
{
C1

(
G̃N(X, q, c)

)
> N1/2

}
(2.45)

≤ b2Neb(logN)4
N∑

k=1

kµq′(k)P
{
X c′,q′(k) > N1/2

}
+ o(1)
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as N → ∞, where b2 is some positive constant. By the Markov’s inequality

P
{
X c′,q′(k) > N1/2

}
≤ z−N1/2

EzX
c′,q′ (k) (2.46)

for all z ≥ 1. Denote hz(k) = EzX
c′,q′(k); then with a help of (2.46) we get from (2.45)

P
{
C1

(
G̃N(X, q, c)

)
> N1/2

}
≤ b1Neb(logN)2z−N1/2

N∑

k=1

kµq′(k)hz(k) + o(1). (2.47)

Now we will show that there exists z > 1 such that the series

Bz(c
′, q′) =

∞∑

k=1

kµq′(k)hz(k)

converge. This together with (2.47) will clearly imply the statement of the lemma.
Note that function hz(k) (as a generating function for a branching process) satisfies the

following equation

hz(k) = z exp {∑∞
x=1 κc′,q′(k, x)µq′(x)(hz(x) − 1)}

= z exp
{

c′

µq′
k (
∑∞

x=1 xµq′(x)hz(x) − µq′)
}

= z exp
{

c′

µq′
k(Bz(c

′, q′) − µq′)
}
.

Multiplying both sides by kµq′(k) and summing up over k we find

Bz(c
′, q′) =

∞∑

k=1

kµq′(k)z exp

{
c′

µq′
k(Bz(c

′, q′) − µq′)

}
.

Let us write for simplicity Bz = Bz(c, q). Hence, as long as Bz is finite, it should satisfy
equation

Bz = zEX e
c

EX
X(Bz−EX), (2.48)

which implies in turn that Bz is finite for some z > 1 if and only if (2.48) has at least one
solution (for the same value of z). Notice that

Bz ≥ B1 = EX (2.49)
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for z ≥ 1. Let us fix z > 1 and consider equation

y/z = EX e
c

EX
X(y−EX) =: F (y) (2.50)

for y ≥ EX . Using the properties of the distribution of X it is easy to derive that function

F (y) =
1

EX

ec(
y

EX
−1)

(
1 − qec(

y
EX

−1)
)2

is increasing and has positive second derivative if EX ≤ y ≤ y0, where y0 is the root of
1 = q exp

{
c( y0

EX
− 1)

}
. Compute now

∂

∂y
F (y)|y=EX =

c

EX
EX2 =

c

ccr
. (2.51)

Hence, if c < ccr then there exists z > 1 such that there is a finite solution y to (2.50).
Taking into account condition (2.42), we find that Bz(c

′, q′) is also finite for some z > 1,
which finishes the proof of the lemma. ✷

Now we are ready to complete the proof of (1.3), following almost the same arguments as
in the proof of the previous lemma. Let SN(x) =

∑
vi∈τN (x)Xi denote the number of vertices

from VN which compose the macro-vertices of τN (x). Denote

B′
N := BN ∩

(
max

1≤i≤T (N)
|τN(Xi)| < N1/2

)
.

According to (2.35) and Lemma 2.2 we have

P {B′
N} = 1 − o(1).

This allows us to derive from (2.32)

P
{
C1

(
GN(q, c)

)
> aw

}
≤ P

{
max

1≤i≤T (N)
SN(Xi) > aw | B′

N

}
+ o(1) (2.52)

≤ N
N∑

k=1

(1 + εk)µ(k)
(
δ + 1/EX

)
P {SN(k) > aw | B′

N} + o(1).

Let now Sc,q(y) denote the sum of types (including the one of the initial particle) in the
total progeny of the introduced above branching process starting with initial particle of type

17



y. Repeating the same argument which led to (2.43), we get the following bound using the
introduced branching process:

P {SN (k) > aw | B′
N} ≤

(
1 + C

(
max

x,y≤2 logN/| log q|
p̃xy(N)

)2
)b1N

√
N

P
{
Sc′,q′(k) > aw

}

as N → ∞, where we take into account that we can perform at most
√
N steps of exploration

(the maximal possible number of macro-vertices in any L̃). This together with (2.38) implies

P {τN (k) > aw | B′
N} ≤ (1 + o(1))P

{
Sc′,q′(k) > aw

}
(2.53)

as N → ∞. Substituting the last bound into (2.52) we derive

P
{
C1

(
GN(q, c)

)
> aw

}
≤ Nb

N∑

k=1

kµq′(k)P
{
Sc′,q′(k) > aw

}
+ o(1) (2.54)

as N → ∞, where b is some positive constant. Denote gz(k) = EzS
c′,q′ (k); then similar to

(2.47) we derive from (2.54)

P
{
C1

(
GN(q, c)

)
> aw(N)

}
≤ bN

N∑

k=1

kµq′(k)gz(k)z−aw(N) + o(1). (2.55)

We shall search for all z ≥ 1 for which the series

Az(c
′, q′) =

∞∑

k=1

kµq′(k)gz(k)

converge. Function gz(k) (as a generating function for a certain branching process) satisfies
the following equation

gz(k) = zk exp {∑∞
x=1 κc′,q′(k, x)µq′(x)(gz(x) − 1)}

= zk exp
{

c′

µq′
k (
∑∞

x=1 xµq′(x)gz(x) − µq′)
}

= zk exp
{

c′

µq′
k(Az(c

′, q′) − µq′)
}
.

Multiplying both sides by kµq′(k) and summing up over k we find

Az(c
′, q′) =

∞∑

k=1

kµq′(k)zk exp

{
c′

µq′
k(Az(c

′, q′) − µq′)

}
. (2.56)
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It follows from here (and the fact that Az(c
′, q′) ≥ µq′ for all z ≥ 1) that if there exists z > 1

for which the series Az(c
′, q′) converge, it should satisfy

z <
1

q′
. (2.57)

According to (2.56), as long as Az = Az(c, q) is finite it satisfies the equation

Az = EXzX e
c

EX
X(Az−EX),

which implies that Az is finite for some z > 1 if and only if the last equation has at least
one solution

Az ≥ A1 = EX. (2.58)

Let us fix z > 1 and consider equation

y = EXzX e
c

EX
X(y−EX) =: f(y, z). (2.59)

Using the properties of the distribution of X it is easy to derive that

f(y, z) =
1

EX

zec(
y

EX
−1)

(
1 − qzec(

y
EX

−1)
)2 .

We shall consider f(y, z) for y ≥ EX and 1 ≤ z < 1
q
e−c( y

EX
−1). It is easy to check that in

this area function f(y, z) is increasing, it has all the derivatives of the second order, and
∂2

∂y2
f(y, z) > 0. Compute now

∂

∂y
f(y, z)|y=1,z=1 =

c

EX
EX2 =

c

ccr
. (2.60)

Hence, if c > ccr there is no solution y ≥ EX to (2.59) for any z > 1. On the other hand, if
c < ccr then there exists 1 < z0 < 1/q such that for all 1 ≤ z < z0 there is a finite solution
y ≥ EX to (2.59). One could find z0 for example, as the (unique!) value for which function
y is tangent to f(y, z0) if y ≥ EX .

Now taking into account that c′ > c and q′ > q can be chosen arbitrarily close to c and
q, respectively, we derive from (2.55) that for all 1 < z < z0

P
{
C1

(
GN(q, c)

)
> aw(N)

}
≤ b(z)Nz−aw(N) + o(1) (2.61)

as N → ∞, where b(z) < ∞. This implies that for any a > 1/ log z0 > 1/| log q|

P
{
C1

(
GN (q, c)

)
> a logN

}
= o(1) (2.62)
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as N → ∞, which proves (1.3). ✷

To conclude this section we comment on the methods used here. It is shown in [6] that
in the subcritical case of classical random graphs the same method of generating functions
combined with the Markov inequality leads to a constant which is known to be the principal
term for the asymptotics of the size of the largest component (scaled to logN). This gives us
hope that a constant a chosen here to satisfy a > 1/ log z0 is close to the minimal constant
for which statement (2.62) still holds.

Similar methods were used in [7] for some class of inhomogeneous random graphs, and in
[1] for a general class of models. Note, however, some difference with the approach in [1]. It
is assumed in [1], Section 12, that the generating function for the corresponding branching
process with the initial state k (e.g., our function gz(k), k ≥ 1) is bounded uniformly in k.
As we prove here this condition is not always necessary: we need only convergence of the
series Az, while gz(k) is unbounded in k in our case. Furthermore, our approach allows one
to construct constant α(q, c) as a function of the parameters of the model.

2.5 Proof of Theorem 1.1 in the supercritical case.

Let Ck denote the set of vertices in the k-th largest component in graph GN(q, c), and

conditionally on X let C̃k denote the set of macro-vertices in the k-th largest component
in graph G̃N(X, q, c) (ordered in any way if there are ties). Let also Ck and C̃k denote

correspondingly, their sizes. According to our construction for any connected component L̃
in G̃N(X, q, c) there is a unique component L in GN(q, c) such that they are composed of
the same vertices from VN , i.e., in the notations (2.5)

L = ∪v∈L̃ ∪k∈v {k} =: V (L̃).

Next we prove that with a high probability the largest components in both graphs consist
of the same vertices.

Lemma 2.3. For any 0 ≤ q < 1 if c > ccr(q) then

P{C1 = V (C̃1)} = 1 − o(1) (2.63)

as N → ∞.

Proof. In a view of the argument preceeding this lemma we have

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2}.
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According to Theorem 12.6 from [1], conditions of which are satisfied here, in the supercritical

case conditionally on T (N) such that T (N)/N → 1/EX , we have whp C̃2 = O(log(T (N))),

which by Proposition 2.1 implies C̃2 = O(logN) whp . Also we know already from (2.14)

that in the supercritical case C̃1 = O(N) whp, and therefore C1 = O(N) whp. Hence, for
some positive constants a and b

P{C1 6= V (C̃1)} = P{C1 = V (C̃k) for some k ≥ 2} (2.64)

≤ P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a logN

)}
+ o(1).

Define now for any K = K(N) a set

BN := {∃Xi ≥ K for some 1 ≤ i ≤ T (N)}.

According to (2.20)
P(BN) ≤ CNqK + o(1)

as N → ∞ for some constant C independent of K and N . Setting from now on K =
√
N

we have P(BN) = o(1) as N → ∞. Then we derive

P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a logN

)}
(2.65)

≤ P

{(
max
k≥2

|V (C̃k)| > bN

)
∩
(

max
k≥2

C̃k < a logN

)
∩
(

max
1≤i≤T (N)

Xi <
√
N

)}
+ o(1)

≤ P
{√

N a logN > bN
}

+ o(1) = o(1).

Substituting this bound into (2.64) we immediately get (2.63). ✷

Conditionally on C1 = V (C̃1) we have

C1

N
= 1

N

∑T (N)
i=1 Xi1{vi ∈ C̃1}

= 1
N

∑T (N)
i=1

∑N
k=1 k1{Xi = k}1{vi ∈ C̃1}

= T (N)
N

∑N
k=1 k

1
T (N)

#{vi ∈ C̃1 : Xi = k}.

(2.66)

Note that Theorem 9.10 from [1] (together with Proposition 2.1 in our case) implies that

νN (k) :=
1

T (N)
#{vi ∈ C̃1(N) : Xi = k} P→ ρ(κ; k)µ(k) (2.67)
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for each k ≥ 1.
We shall prove below that also

WN :=

N∑

k=1

kνN (k)
P→

∞∑

k=1

kρ(κ; k)µ(k) =: βEX. (2.68)

Observe that ρ(κ; k) is the maximal solution to (2.12), therefore β is the maximal solution
to

β =
1

EX

∞∑

k=1

kρ(κ; k)µ(k) =
1

EX

∞∑

k=1

k
(

1 − e−
∑

∞

y=1
κ(k,y)µ(y)ρ(κ;y)

)
µ(k)

= 1 − 1

EX
E
(
Xe−cXβ

)
.

This proves that β is the maximal root of (1.6). Then (2.68) together with Proposition 2.1,
which states that T (N)/N

a.s.→ 1/EX , will allow us to derive from (2.66) that for any positive
ε

P
{
|
C1

(
GN(c, q)

)

N
− β| > ε | C1 = V (C̃1)

}
→ 0

as N → ∞. This combined with Lemma 2.3 would immediately imply

C1

(
GN(c, q)

)

N
P→ β, (2.69)

and hence the statement of the theorem follows.
Now we are left with proving (2.68). For any 1 ≤ R < N write WN := WR

N + wR
N , where

WR
N :=

R∑

k=1

kνN (k), wR
N :=

N∑

k=R+1

kνN (k).

By (2.67) we have for any fixed R ≥ 1

WR
N

P→
R∑

k=1

kρ(κ; k)µ(k) (2.70)

as N → ∞. Consider wR
N . Note that for any k ≥ 1

EνN(k) = EE
{
νN (k) | T (N)

}
≤ E

1

T (N)

T (N)∑

i=1

P{Xi = k | T (N)}. (2.71)
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Using events Aδ,N with bound (2.18) and Proposition 2.1 we obtain from (2.71) for any fixed
0 < δ < 1/(2EX)

EνN(k) ≤ E
1

T (N)

T (N)∑

i=1

P{Xi = k | T (N)}1{Aδ,N} + P{Aδ,N}

≤ (1 + δEX)

(1 − δEX)
P{X1 = k}(1 + o(1)) + P{Aδ,N}.

Bound (2.18) allows us to derive from here that

EνN(k) ≤ A1(µ(k) + e−a1N) (2.72)

for some positive constants A1 and a1 independent of k and N . This yields

EwR
N =

N∑

k=R+1

kEνN(k) ≤ A2e
−a2R (2.73)

for some positive constants A2 and a2.
Now for any ε > 0 we can choose R so that

∞∑

k=R+1

kρ(κ; k)µ(k) < ε/3,

and then we have

P{|WN −
∞∑

k=1

kρ(κ; k)µ(k)| > ε} (2.74)

= P{|(WR
N −

R∑

k=1

kρ(κ; k)µ(k)) + wR
N −

∞∑

k=R+1

kρ(κ; k)µ(k)| > ε}

≤ P{|WR
N −

R∑

k=1

kρ(κ; k)µ(k)| > ε/3} + P{wR
N > ε/3}.

Markov’s inequality together with bound (2.73) gives us

P{wR
N > ε/3} ≤ 3EwR

N

ε
≤ 3A2e

−a2R

ε
. (2.75)
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Making use of (2.75) and (2.70) we immediately derive from (2.74)

P{|WN −
∞∑

k=1

kρ(κ; k)µ(k)| > ε} ≤ o(1) +
3A2e

−a2R

ε
(2.76)

as N → ∞. Hence, for any given positive ε and ε0 we can choose finite R so large that

lim
N→∞

P{|WN −
∞∑

k=1

kρ(κ; k)µ(k)| > ε} < ε0. (2.77)

This clearly proves statement (2.68), and therefore finishes the proof of the theorem. ✷
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