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Abstract

We initiate a systematic study of eigenvectors of random graphs. Whereas much is known
about eigenvalues of graphs and how they reflect properties of the underlying graph, relatively
little is known about the corresponding eigenvectors. Our main focus in this paper is on the
nodal domains associated with the different eigenfunctions. In the analogous realm of Laplacians
of Riemannian manifolds, nodal domains have been the subject of intensive research for well
over a hundred years. Graphical nodal domains turn out to have interesting and unexpected
properties. Our main theorem asserts that there is a constant c such that for almost every
graph G, each eigenfunction of G has at most two large nodal domains, and in addition at
most c exceptional vertices outside these primary domains. We also discuss variations of these
questions and briefly report on some numerical experiments which, in particular, suggest that
almost surely there are just two nodal domains and no exceptional vertices.

1 Introduction

Let G be a graph and let A be its adjacency matrix. The eigenvalues of A turn out to encode a
good deal of interesting information about the graph G. Such phenomena have been intensively
investigated for over half a century. We refer the reader to the book [14, Ch. 11] for a general
discussion of this subject and to the survey article [10] for the connection between eigenvalues and
expansion. Strangely, perhaps, not much is known about the eigenvectors of A and how they are
related to the properties of G. However, in many application areas such as machine learning and
computer vision, eigenvectors of graphs are being used with great success in various computational
tasks such as partitioning and clustering. For example, see the work of Shi and Malik [19], Coifman,
et. al. [5, 6], Pothen, Simon and Liou [16] and others. In particular, a basic technique for spectral
partitioning (e.g. Weiss [24]) involves splitting a graph according to its nodal domains. As far as
we know, the success of these methods has not yet been given a satisfactory theoretical explanation
and we hope that our investigations will help in shedding some light on these issues as well. We also
mention that nodal domain counts in graphs are relevant to various studies in statistical physics;
see the survey [2].

There is, on the other hand, a rich mathematical theory dealing with the spectrum and eigen-
functions of Laplacians on manifolds. We only mention this important and highly relevant back-
ground material and refer the reader who wants to know more about this theory to Chapter 8 in
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Marcel Berger’s monumental panorama of Riemannian Geometry [3]. Suffices it to say that the
adjacency matrix of a graph is a discrete analogue of the Laplacian (we say a bit more about other
analogs below). The geometric perspective of graphs is, in our opinion, among the most promising
and most exciting aspects of present-day graph theory. Among the recent successes of this point of
view is the metric theory of graphs and its computational applications. The success of the metric
theory notwithstanding, we believe that other areas of geometry can be incorporated into this line
of development.

The only necessary facts we require are that the (geometric) Laplacian has a discrete spectrum,
that its smallest eigenvalue is zero and that the corresponding eigenfunction is the constant function.
This is analogous to the fact that the first eigenvector of a finite connected graph is a positive vector
and in particular, if the graph at hand is d-regular, then its first eigenvalue is d and that in the
corresponding eigenvector all coordinates are equal.

Nodal domains of eigenfunctions of the Laplacian have been studied in depth for more than a
century. We will only discuss this concept in the realm of graphs and refer the interested reader
to [3] for further information about the geometric setting. So what are nodal domains? Let G
be a finite connected graph. It is well-known that every eigenfunction f but the first takes both
positive and negative values. These values induce a partition of the vertex set V (G) into maximal
connected components on which f does not change its sign; these are the nodal domains of f (see
below for the precise definition).

We maintain the following convention: If G is an n-vertex graph, we denote the eigenvalues of
its adjacency matrix by λ1 ≥ λ2 ≥ . . .. We simply refer to the λi as the eigenvalues of G and let
f1, f2, . . . be the corresponding eigenfunctions, normalized in `2. A slight adaptation of classical
theorem due to Courant (see, for example, [4]) shows that for every k, the eigenfunction fk has at
most k nodal domains. This statement is a bit inaccurate and we refer the reader to [8] for a full
account of Courant’s theorem for graphs.

We impose throughout some fixed (but arbitrary) ordering on the vertex set V = {v1, v2, . . . , vn},
andthe coordinates in eigenvectors of G are arranged in this order. We freely interchange between
the vector (f(v1), . . . , f(vn)) and the corresponding function f : V → R. In the graph setting, one
has to be careful in defining nodal domains properly.

Definition 1.1. Let G = (V,E) be a graph and let f : V → R be any real function. A subset
D ⊆ V is a weak nodal domain of f if it is a maximal subset of V subject to the two conditions

1. D is connected, and

2. if x, y ∈ D then f(x)f(y) ≥ 0.

We say that D is a strong nodal domain if (ii) is replaced by

2’. if x, y ∈ D, then f(x)f(y) > 0.

The main focus of our research is the following problem.

Question 1. How many nodal domains (strong or weak) do the eigenvectors of G tend to have for
G that comes from various random graph models?

To get some initial idea, we started our research with a numerical experiment whose outcomes
were quite unexpected. We sampled numerous graphs from the random graph space G(n, 1

2). It
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d = 3 d = 4 d = 5

Figure 1: The number of nodal domains in a random d-regular 300 vertex graph. There are y nodal domains
corresponding to the x’th eigenvector (eigenvalues are sorted). For each d we show the average and standard
deviation of 100 such random graphs.

turned out that in each and every one of these cases, all eigenvectors of the adjacency matrix had
exactly two nodal domains. (In the experiments, no eigenvector ever had a 0 coordinate, so the
notions of strong and weak domains are equivalent.) The same experimental phenomenon was
observed for several smaller values of p > 0 in the random graph model G(n, p), provided that n is
large enough. Even more unexpected were the results obtained for random regular graphs. Some
of these results are shown in Fig. 1. We found that quite a few of the first eigenvectors have just
two nodal domains, and only then the number of nodal domains starts to grow.

As mentioned above, there are other discrete analogs to the geometric Laplacian. One often
considers the so-called combinatorial Laplacian of a graph G. This is the matrix D − A where A
is G’s adjacency matrix and D is a diagonal matrix with Dii being the degree of the vertex vi.
It is well known that this matrix is positive semidefinite, and it is also of interest to investigate
similar questions for the combinatorial Laplacian of random graphs. The convention here is that
the eigenvalues are sorted as 0 = µ1 ≤ . . . ≤ µn. For regular graphs, the question for the adjacency
matrix and for the discrete Laplacian are equivalent, since λi + µn−i+1 = d for every i and the
eigenfunction corresponding to λi and to µn−i+1 in the two matrices are identical. However, for
graphs in G(n, p) it turns out that the two spectra behave slightly differently. Computer simulations
suggest that all eigenvectors of the combinatorial Laplacian that correspond to µ2 . . . µn−∆ for some
small ∆ have exactly two nodal domains. However, among the last ∆ eigenfunctions, some have
three nodal domains. Fig. 2 suggests that in a constant fraction of the graphs in G

(
n, 1

2

)
the

eigenvector corresponding to µn has three nodal domains.

Our main theorem for G(n, p) partly establishes these observed phenomena.

Theorem 1.2. For every p ∈ (0, 1), if G ∼ G(n, p), then asymptotically almost surely the following
holds for every eigenvector of G. The two largest weak nodal domains cover all vertices in G with
the exception of at most Op(1) vertices, where Op(1) represents a constant depending only on p.
The two largest strong nodal domains cover all the vertices {v ∈ V : f(v) 6= 0}, with the exception
of at most Op(1) vertices. In particular, in both cases every eigenvector of G has at most Op(1)
(strong or weak) nodal domains.

We remark that our bounds are quite reasonable (see Appendix A). For instance, for p = 1/2,
we show that there are at most 46 exceptional vertices almost surely.
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number of vertices

Figure 2: The probability in G(n, 1
2 ) that the last eigenvector of the Laplacian has three nodal domains.

For each n there were 500 experiments carried out.

1.1 Overview of our approach

Given G ∼ G(n, p) and an eigenvector f of G, we first partition V (G) = Pf ∪Nf ∪Ef where Pf ,Nf
are the largest positive and negative nodal domains of f , respectively, and Ef is a set of exceptional
vertices. All eigenvectors are normalized to be unit vectors in `2.

We show that if Ef is large, then we can use the eigenvalue condition, combined with upper
estimates on the eigenvalues of G(n, p) to find a large subset S of coordinates for which ‖f |S‖2 is
smaller than one would expect for a random unit vector f ∈ Sn−1. The last step is to show that the
probability that some eigenvector has small 2-norm on a large set of coordinates is exponentially
small, and then apply a union bound over all such subsets.

The problem is that the final step seems to require very strong upper bounds on ‖A−1‖ (i.e.
lower bounds on the smallest singular value of A) for a random discrete matrix A. Although there
has been a great deal of progress in this direction [13, 12, 17, 21, 7, 18] (see also the survey [23]),
the known bounds for symmetric matrices are far too weak for our purpose. Thus it is crucial that
we reduce to proving upper bounds on ‖A−1‖ when A is a random rectangular ±1 Bernoulli matrix.
In this case, we can employ the optimal bounds of [12, 13] which also yield the exponential failure
probability that we require. This reduction is carried out in Theorem 3.1.

In Section 3.3, we show that it is possible to get significantly better control on the nodal domains
of G(n, p) if we could get slightly non-trivial bounds on the `∞ norms of eigenvectors. This is a
possible avenue for future research.

1.2 Preliminaries

Notation 1.1. We denote by G(n, p) a random graph with n vertices, where each edge is chosen
independently with probability p. The set of neighbors of a vertex x ∈ V (G) is denoted by Γ(x).

Notation 1.2. For a graph G = (V,E) a function f : V → R, and any subset S ⊆ V , we
denote f(S) =

∑
y∈S f(y). In particular, for every x ∈ V we denote f(Γ(x)) =

∑
y∼x f(y) =∑

y∈V Axyf(y), where A is the adjacency matrix of G.

As usual, the inner product of f, g : V → R is denoted 〈f, g〉 =
∑

x∈V f(x)g(x). For p ≥ 1, we

define ‖f‖p =
(∑

x∈V |f(x)|p
)1/p, and ‖f‖∞ = maxx∈V |f(x)|.

4



Definition 1.3. For p ∈ [0, 1], we define the random variable Xp by

Xp =

{
p− 1 with probability p
p with probability 1− p.

In particular, EXp = 0.

Definition 1.4. Let Mm×k(p) be the m × k matrix whose entries are independent copies of Xp,
and let M sym

k (p) be the symmetric k × k matrix whose entries above the diagonal are independent
copies of Xp, and whose diagonal entries are p.

Unless otherwise stated, throughout the manuscript, all eigenvectors are assumed to be normal-
ized in `2. When A is the adjacency matrix of a graph, we arrange its eigenvalues as λ1 ≥ λ2 ≥
. . . ≥ λn. The eigenvector corresponding to λ1 is called the first eigenvector, and any other is a
non-first eigenvector.

As is customary in this area, we occasionally say “almost surely” as shorthand for “asymptot-
ically almost surely.” All asymptotic statements are made for large n and it is always implicitly
assumed that n is large enough.

2 Spectral properties of random matrices

We now review some relevant properties of random matrices.

Theorem 2.1 (Tail bound for symmetric matrices). If A ∼M sym
k (p), then for every ξ > 0

Pr
(
‖A‖ ≥ (2

√
p(1− p) + ξ)

√
k
)
≤ 4e−(1−o(1))ξ2k/8

Here ‖A‖ stands for the `2 operator norm of A.

Proof. Füredi and Komlós prove in [9, §3.3] that the expected value of the largest magnitude
eigenvalue of A is at most (2 + o(1))

√
p(1− p)

√
k. Alon, Krivelevich and Vu prove in [1] (see also

[11]) that the probability that the largest eigenvalue of A exceeds its median by ξ
√
k is at most

2e−ξ
2k/8, and so is the probability that the smallest eigenvalue of A is smaller than its median

by ξ
√
k. As usual in the context of sharp concentration, the expected value of the first and last

eigenvalues differs from the median by at most O(1). The conclusion follows.

We also need a similar bound for A ∼Mm×k(p) whose proof is standard; we repeat it below in
order to record the exact dependence of the constants on p.

Theorem 2.2 (Tail bound for non-symmetric matrices). For any m ≥ k, if A ∼Mm×k(p) then

Pr
(
‖A‖ ≥ a1

√
p(1− p)

√
m
)
≤ e−a2m

where a1, a2 are constants that depend only on p.

We first recall that Xp has a subgaussian tail.
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Lemma 2.3. For every 0 ≤ p ≤ 1
2 ,

EetXp ≤ e(1−p)2t2/2 .

For every 1
2 < p ≤ 1,

EetXp ≤ ep2t2/2 .

Proof. Note that
EetXp = pe−t(1−p) + (1− p)etp.

In both cases, the claim follows by comparing the Taylor series on both sides.

Proof of Thm. 2.2. Let N1 ⊆ Sk−1 and N2 ⊆ Sm−1 be 1
3 -nets. By standard estimates, |N1| ≤

9k, |N2| ≤ 9m.
Fix some x ∈ N1 and y ∈ N2, and estimate Pr (〈y,Ax〉 > t

√
m) as follows

Pr
(
〈y,Ax〉 > t

√
m
)

= Pr
(
eλ〈y,Ax〉 > eλt

√
m
)
≤ Eeλ〈y,Ax〉

eλt
√
m

Define q = max {p, 1− p}. By Lemma 2.3 we have

Eeλ〈y,Ax〉 =
k∏
i=1

m∏
j=1

EeλAijxiyj

≤
k∏
i=1

m∏
j=1

eq
2λ2x2

i y
2
j /2 = eq

2λ2/2 .

The optimal choice is λ = t
√
m
q2

which yields

Pr
(
〈y,Ax〉 > t

√
m
)
≤ e−

t2m
2q2

and therefore

Pr
(
∃x ∈ N1, y ∈ N2 : |〈y,Ax〉| > t

√
m
)
≤ 2e−

t2m
2q2 |N1||N2| ≤ 2e−

t2m
2q2 9k+m.

By successive approximation, express x ∈ Sk−1 as x =
∑

i≥0 αixi where for all i, xi ∈ N1 and
|αi| ≤ 3−i. Likewise for y ∈ Sm−1 and y =

∑
i≥0 βiyi with yi ∈ N2 and |βi| ≤ 3−i. Therefore, if

|〈yi, Axj〉| ≤ t
√
m for all xj ∈ N1 and yi ∈ N2, then

|〈y,Ax〉| ≤
∑
i,j≥0

3−i−j |〈yi, Axi〉| ≤ 3t
√
m,

which means that

Pr
(
‖A‖ ≥ 3t

√
m
)
≤ 9m+ke

− t
2m
2q2 .

Now select t to satisfy 2+δ
1+δ ln 9 < t2

2q2
, where m = (1 + δ)k. Concretely, let

t = 2q

√
2 · 2 + δ

1 + δ
ln 9.
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With this choice, we can take

a1 =
18q
4

√
2 · 2 + δ

1 + δ
ln 9

a2 = 3
2 + δ

1 + δ
ln 9.

Theorem 2.4 (Tail bound for eigenvalues of G(n, p)). Let G be a graph from G(n, p) with p ∈ (0, 1)
and let λ1, . . . , λn be the eigenvalues of G’s adjacency matrix. Then for every i ≥ 2 and every ξ > 0

Pr
(
|λi| ≥ (2

√
p(1− p) + ξ)

√
n
)
≤ exp(−ξ2n/32)

Proof. Füredi and Komlós prove in [9, §3.3] that E (maxi≥2 |λi|) ≤ 2
√
p(1− p)

√
n(1 + o(1)). As

before, the theorem is derived by using a tail bound from [1].

We now state the following theorem from [13, Thm 3.3] (a slight generalization of [12]), spe-
cialized to the case of the sub-gaussian random variables Xp.

Theorem 2.5. [13] For any p ∈ (0, 1), δ > 0 there exist constants α = α(p, δ) > 0, β = β(p) > 0
such that the following holds for all sufficiently large k and every w ∈ Rm:

Pr
[
∃v ∈ Sk−1 s.t. ‖Qv − w‖2 ≤ α

√
m
]
≤ exp(−βm)

where m = (1 + δ)k and the probability is taken over Q ∼Mm×k(p).

Strictly speaking the results in [13] only apply for symmetric random variables (and thus only
to X1/2 in our setting). Note, however, that the proof of the stated bound in [13] is based on
three ingredients: (i) The exponential tail bound on the operator norm from Theorem 2.2; (ii) A
small-ball probability estimate that is based on the Paley-Zygmund inequality; and (iii) A small-
ball probability estimate, based on a Berry-Esséen-type inequality. We note that step (iii) does not
require a symmetry assumption (see, e.g. [20, §2.1]).

In order to derive explicit bounds on α and β, we now give a simpler proof of [13, Thm 3.3]
(which proof can essentially be read off from [13]) that works when p and δ are large enough,
and uses only (ii). For instance, we get non-trivial results for random graphs in G(n, p) when
p ∈ [0.18, 0.78]. In general, this does not require δ to be small; for instance, the simpler proof yields
positive values for α and β when p = 1/2 and 1 + δ ≥ 1000, which is sufficient for the applications
in Section 3.

These estimates are only used in the appendix for calculating explicit upper bounds on the
number of exceptional vertices, whereas in the rest of the paper we use the statement of Theorem
2.5 above. Nevertheless, the proof is fairly straightforward, and carries pedagogical value for readers
not familiar with such techniques. First, we recall the Payley-Zygmund inequality [15].

Lemma 2.6. For any positive random variable Z and any 0 ≤ λ ≤ 1

Pr (Z ≥ λE(Z)) ≥ (1− λ)2 (EZ)2

E(Z2)
.

We can now prove (ii), specialized to the random variables Xp.
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Lemma 2.7. Let Y1, . . . , Yn be independent copies of Xp and let a1, . . . , an ∈ R satisfy
∑
a2
i = 1,

then for every s ∈ R and every 0 ≤ η ≤ 1

Pr

(∣∣∣∣∣
n∑
i=1

aiYi − s

∣∣∣∣∣ > η
√
p(1− p)

)
> C(1− η2)2

where C = p2(1−p)2
128q4

and q = max {p, 1− p}.

Proof. Let X =
∑n

i=1 aiYi − s. By independence, one has

E[X2] =
n∑
i=1

a2
iE(Y 2

i ) + s2 = p(1− p) + s2.

Also, setting Y =
∑n

i=1 aiYi = X + s, we have

E[Y 4] = 4
∫ ∞

0
t3 Pr

(∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣ > t

)
dt

≤ 8
∫ ∞

0
t3e−t

2/2q2 dt = 16q4.

This inequality follows from the subgaussian tail bound in Lemma 2.3. For Pr (
∑
aiYi > t) we use

the result for Xp and for Pr (−
∑
aiYi > t) we use the result for −Xp = X1−p. Here it is convenient

to reformulate Lemma 2.3 by saying that EetXp ≤ eq2t2/2 for all 0 ≤ p ≤ 1.
Using (a− b)4 ≤ 8(a4 + b4), we have

E[X4] ≤ 8(E[Y 4] + s4) ≤ 128q4 + 8s4.

We can now apply Lemma 2.6 with Z = X2 and conclude that

Pr
(
X2 ≥ λ(p(1− p) + s2)

)
≥ (1− λ)2 (p(1− p) + s2)2

128q4 + 8s4

This last expression has a single local minimum at s = 0 and tends to 1/8 as s → ∞. Its value
when s = 0 is p2(1−p)2

128q4
(= C) which is at most 1

128 <
1
8 .

Thus we have

Pr
(
X2 ≥ λp(1− p)

)
≥ Pr

(
X2 ≥ λ(p(1− p) + s2)

)
≥ C(1− λ)2

Letting η =
√
λ gives us the desired result.

We now present a proof of Theorem 2.5 which only works for certain values of p, δ in order to
calculate explicit upper bounds in the appendix.

Proof of Theorem 2.5 holding only for certain values of p, δ. We are seeking an upper bound for

Pr
(
∃x ∈ Sk−1 s.t. ‖Ax− w‖2 ≤ α

√
m
)
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for A ∼ Mm×k(p). We separately estimate this probability depending on whether ‖A‖ > a1
√
m

or not, where a1 is the constant from Theorem 2.2. An upper bound on the probability that
‖A‖ > a1

√
m is given in Thm. 2.2. For the complementary case we use an γ-net N on Sk−1. Let

x ∈ N and w ∈ Rm. Let fi = |
∑k

j=1Aijxj − wi| for every i ≤ m. By Lemma 2.7 we have

Pr (fi > η) > C
(

1− η2

p(1−p)

)2
.

Define b = C
(

1− η2

p(1−p)

)2
.

Let us bound the probability that ‖Ax− w‖2 ≤ c2m for some constant c to be chosen later.

Pr
(
‖Ax− w‖2 ≤ c2m

)
= Pr

(
m∑
i=1

f2
i ≤ c2m

)

= Pr

(
m− 1

c2

m∑
i=1

f2
i ≥ 0

)

= Pr

(
exp

(
τm− τ

c2

m∑
i=1

f2
i

)
≥ 1

)

≤ E

(
exp

(
τm− τ

c2

m∑
i=1

f2
i

))
= eτm

m∏
i=1

E
(

exp
(
−τf

2
i

c2

))
,

for every τ > 0.
For every i ≤ m

E
(

exp
(
−τf

2
i

c2

))
=

∫ 1

0
Pr
(

exp
(
−τf

2
i

c2

)
> t

)
dt

≤
∫ e−τη

2/c2

0
dt+

∫ 1

e−τη2/c2
(1− b)dt

= e−τη
2/c2 + (1− b)

(
1− e−τη2/c2

)
= 1− b

(
1− e−τη2/c2

)
so we have

Pr
(
‖Ax− w‖2 ≤ c2m

)
≤ eτm

(
1− b

(
1− e−τη2/c2

))m
≤ eτm−b

“
1−e−τη2/c2

”
m

This expression is minimized for

τ =
c2

η2
ln
bη2

c2
.

For τ to be positive (as it should), we must have c <
√
bη =

√
C
(

1− η2

p(1−p)

)
η. Letting η =√

p(1−p)
3 gives

b =
4C
9

.

Let

c = (1− θ)2
3

√
p(1− p)C

3

9



for some 0 < θ ≤ 1, which gives

τ =
4
9

(1− θ)2C ln
1

(1− θ)2
.

Using these values for η, b, τ and c gives

Pr
(
‖Ax− w‖2 ≤ c2m

)
≤ exp

(
−4C

9
[
1 + (1− θ)2 (2 ln(1− θ)− 1)

]
m

)

The size of an γ-net on Sk−1 is at most (1 + 2/γ)k ≤
(

3
γ

)k
assuming γ ≤ 1. Repeating this

argument for every x ∈ N and using the union bound we get that

Pr
(
∃x ∈ N s.t. ‖Ax− w‖2 ≤ c

√
m
)
≤ exp

(
−4C

9
[
1 + (1− θ)2 (2 ln(1− θ)− 1)

]
m+ k ln

3
γ

)
= exp

(
−

{
4C
9
[
1 + (1− θ)2 (2 ln(1− θ)− 1)

]
−

ln 3
γ

1 + δ

}
m

)

Now we seek a constant α such that if (i) ‖A‖ ≤ a1
√
m, and (ii) there exists x ∈ Sk−1 with

‖Ax−w‖2 ≤ α
√
m, then ∃x′ ∈ N with ‖Ax′−w‖2 ≤ c

√
m. If x′ ∈ N is chosen so that ‖x−x′‖2 ≤ γ,

then

‖Ax′ − w‖2 = ‖Ax− w +A(x′ − x)‖2 ≤ ‖Ax− w‖2 + ‖A(x′ − x)‖2 ≤ α
√
m+ γa1

√
m .

By Theorem 2.2 we have Pr(‖A‖ > a1
√
m) ≤ e−a2m, so taking

α = (1− θ)2
3

√
p(1− p)C

3
− γa1 (1)

and

β = min

(
a2,

4C
9
[
1 + (1− θ)2 (2 ln(1− θ)− 1)

]
−

ln 3
γ

1 + δ

)
(2)

gives us the desired result.

This preceding argument yields the conclusion of Theorem 2.5 as long as there exists a choice
of γ, θ ∈ (0, 1) such that both α and β are positive. These bounds are used in Appendix A to show
that our techniques, if analyzed in gory detail, yield reasonable bounds on the number of nodal
domains for various values of p.

The next result follows from taking a union bound in Theorem 2.5.

Corollary 2.8. Maintaining the notations of Theorem 2.5, it is moreover true that

Pr
[
∃c ∈ R,∃v ∈ Sk−1 s.t. ‖Qv − cw‖2 ≤ α

√
m
]
≤ exp(−βm)

for all sufficiently large k, and every w ∈ Rm.
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Proof. We may assume that ‖w‖2 = 1. Since clearly ‖Qv‖2 ≤ m, it suffices to prove the bound for
c ∈ [−2m, 2m]. Apply Theorem 2.5 for every integer j ∈ [−2m, 2m] and a union bound to conclude
that

Pr
(
∃ an integer j ∈ [−2m, 2m] and v ∈ Sk−1 s.t. ‖Qv − jw‖2 ≤ α

√
m
)
≤ exp (−βm+ ln (4m+ 1))

But now for any c ∈ [−2m, 2m], let j ∈ [−2m, 2m] be the nearest integer. For any matrix Q and
v ∈ Sk−1

‖Qv − cw‖2 ≤ ‖Qv − jw‖2 + ‖ (j − c)w‖2 ≤ ‖Qv − jw‖2 + 1 .

3 Nodal domains

3.1 Eigenvectors are not too localized

We show first that the restriction of an eigenvector to a large set of vertices must have a substantial
`2 norm.

Theorem 3.1 (Large mass on large subsets). For every p ∈ (0, 1) and every ε > 0, there exist
α = α(ε, p) > 0 and β = β(p) > 0 such that for n large enough, and for every fixed subset S ⊆ [n]
of size |S| ≥ (1

2 + ε)n,

Pr [∃a non-first eigenvector f of G satisfying ‖f |S‖2 < α] ≤ exp(−βn)

where the probability is over the choice of G ∼ G(n, p).

Proof. Let A be the adjacency matrix of G = (V,E), and let f : V → R be a non-first eigenvector
of G with eigenvalue λ. Assume w.l.o.g. that α ≤ 1

2 , and let S ⊆ V be as in the theorem.
For every x ∈ S, the eigenvector condition λf(x) = f(Γ(x)) implies that∣∣∣∣∣∣

∑
y∈V

Axyf(y)

∣∣∣∣∣∣ = |λf(x)|.

Or equivalently, ∣∣∣∣∣∣
∑
y∈V

(p−Axy)f(y)− p
∑
y∈V

f(y)

∣∣∣∣∣∣ = |λf(x)|.

Squaring and summing over all x ∈ S this yields

∑
x∈S

∣∣∣∣∣∣
∑
y∈V

(p−Axy)f(y)− p
∑
y∈V

f(y)

∣∣∣∣∣∣
2

= |λ|2 · ‖f |S‖22. (3)

Let us define M = pJ−A, where J is the n×n all ones matrix, and let B be the |S|×n sub-matrix of
M consisting of rows corresponding to vertices in S, then (3) implies that ‖Bf−pf̄1‖2 = |λ|·‖f |S‖2,
where f̄ = 〈f,1〉.
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Furthermore, if we decompose B = [P Q] where P contains the columns corresponding to
vertices in S, and Q the others, then clearly P ∼ M sym

|S| (p) and Q ∼ M|S|×(n−|S|)(p). (It is useful
to think of P as corresponding to the subgraph of G induced by S, whereas Q corresponds to the
bipartite graph corresponding to S and its complement). Since Bf = P (f |S) + Q(f |S), we can
write

‖Q(f |S)− pf̄1‖2 ≤ ‖Bf − pf̄1‖2 + ‖Pf |S‖2 = |λ| · ‖f |S‖2 + ‖P (f |S)‖2 (4)

The main point now is that, by Corollary 2.8, Q (a random rectangular matrix with all entries being
i.i.d. copies of Xp) is extremely unlikely to map f |S near the 1-dimensional subspace spanned by 1.
But we know from concentration results that if f |S has small 2-norm, then the RHS will be small.
This leads to a contradiction.

Now, since f is a non-first eigenvector, by Theorems 2.4 and 2.1, there exist constants C =
C(p), β′ = β′(p) > 0 such that

Pr
[
|λ|+ ‖P‖ ≥ C

√
n
]
≤ exp(−β′n). (5)

If we assume that |λ|+ ‖P‖ ≤ C
√
n and also ‖f |S‖2 < α ≤ 1

2 , then a = ‖f |S‖2 =
√

1− α2 > 1
2 .

In this case, (4) implies that
‖Q( 1

af |S)− p
a f̄1‖2 ≤ 2C

√
nα. (6)

Now let k = n − |S|. By Corollary 2.8, for any δ ≥ 4ε
1−2ε > 0, there exists α, β > 0 (with β

depending only on p) such that for n large enough,

Pr
Q∼Mk(1+δ)×k(p)

[
∃v ∈ Sk−1,∃c ∈ R s.t. ‖Qv − c1‖2 ≤ 2Cα

√
n
]
≤ exp(−βn), (7)

but this implies that (6) and |λ|+ ‖P‖ ≤ C
√
n occur with probability at most exp(−βn). Taking

a union bound over (7) and (5), we see that for some α > 0,

Pr[‖f |S‖2 < α] ≤ exp(−βn) + exp(−β′n),

where both β, β′ > 0 depend only on p. This completes the proof.

We record the following simple corollary.

Corollary 3.2. For every p ∈ (0, 1) there exist r = r(p) > 0 and ε = ε(p) with 0 < ε < 1
2 such that

for almost all G ∼ G(n, p) and every subset S ⊆ V (G) with |S| ≥ (1
2 + ε)n we have ‖f |S‖2 ≥ r.

Proof. We need to take a union bound over all subsets S ⊆ [n] with |S| ≥ (1
2 + ε)n. But for every

value β = β(p) from Theorem 3.1, there exists an ε < 1
2 such that the number of such subsets is

o(exp(βn)), hence the union bound applies.

3.2 Bounding the number of exceptional vertices

We now turn to prove Theorem 1.2. Fix some p ∈ (0, 1) and consider G(V,E) ∼ G(n, p). We
concentrate on the part of the theorem that concerns weak nodal domains; exactly the same proof
works for strong domains after we delete the vertices at which an eigenvector vanishes (which do
not contribute to the count of strong nodal domains).

Let r = r(p) and ε = ε(p) be chosen as in Corollary 3.2. In everything that follows, we assume
that n is sufficiently large. By Theorem 2.4, it almost surely holds that every non-first eigenvalue
λ of G satisfies |λ| = O(

√
p(1− p)n). We thus can and will assume that this bound holds for the

remainder of this section.
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Lemma 3.3. Almost surely every non-first eigenvector f : V → R of G satisfies |〈f,1〉| ≤ O(1/
√
p).

Proof. As usual, A is the adjacency matrix of G, λ is the eigenvalue of f and J is the all-ones
matrix. Let M = pJ −A. Then,

λ〈f,1〉 = 〈f,A1〉 = 〈f, pJ1〉 − 〈f,M1〉 = pn〈f,1〉 − 〈f,M1〉.

It follows that

|〈f,1〉| = |〈f,M1〉|
pn− λ

≤ ‖M1‖2
pn− λ

≤
√
n‖M‖
pn− λ

.

But since M ∼ M sym
n (p), we know that ‖M‖ = O(

√
p(1− p)n) almost surely. Therefore almost

surely we have

|〈f,1〉| ≤
O(n

√
(1− p))

pn−O(
√

(1− p)n)
≤ O

(
1
√
p

)
.

We now derive an almost sure bound on the number of weak nodal domains. To this end, for any
function f : V → R, we let Pf and Nf be the largest non-negative and non-positive domains in f
(with respect to the random graph G). Define Ef = V \(Pf ∪Nf ), and let Zf = {v ∈ V : f(v) = 0}.
In particular, observe that Ef ∩ Zf = ∅ since we are discussing weak domains. Although the
next lemma is stated in terms of nodal domains, it should be clear that it is, in fact, a simple
combinatorial observation about random graphs.

Lemma 3.4. For any f : V → R, if D1, . . . , Dm are the weak nodal domains in Ef , then almost
surely m = O(p−1 log n) and |Di| = O(p−1 log n) for every i ∈ [m].

Proof. If P1, P2, . . . , Ps are non-negative nodal domains, then selecting one element from every Pi
yields an independent set of size s. By a standard fact (which follows immediately from a union
bound) about graphs in G(n, p), almost surely s = O(p−1 log n). Furthermore, since each |Pi| ≤ |Pf |
and there are no edges between the two sets, almost surely |Pi| ≤ O(p−1 log n). The same holds for
the non-positive nodal domains in Ef .

We are now ready to complete the proof of Theorem 1.2. We will use the following straightfor-
ward fact about G(n, p).

Fact 3.5. For any fixed k ∈ N, the following holds almost surely over the choice G ∼ G(n, p). For
any x1, x2, . . . , xk ∈ V , |Γ(x1) ∪ · · · ∪ Γ(xk)| = (1 − (1 − p)k ± o(1))n and |Γ(x1) ∩ · · · ∩ Γ(xk)| =
(pk ± o(1))n.

Lemma 3.6. It almost surely holds that every non-first eigenvector satisfies |Ef | = Op(1).

Proof. Since we seek a result that holds asymptotically almost surely, we take the following liberty:
Any property that holds for almost every graph in G(n, p) and is needed in the proof is assumed
to hold for G.

We can assume that f has a constant sign on Ef , for if x, y ∈ Ef satisfy f(x) > 0 > f(y), then
also Γ(x)∩Γ(y) ⊆ Ef . But from Lemma 3.4, |Ef | = O(log2 n), whereas |Γ(x)∩Γ(y)| = (p2 + o(1))n
by properties of random graphs.
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Let k be an integer such that
1
2 +ε

1−(1−p)k < 1. Let {x1, x2, . . . , xk} ⊆ Ef and assume without loss

of generality that f(xi) < 0 for i = 1, . . . , k. This implies that |Pf ∪ Ef | ≥ (1 − (1 − p)k − o(1))n
(because this set contains the union of the neighborhoods of x1, x2, . . . , xk). Therefore |Nf \ Zf | ≤
((1− p)k + o(1))n. By Lemma 3.3, we have∑
x∈Pf∪Ef

f(x) ≤ O(1/
√
p)+

∑
x∈Nf\Zf

|f(x)| ≤ O(1/
√
p)+

√
|Nf \ Zf |

√∑
x∈Nf

f(x)2 ≤
√

((1− p)k + o(1))n.

By Markov’s inequality, we know that there exists a subset S ⊆ Pf ∪ Ef such that

|S| ≥
1
2 +ε

1−(1−p)k |Pf ∪ Ef |, and for every y ∈ S,

f(y) ≤
√

((1− p)k + o(1))n(
1−

1
2

+ε

1−(1−p)k

)
|Pf ∪ Ef |

≤
(
1− (1− p)k

)√
((1− p)k + o(1))n

(1
2 − ε− (1− p)k)|Pf ∪ Ef |

≤
√

((1− p)k + o(1))
(1

2 − ε− (1− p)k)
√
n
.

Consequently,

‖f |S‖2 ≤
√
Pf ∪ Ef |

√
((1− p)k + o(1))

(1
2 − ε− (1− p)k)

√
n
≤
√

((1− p)k + o(1))
1
2 − ε− (1− p)k

.

Corollary 3.2 yields that ‖f |S‖2 ≥ r = r(p). It follows that√
((1− p)k + o(1))

1
2 − ε− (1− p)k

≥ r. (8)

We conclude that k = O
(

1
p log

(
1

r( 1
2
−ε)

))
, which finishes the proof since r, ε can be chosen depend-

ing only on p.

3.3 Future directions

First, we suspect that the following question should not be too difficult to resolve.

Conjecture 1. For every fixed p ∈ (0, 1), for G ∼ G(n, p), almost surely every eigenfunction f of
G satisfies

{v ∈ V (G) : f(v) = 0} = ∅.

For simplicity in what follows, we only discuss weak nodal domains. As before, Pf and Nf
are the largest non-negative and non-positive weak domains, and Ef = V \ (Pf ∪ Nf ) is the set of
exceptional vertices. We observe that if sufficiently good lower bounds on |Nf | and |Pf | hold, then
the number of exceptional vertices is at most one. We illustrate this for p = 1

2 , but the extension
to general p is straightforward.

14



Lemma 3.7. Suppose that there exists an ε0 > 0 such that almost surely, every non-first eigenvector
f of G ∼ G(n, 1

2), satisfies |Pf |, |Nf | ≥ (1
4 + ε0)n. Then almost surely every eigenvector has at

most one exceptional vertex.

Proof. Almost surely, every pair of vertices x, y ∈ V (G), satisfies |Γ(x) ∪ Γ(y)| ≥ (3
4 − o(1))n.

Assuming the stated lower bound on |Pf | and |Nf |, there must be an edge from {x, y} to both Pf
and Nf . But if x and y are both exceptional, then f must have the same sign on x and y (see, e.g.
the proof of Lemma 3.6), implying that there cannot be both types of edges.

Next, we show that if one can obtain a slightly non-trivial upper bound on ‖f‖∞ for eigenvectors
f of G(n, p), then almost surely all eigenvectors of such graphs have at most O(1

p) exceptional
vertices, and e.g. at most one exceptional vertex for p ∈ [0.21, 0.5]. First, we pose the following
natural problem.

Question 2. Is it true that, almost surely, every eigenvector f of G(n, p) has ‖f‖∞ = o(1)? The
natural guess would be that for almost all graphs, every eigenfunction satisfies ‖f‖∞ = n−

1
2

+o(1).

Very recently we learned that Tao and Vu [22, Prop. 58] have made significant progress on
this question by showing that it holds for all but o(n) of the eigenvectors. The preceding question,
though, is still open. A positive answer yields more precise control on the nodal domains of G(n, p).

Theorem 3.8. Suppose that for almost every G ∼ G(n, p) it holds that all eigenvectors f of
G satisfy ‖f‖∞ = o(1). Then almost surely every eigenvector has at most kp = b 1

log2(1/(1−p))c
exceptional vertices.

In order to prove this statement, we need the following strengthening of Theorem 3.1. In
particular, we require that the subset of vertices S be allowed to (weakly) depend on the random
choice of G ∼ G(n, p).

Theorem 3.9. For every p ∈ (0, 1), and ε > 0, there exist values α = α(ε, p) > 0 and β = β(p) > 0
such that the following holds. Suppose G ∼ G(n, p) and A is the adjacency matrix of G. Suppose
further that S ⊆ [n] is a (possibly) random subset which is allowed to depend on the rows of A
indexed by a set T ⊆ [n] with |T | = o(n). Then for all sufficiently large n, we have

Pr
[
∃a non-first eigenvector f of G with ‖f |S‖2 < α‖f |V \T ‖2 and |S| ≥ (1

2 + ε)n
]
≤ exp(−βn).

Proof. Let A be the adjacency matrix of G = (V,E), and let f : V → R be a non-first eigenvector
of G with eigenvalue λ. Let S ⊆ V be a possibly random subset with |S| ≥ (1

2 +ε)n. Let T ⊆ [n] be
such that |T | ≤ o(n) and S is determined after conditioning on the values of A in the rows indexed
by T . Assume, furthermore, that ‖f |S‖2 < α‖f |V \T ‖2.

Again, for every x ∈ S, the eigenvalue condition λf(x) = f(Γ(x)) implies that∣∣∣∣∣∣
∑

y∈V \T

Axyf(y) +
∑
y∈T

Axyf(y)

∣∣∣∣∣∣ = |λf(x)|.

Or equivalently, ∣∣∣∣∣∣
∑

y∈V \T

(p−Axy)f(y)− p
∑

y∈V \T

f(y) +
∑
y∈T

Axyf(y)

∣∣∣∣∣∣ = |λf(x)|.
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Squaring and summing over all x ∈ S \ T yields

∑
x∈S\T

 ∑
y∈V \T

(p−Axy)f(y)− p
∑

y∈V \T

f(y) +
∑
y∈T

Axyf(y)

2

= |λ|2 · ‖f |S\T ‖22 (9)

As above we define M = pJ−A, but now we let B be the |S\T |×|V \T | sub-matrix of M consisting
of rows corresponding to vertices in S \ T and columns corresponding to vertices in V \ T . Now let
g = f |V \T

‖f |V \T ‖2
, then (9) implies that

‖Bg − cfwT ‖2 ≤ 2|λ| · α

where wT ∈ R|S\T | is a vector which depends only on the rows of A indexed by T and cf ∈ R is some
constant depending on f . Note that we have used the fact that ‖f |S‖2 ≤ α‖f |V \T ‖2. Furthermore,
B and S are independent random variables conditioned on T . From this point, the proof proceeds
just as in Theorem 3.1.

Proof of Theorem 3.8. Our goal is to show that almost surely |Ef | ≤ kp for every non-first eigen-
vector f with associated eigenvalue λ. Suppose, to the contrary, that |Ef | > kp, and let U ⊆ Ef
have |U | = kp + 1. Consider Γ =

⋃
u∈U Γ(u). By properties of random graphs, it holds that

|Γ| ≥ [1− (1− p)kp+1 − o(1)]n ≥
(

1
2

+ εp − o(1)
)
n,

for some positive εp. Thus for n large enough, we may assume that indeed |Γ| ≥
(

1
2 + εp

)
n.

Again, by Theorem 2.4, we have |λ| = Op(
√
n) almost surely, and thus we assume this bound

holds for the remainder of the proof. Now for each u ∈ U , let Du be the nodal domain of u with
respect to f . Using the eigenvalue condition, for every u ∈ U , we have |f(Γ(u))| = |λf(u)| =
Op(
√
n)|f(u)|. Every neighborhood Γ(u) has non-trivial intersection with only one of Pf or Nf ,

hence grouping terms by sign, we have∑
x∈Γ(u)

|f(x)| ≤
∣∣∣f (Γ(u) ∩ (Pf ∪Nf )

)
+ f

(
Γ(u) ∩ Ef \Du

)∣∣∣+ |f(Du)|

≤ |f(Γ(u))|+ |Du|
≤ Op(

√
n)|f(u)|+O(log n),

where we have used the estimate on |Du| from Lemma 3.4 which holds almost surely.
In particular, ∑

u∈U

∑
x∈Γ(u)

|f(x)| ≤ (kp + 1)‖f‖∞ ·Op(
√
n) +O(kp log n). (10)

Now let Γ′ = {x ∈ Γ : |f(x)| ≤ c√
n
} for some c = c(n) > 0 to be chosen momentarily. Using

(10), we see that |Γ \ Γ′| ≤ O(kp
√
n)|λ|·‖f‖∞
c . Under the assumption |λ| · ‖f‖∞ = o(

√
n), we can

choose c = o(1) so that |Γ \ Γ′| = o(n), in which case we may assume that for n large enough,
|Γ′| ≥

(
1
2 + ε′p

)
n for some ε′p > 0. We have ‖f |Γ′‖2 = o(1), hence also

‖f |Γ′‖2 = o(1) · ‖f |V \U‖2, (11)
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since ‖f |U‖2 ≤
√
|U | · ‖f‖∞ = o(1).

Since Γ′ depends on f and not just on the rows of the adjacency matrix corresponding to U ,
we cannot directly apply Theorem 3.9. Instead, we will apply the theorem to a collection of sets U
which are determined by Γ (which is determined by the sets {Γ(u)}u∈U ), with the guarantee that
Γ′ ∈ U .

To this end, let y(n) = o(n) be an upper bound on the size of |Γ \ Γ′|, and consider

U = {W ⊆ Γ : |W | ≥ |Γ| − y(n)}.

Then, we have |U| ≤
(
n
y(n)

)
, Γ′ ∈ U , and the collection U is completely determined by the rows of the

adjacency matrix of G corresponding to the vertices in U (as it is determined by Γ =
⋃
u∈U Γ(u)).

We may enumerate U = {U1, U2, . . .} in such a way that each Ui is determined after conditioning
on Γ (simply by canonically ordering all subsets of the vertices, and taking the induced ordering
on U).

We can thus apply Theorem 3.9 to each of the
(
n
y(n)

)
sets Ui ∈ U (one of which will always be

the set Γ′) and take a union bound to obtain, for some β = β(p) > 0,

Pr[∃U s.t. ‖f |Γ′‖2 = o(1) · ‖f |V \U‖2 and |Γ′| ≥ (1
2 + ε′p)n] ≤

(
n

kp + 1

)(
n

y(n)

)
exp(−βn),

and the latter quantity is o(1) since y(n) = o(n), but this contradicts (11).

Remark 3.1. Observe that even under the preceding assumptions, we are not able to rule out the
case of one exceptional vertex v with, say Γ(v) = Nf and Pf = V \ (Nf ∪ {v}).

APPENDIX

A A few examples

We used a simple MATLAB program to compute an upper bound on the constant behind the Op(1)
term in Lemma 3.6 for various p’s. It calculates the largest k such that inequality (8) holds, using

r =
α

q
1
2 +ε

2D , and the explicit bounds computed in Theorem 2.2 and (1) and (2). Our bounds for
various p’s are given in the following table.
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p k

0.78 29
0.74 30
0.7 32

0.66 34
0.62 37
0.58 39
0.54 43
0.5 46

0.46 54
0.42 63
0.38 75
0.34 90
0.3 109

0.26 137
0.22 181
0.18 277
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