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Abstract

We prove a variant of a Johnson-Lindenstrauss lemma for matrices with circulant structure.
This approach allows to minimise the randomness used, is easy to implement and provides good
running times. The price to be paid is the higher dimension of the target space k = O(ε−2 log3 n)
instead of the classical bound k = O(ε−2 log n).
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1 Introduction

The classical Johnson-Lindenstrauss lemma may be formulated as follows.

Theorem 1.1. Let ε ∈ (0, 1
2
) and let x1, . . . , xn ∈ R

d be arbitrary points. Let k = O(ε−2 log n) be
a natural number. Then there exists a (linear) mapping f : Rd → R

k such that

(1 − ε)||xi − xj ||22 ≤ ||f(xi) − f(xj)||22 ≤ (1 + ε)||xi − xj ||22
for all i, j ∈ {1, . . . , n}. Here || · ||2 stands for the Euclidean norm in R

d or R
k, respectively.

The original proof of Johnson and Lindenstrauss [11] uses (up to a scaling factor) an orthogonal
projection onto a random k-dimensional subspace of Rd. We refer also to [7] for a beautiful and self-
contained proof. Later on, this lemma found many applications, especially in design of algorithms,
where it sometimes allows to reduce the dimension of the underlying problem essentially and break
the so-called “curse of dimension”, cf. [9] or [10].

The evaluation of f(x), where f is a projection onto a random k dimensional subspace, is a very
time-consuming operation. Therefore, a significant effort was devoted to

• minimize the running time of f(x),

• minimize the memory used,
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• minimize the number of random bits used,

• simplify the algorithm to allow an easy implementation.

Achlioptas observed in [1], that the mapping may also be realised by a matrix, where each com-
ponent is selected independently at random with a fixed distribution. This decreases the time for
evaluation of f(x) essentially.

An important breakthrough was achieved by Ailon and Chazelle in [3]. Let us briefly describe
their Fast Johnson-Lindenstrauss transform (FJLT). The FJLT is the product of three matrices
f(x) = PHDx, where

• P is a k× d matrix, where each component is generated independently at random. In partic-
ular, Pi,j ≈ N(0, 1) with probability

q = min

{

Θ

(

log2 n

d

)

, 1

}

and Pi,j = 0 with probability 1 − q,

• H is the d× d normalised Hadamard matrix,

• D is a random d× d diagonal matrix, with each Di,i drawn independently from {−1, 1} with
probability 1/2.

It follows, that with high probability, f(x) may be calculated in time O(d log d + qdε−2 log n).

We refer to [14] for a historical overview as well as for an extensive description of the present “state
of the art”.

In this note we propose another direction to approach the Johnson-Lindenstrauss lemma, namely
we investigate the possibility of taking a partial circulant matrix for f combined with a random
±1 diagonal matrix, see the next section for exact definitions.

This transform has a running time of O(d log d), requires less randomness (2d instead of kd or
(k + 1)d used in [1, 2, 3]) and allows a simpler implementation.

Unfortunately, up to now, we were only able to prove the statement with k = O(ε−2 log3 n),
compared to the standard value k = O(ε−2 log n). We leave the possible improvements of this
bound open for further investigations.

2 Circulant matrices

We study the question (which to our knowledge has not been addressed in the literature before),
whether f in the Johnson-Lindenstrauss lemma may be chosen as a circulant matrix. Let us give
the necessary notation.

Let a = (a0, . . . , ad−1) be independent identically distributed random variables. We denote by Ma,k

the partial circulant matrix

Ma,k =















a0 a1 a2 . . . ad−1

ad−1 a0 a1 . . . ad−2

ad−2 ad−1 a0 . . . ad−3

...
...

...
. . .

...
ad−k+1 ad−k+2 ad−k+3 . . . ad−k















.
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Furthermore, if κ = (κ0, . . . ,κd−1) are independent Bernoulli variables, we put

Dκ =











κ0 0 . . . 0
0 κ1 . . . 0
...

...
. . .

...
0 0 . . . κd−1











.

Theorem 2.1. Let x1, . . . , xn be arbitrary points in R
d, let ε ∈ (0, 1

2
) and let k = O(ε−2 log3 n) be a

natural number. Let a = (a0, . . . , ad−1) be independent Bernoulli variables or independent normally
distributed variables. Let Ma,k and Dκ be as above and put f(x) = 1√

k
Ma,kDκx.

Then with probability at least 2/3 the following holds

(1 − ε)||xi − xj ||22 ≤ ||f(xi) − f(xj)||22 ≤ (1 + ε)||xi − xj||22, i, j = 1, . . . , n.

The preconditioning of x using Dκ seems to be necessary and we shall comment on this point later
on. Its role may be compared with the use of the random Fourier transform in [3].

In contrast to the above mentioned variants of the Johnson-Lindenstrauss lemma, the coordinates of
f(x) are now no longer independent random variables. Our approach “decouples” the dependence
caused by the circulant structure. It resembles in some aspects the methods used recently in
compressed sensing, cf. [4, 5, 15].

First, we recall the Lemma 1 from Section 4.1 of [13] (cf. also Lemma 2.2 of [14]), which shall be
useful later on.

Lemma 2.2. Let

Z =

D
∑

i=1

αi(a
2
i − 1),

where ai are i.i.d. normal variables and αi are nonnegative real numbers. Then for any t > 0

P(Z ≥ 2||α||2
√
t + 2||α||∞t) ≤ exp(−t),

P(Z ≤ −2||α||2
√
t) ≤ exp(−t).

Furthermore, we shall use the decoupling lemma of [6, Proposition 1.9].

Lemma 2.3. Let ξ0, . . . , ξd−1 be independent random variables with E ξ0 = · · · = E ξd−1 = 0 and
let {xi,j}d−1

i,j=0
be a double sequence of real numbers. Then for 1 ≤ p < ∞

E

∣

∣

∣

∣

∑

i 6=j

xi,jξiξj

∣

∣

∣

∣

p

≤ 4pE

∣

∣

∣

∣

∑

i 6=j

xi,jξiξ
′
j

∣

∣

∣

∣

p

,

where (ξ′0, . . . , ξ
′
d−1

) denotes an independent copy of (ξ0, . . . , ξd−1).

The key role in the proof of the Johnson-Lindenstrauss lemma is played by the following estimates.

Lemma 2.4. Let k ≤ d be natural numbers and let ε ∈ (0, 1
2
). Let a = (a0, . . . , ad−1), Ma,k and

Dκ be as in Theorem 2.1 and let x ∈ R
d be a unit vector. Put f(x) = Ma,kDκx.

Then there is a constant c, independent on k, d, ε and x, such that

Pa,κ

(

||f(x)||22 ≥ (1 + ε)k
)

≤ exp(−c(kε2)1/3)

and
Pa,κ

(

||f(x)||22 ≤ (1 − ε)k
)

≤ exp(−c(kε2)1/3).
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Proof. Let S : Rd → R
d denote the shift operator

S(x0, x1, . . . , xd−1) = (xd−1, x0, x1, . . . , xd−2), x ∈ R
d.

Then

||f(x)||22 = ||Ma,kDκx||22 =
k−1
∑

j=0

|〈Sja,Dκx〉|2 =
k−1
∑

j=0

(

d−1
∑

i=0

aiκj+ixj+i

)2

= I + II,

where

I =

d−1
∑

i=0

a2i ·
k−1
∑

j=0

x2j+i

and

II =

k−1
∑

j=0

∑

i 6=i′

aiai′κj+iκj+i′xj+ixj+i′ .

Here (and any time later) the summation in the index is to be understood modulo d.

The decoupling of the circulant matrix is based on

Pa,κ

(

||Ma,kDκx||22 ≥ (1 + ε)k
)

≤ Pa(I ≥ (1 + ε/2)k) + Pa,κ(II ≥ εk/2) (2.1)

and
Pa,κ

(

||Ma,kDκx||22 ≤ (1 − ε)k
)

≤ Pa(I ≤ (1 − ε/2)k) + Pa,κ(II ≤ −εk/2). (2.2)

We use Lemma 2.2 to estimate the diagonal term I.

We choose αi =

k−1
∑

j=0

x2j+i and get ||α||1 = k, ||α||∞ ≤ 1 and hence ||α||2 ≤
√
k. This leads to

Pa(I ≤ k − 2
√
kt) ≤ exp(−t) (2.3)

and
Pa(I ≥ k + 2

√
kt + 2t) ≤ exp(−t). (2.4)

We set εk/2 = 2
√
kt, i.e. t = ε2k/16, in (2.3) and obtain

Pa(I ≤ (1 − ε/2)k) ≤ exp(−ε2k/16). (2.5)

On the other hand, if c = 5/2 −
√

6 > 1/20, then
√
c + c/2 = 1/4 and

2
√
kt + 2t ≤ εk/2

for t = cε2k, which finally gives

Pa(I ≥ (1 + ε/2)k) ≤ exp(−cε2k). (2.6)

Next, we estimate the moments of the off-diagonal part II. We use Lemma 2.3 twice, which gives

Ea,κ|II|p ≤ 16pEa,a′,κ,κ′|II ′|p := 16pEa,a′,κ,κ′

∣

∣

∣

∣

k−1
∑

j=0

∑

i 6=i′

aia
′
i′κj+iκ

′
j+i′xj+ixj+i′

∣

∣

∣

∣

p

,

where a′ and κ
′ are independent copies of a and κ, respectively.
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First, we make a substitution v = j + i, v′ = j + i′ and use the Khintchine inequality with the
optimal constant cp ≤

√
p and the random variable κ to obtain

Eκ

∣

∣

∣

∣

k−1
∑

j=0

∑

i 6=i′

aia
′
i′κj+iκ

′
j+i′xj+ixj+i′

∣

∣

∣

∣

p

= Eκ

∣

∣

∣

∣

d−1
∑

v=0

κvxv
∑

v′ 6=v

κ
′
v′xv′

k−1
∑

j=0

av−ja
′
v−j′

∣

∣

∣

∣

p

≤ cpp

(d−1
∑

v=0

x2v

(

∑

v′ 6=v

κ
′
v′xv′

k−1
∑

j=0

av−ja
′
v−j′

)2
)p/2

.

Next, we involve Minkowski’s inequality with respect to p/2 ≥ 1 and Khintchine’s inequality for
the random variable κ

′.

Eκ,κ′ |II ′|p ≤ cpp Eκ′

(d−1
∑

v=0

x2v

(

∑

v′ 6=v

κv′xv′
k−1
∑

j=0

av−ja
′
v−j′

)2
)p/2

≤ cpp

(d−1
∑

v=0

x2v

(

Eκ′

∣

∣

∣

∑

v′ 6=v

κv′xv′
k−1
∑

j=0

av−ja
′
v−j′

∣

∣

∣

p
)2/p)p/2

≤ c2pp

(

∑

v 6=v′

x2vx
2
v′

(

k−1
∑

j=0

av−ja
′
v′−j

)2
)p/2

.

Furthermore, the Minkowski inequality for a and a′ gives

Ea,a′,κ,κ′ |II ′|p ≤ c2pp

(

∑

v 6=v′

x2vx
2
v′

(

Ea,a′

∣

∣

∣

k−1
∑

j=0

av−ja
′
v′−j

∣

∣

∣

p)2/p
)p/2

.

If a0, . . . , ad−1 are Bernoulli variables, then Khintchine’s inequality gives

(

Ea,a′

∣

∣

∣

k−1
∑

j=0

av−ja
′
v′−j

∣

∣

∣

p
)1/p

≤
√

kp,

as the product of two independent Bernoulli variables is again of this type.

For normal variables, we use first Khintchine’s inequality and spherical coordinates to obtain

Ea,a′

∣

∣

∣

k−1
∑

j=0

av−ja
′
v′−j

∣

∣

∣

p
= Ea,a′

∣

∣

∣

k−1
∑

j=0

aja
′
j

∣

∣

∣

p
≤ cppEa

(

k−1
∑

j=0

|aj |2
)p/2

= cppEa||a||p2 =
cpp

(2π)k/2

∫

Rk

e−||a||2
2
/2||a||p

2
da (2.7)

=
cpp

(2π)k/2
·Ak ·

∫ ∞

0

e−r2/2rp+k−1dr,

where

Ak =
2πk/2

Γ(k/2)

is the area of the unit ball in R
k.

We combine (2.7) with Stirling’s inequality and obtain

(

Ea,a′

∣

∣

∣

k−1
∑

j=0

av−ja
′
v′−j

∣

∣

∣

p
)1/p

≤
√

2cp

[

Γ((k + p)/2)

Γ(k/2)

]1/p

≤ c
√

p(k + p).
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Hence, if a0, . . . , ad−1 are independent Bernoulli or normally distributed variables, we may estimate

(

Ea,a′,κ,κ′ |II ′|p
)1/p ≤ cp ·

√

(k + p)p · ||x||2 = cp3/2
√

k + p. (2.8)

Markov’s inequality then gives

Pa,a′,κ,κ′(|II ′| > kε/2) = Pa,a′,κ,κ′

(

2p|II ′|p
kpεp

≥ 1

)

≤ 2pEa,a′,κ,κ′|II ′|p
kpεp

≤
(

cp3/2
√
k + p

kε

)p

.

We choose p by the condition
√
2cp3/2√
kε

= e−1. We may assume c ≥ 1, which ensures that p ≤ k and
√
k+p
k ≤

√
2√
k
, which leads to

Pa,a′,κ,κ′(|II ′| > kε/2) ≤ exp(−c′(kε2)1/3). (2.9)

The proof then follows by (2.1) and (2.2) combined with (2.5), (2.6) and (2.9).

The proof of Theorem 2.1 follows from Lemma 2.4 by the union bound over all
(

n
2

)

pairs of points.

Remark 2.5. (i) We note that (2.8) follows directly by very well known estimates of moments of
Gaussian chaos, cf. [8, 12]. We preferred to give a simple and direct proof.

(ii) Let us also mention that Lemma 2.4 fails, if the multiplication with Dκ is omitted. Namely,
let k ≤ d be natural numbers, let a0, . . . , ad−1 be independent normal variables and let x =
1√
d
(1, . . . , 1). If f(x) = Ma,kx, then

||f(x)||22 = k
(

d−1
∑

j=0

aj√
d

)2

.

Due to the 2-stability of the normal distribution, the variable

b :=
d−1
∑

j=0

aj√
d

is again normally distributed, i.e. b ≈ N(0, 1). Hence

Pa

(

||f(x)||22 > (1 + ε)k
)

= Pb

(

b2 > (1 + ε)
)

depends neither on k nor on d and Lemma 2.4 cannot hold.

(iii) The statement of Theorem 2.1 holds also for matrices with Toeplitz structure. The proof is
literally the same, only notational changes are necessary.
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