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Abstract

We show that the Glauber dynamics on proper 9-colourings of the
triangular lattice is rapidly mixing, which allows for efficient sampling.
Consequently, there is a fully polynomial randomised approximation
scheme (FPRAS) for counting proper 9-colourings of the triangular
lattice. Proper colourings correspond to configurations in the zero-
temperature anti-ferromagnetic Potts model. We show that the spin
system consisting of proper 9-colourings of the triangular lattice has
strong spatial mixing. This implies that there is a unique infinite-
volume Gibbs distribution, which is an important property studied in
statistical physics. Our results build on previous work by Goldberg,
Martin and Paterson, who showed similar results for 10 colours on the
triangular lattice. Their work was preceded by Salas and Sokal’s 11-
colour result. Both proofs rely on computational assistance, and so
does our 9-colour proof. We have used a randomised heuristic to guide
us towards rigourous results.

1 Introduction

This paper is concerned with proper 9-colourings of the triangular lattice. A
q-colouring of a graph G is an assignment of colours from the set {1, . . . , q}
to the vertices. A colouring is proper if adjacent vertices receive different
colours. There are two fundamental problems that have been studied ex-
tensively: sampling q-colourings from the uniform distribution on proper
q-colourings of G and counting the number of proper q-colourings of G.
Both these problems have been studied for various graphs and number of
colours, and it has been shown that the two problems are intimately related.
More precisely, if there is an efficient method of finding a good approximate
solution to one of the problems, then there is an efficient method of finding
a good approximate solution to the other problem. See for instance [14]
and [15] for details on this topic. The problem of counting q-colourings of
a graph with maximum degree ∆ is #P-complete when q > 3 and ∆ > 3
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(see [3]). Hence we have to rely on approximate solutions. A great deal of
work has been put into mapping out for which graphs and number of colours
there is a fully polynomial randomised approximation scheme (FPRAS) for
counting colourings, or equivalently, a fully polynomial almost uniform sam-
pler (FPAUS).

Sampling colourings is closely related to problems arising in statisti-
cal physics, where proper colourings correspond to configurations in the
zero-temperature anti-ferromagnetic Potts model. The notion of a proper
colouring imposes a very local property: it constrains the allowed colours
on two adjacent vertices. Given local constraints, physicists are interested
in understanding the macroscopic properties of the system.

Let L be an infinite graph. Think of L as lattice graph, for example
the grid. For a finite subgraph G of L, the boundary of G is the set of
vertices in L that are adjacent to G but are not in G themselves. Given a
colouring B of the boundary, a proper q-colouring of G agrees with B if no
vertex adjacent to the boundary receives any of the colours of its boundary
neighbours. Let πB denote the uniform distribution on proper q-colourings
of G that agree with B. Suppose πL is a distribution on the set of proper
q-colourings of the infinite graph L. For a proper q-colouring C of L, let
πL( · | C(L\G)) denote the conditional distribution on proper q-colouring of
G induced by πL when the colours of all vertices except for those in G are
specified by C. The distribution πL is an infinite-volume Gibbs distribution
(with respect to proper colourings) if, for any proper q-colouring C of L,
πL( · | C(L\G)) = πB, where B is the colouring of the boundary of G induced
by C. That is, the conditional distribution on colourings of G depends only
on the boundary of G and not on other vertices of L. The physical intuition
for an infinite-volume Gibbs distribution is that it describes a macroscopic
equilibrium, for which all parts of the system are in equilibrium with their
boundaries. It is known that there always exists at least one infinite-volume
Gibbs distribution [7], and a central question in statistical physics is to
determine whether it is unique or not. The phenomenon of non-uniqueness
is referred to as a phase transition. For more on Gibbs distributions, see,
for example, [6] or [7].

Given a finite subgraph G of L and a boundary colouring B of G, let G′

be any connected subset of the vertices of G and let θ be the distribution on
colourings of G′ that is induced by πB. The question we ask is how does θ
change if we change the colour of one single vertex on the boundary of G. If
G′ is far away from the boundary then we would expect that changing the
colour of a boundary vertex does not have too much influence on θ. If this
is true, then we have a property known as strong spatial mixing. The exact
definition will be given later. A consequence of strong spatial mixing is that
the infinite-volume Gibbs distribution is unique [5, 21, 22]. In this paper
we show that there is strong spatial mixing for 9 colours on the triangular
lattice.
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Another important problem in statistical physics is to determine how
quickly a system converges to equilibrium. This could lead to insights in
how the system returns to equilibrium after a shock has disturbed it. A
dynamical process that is commonly studied is the Glauber dynamics. The
Glauber dynamics is a Markov chain on the set of proper q-colourings of
a graph G. A transition from one state (colouring) to another is made
as follows. Choose a vertex v ∈ G uniformly at random and choose one
of the q colours uniformly at random. If the randomly selected colour is
different from the colours of the neighbours of v then recolour v with the
selected colour. This procedure is also known as a single-vertex heat-bath
update. If it is repeated over and over then the distribution of the current
state of the Markov chain will converge towards the uniform distribution.
The question is how long to run the dynamics in order to get close to the
uniform distribution. If we only need to simulate the dynamics over a small
number of steps then the Glauber dynamics would be a suitable tool for
sampling colourings. We say that a Markov chain is rapidly mixing if a
small number of steps are sufficient in order to get arbitrarily close to its
stationary distribution. Exact definitions will be given later. It is a well-
known fact that if the system has strong spatial mixing, then the Glauber
dynamics is (often) rapidly mixing [5, 16, 21]. In fact, the converse is also
true. Since we prove strong spatial mixing for 9 colours on the triangular
lattice, we also prove that the Glauber dynamics is rapidly mixing. That is,
we show that there is an FPAUS for sampling 9-colourings of the triangular
lattice. As mentioned above, the FPAUS implies that there is an FPRAS
for counting 9-colourings.

1.1 Organisation

The remainder of the paper is organised as follows. In Section 2, we de-
fine the basic notation, strong spatial mixing and the Glauber dynamics.
In Section 3, we formally state our results and discuss related work. In
Section 4, we introduce two key concepts that will be used throughout the
paper, and Sections 5 through 6 contain the technical part that leads to the
strong spatial mixing result. Section 7 is about the implication from strong
spatial mixing to a rapidly mixing Glauber dynamics. Finally, in Section 8,
we describe the computer assisted parts of our proofs.

2 Preliminaries

2.1 Basic notation

Let the infinite graph T = (VT , ET ) denote the triangular lattice, formally
defined as follows. There is a bijection ξ from VT to {(x, y) | x, y ∈ Z and
x+ y is even} such that ξ−1(x, y) ∈ VT has the six neighbours ξ−1(x, y+2),
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Figure 1. The triangular
lattice.

y

x

Figure 2. The triangular
lattice. Vertices are drawn
as a hexagons.

ξ−1(x + 1, y + 1), ξ−1(x + 1, y − 1), ξ−1(x, y − 2), ξ−1(x − 1, y − 1) and
ξ−1(x − 1, y + 1). Note that ξ maps a vertex of VT to a coordinate in a
Cartesian coordinate system, which allows us to draw the triangular lattice
as illustrated in Figure 1. However, throughout this article we will draw
vertices as a hexagons, illustrated in Figure 2.

The bijection ξ specifies a unique clockwise ordering of edges incident
to the same vertex. We write e1 ≺ · · · ≺ ek to indicate that e1 → e2 →
· · · → ek → e1 → · · · is the clockwise ordering of the edges e1, . . . , ek around
some vertex v. We say that two edges e1 and e2 incident to the same
vertex v are clockwise adjacent if either e1 ≺ e2 ≺ e3 ≺ e4 ≺ e5 ≺ e6 or
e2 ≺ e1 ≺ e3 ≺ e4 ≺ e5 ≺ e6, where e3, . . . , e6 are the other four edges in
ET incident to v.

A region R is a finite subset of VT and its edge boundary, denoted ER =
{{v,w} | {v,w} ∈ ET , v ∈ R,w /∈ R}. The vertex boundary of R, denoted
∂R = {w | {v,w} ∈ ER,w /∈ R}.

For a region R, v ∈ R and w ∈ ∂R, we let dR(w, v) denote the number
of edges on a shortest path P in T between w and v such that all vertices
in P except for w are in R. Thus, dR(w, v) = 1 if v and w are adjacent. For
a subregion R′ ⊆ R, we let dR(w,R

′) = minu∈R′ dR(w, u).
Let [q] = {1, . . . , q}. A q-colouring C of a set S (a set of vertices or

edges), is a function from S to [q], where [q] represents a set of q colours. A
partial q-colouring of S is a function from S to [q]∪{0}, where the additional
colour 0 can be thought of as representing “no colour.”

A q-colouring C of a region R is proper if for all u, v ∈ R, C(u) 6= C(v)
when {u, v} ∈ ET . For a partial q-colouring B of the boundary ∂R, a
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q-colouring C of R agrees with B if for all {w, v} ∈ ER, B(w) 6= C(v).
Similarly, for a partial q-colouring B of ER, a q-colouring C of R agrees
with B if for all {w, v} ∈ ER, B({w, v}) 6= C(v). To aid the reader, we
use the calligraphic font to represent colourings of vertices and the normal
font to represent colourings of edges (like B and B above). Further, partial
colourings (containing the “colour” 0) are used only for boundary vertices
and boundary edges and not for the regions themselves.

For a region R and partial q-colouring B of ∂R (respectively, B of ER),
Ωq
B (respectively, Ωq

B) denotes the set of proper q-colourings of R that agree
with B (respectively, B). The uniform distribution on Ωq

B (respectively, Ωq
B)

is denoted πq
B (respectively, πq

B). For a subregion R′ ⊆ R, we let πq
B(R

′)
denote the distribution on proper q-colourings of R′ induced by πq

B.
For a distribution θ on a set S, we write Prθ(x) for the probability of

drawing x ∈ S under θ. The total variation distance between two distribu-
tions θ1 and θ2 on a set S is

dtv(θ1, θ2) =
1

2

∑

x∈S

|Prθ1(x)− Prθ2(x)| = max
S′⊆S

|Prθ1(S
′)− Prθ2(S

′)| .

For two distributions θ1 and θ2 on two sets S1 and S2, respectively, a
coupling Ψ of θ1 and θ2 is a joint distribution on S1 ×S2 that has θ1 and θ2
as its marginal distributions.

We write E[X] to denote the expected value of a random variable X.

2.2 Strong spatial mixing

We say that there is strong spatial mixing for q colours on the triangular
lattice if there are two constants β, β′ > 0 (that may depend on q) such that

dtv(π
q
B(R

′), πq
B′(R

′)) 6 β|R′|e−β′dR(w,R′) (1)

is true for all regions R, subregions R′ ⊆ R, w ∈ ∂R and partial q-colourings
B and B′ of ∂R such that B(v) = B′(v) for all v ∈ ∂R \ {w}, B(w) 6= B′(w),
B(w) > 0 and B′(w) > 0.

2.3 The Glauber dynamics

The Glauber dynamics for q-colourings of a region R with partial q-colouring
B of ∂R is a Markov chain with state space Ωq

B and the following transitions.
The evolution from a colouring Ct ∈ Ωq

B to a new colouring Ct+1 ∈ Ωq
B is

defined by the following steps.

1. Choose a vertex v from R uniformly at random.

Let C be the colouring of R ∪ ∂R specified by Ct and B.

Let Cneighbours = {C(u) | {u, v} ∈ ET }.
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2. Choose a colour c from [q] \ Cneighbours uniformly at random.

3. Let

Ct+1(u) =

{

c, if u = v;

Ct(u), otherwise.

The probability of not leaving a state in a transition is always positive.
Hence the Glauber dynamics is an ergodic Markov chain if the number of
colours q is sufficiently large; every state can be reached from any other
state. In this article we are concerned with q = 9 colours for which we
note that there are always at least three available colours in Step 2 of the
dynamics above. Hence the Glauber dynamics is ergodic for q = 9.

It is straightforward to verify that when the Glauber dynamics is ergodic
then its stationary distribution is πq

B. Let θ
t
C0

be the distribution on Ωq
B after

t steps of the Glauber dynamics, starting with colouring C0. For δ > 0, the
mixing time

τ qB(δ) = max
C0∈Ω

q
B

min
t
{t | dtv(θ

t
C0 , π

q
B) 6 δ}

is the number of transitions until the dynamics is within total variation
distance δ of the stationary distribution, assuming the worst initial colouring
C0. We say that the Glauber dynamics is rapidly mixing if τ qB(δ) is upper-
bounded by a polynomial in |R| and log(1/δ).

2.4 Approximate counting

A randomised approximation scheme (RAS) for a function f : Σ∗ → N is a
probabilistic Turing machine that takes as input a pair (x, ε) ∈ Σ∗ × (0, 1),
and produces, on an output tape, an integer random variable Y satisfying
the condition Pr(e−ε 6 Y/f(x) 6 eε) > 3

4 . The choice of the value 3
4 is

inconsequential: the same class of problems has a RAS if we choose any
probability in the interval (12 , 1) (see for example [15]). A fully polynomial
randomised approximation scheme (FPRAS) is a RAS that runs in time
upper-bounded by a polynomial in |x| and ε−1.

It was mentioned in the introduction that the existence of an efficient
method for sampling colourings implies that there is an FPRAS for counting
the number of colourings. We could use a rapidly mixing Glauber dynamics
to construct (in a non-trivial way) an FPRAS for estimating |Ωq

B|. For details
on the topic of how sampling and counting are related, see, for example, [14]
or [15].

3 Our results and related work

These are the two main theorems of the paper.
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Theorem 1. There is strong spatial mixing for 9 colours on the triangular
lattice.

Theorem 2. The Glauber dynamics on 9-colourings of a region R of the
triangular lattice, with partial 9-colouring B of ∂R, has mixing time τ9B(δ) ∈
O(n2 + n log 1

δ
), where n = |R|.

The previously best known mixing results on the triangular lattice was
given for 11 colours by Salas and Sokal [19] in 1997, and later improved
by Goldberg, Martin and Paterson [9] to 10 colours in 2004. Both proofs
involved computational assistance.

To place these results in context, we first mention some general mixing
bounds that are applicable to graphs with small girth, such as many of those
lattices studied in statistical physics. Independently, Jerrum [13] and Salas
and Sokal [19] proved that for proper q-colourings on a graph of maximum
degree ∆, the Glauber dynamics has O(n log n) mixing time when q > 2∆,
where n is the number of vertices. For q = 2∆, Bubley and Dyer [2] showed
that it mixes in O(n3) time, and later Molloy [17] showed that it mixes
in O(n log n) time. In [20], Vigoda used a Markov chain that differs from
the Glauber dynamics and showed that it has O(n log n) mixing time when
q > (11/6)∆. This result implies that also the Glauber dynamics is rapidly
mixing for q > (11/6)∆. Goldberg, Martin and Paterson [9] showed that any
triangle free graph has strong spatial mixing provided q > α∆− γ, where α
is the solution to αα = e (α ≈ 1.76322) and γ = 4α3−6α2−3α+4

2(α2−1)
≈ 0.47031.

For triangle free graphs of low degree, this is still today the best general
mixing bound that has been proved.

The technique Goldberg, Martin and Paterson used in [9] can be tailored
and tweaked for particular graphs in order to give mixing bounds that are
better than the general bound. This was demonstrated in [9] for the lattice
Z
3 with q = 10 colours (the general result would give mixing for q = 11

colours), and the triangular lattice with q = 10 colours. Although the
general result holds only when the graph is triangle free, the tailored proof
for the triangular lattice does not require this. Both proofs were computer
assisted, where the computational part consisted of looping though a huge
number of boundary colourings and maximising certain values. This task
would have been impossible to do by hand.

The general mixing bounds are tough barriers that seem difficult to
break, though in many cases we expect mixing to occur with fewer colours.
Therefore several proofs of mixing have been given for specific graphs or
lattices. These proofs often involve computational assistance. We have
mentioned two examples above as well as Salas and Sokal’s 11-colour mix-
ing bound on the triangular lattice [19]. Other examples of computer as-
sisted proofs are those by Achlioptas, Molloy, Moore and van Bussel [1],
who showed mixing for q = 6 colours on the grid, to which an alternative
proof was given by Goldberg, Jalsenius, Martin and Paterson in [8]. Salas
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and Sokal gave in [19] a computer assisted proof for q = 6 colours on the
kagome lattice, which was later improved to q = 5 colours by Jalsenius
in [11]. It should also be mentioned that Jalsenius and Pedersen [12] have
given a computer assisted proof of mixing with q = 7 colours for the grid
when the dynamics is updating vertices in deterministic order, as opposed to
the Glauber dynamics which chooses a vertex at random in each step. The
new colour is still chosen at random, though. This result is an improvement
of the non-computer assisted proofs by Pedersen [18] and Dyer, Goldberg
and Jerrum [4].

The results on 9-colourings of the triangular lattice that we present in
this paper are based on the 10-colour proof given by Goldberg, Martin and
Paterson in [9]. Our 9-colour proof is of a whole different scale than the 10-
colour proof and we must use computer assistance much more extensively
and in more than one stage of the proof. The computations are rather
demanding and prior to the final and rigourous results we had to use a
heuristic to guide us in the right direction. We believe that the idea of
such a heuristic could be useful to improve the mixing bounds for other
lattices as well. However, our proof also demonstrates how demanding the
computations can be, and unless new techniques are developed, there will
probably be little progress in lowering the bounds for a vast number of
lattices.

4 Boundary pairs

Similarly to Goldberg, Martin and Paterson in [9], we define two structures
referred to as vertex-boundary pairs and edge-boundary pairs. Before stating
the formal definitions, we give an overview of the two concepts. A vertex-
boundary pair consists of a region and two partial colourings of its vertex
boundary. The colourings are identical except for on one boundary vertex,
which is not allowed to have the colour 0 in either of the two colourings.
That is, the vertex must have a “real” colour. An edge-boundary pair is
similar to a vertex-boundary pair with the difference that the two boundary
colourings are of the edge boundary instead of the vertex boundary. The
formal definition of an edge-boundary pair might come across as slightly
awkward as there are some additional conditions that must be met. The
purpose of these conditions is to facilitate certain technicalities in the sub-
sequent sections.

Formally, a vertex-boundary pair X consists of

• a region RX ,

• a distinguished boundary vertex wX ∈ ∂RX and

• a pair (BX ,B′
X) of partial 9-colourings of ∂RX such that

– BX(v) = B′
X(v) for all v ∈ ∂RX \{wX}, BX(wX) 6= B′

X(wX) and
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– BX(wX) > 0 and B′
X(wX) > 0.

An edge-boundary pair X consists of

• a region RX ,

• a distinguished boundary edge eX = {wX , vX} ∈ ERX , where wX ∈
∂RX and vX ∈ RX are two distinguished vertices such that at most
five neighbours of wX are in RX , and

• a pair (BX , B′
X) of partial 9-colourings of ERX such that

– BX(e) = B′
X(e) for all e ∈ ERX \ {eX}, BX(eX) 6= B′

X(eX ),

– BX(eX) > 0, B′
X(eX) > 0, and

– for any two clockwise adjacent edges e1, e2 ∈ ERX that share a
vertex w ∈ ∂R, BX(e1) = BX(e2) or B

′
X(e1) = B′

X(e2).

Note that the very last condition means that two clockwise adjacent edges
have the same colour in both BX and B′

X unless one of the edges is eX .
We let EX = {{vX , u} | {vX , u} ∈ ET and u ∈ RX} denote the set of

edges between vX and a vertex in RX .
For a vertex-boundary pair X (or edge-boundary pair X), a coupling Ψ

of π9
BX

and π9
B′

X
(or π9

BX
and π9

B′
X
) and v ∈ RX , we define the indicator

random variable

1Ψ,v =

{

1, (C, C′) is a pair of colourings drawn from Ψ and C(v) 6= C′(v);

0, C(v) = C′(v) .

For an edge-boundary pair X, we define ΨX to be some coupling Ψ of
π9
BX

and π9
B′

X
minimising E[1Ψ,vX ]. We define µ(X) = E[1ΨX ,vX ]. For every

pair (c, c′) ∈ [9]× [9] of colours, we let pX(c, c′) be the probability that, when
a pair (C, C′) of colourings is drawn from ΨX , C(vX) = c and C′(vX) = c′.
Note that

µ(X) = E[1ΨX ,vX ] =
∑

c,c′∈[9]

c 6=c′

pX(c, c′) .

5 Recursive coupling

In order to show strong spatial mixing for q = 9 colours, we show that for all
vertex-boundary pairs X and subregions R′ ⊆ RX , there exists a coupling
Ψ of π9

BX
and π9

B′
X

such that

∑

v∈R′

E[1Ψ,v]

decreases exponentially in the distance between wX and R′. As we will
see, this implies strong spatial mixing for q = 9 colours. In order to show
exponential decay, it will be convenient to work with edge-boundary pairs.
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We closely follow the approach taken by Goldberg, Martin and Paterson
in [9] and define a tree TX associated with each edge-boundary pair X.
The tree TX is constructed as follows (Figure 3 illustrates an example of
a tree TX). Start with a node r which will be the root of TX . For every
pair (c, c′) ∈ [9] × [9] of colours such that c 6= c′, add an edge labelled
(pX(c, c′), vX) from r to a new node rc,c′. If EX is empty, rc,c′ is a leaf.
Otherwise, let e1, . . . , ek be the edges in EX such that eX ≺ e1 ≺ · · · ≺ ek.
For each i ∈ {1, . . . , k}, let Xi(c, c

′) be the edge-boundary pair consisting of

• the region RXi(c,c′) = RX \ {vX},

• the distinguished boundary edge eXi(c,c′) = {wXi(c,c′), vXi(c,c′)} = ei,
where wXi(c,c′) = vX , and

• the pair (BXi(c,c′), B
′
Xi(c,c′)) of partial 9-colourings of ERXi(c,c′) such

that

– BXi(c,c′)(e) = BX(e) for e ∈ ERXi(c,c′) ∩ ERX ,

– BXi(c,c′)(e) = c′ for e ∈ {e1, . . . , ei−1},

– BXi(c,c′)(e) = c for e ∈ {ei, . . . , ek}, and

– B′
Xi(c,c′) is identical to BXi(c,c′) on all edges but ei for which

B′
Xi(c,c′)(ei) = c′.

Note that the properties of Xi(c, c
′) meet all the requirements for being

an edge-boundary pair; the vertex wXi(c,c′) has at most five neighbours in
RXi(c,c′) (since wX /∈ RXi(c,c′) is a neighbour of wXi(c,c′)), and any two clock-
wise adjacent edges in ERXi(c,c′) that share a vertex in ∂RXi(c,c′) have the
same colour in BXi(c,c′) or B

′
Xi(c,c′) (or both).

Recursively construct TXi(c,c′), the tree corresponding to edge-boundary
pair Xi(c, c

′). Add an edge with label (1, ·) from rc,c′ to the root of TXi(c,c′).
That completes the construction of TX .

We say that an edge e of TX is degenerate if the second component of its
label is ‘·’. For edges e and e′ of TX , we write e → e′ to denote the fact that
e is an ancestor of e′. That is, either e = e′, or e is a proper ancestor of e′.
Define the level of edge e to be the number of non-degenerate edges on the
path from the root down to, and including, e. Suppose that e is an edge of
TX with label (p, v). We say that the weight w(e) of edge e is p. Also the
name n(e) of edge e is v. The likelihood ℓ(e) of e is

∏

e′:e′→ew(e). The cost
γ(v, TX ) of a vertex v ∈ RX in TX is

∑

e:n(e)=v ℓ(e).

Lemma 3 (Lemma 12 of Goldberg et al. [9]). For every edge-boundary pair
X there exists a coupling Ψ of π9

BX
and π9

B′
X

such that, for all v ∈ RX ,
E[1Ψ,v] 6 γ(v, TX ).

In the proof, given by Goldberg, Martin and Paterson in [9], the cou-
pling Ψ is constructed recursively in the same manner as the tree TX . The
discrepancy at a given boundary vertex is broken to discrepancies at single
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r1,2 rc,c′

(1, ·)(1, ·)(1, ·)

r9,8

. . . . . .

(pX(c, c′), vX)(pX(1, 2), vX) (pX(9, 8), vX)

Root r

TX1(c,c′) TX2(c,c′) TX3(c,c′)

BX(eX) = 4
B′

X(eX) = 6

X

vX

wX

1

3 4
5

90

5

3

7

BX1(c,c′)(eX1(c,c′)) = c

B′

X1(c,c′)
(eX1(c,c′)) = c′

X1(c, c
′)

1

3 4
5

90

5

3

7

cc

vX1(c,c′) wX1(c,c′)

BX2(c,c′)(eX2(c,c′)) = c

B′

X2(c,c′)
(eX2(c,c′)) = c′

X2(c, c
′)

1

3 4
5

90

5

3

7

c

vX2(c,c′)

wX2(c,c′)

c′

BX3(c,c′)(eX3(c,c′)) = c

B′

X3(c,c′)
(eX3(c,c′)) = c′

X3(c, c
′)

1

3 4
5

90

5

3

7

c′c′

vX3(c,c′)wX3(c,c′)

RX

(1, ·)

(1, ·)

(1, ·)

(1, ·)

(1, ·)

(1, ·)

Figure 3. An example of the tree TX .
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boundary edges, so at every stage of the recursion, only pairs of colourings
with a discrepancy at a single edge have to be considered (i.e., edge-boundary
pairs).

For an edge-boundary pair X and d > 1, we let Ed(X) denote the set of
level-d edges in TX . We define Γd(X) =

∑

e∈Ed(X) ℓ(e).

Lemma 4. For every edge-boundary pair X and R ⊆ RX there exists a
coupling Ψ of π9

BX
and π9

B′
X

such that

∑

v∈R

E[1Ψ,v] 6
∑

d>dRX
(wX ,R)

Γd(X) .

Proof. By Lemma 3 there is a coupling Ψ such that

∑

v∈R

E[1Ψ,v] 6
∑

v∈R

γ(v, TX ) =
∑

v∈R

∑

e:n(e)=v

ℓ(e) 6
∑

d>dRX
(wX ,R)

∑

e∈Ed(X)

ℓ(e)

=
∑

d>dRX
(wX ,R)

Γd(X) .

The following recursive definition of Γd(X) is equivalent to the definition
above and will be useful in subsequent sections.

Γd(X) =







































∑

c,c′∈[9]

c 6=c′

pX(c, c′), d = 1 ;

∑

c,c′∈[9]

c 6=c′



pX(c, c′)

|EX |
∑

i=1

Γd−1(Xi(c, c
′))



 , d > 1 .

Note that Γ1(X) = µ(X). For a set U of edge-boundary pairs, we define
Γd(U) = maxX∈U Γd(X). We define Γd(∅) = 0 for all d.

6 Exponential decay

Our first step towards a proof of exponential decay and strong spatial mixing
is to show that for any edge-boundary pairX, Γd(X) decreases exponentially
with d. A key ingredient in the proof is the quantity µ(X), for which we
want to derive sufficiently good upper bounds. This is where we start.

We use the lemma below by Goldberg, Martin and Paterson [9]1. The
idea is to shrink the region RX so that vX is kept within the smaller region,

1 In [9], Goldberg, Martin and Paterson define ν(X) = E[1ΨX ,vX ], which is the def-
inition of µ(X) in this article. They give an alterative definition of µ(X), however, as
pointed out in the proof of Lemma 13 in [9], their µ(X) = ν(X) indeed.
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µ1 = 68809973/310505657 µ14 = 25/91 µ27 = 21/73

µ2 = 11623551/51797443 µ15 = 9334/40215 µ28 = 2833/11551

µ3 = 456459/2005687 µ16 = 11332/46633 µ29 = 2833/11551

µ4 = 408609/1601573 µ17 = 11332/46633 µ30 = 620/2321

µ5 = 33/127 µ18 = 7067/29188 µ31 = 620/2321

µ6 = 18199/78779 µ19 = 11332/46633 µ32 = 688/2389

µ7 = 75312/325193 µ20 = 775/2941 µ33 = 5/17

µ8 = 14165/58613 µ21 = 4248/16015 µ34 = 4/13

µ9 = 70661/293514 µ22 = 21/73 µ35 = 4/13

µ10 = 31648/123341 µ23 = 5/17 µ36 = 4/13

µ11 = 2655/10063 µ24 = 5/17 µ37 = 5/17

µ12 = 521/1853 µ25 = 5/17 µ38 = 4/13

µ13 = 208/757 µ26 = 32/113 µ39 = 1/3

Table 1. µi is µ(X) maximised over all edge-boundary pairs X
whose region RX is the region Mi in Figure 4.

and use this smaller region to construct a new edge-boundary pair X ′ whose
boundary colourings are identical to the boundary colourings of X on over-
lapping boundary edges. The colours of the boundary edges introduced by
shrinking RX are chosen to maximise µ(X ′). Then µ(X) 6 µ(X ′).

Lemma 5 (Lemma 13 of Goldberg et al. [9]). Suppose that X is an edge-
boundary pair. Let R be any subset of RX which includes vX . Let Λ be
the set of edge-boundary pairs X ′ such that RX′ = R, eX′ = eX , and, for
e ∈ ERX ∩ ERX′ , BX′(e) = BX(e) and B′

X′(e) = B′
X(e). Then µ(X) 6

maxX′∈Λ µ(X ′).

In this article, the 39 regions Mi illustrated in Figure 4 are of particular
importance to us. In Section 8.2 we discuss why we chose these regions. In
order to upper-bound µ(X) for an arbitrary edge-boundary pair X, we will
shrink the region RX down to one of the 39 regions and apply Lemma 5. In
order to successfully shrink RX down to match an M -region, we might have
to consider an appropriate rotation or reflection of the region.

For i ∈ [39], we define the constants µi in Table 1 and prove the follow-
ing lemma with the help of a computer. Details of the proof are given in
Section 8.

Lemma 6. For i ∈ [39], µ(X) 6 µi for every edge-boundary pair X such
that RX is the region Mi in Figure 4 and vX and wX are the vertices labelled
vM and wM , respectively.
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Part 1 of 2

Figure 4. The regions M1, . . . ,M39.
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Figure 4. The regions M1, . . . ,M39.
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vF

wF

Figure 5. The region F .

vG

wG

Figure 6. The region G.
The vertex wG does not be-
long to G.

6.1 Regions and sets of edge-boundary pairs

Let F be the region in Figure 5, where a vertex vF ∈ F and wF ∈ ∂F
are labelled. Since F contains 12 vertices, we define F1, . . . , F2048 to be the
211 = 2048 distinct subregions of F that all contain the vertex labelled vF .
For i ∈ [2048], we define Ui to be the set of edge-boundary pairs X such
that the intersection of RX and F is Fi, where vX and wX coincide with the
vertices labelled vF and wF , respectively. Thus, for any edge-boundary pair
X, there is a unique i ∈ [2048] such that X ∈ Ui.

Let G be the region in Figure 6, where a vertex vG ∈ G and wG ∈ ∂G
are labelled. The vertex wG is a “hole” in G. We define G to be the set of
subregions G′ of G such that G′ contains vG and at least one neighbour of
wG is not in G′. Recall that in the definition of an edge-boundary pair X,
wX has at most five neighbours in RX .

We define a function Φ : G → [39] × {0, . . . , 2048}6. Suppose G′ ∈ G
is a region. Then Φ(G′) = (m, b0, . . . , b5) where m, b0, . . . , b5 are uniquely
specified as follows. Let M ⊆ {M1, . . . ,M39} be the set of regions Mi

such that Mi (or the reflection of Mi) is a subregion of G′, where vG and
wG coincide with vM and wM , respectively. Mm is a region in M such
that µm 6 µi for all Mi ∈ M. When well defined, Fb0 , . . . , Fb5 are the
intersections of G′ and F taken according to Figure 7a,. . . ,7f, respectively.
If Fbi is not well defined then we set bi = 0. For example, if the vertex above
vG in region G (Figure 6) is not in G′ then none of the regions F1, . . . , F2048

is the intersection of G′ and F in Figure 7d, hence b3 = 0.

6.2 Upper bounds

We use a computer to prove the next lemma.

Lemma 7. There exist constants α1, . . . , α2048 ∈ [2, 6] such that, for every
region G′ ∈ G,

µm(αb1 + · · ·+ αb5) 6 αb0(1− ε) , (2)

where (m, b0, . . . , b5) = Φ(G′), α0 = 0, ε = 1/1000 and the values µm are
from Table 1.
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(a)
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wG
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wF

vG

(d)

wG

vF

wF

vG

(e)

wG

vF

wF

vG

(f)

Figure 7. Intersections of region G and F .

The constants αi in the lemma above have been obtained in the following
way. We have written a computer program which goes through the regions
G′ of G, calculates the values m, b0, . . . , b5 and adds Equation (2) above to
a linear program. Once all regions in G have been processed, the linear
program contains thousands of inequalities. We then use a linear program
solver to successfully find a satisfying solution such that each value αi is in
the interval [2, 6]. See Section 8 for more information on the computational
part.

Lemma 8. There exist constants α1, . . . , α2048 ∈ [2, 6] such that, for i ∈
[2048] and d > 1, Γd(Ui) 6 αi(1− ε)d, where ε = 1/1000.

Proof. Let α1, . . . , α2048 ∈ [2, 6] be constants satisfying the inequalities in
Lemma 7. For i ∈ [2048], suppose X ∈ Ui. We use induction on d to show
that Γd(X) 6 αi(1− ε)d.

For the base case d = 1, Γ1(X) = µ(X) 6 1 < 2(1− ε) 6 αi(1− ε).
For the inductive step d > 1, let G′ be the intersection of RX and G

such that vX and wX coincide with vG and wG, respectively. Hence G′ ∈ G.
Let (m, b0, . . . , b5) = Φ(G′) and note that b0 = i. SinceMm is a subregion

of RX , it follows from Lemmas 5 and 6 that µ(X) 6 µm.
Recall that EX is the set of edges between vX and a vertex in RX . For

r ∈ {1, . . . , |EX |} and (c, c′) ∈ [9] × [9] such that c 6= c′, let Xr(c, c
′) be the

edge-boundary pairs defined in the construction of the tree TX in Section 5.
From the definition of Φ, the intersection of RXr(c,c′) and F , taken such that
vXr(c,c′) and wXr(c,c′) coincide with vF and wF , respectively, is Fbk , where
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the value of k depends on the edge er ∈ EX . Thus, with U0 = ∅,

|EX |
∑

r=1

Γd−1(Xr(c, c
′)) 6

5
∑

k=1

Γd−1(Ubk) . (3)

We have

Γd(X) =
∑

c,c′∈[9]

c 6=c′

pX(c, c′)

|EX |
∑

r=1

Γd−1(Xr(c, c
′)) (Definition of Γd(X))

6
∑

c,c′∈[9]

c 6=c′

pX(c, c′)
5
∑

k=1

Γd−1(Ubk) (Equation (3))

= µ(X)
5
∑

k=1

Γd−1(Ubk) (Definition of µ(X))

6 µ(X)

5
∑

k=1

αbk(1− ε)d−1 (Induction hypothesis)

6 µm(αb1 + · · ·+ αb5)(1− ε)d−1 (µ(X) 6 µm)

6 αi(1− ε)d . (Lemma 7 and b0 = i)

The next corollary follows immediately from Lemma 8.

Corollary 9. For every edge-boundary pair X and d > 1, Γd(X) 6 5(1−ε)d,
where ε = 1/1000.

Lemma 10. For every edge-boundary pair X and subregion R ⊆ RX there
exists a coupling Ψ of π9

BX
and π9

B′

X

such that

∑

v∈R

E[1Ψi,v] 6
5

ε
(1− ε)dRX

(wX ,R) ,

where ε = 1/1000.

Proof. Follows from Lemma 4 and Corollary 9.

6.3 Vertex-boundary pairs and strong spatial mixing

Similarly to Lemma 10, we prove the following lemma for vertex-boundary
pairs.
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Figure 8. A vertex-boundary pair X broken into three edge-
boundary pairs X1, X2 and X3. The numbers represent the colours
of the boundary vertices and boundary edges, respectively.

Lemma 11. For every vertex-boundary pair X and subregion R ⊆ RX there
exists a coupling Ψ of π9

BX
and π9

B′
X

such that

∑

v∈R

E[1Ψ,v] 6
50

ε(1 − ε)
(1− ε)dRX

(wX ,R) ,

where ε = 1/1000.

Proof. Let X be any vertex-boundary pair and let R ⊆ RX . First suppose
that wX has a neighbour y /∈ RX . Let E = {e1, . . . , ek} ⊆ ERX be the
boundary edges incident to wX such that {wX , y} ≺ e1 ≺ · · · ≺ ek. For
i ∈ [k], let Xi be the edge-boundary pair consisting of

• the region RXi
= RX ,

• the distinguished boundary edge eXi
= ei,

• the pair (BXi
, B′

Xi
) of partial 9-colourings of ERXi

such that

– BXi
({w, v}) = B′

Xi
({w, v}) = BX(w) for {w, v} ∈ ERX \ E,

where w ∈ ∂RX ,

– BXi
(ej) = B′

Xi
(ej) = B′

X(wX) for j ∈ {1, . . . , i− 1},

– BXi
(ei) = BX(wX) and B′

Xi
(ei) = B′

X(wX), and

– BXi
(ej) = B′

Xi
(ej) = BX(wX) for j ∈ {i+ 1, . . . , k}.

Note that π9
BX

= π9
BX1

and π9
B′

X
= π9

B′
Xk

. Figure 8 illustrates an example of

how the edge-boundary pairs Xi are constructed.
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We use Lemma 10 and for i ∈ [k] we let Ψi be a coupling of π9
BXi

and

π9
B′

Xi
such that

∑

v∈R

E[1Ψi,v] 6
5

ε
(1− ε)dRX

(wX ,R) . (4)

We define a coupling Ψ of π9
BX

and π9
B′

X
by composing the couplings

Ψ1, . . . ,Ψk as follows. Let (C0, C1), (C1, C2), . . . , (Ck−1, Ck) be pairs of colour-
ings drawn from Ψ1, . . . ,Ψk, respectively. Then (C0, Ck) is the pair of colour-
ings drawn from Ψ. If, for v ∈ R, C0(v) 6= Ck(v), then Cj−1(v) 6= Cj(v) for
some j ∈ [k]. Hence

E[1Ψ,v] 6

k
∑

i=1

E[1Ψi,v] . (5)

From Equations (4) and (5), and k being at most 5, we have

∑

v∈R

E[1Ψ,v] 6
∑

v∈R

k
∑

i=1

E[1Ψi,v] =
k
∑

i=1

∑

v∈R

E[1Ψi,v] 6
25

ε
(1− ε)dRX

(wX ,R) .

Lastly, suppose that all neighbours of wX are in RX . A technical detail
arises here because we can no longer break the discrepancy at wX into edge-
boundary pairs Xi as above. Instead we will first randomly choose a colour
of a neighbour u of wX and then define edge-boundary pairs for the region
RX \ {u}.

Let u be any neighbour of wX and let Ru = RX \ {u}. We define a
coupling Ψ of π9

BX
and π9

B′
X

as follows. Let C and C′ be colourings drawn

(independently) from π9
BX

and π9
B′

X
, respectively. Let B and B′ be the two

colourings of ∂Ru such that B(w) = BX(w) and B′(w) = B′
X(w) for w ∈

∂RX ∩ ∂Ru, and B(u) = C(u) and B′(u) = C′(u). Let Ψ′ be a coupling of
π9
B and π9

B′ which we will define shortly. In a pair of colourings drawn from
Ψ, the vertex u is assigned the colours C(u) and C′(u), respectively, and
the other vertices of Ru are assigned colours according to Ψ′. It remains to
define Ψ′.

Let E = {e1, . . . , ek} ⊆ ERu be the boundary edges incident to either
wX or u such that e1 is incident to wX , and {wX , u} ≺ e1 ≺ · · · ≺ e5 and
{wX , u} ≺ e6 ≺ · · · ≺ ek. Note that five neighbours of wX are in Ru and
both e6 and ek are edges between u and neighbours of wX . An example is
illustrated in Figure 9.

Similarly to above, we define k edge-boundary pairs. For i ∈ [k], letXi be
the edge-boundary pair consisting of the region RXi

= Ru, the distinguished
edge eXi

= ei and boundary colourings that differ on eXi
. Note that π9

B =
π9
BX1

and π9
B′ = π9

B′
Xk

. See Figure 9 for an example.

Let Ψi be a coupling of π9
BXi

and π9
B′

Xi
such that

∑

v∈R

E[1Ψi,v] 6
5

ε
(1− ε)dRX

(wX ,R)−1 .
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Figure 9. An example of edge boundary colourings of the edge-
boundary pairsX1, . . . ,X10 constructed from a vertex-boundary pair
X for which all six neighbours of wX are in RX . Here we suppose
that BX(wX) = 1 and B′

X(wX) = 2, and C(u) = 3 and C′(u) = 4.

The −1 in the exponent comes from the fact that for some Xi, the edge eXi

is incident to u and dRX
(u,R) might be dRX

(wX , R)− 1 for some R.
The coupling Ψ′ is defined by composing the couplings Ψ1, . . . ,Ψk. Thus,

with k being at most 10,

∑

v∈R

E[1Ψ′,v] 6
∑

v∈R

k
∑

i=1

E[1Ψi,v] =

k
∑

i=1

∑

v∈R

E[1Ψi,v] 6
50

ε
(1− ε)dRX

(wX ,R)−1 .

The main theorem of the paper can now be proved.

Theorem 1. There is strong spatial mixing for 9 colours on the triangular
lattice.

Proof. Let R by any region, R′ ⊆ R, w ∈ ∂R, and B and B′ two partial
9-colourings of ∂R that are identical on all vertices except for w. Suppose
that Ψ is a coupling of π9

B and π9
B′ and let (C, C′) be a pair of colourings

drawn from Ψ. Then

dtv(π
9
B(R

′), π9
B′(R′)) 6 Pr(C 6= C′ on R′) 6

∑

v∈R′

E[1Ψ,v] . (6)

Let X be the vertex-boundary pair such that RX = R, wX = w, BX = B
and B′

X = B′. Let ε = 1/1000, β = 50
ε(1−ε) and β′ = − ln(1− ε). Note that a

coupling of π9
BX

and π9
B′

X
is also a coupling of π9

B and π9
B′. Using Lemma 11,
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we know there is a coupling Ψ′ of π9
BX

and π9
B′

X
such that

∑

v∈R′

E[1Ψ′,v] 6 βe−β′dRX
(wx,R

′) . (7)

Let Ψ = Ψ′. Strong spatial mixing follows from Equations (6) and (7).

7 Rapidly mixing Glauber dynamics

We use Theorem 8 of Goldberg, Martin and Paterson [9] to show that the
Glauber dynamics is rapidly mixing. Before applying their theorem we must
introduce some notation.

Let Balld(v) denote the set of vertices in VT that are at distance at
most d from the vertex v ∈ VT . Thus we have Ball0(v) = {v}. From the
definition of the triangular lattice it follows that |∂Balld(v)|, the number of
vertices at distance d+ 1 from v, is of order Θ(d), hence |Balld(v)| ∈ Θ(d2).
One can show that |∂Balld(v)| = 6(d + 1) but we do not need to be that
precise here (see Lemma 2.22 in [10] for a proof). It follows that for all v,
|∂Balld(v)|/|Balld(v)| → 0 as d → ∞. In other words, uniformly in v,
the “surface-area-to-volume” ratio of balls can be made arbitrarily small
with a suitable choice of radius d. This property of a graph is known as
neighbourhood-amenability.

Goldberg, Martin and Paterson [9] introduced the following definition of
an ε-coupling cover.

Definition 12 (Definition 4 of [9] quoted exactly). Let G denote an infinite
graph with maximum degree ∆. Fix ε > 0. We say that G has an ε-coupling
cover if for all vertex-boundary pairs X, there is a coupling ΨX of πB1

X
and

πB2

X
such that

∑

f∈RX

E[1ΨX ,f ] 6
∆

ε
.

We apply the definition to the triangular lattice. From Lemma 11 it
follows that for every vertex-boundary pair X there is a coupling Ψ of π9

BX

and π9
B′

X
such that

∑

v∈RX

E[1Ψ,v] 6
50

1/1000 · (1− 1/1000)
=

∆

ε
, (8)

where ∆ = 6 is the maximum degree of the triangular lattice and ε is the
appropriate constant. Thus, the triangular lattice has an ε-coupling cover.

We have the following theorem from [9].

Theorem 13 (Theorem 8 of [9] quoted exactly). Let G denote an infinite
neighbourhood-amenable graph with maximum degree ∆. Let R be a finite
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subgraph of G with |R| = n and B(R) denote a colouring of ∂(R) using the
colours Q ∪ {0}. (We assume that q > ∆+ 2.)

Suppose there exists ε > 0 such that G has an ε-coupling cover. Then the
Glauber dynamics Markov chain on S(B(R)) is rapidly mixing and τ(δ) ∈
O(n(n+ log a

δ
)).

Since the triangular lattice is neighbourhood-amenable and has an ε-
coupling cover, Theorem 8 of [9] translates directly to our Theorem 2, which
is repeated below.

Theorem 2. The Glauber dynamics on 9-colourings of a region R of the
triangular lattice, with partial 9-colouring B of ∂R, has mixing time τ9B(δ) ∈
O(n2 + n log 1

δ
), where n = |R|.

8 Computations

In this section we go through the computational steps involved in obtaining
the 39 µ-values from Table 1 and proving Lemma 7. The computations of
the µ-values are rather demanding and took around two weeks to run on a
fairly powerful home PC of year 2006. We have used the language C for this
task. For proving Lemma 7, we have used the language Python. Details on
the implementation is given in Appendix A. The source code is available at
http://arxiv.org/abs/0706.0489 .

8.1 Computing the µ-values from Table 1

Suppose that X is an edge-boundary pair. Let Ω be the set of colourings
C ∈ Ω9

B′
X

such that C(vX) = BX(eX), and let Ω′ be the set of colourings

C ∈ Ω9
BX

such that C(vX) = B′
X(eX). Let Ωboth = Ω9

BX
∩ Ω9

B′
X

be the set
of proper 9-colourings of RX that agree with both BX and B′

X .

Lemma 14. For any edge-boundary pair X,

µ(X) =
max{|Ω|, |Ω′|}

|Ωboth|+max{|Ω|, |Ω′|}
.

Proof. Recall from the definition of µ(X) that µ(X) = E[1ΨX ,vX ].
Suppose first that |Ω| > |Ω′|. In order to minimise E[1Ψ,vX ] we construct

a coupling Ψ of πBX
and πB′

X
as follows. Let (C, C′) be a pair of colourings

drawn from Ψ. If C′(vX) = BX(eX) then C(vX) 6= C′(vX) because C is drawn
from πBX

, preventing vX from receiving the colour BX(eX). However, if
C′(vX) 6= BX(eX) then we choose C(vX) = C′(vX), which is always possible
under the assumption that |Ω| > |Ω′|. Hence E[1ΨX ,vX ] = |Ω|/(|Ωboth|+|Ω|).

Suppose second that |Ω′| > |Ω|. By symmetry we have that E[1ΨX ,vX ] =
|Ω′|/(|Ωboth|+ |Ω′|).
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Figure 10. An edge-boundary pair X with region RX = M1 and
boundary edges coloured c1, . . . , c18.

For each of the 39 regions Mi in Figure 4 we have written a program in C
which computes µi. We use the region M1 to illustrate how µ1 is obtained.
The other µ-values are computed similarly.

Let X be an edge-boundary pair such that RX = M1, vX = vM , wX =
wM , BX and B′

X assign the colours c1, . . . , c18 to the boundary edges in
ERX \ {eX}, BX(eX) = 1 and B′

X(eX) = 2. See Figure 10.
For i ∈ [9], let ni be the number of proper 9-colourings of RX that agree

with the colouring c1, . . . , c18 of the boundary, disregarding the colour of
the edge eX , and assign the colour i to vX . Thus, n1 = |Ω|, n2 = |Ω′| and
n3 + · · ·+ n9 = |Ωboth|. We write a subroutine that computes the values ni

given the colours c1, . . . , c18. Computing them in a brute force manner will
take too long so we must be a little more clever than that. We construct
a dynamic programming table which lets us reuse the number of colourings
computed for subsets of the region RX . For details, see Appendix A.

Let m = n1/(n1 + n3 + · · · + n9) be a function of c1, . . . , c18. We loop
through the colours c1, . . . , c18, and for each configuration we compute m.
It follows that µ1 is the largest value of m that we encounter.

Each colour cj can take a value from the set {0, 1, . . . , 9}. Looping
through all 1018 configurations of c1, . . . , c18 yields an unnecessary large
number of redundant boundary colourings. Instead of considering all 1018

configurations, we keep the number down by making a few useful observa-
tions:

• Swapping the colours c16 and c17 will not change the value m. Hence
we may skip colourings for which c16 > c17.

• The colours 0, 1 and 2 have a special meaning here since 0 symbolises
“no colour” and 1 and 2 are used on the edge eX . However, the
colours 3, . . . , 9 are merely labels and therefore there is no reason to

24



use a colour c′ ∈ {4, . . . , 9} for cj unless the colour c
′−1 has been used

for some cj′ , where j′ < j.

• From the definition of an edge-boundary pair, c1, c18 ∈ {1, 2} and
c1 6= c18.

Obtaining the 39 µ-values, using the observations described above, took
around two weeks on a fairly powerful home PC of year 2006. We left a
computer running non-stop for 24 hours per day without using it for other
purposes.

8.2 The experimental phase

A very reasonable question to ask is why we used exactly those 39 regions Mi

in Figure 4 and the regions G and F . The regions are the result of a rather
long experimental phase where we started with a set of smaller regions and
carried out the computations as described in this article. Initially, we failed
to prove Lemma 7. That is, we were not able to find constants αi such that
the equation in Lemma 7 would hold for all regions in G. The reason for
this is twofold: too small sizes of G and F do not allow enough recursions,
and too small regions Mi yield too large values µi. Gradually we increased
the sizes of the regions until Lemma 7 could successfully be proved. In
order to check whether the equations in the statement of Lemma 7 could
all be satisfied, we used the free linear program solver GLPK (GNU Linear
Programming Kit). The constants found by the solver are the constants
we use in the implementation of the proof of Lemma 7, which is described
in detail in Appendix A. It should also be mentioned that the choice of ε
played a role. For instance, we would have failed solving the linear program
if we had used ε = 1/100 instead of the smaller ε = 1/1000.

While increasing the sizes of G and F , we also computed µ-values for
growing regions Mi. In total we considered a few hundred distinct regions
Mi, of which some were even larger than the region M1 in Figure 4. One
might ask how we managed to compute the µ-values for such a vast number
of regions given that it took two weeks of computations for the 39 regions in
Figure 4. Instead of computing the µ-values exactly, we used a hill climbing
technique where we randomised colourings of the boundary, to which we
iteratively made small changes, whereby larger and larger values m (see
previous section) were found. This process allowed us to build a “library”
of randomised µ-values. In practice, we let a computer run during the night
over some time in order to obtain hopefully good estimates of the µ-values.
Interestingly, it turned out that for many regions, only a few minutes running
time was enough to yield a value of m that did not seem to increase further.
For such regions we stopped the hill climbing process after a couple of hours.

Once Lemma 7 had been successfully proved with randomised µ-value
estimates, we were faced with the task of computing the exact µ-values.
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Initially the set of M -regions in the proof was rather large, so first we pruned
the set by carefully choosing regions to throw away. Eventually we ended
up with the 39 regions in Figure 4 for which the µ-values were computed
exactly. It is interesting to note that the 39 randomised µ-value estimates
were identical to the exact values.

The successful use of the µ-value estimates suggests that our approach
could be used to prove better mixing bounds for other lattices. Although
the system of inequalities that was solved in the proof of Lemma 7 contained
a huge number of inequalities (around 100,000), the real bottleneck seemed
to be the demanding computations of the µ-values.

9 Acknowledgements

The author would like to thank Leslie Ann Goldberg for helpful discussions,
and the University of Liverpool where most of the work on this paper has
been conducted.

References

[1] D. Achlioptas, M. Molloy, C. Moore, and F. Van Bussel. Sampling grid
colorings with fewer colours. In LATIN 2004: Theoretical Informat-
ics, volume 2976 of Lecture Notes in Computer Science, pages 80–89.
Springer, 2004.

[2] R. Bubley and M. Dyer. Path coupling: a technique for proving rapid
mixing in Markov chains. In FOCS ’97: Proceedings of the 38th Sympo-
sium on Foundations of Computer Science, pages 223–231. IEEE Com-
puter Society Press, 1997.

[3] R. Bubley, M. Dyer, C. Greenhill, and M. Jerrum. On approximately
counting colourings of small degree graphs. SIAM Journal on Comput-
ing, 29(2):387–400, 1999.

[4] M. Dyer, L. A. Goldberg, and M. Jerrum. Dobrushin conditions and
systematic scan. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, volume 4110 of Lecture Notes
in Computer Science, pages 327–338. Springer, 2006.

[5] M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz. Mixing in time and space
for lattice spin systems: a combinatorial view. Random Structures and
Algorithms, 24(4):461–479, 2004.

[6] H.-O. Georgii. Gibbs measures and phase transitions. de Gruyter Stud-
ies in Mathematics 9. Walter de Gruyter & Co., Berlin, Germany, 1988.

26
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A Implementation

In this appendix, we describe the implementation of the programs that have
been used in the computations. In Section A.1 we explain the program that
proves Lemma 7, and in Section A.2 we explain the programs that compute
the 39 µ-values and thereby prove Lemma 6. All programs are available at

http://arxiv.org/abs/0706.0489

A.1 Proving Lemma 7

The program that proves Lemma 7 is written in Python 2.6 and is called
lemma7.py. There are numbered comments in the code, which are detailed
below.

Comment 1

The Fraction data type is imported to guarantee exact computations with
rational numbers. Fraction(x, y) represents the number x

y
.

Comment 2

The file constants.py is executed. It reads in the values of the constants
α1, . . . , α2048. Here are the first few lines of the file constants.py.

alphaValues = {}

alphaValues["alpha10010010100"] = Fraction(2, 1)

alphaValues["alpha00000011001"] = Fraction(2, 1)

alphaValues["alpha01011111001"] = Fraction(20279, 10000)

alphaValues["alpha10101001111"] = Fraction(113631, 50000)

alphaValues is a Dictionary data type in which each α-variable, represented
as a string, is associated with its value (a rational number). The variable
name consists of a bit-string that encodes the F -region associated with the
variable in the following way. Each vertex of the region F is given a label
from the set {0, . . . , 10} according to Figure 11. For i ∈ {0, . . . , 10}, the ith
bit (starting from the left) of the variable name is 1 if and only if the vertex
labelled i is in the region associated with the variable. In other words, the
bit-string is a characteristic vector of the set of vertices of F .

Comment 3

The program goes through all α-variables, confirming that their values are
in the range [2, 6].
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Figure 11. The region F
with labelled vertices.
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Figure 12. The region G
with labelled vertices.

Comment 4

Defines ε = 1/1000.

Comment 5

The 39 µ-values are set. mu[i] holds the value µi.

Comment 6

The array G represents a subregion of G. Each vertex of the region G is given
a label from the set {0, . . . , 16} according to Figure 12. For i ∈ {0, . . . , 16},
if G[i] is 1 then the vertex labelled i is in the region represented by G. If
G[i] is 0 then the vertex is not in the region.

Starting with G containing all zeros, for each round in the while-loop,
the array G is updated like a 17-digit binary counter. Thus, when G[17] is
set to 1, all 217 combinations of the first 17 bits have been considered, and
the program breaks out from the while-loop (which ends the program). A
configuration of the array G corresponds to a region G′ ∈ G in the statement
of Lemma 7.

Comment 7

If all five neighbours of wG (labels 9, 10, 13, 14, 15) are in G, proceed with
the next region.

Comment 8

Starting with an empty list muList, the program goes through all i ∈ [39]
and checks whether Mi is a subregion of G. If so, i is added to muList. The
program also considers the mirrored version of Mi. Figure 15 illustrates the
overlaps of the M -regions and G.
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Figure 13. Intersections of region F and G, using the labelling
from Figures 11 and 12.

Comment 9

The variable minMu is set to the i such that µi is minimised over the is in
muList. Note that µ39 is the largest of all µ-values.

Comment 10

The regions alphaA through alphaF are subregions of F , defined according
the overlaps of F and G in Figures 13a–13f, respectively. This corresponds to
the overlaps in Figure 7. The strings alphaAstring through alphaFstring

are the names of the α-variables associated with each of the seven subregions
of F .

Comment 11

The program now verifies Equation (2) in the statement of Lemma 7. The
variables LHS and RHS correspond to the left hand side and right hand side,
respectively, of the equation. First, for each neighbour of vF that is in the
region G′ (G in the code), add the corresponding α-value to LHS, and then
finally multiply the sum with µm (which is mu[minMu] in the code). The
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value of RHS is the value of alphaAstring times (1− ε).

Summary

When running the program lemma7.py, we note that no “complaints” are
outputted, which implies that Lemma 7 is successfully proved.

A.2 Computing the µ-values

The programs that compute the values µ1, . . . , µ39 are called mu1.c, mu2.c,
and so on, up to mu39.c, respectively. They are written in C. Using Python
for this task would be way too slow. All 39 programs include the file
mutop.c, which contains code that runs at the very beginning of every mu-
file. The file mutop.c contains macro definition of various for-loops and
if-statements, and also defines a large set of variables. The purpose of this
file is to keep the code of the mu-files short and concise, with focus on the
actual region and its vertices without cluttered C-syntax. This is important
when checking the correctness of the programs.

In order to describe the programs, we use the file mu10.c as an example
and go through its code in detail. The structure of the other programs is
the same.

We break the code into blocks and describe each block separately.

The file mu10.c

1 /*

2 mu.0.1.2.3.5.6.7.8

3 31648

4 123341

5 Output from the program:

6 63296

7 246682

8 13h34m (exact)

The lines above are comments in the code. We focus on the relevant
lines. Recall that µ10 = 31648/123341. Line 3 is the numerator and Line 4
is the denominator. The output from the program is not the µ-value in its
shortest form. The output is specified by Lines 6 and 7 as the numerator
and denominator, respectively. Line 8 gives the time it took to run the pro-
gram in hours and minutes. Obviously this varies from machine to machine,
but it gives a rough estimate. The word “exact” here is referring to the
computations as being exact and not randomised (remains from the past).

The next few lines of the code are given in Figure 14. They illustrate a
labelling of the vertices of the region M10 and a labelling of the boundary

32



.

. k

. j l

i #3 .

h #2 m .

#8 #x n

g #1 #5 .

#7 a b o

f #6 p .

e c .

d . wM

vM

.

. k

. j l

i #3 .

h #2 m .

#8 #x n

g #1 #5 .

#7 a b o

f #6 p .

e c .

d .

Figure 14. The labelling of vertices in the code of mu10.c.

vertices. To make the description more comprehensible, we also show a
drawing of the region on top of the code.

In the code, the numbering of the vertices of the region will be used in
the variable names relating to them. The variables a, b, . . . , p represent the
boundary vertices. They define the colours of the boundary edges. For this
reason, a and b are two variables of the same vertex wM ; a is the colour of
the boundary edge incident to #1 and #6, and b is the colour of the boundary
edge incident to #5.

9 #include "mutop.c"

10 BEGIN;

11 AB C D_ E F G H I J K L_ M N O_ P_

12 {

Line 9 includes the file mutop.c, which defines macros and initiates the
code with the main()-body, in which relevant variables are declared. We
use upper-case letters for macros and constants, and lower-case letters for
variables.

Line 10 records the start time of the execution. This line is irrelevant
for the actual computation of µ.

Every letter of Line 11 corresponds to a for-loop. That is, Line 11 defines
a list of nested for-loop, each of which corresponds to the colour of a bound-
ary edge. For example, AB loops through the two configurations a = 1, b = 2
and a = 2, b = 1, which are two choices of a and b we need to consider.

The macro C loops trough possible colours of c, which are 0, 1, 2 and 3.
As described earlier, we do not need to consider other colours than those on
c. The macro definitions take care of the bounds on possible values of the
variables. For this particular macro C, the following lines from mutop.c are
relevant.

#define FOR_START(c, uc) for(c = QL, uc = 3; c <= uc; c++)

#define C FOR_START(c, uc)
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QL is 0 and is the smallest colour and uc is the upper bound on colours
of c, which is always 3. As we will see below, the variables representing such
upper bounds vary as we progress though the for-loops.

Next on Line 11 is the macro D . The underscore character specifies that
d it is tied closely to the previous colour c in the sense that the ordering of
c and d does not matter when computing the µ-value. This symmetry was
explained in Section 8.1. The for-loop associated with d ensures that d is
never smaller than c. Here are the relevant lines from mutop.c.

#define FOR_NEXT_(d, ud, c, uc)

for(d = c, ud = min(max(uc, c+1), 9); d <= ud; d++)

#define D_ FOR_NEXT_(d, ud, c, uc)

We see above that the upper bound ud on values of d depends on the
current value of c; only if c has reached the value 3, we allow d to take
on the next value 3+1=4. Otherwise the maximum value of d is set by the
upper bound on c, which is uc (which actually is 3).

The remaining part of Line 11 defines the other for-loops associated with
the other boundary vertices. Line 12 specifies the opening of the body of
the innermost for-loop.

13 FOR_VERTEX(x)

14 {

15 INITX1(m);

The variable x represents the colour of the vertex vM . Line 13 is a for-
loop that takes the x through the values 1, . . . , 9. Recall from Section 8.1
that for i ∈ [9], ni is the number of proper 9-colourings of the region that
agree with the colouring of the boundary and assign the colour i to vM . The
code in the body of the for-loop of Line 13 computes nx. The values are
stored in the array vx, where vx[x] is nx.

Since we do not need the value of n2 when computing µ, we skip x = 2.
The macro INITX1 on Line 15 skips to next value of x if x = 2, otherwise
it sets vx[x] to 0. Further, it tests if the value of x is the same as the
value of m (the boundary vertex adjacent to vM ). If this is the case, we will
have a colouring that does not agree with the boundary and we can skip
immediately to the next value of x.

The number 1 in the macro name INITX1 refers to the fact that one
vertex has to be checked against x, in this case m. The macro INITX2, which
is used for other M -regions, takes two arguments, and so on. Many macro
names contain a number. The number is referring to the number of relevant
arguments that the macro takes.
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16 FOR_VERTEX(m1)

17 {

18 SKIP2(m1, x, a);

The variable m1 is the colour of the vertex labelled #1 in Figure 14. The
for-loop on Line 16 takes m1 from 1 to 9. In order to avoid non-proper
colourings or colourings that do not agree with the boundary, we have to
skip values of m1 for which m1 = x or m1 = a. This test is done with the
macro on Line 18.

Unlike vertex #1, we do not use for-loops for the other vertices #2, #3,
#5, #6, #7 and #8. The running time would be too long with that many
nested for-loops. Instead we resort to a dynamic programming approach.
Similarly to the array vx, we use one array per vertex. The arrays are called
v2, v3, v5, v6, v7 and v8, respectively. The ordering of the arrays by which
we fill in their values is first v6, then v7, v8, v2, v3, and lastly v5. For
i ∈ [9], the value of, for instance v2[i], is the number of proper colourings
of the subregion consisting of the vertices up to and including #2, which are
#6, #7, and #8, subject to the boundary and the value of x and m1, and such
that vertex #2 has colour i.

19 ONES (v6); ZERO5 (v6, m1, a, c, d, e);

20 NEXT (v7, v6); ZERO4 (v7, m1, e, f, g);

21 NEXT (v8, v7); ZERO4 (v8, i, m1, g, h);

22 NEXT (v2, v8); ZERO4 (v2, j, x, m1, i);

23 NEXT (v3, v2); ZERO5 (v3, k, l, m, x, j);

24 GAP (v5, v3); ZERO6 (v5, m, n, o, p, b, x);

Let us start with Line 19. The array v6 is first initiated with 1 at every
position. The following macro, ZERO5, sets the positions m1, a, c, d and e

of v6 to 0. The reason is that vertex #6 cannot have the colour specified
by these variables as this would violate the property of the colouring being
proper or in agreement with the boundary. For the valid colours of #6,
there is only one colouring, since the subregion consists only of the single
vertex #6.

On Line 20, NEXT(v7, v6) fills in the values of the array v7, subject to
the colour of v6. For j ∈ [9],

v7[j] =

(

9
∑

i=1

v6[i]

)

− v6[j] . (9)

The number of colourings of the subregion {#6, #7} such that #7 has
colour j is obtained by summing the colourings of the subregion {#6}, ex-
cluding the case when #6 has colour j as this would not make the colouring
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proper. Hence the subtraction of v6[j]. In the code of mutop.c, there is
a macro called SUM which calculates the sum. It is called from the ZERO-
macros to prepare for the subsequent NEXT-macro. Once the NEXT-macro has
been executed, we must make sure that colourings not in agreement with
the boundary are excluded. For instance, v7[3] must be 0 if the boundary
edge specified by g is 3. The macro ZERO4 on Line 20 takes care of this,
setting appropriate elements of v7 to zero according to the indices specified
by m1, e, f and g.

The program proceeds with the remaining vertices on Lines 21–24. The
difference between the macro NEXT and the macro GAP on Line 24 is that
the two vertices referred to in the argument of GAP, here #3 and #5, are not
adjacent. In this case, the array v5 is filled in according to Equation (9) but
without the subtraction.

25 UPDATEX(v5);

26 }

27 }

28 UPDATEMU;

29 }

30 END;

31 return(0);

32 }

After Line 24, the sum
∑9

i=1 v5[i] is the number of proper colourings of
the whole region such that vertex vM has colour x and vertex #1 has colour
m1. The macro UPDATEX(v5) on Line 25, inside the body of the for-loop of
m1, computes the sum and adds it to vx[x]. Thus, over all values of m1, the
final value of vx[x] is computed. The closing bracket on Line 27 indicates
the end of the body of the for-loop of x. When Line 28 is reached, the vector
vx contains every value we need.

UPDATEMU on Line 28 computes the µ-value

µ =
vx[1]

vx[1]+
(

∑9
i=3 vx[i]

)

and compares it to the maximum of all µ-values computed so far. The max-
imum value of µ is stored with the two variables maxnum and maxden, where
maxnum is the numerator and maxden is the denominator. Both variables are
integers of the data type double to allow enough digits. The comparison of
µ with maxnum/maxden is performed by multiplying with the denominators
to ensure integer arithmetic. If the newly computed value of µ exceeds the
previously largest µ-value, maxnum and maxden are updated accordingly.

On Line 29, the program proceeds to the next boundary and computes
the µ-value over again.
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Finally, on Line 30, after all boundaries have been considered, the largest
µ-value is outputted as well as how long the program has been running.
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Figure 15. The regions M1, . . . ,M39 in labelled region G.
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Figure 15. The regions M1, . . . ,M39 in labelled region G.
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Figure 15. The regions M1, . . . ,M39 in labelled region G.
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Figure 15. The regions M1, . . . ,M39 in labelled region G.
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Figure 15. The regions M1, . . . ,M39 in labelled region G.
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