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ABSTRACT: The quasi-random theory for graphs mainly focuses on a large equivalent class of
graph properties each of which can be used as a certificate for randomness. For k-graphs (i.e., k-
uniform hypergraphs), an analogous quasi-random class contains various equivalent graph properties
including the k-discrepancy property (bounding the number of edges in the generalized induced
subgraph determined by any given (k − 1)-graph on the same vertex set) as well as the k-deviation
property (bounding the occurrences of “octahedron”, a generalization of 4-cycle). In a 1990 paper
(Chung, Random Struct Algorithms 1 (1990) 363-382), a weaker notion of l-discrepancy properties
for k-graphs was introduced for forming a nested chain of quasi-random classes, but the proof for
showing the equivalence of l-discrepancy and l-deviation, for 2 ≤ l < k, contains an error. An
additional parameter is needed in the definition of discrepancy, because of the rich and complex
structure in hypergraphs. In this note, we introduce the notion of (l, s)-discrepancy for k-graphs and
prove that the equivalence of the (k, s)-discrepancy and the s-deviation for 1 ≤ s ≤ k. We remark that
this refined notion of discrepancy seems to point to a lattice structure in relating various quasi-random
classes for hypergraphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 39–48, 2012
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1. INTRODUCTION

The study of quasi-random graphs and hypergraphs explores the relationship among proper-
ties of graphs with special emphasis of finding equivalence classes and their classifications.
For graphs, there is a large equivalence class that includes the discrepancy property and the
deviation property [4]. The discrepancy property for a graph G is associated with bounding
the difference between the number of edges in an induced subgraph S of G and the expected
number of edges in S (which is basically |S|2/4 for a graph G with edge density 1/2). The
discrepancy property for G is associated with bounding the difference between the number

Correspondence to: F. Chung
Corrigendum: “Quasi-random classes of hypergraphs,” Random Structures and Algorithms 1 (1990), 363–382.
*Supported by ONR MURI (N000140810747), AFSOR 9550-09-1-0900.
© 2011 Wiley Periodicals, Inc.

39



40 CHUNG

of four cycles containing an even number of edges in G and those with an odd number
of edges in G. To extend the study of quasi-random graphs to k-uniform hypergraphs, (or
k-graphs for short), there have been numerous attempts [1,3,5,7,8]. In the effort to extend
the notion of deviation to k-graphs for k ≥ 3, there is a nested sequences of l-deviation devl,
2 ≤ l ≤ k which concern the counts of so-called even “octahedra” and odd octahedra on 2l
vertices. To generalize the notion of discrepancy for a k-graphs H with vertex set V , one of
the ways is to consider the l-discrepancy disclH, for a fixed l, 2 ≤ l ≤ k, which concerns
the maximum difference of the edge counts in subgraph of H induced by any (l − 1)-graph
G from the expected value over all G on V . In [1, 3] it was shown that for a k-graph H, the
property disc H = disckH and dev H = devkH are equivalent in the sense that for any ε

there exists δ such that disc H ≤ δ implies dev H ≤ ε, (denoted by disc ⇒ dev) and the
reverse direction holds as well.

To further understand the structure for k-graphs, a natural approach is to establish a nested
sequence of equivalence classes. In [1], it was shown that for 2 ≤ l ≤ k, devl ⇒ discl.
However, the proof for discl ⇒ devl contains two cases, one of which, namely for 2 ≤ l < k,
contains an erroneous statement. A counterexample was given in [6]. As it turns out, the
hypergraphs have a richer and more intriguing structure than previously suspected (by
the author). There are further extensions of the discrepancy property which we call (l, s)-
discrepancy, denoted by disc(s)

l H, for a k-graph H with vertex set V , where 2 ≤ l ≤ k and
1 ≤ s ≤ (k

l

)
. Roughly speaking, disc(s)

l H concerns the subgraphs Ss of H which are induced
by an l-graph G on V in the sense that an edge x in E(H) is in Ss if the number of l-edges in
G contained in x is at least s. The previous notion of discl is the special case of disc(s)

l with
s = ( k

l−1

)
. The paper [6] examines the case of disc(k)

2 which was then shown to belong to a
large equivalence class of hypergraph properties including counting the appearances of a
fixed “linear” k-graph F in H where “linear” means the restriction that any two edges in F
intersect at most one vertex.

With this refined notion of (l, s)-discrepancy for k-graphs, numerous questions arise.
How are various known hypergraph properties related to disc(s)

l ? For example, suppose
we consider a generalization of linear k-graphs. We say a k-graph F is l-linear if any two
edges in F intersect at no more than l vertices. We can then define the following subgraph
containment property for a k-graph H on n vertices :

Pl: For every (l−1)-linear k-graph F on r vertices with r vertices and t edges with r ≥ k,
the number NF(H) of labelled embeddings of F in H satisfies

NF(H) = (1/2)tnr + o(nr).

It seems plausible to conjecture that Pl is equivalent to disc(s)
l with s = ( k

l−1

)
by extending

the techniques in [6] for the case of l = 2. Although the above formulation is mainly for
k-graph H with edge density 1/2, a general definition for Pl with graphs with edge density
p can be obtained in a straightforward manner by replacing 1/2 by p.

There are further questions just for the case of l = 2. Even for the special case of k = 3
and s = 2, the discrepancy property for a 3-graph H is reduced to the following: For any
subset S of vertices, the number of edges in H containing at least 2 vertices in S is about
as expected. Will this property be equivalent to some modified version of the deviation
property (similar to some partial “doubling” as described in [6])?

In general, for various given hypergraph properties, can they be related to the disc(s)
l in

some way? Do they form quasi-random equivalence classes? What are the hierarchy of these
quasi-random classes? And, how effective are these properties to be used as certificates for
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QUASI-RANDOM HYPERGRAPHS 41

randomness? To partially answer some of these questions, we show that devs is equivalent
to disc(s)

k for k-graphs in the remaining part of this note. Further questions and remarks
concerning the lattice structure of quasi-random classes for k-graphs will be discussed in
the last section.

2. A REFINED NOTION OF THE DISCREPANCY PROPERTIES FOR
HYPERGRAPHS

We follow the notation in [3]. A k-uniform hypergraph H = (V , µH) consists of a set of
V of vertices of H together with a function µH :

(V
k

) → {1, −1}, called the multiplicative
edge function of H. The set E(H) = µ−1

H (−1) is called the edge set of H. When there is
no confusion, we call H a k-graph. For a given function µ :

(V
k

) → {1, −1}, denote by µ̄

the extension µ̄ : V k → {1, −1} by µ̄(v1, . . . , vk) = µ({v1, . . . , vk}) where v1 . . . , vk are
distinct elements of V and 1 otherwise.

Definition. The l-deviation of a k-graph H = H(E, V) with |V | = n, denoted by devlH,
is defined by

devlH = 1

nk+l

∑
vi(0),vi(1)∈V

1≤i≤l

∑
wj∈V

l+1≤j≤k

∏
εi∈{0,1}
1≤i≤l

µ̄H(v1(ε1), . . . , vl(εl), wl+1, . . . , wk)

where µ̄(x) = −1 if x is an edge in H and µ̄(x) = 1 otherwise.

We remark that the above definition can be generalized to focus on graphs with edge
density p by defining µ(x) = −p if x is an edge in H and µ(x) = 1 − p otherwise.

Definition. For a k-graph H and a l-graph G on the same vertex set V, we define

E(H, G) =
{

x ∈ E(H) :

(
x

l

)
⊆ E(G)

}
,

e(H, G) = k!|E(H, G)|.
Namely e(H , G) counts the number of ordered subsets in E(H, G).

Definition. For a k-graph H on vertex set V with |V | = n, we define disclH as follows:

disclH = 1

nk
max

G
|e(H, G) − e(H̄, G)|,

where the maximum is taken over all (l − 1)-graphs G on V.

It was shown in [1, 3] that

devlH ≥ (disclH)2l
.

and for l = k,

devkH ≤ 4k(disckH)2−k
. (1)
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For a k-graph H, we use the notation that devH = devkH and disc H = disc(k)

k H which [3]
mainly focused on.

It would have led to quasi-random classes for hypergraphs if a similar statement as
follows holds for 2 ≤ l < k.

devlH ≤ 4l(disclH)2−l
.

However, this inequality is not true for l �= k as evidenced by the example given int [6]. So,
a natural question is to find the ‘right’ equivalent discrepancy property for devl.

Definition. For a k-graph H and an l-graph G, we define

Es(H, G) =
{

x ∈ E(H) :

∣∣∣∣
(

x

l

)
∩ E(G)

∣∣∣∣ ≥ s

}
,

es(H, G) = k!|Es(H, G)|.
Namely es(H, G) counts the number of ordered subsets in El(H, G). We note that for the
case of l = k − 1 and s = k, we have e(H, G) = ek(H, G).

Definition. For a k-graph H on n vertices, we define disc(s)
l H as follows:

disc(s)
l H = 1

nk
max

G
|es(H, G) − es(H̄, G)|,

where the max is taken over all (l − 1)-graphs G on V.
Note that disc H is the special case disck = disc(k)

k and discl is the special case discl =
disc(s)

l for s = ( k
l−1

)
.

We remark that the above definition can be modified to focus on graphs with density p
by defining disc(s)

l H = 1
volH maxG |es(H, G)−p ·es(

(V
k

)
, G)| where G ranges over all (l −1)-

graphs. Here vol H denotes the number of edges in H. For simplicity, we will mainly deal
with the case of p = 1/2 here.

Although we are far from fully understanding the relationship among properties disc(s)
l ,

certain implications can be derived for the case of l = k. To simplify the notation, we write

disc(s)H = disc(s)
k H.

Note that for disc(s), the interesting range for s is for s ≤ k.
We will prove the following two theorems to establish the equivalence implications of

devs and disc(s).

3. THE s-DEVIATION PROPERTY IMPLIES THE DISCREPANCY PROPERTY disc(s)

Theorem 1. For a k-graph H and 2 ≤ s ≤ k, we have

devsH ≥ (disc(s)H)2s
.

Proof. It suffices to show that for any given (k − 1)-graph G, we have

devsH ≥ (Es(H, G) − Es(H̄, G))2s
.
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This can be proved by applying the Cauchy-Schwarz inequality on selected terms repeatedly
as follows. We consider

devsH = 1

nk+s

∑
vi(0),vi(1)∈V

1≤i≤s

∑
wj∈V

s+1≤j≤k

∏
εi∈{0,1}
1≤i≤s

µ̄H(v1(ε1), . . . , vs(εs), ws+1, . . . , wk)

= 1

nk+s

∑
vi(0),vi(1)∈V

1≤i≤s−1

∑
wj∈V

s+1≤j≤k


∑

v∈V

∏
εi∈{0,1}

1≤i≤s−1

µ̄H(v1(ε1), . . . , vs−1(εs−1), v, ws+1, . . . , wk)




2

≥ 1

nk+s

∑
wj∈V

s+1≤j≤k

G,s∑
vi(0),vi(1)∈V

1≤i≤s−1


∑

v∈V

∏
εi∈{0,1}

1≤i≤s−1

µ̄H(v1(ε1), . . . , vs−1(εs−1), v, ws+1, . . . , wk)




2

where
∑G,s denotes a partial sum with the restriction that the vi(εi) satisfy the property that

(v1(ε1), . . . , vs−1(εs−1), ws+1, . . . , wk) are edges in G for all εi. Thus we have

devsH ≥ 1

nk+s−2

∑
wj∈V

s+1≤j≤k

G,s∑
vi(0),vi(1)∈V

1≤i≤s−1,


1

n

∑
v∈V

∏
εi∈{0,1}

1≤i≤s−1

µ̄H(v1(ε1), . . . , vs−1(εs−1), v, ws+1, . . . , wk)




2

≥


 1

nk+s−1

∑
wj∈V
s≤j≤k

G,s∑
vi(0),vi(1)∈V

1≤i≤s−1,

∏
εi∈{0,1}

1≤i≤s−1

µ̄H(v1(ε1), . . . , vs−1(εs−1), ws, ws+1, . . . , wk)




2

.

We will repeat the same methods using the notation that
∑G,[j,s] denotes

a partial sum with the restriction that the vi(εi) satisfy the property that
(v1(ε1), . . . , vj−1(εj−1), wj, . . . , wt−1, wt+1, . . . , wk) are edges in G for all εi and t ∈ [j, s].
Then we have

devsH ≥


 1

nk+s−1

∑
wj∈V
s≤j≤k

G,[s,s]∑
vi(0),vi(1)∈V

1≤i≤s−1,

∏
εi∈{0,1}

1≤i≤s−1

µ̄H(v1(ε1), . . . , vs−1(εs−1), ws, ws+1, . . . , wk)




2

≥


 1

nk+s−2

∑
wj∈V

s−1≤j≤k

G,[s−1,s]∑
vi(0),vi(1)∈V

1≤i≤s−2,

∏
εi∈{0,1}

1≤i≤s−2

µ̄H(v1(ε1), . . . , vs−1(εs−2), ws, ws+1, . . . , wk)




4

≥ . . .
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≥


 1

nk+1

∑
wj∈V
2≤j≤k

G,[2,s]∑
v1(0),v1(1)∈V

∏
ε1∈{0,1}

µ̄H(v1(ε1), w2, ws+1, . . . , wk)




2s−1

.

Therefore we have

devsH ≥


 1

nk−1

∑
wj∈V
2≤j≤k

(
1

n

G,[2,s]∑
v∈V

µ̄H(v, w2, ws+1, . . . , wk)

)2




2s−1

≥


 1

nk

G,[1,s]∑
wj∈V
1≤j≤k

µ̄H(w1, w2, ws+1, . . . , wk)




2s

=
(

1

nk
(es(H, G) − es(H̄, G)

)2s

for any (k − 1)-graph G. Thus we conclude that

devsH ≥ (disc(s)H)2s
.

4. THE DISCREPANCY PROPERTY disc(s) IMPLIES THE s-DEVIATION PROPERTY

Theorem 2. For a k-graph H and 2 ≤ s ≤ k, suppose that for every (k − 1)-graph G on
V,

|es(H, G) − es(H̄, G)| ≤ εnk .

Then we have

devsH ≤ 2k+sε1/((k−s)(k−s+1)2s). (2)

Proof. Assume that k ≥ 3 (since the case of k = 2 is well understood [4]). We will first
give a relative simple example for the case of k = 3 and s = 2 before proceeding to the
general case.

Suppose that for every 2-graph G on V , we have

|e2(H, G) − e2(H̄, G)| ≤ εn2.

We wish to show

dev2H ≤ 32ε1/8.
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For a vertex w, we consider the 2-graph Hw with edge set E(Hw) = {y ∈ (V
2

)
: y ∪ {w} ∈

E(H)}. From the definition of dev2H, we have

dev2H = 1

n

∑
w∈V

dev2Hw.

We consider

S := {w ∈ V : dev2Hw ≥ 30ε1/8}.
If |S| ≤ 2ε1/2n then

dev2H ≤ 1

n

(|S| + 30ε1/8n} ≤ 32ε1/8

as desired. Thus, we may assume |S| ≥ 2ε1/2n.
For each w ∈ S, the fact that dev2Hw ≥ ε ′ = 30ε1/8 implies, by the induction hypothesis

using (1) for 2-graphs, that there exists a subset Gw (which can be viewed as a 1-graph on
V ) satisfying

|e(Hw, Gw) − e(H̄w, Gw)| > δn2

where δ satisfies δ ≥ 16−4ε ′4 ≥ 3ε1/2. Thus, there is a subset S′ of S with |S′| = ε1/2n so
that either

(a) e(Hw, Gw) ≥ 1
2 e(

(V
l

)
), Gw) + 3ε1/2n2/2 for all w ∈ S′; or

(b) e(Hw, Gw) ≤ 1
2 e(

(V
l

)
), Gw) − 3ε1/2n2/2 for all w ∈ S′.

We will treat case (a) and omit the similar treatment for case (b).
We proceed to define the following 2-graph G on V .

E(G) = {w ∪ y : y ∈ E(Gw)} \
(

V \ S′

2

)
.

For each x ∈ E2(H, G), there are three possibilities:

(i) x has at least two vertices in S′. There are at most εn3 such edges in E2(H, G).
(ii) x has no vertex in S′. In this case, x can not contain a pair of vertices in G, contradicting

x ∈ E2(H, G).
(iii) x has exactly one vertex w in S′. Say, x = {v, u, w} and u, v ∈ Hw. Therefore, we have

E2(H, G) − E2(H̄G) ≥
∑
w∈S′

(E(Hw, Gw) − E(H̄w, Gw)) − εn3

≥ |S′|3ε1/2n2/2 − εn3

≥ 2εn2

which is a contradiction. Thus we have proved (2) for the case of k = 3.
The proof for the general k is quite similar. For a k-graph H, suppose that for every

(k − 1)-graph G on V , we have

|es(H, G) − es(H̄, G)| ≤ εnk .
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We wish to show

devsH ≤ 2k+sε1/((k−s)(k−s+1)2s).

For a fixed string of k − s vertices, say, w = (w1, w2, . . . , wk−s), we consider edges in
E(H) containing wi for 1 ≤ i ≤ j. We consider the (k − i)-graph H(w1,...,wi) with edge set
E(H(w1,...,wi)) = {y ∈ (V

s

)
: y ∪{w1, . . . , wi} ∈ E(H)}. From the definition of devsH, we have

devsH = 1

n

∑
w1

devsH(w1)

= 1

n2

∑
w1,w2

devsH(w1,w2)

= . . .

= 1

nk−s

∑
w=(ws+1,...,wk )

devsHw.

For w1 ∈ V , we consider

S1 :=

w1 ∈ V :

∑
w1

devsHw1 ≥ (2k+s − 2)ε1/((k−s)(k−s+1)2s)


 .

If |S| ≤ 2ε1/(k−s+1)n then

devsH ≤ 1

n
(|S| + (2k+s − 2)ε1/((k−s)(k−s+1)2s)n} ≤ 2k+sε1/((k−s)(k−s+1)2s)

as desired. Thus, we may assume |S1| ≥ 2ε1/(k−s+1)n.
Similarly, it can be shown that for i = 1, . . . , k − s, there are subsets Sj, with j ≤ i,

|Sj| ≥ 2ε1/(k−s+1)n such that for w̄i = (w1, . . . , wi) with wj ∈ Sj for all j ≤ i, we have
devsHw̄i ≥ (2k+s − 2i)ε i/((k−s)(k−s+1)2s). In particular, for w = (w1, . . . , wk−s) with wi ∈ Si,

1 ≤ i ≤ k − s, we have devsHw ≥ (2k+s − 2k−s)ε1/2(k−s+1)2s
.

For each w ∈ S1 × S2 × . . . × Sk−s, the induction hypothesis implies that there exists a
(s − 1)-graph Gw on V satisfying

|e(Hw, Gw) − e(H̄w, Gw)| > δns

where δ satisfies δ = 4−s(2k+s−1)2s
ε1/(k−s+1).

Thus, there are subsets S′
i of Si, 1 ≤ i ≤ k − s, with |S′

i| = ε1/(k−s+1)n so that for
w ∈ S′ = S′

1 × S′
2 × . . . × S′

k−s either

(a) e(Hw, Gw) − e(H̄w, Gw) ≥ δns for all w ∈ S′; or
(b) e(Hw, Gw) − e(H̄w, Gw) ≤ −δns for all w ∈ S′.

We will treat case (a) and omit the similar treatment for case (b).
We proceed to define the following (k − 1)-graph G on V .

E(G) = {w ∪ y : y ∈ E(Gw)} \
(

V \ (S′
1 ∪ . . . ∪ S′

k−s)

s − 1

)
.
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For each x ∈ Es(H, G), there are three possibilities:

(i) x contains more than one vertex in some S′
i . There are at most εnk such edges.

(ii) x has no vertex in S′
i for some i. In this case, x can not contain any edge in G,

contradicting x ∈ Es(H, G).
(iii) x has exactly one vertex wi in S′

i for i = 1, . . . , k − s. Say, x = w ∪ x′, where for any
vertex u ∈ x′ we have x{u} ∈ E(G). Therefore, we have

Es(H, G) − Es(H̄G) ≥
∑
w∈S′

(E(Hw, Gw) − E(H̄w, Gw)) − εnk

≥
k−s∏
i=1

∣∣S′
i

∣∣ · δns − εnk

≥ ε(k−s)/(k−s+1) · 3ε1/(k−s+1)nk − εnk ≥ εnk

which is a contradiction. This completes the proof for (2).

Combining the above two theorem, we see that devs and disc(s) are equivalent.

5. CONCLUDING REMARKS

In a k-graph H, many questions can be asked concerning the (l, s)-discrepancy properties
disc(s)

l . For example, we have, for s ≥ 3,

disc(s)
k ⇒ disc(s−1)

k (3)

by using the fact that devl ⇒ devl−1 and the main theorem disc(s)
k ⇔ devs. However, in a

k-graph and 2 ≤ l < k, is it true that

disc(s)
l ⇒ disc(s−1)

l ? (4)

In the implication (3), the reversed direction does not hold (see [2]). For a general l with
l < k, is it still true? Is it possible to have one equivalence class which includes disc(s)

l for
some consecutive values of s for some l ? What is then the length of the chain of equivalence
classes containing disc(s)

l as s ranges from 1 to
( k

l−1

)
?

Recall that discl = disc(s)
l with s = ( k

l−1

)
. From the definition, it is not hard to check that

discl ⇒ discl−1 for l ≥ 3. To further explore the relations among disc(s)
l and disc(t)

l−1, we
need more definitions.

We consider a k-graph H with vertex set V = V(H) and E = E(H). Let Q denote a fixed
l-graph on k vertices and G denote a l-graph on vertex set V . In a k-graph H, an edges x
in E(H) is said to be Q-induced by G if there is an embedding π of Q into

(x
l

)
, the set of

l-subsets of x satisfying the property that for all y ∈ E(Q), the images π(y) are in E(G).
Let eQ(H , G) denote the total number of edges in H which are Q-induced by G.

Definition. For a k-graph H on vertex set V with |V | = n and a fixed (l − 1)-graph Q,
we define discQ

l H by:

discQ
l H = 1

nk
max

M
|eQ(H, G) − eQ(H̄, G)|,

where the maximum is taken over all (l − 1)-graphs G on V.
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It is of interest to examine possible necessary and sufficient conditions for a pair of
graphs Q and Q′ on k vertices such that discQ

l ⇔ discQ′
l . For a fixed k and a graph Q, how

large is the family of graphs consisting of Q′ satisfying the property that discQ′
l is in the

quasi-random class that includes discQ
l ? How are properties discQ

l related to disc(s)
l ? Most

of all, what is the lattice structure illustrating the relations among quasi-random classes of
k-graphs? In this note, we only example some very special parts of this lattice. Numerous
questions remain to be explored.
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