
THE DISTRIBUTION OF HEIGHT AND DIAMETER IN RANDOM
NON-PLANE BINARY TREES

NICOLAS BROUTIN AND PHILIPPE FLAJOLET

ABSTRACT. This study is dedicated to precise distributional analyses of the height of
non-plane unlabelled binary trees (“Otter trees”), when trees of a given size are taken with
equal likelihood. The height of a rooted tree of size n is proved to admit a limiting theta
distribution, both in a central and local sense, and obey moderate as well as large deviations
estimates. The approximations obtained for height also yield the limiting distribution of
the diameter of unrooted trees. The proofs rely on a precise analysis, in the complex plane
and near singularities, of generating functions associated with trees of bounded height.

Introduction

We consider trees that are binary, non-plane, unlabelled, and rooted; that is, a tree
is taken in the graph-theoretic sense and it has nodes of (out)degree two or zero only; a
special node is distinguished, the root, which has degree two. In this model, the nodes
are indistinguishable, and no order is assumed between the neighbours of a node. Let Y
denote the class of such trees, and let Yn be the subset consisting of trees with n external
nodes (i.e., nodes of degree zero). In this article, we study the (random) height Hn of a
tree sampled uniformly from Yn.

Most of the results concerning random trees of fixed size are relative to the situation
where one can distinguish the neighbours of a node, either by their labels (labelled trees),
or by the order induced on the progeny through an embedding in the plane (plane trees);
see the reference books [14, 19] and the discussion by Aldous [3] who globally refers to
these as “ordered trees”. In this range of models, Meir and Moon [33] determined that the
depth of nodes is typically O(

√
n) for all “simple varieties” of trees, which are determined

by restricting in an arbitrary way the collection of allowed node degrees. Regarding height,
a few special cases were studied early: Rényi and Szekeres [38] proved in particular that
the average height of labelled non-plane trees of size n is asymptotic to 2

√
πn; De Bruijn,

Knuth, and Rice [12] dealt with plane trees and showed that the average height is equivalent
to
√
πn as n → ∞. Eventually, Flajolet and Odlyzko [18] developed an approach for

height that encompasses all simple varieties of trees; see also [20] for additional results.
Under such models with distinguishable neighbourhoods, trees of a fixed size n may be

seen as Galton–Watson processes (branching processes) conditioned on the size being n,
see [1, 26, 28], and there are natural random walks associated to various tree traversals. Ac-
cordingly, probabilistic techniques have been successfully applied to quantify tree height
and width [8, 9], based on Brownian excursion. An important probabilistic approach con-
sists in establishing the existence of a continuous limit of suitably rescaled random trees
of increasing sizes—one can then read off, to first asymptotic order at least, some of the
limit parameters directly on the limiting object. The latter point of view has been adopted
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by Aldous [2, 3, 4] in his definition of the continuum random tree (CRT): see the survey
by Le Gall [30] for a recent account of probabilistic developments along these lines.

The case of trees (as are considered here) that have indistinguishable neighbourhoods
is essentially different. Such trees cannot be generated by a branching process conditioned
by size and no direct random walk approach appears to be possible, due to the inherent
presence of symmetries. (An analysis of such symmetries otherwise occurs in the recent
article [6].) The analysis of unlabelled non-plane trees finds its origins in the works of
Pólya [36] and Otter [35]. However, these authors mostly focused on enumeration—the
problem of characterizing typical parameters of these random trees remained largely un-
touched. Recently, in an independent study, Drmota and Gittenberger [15] have examined
the profile of “general” trees (where all degrees are allowed) and shown that the joint
distribution of the number of nodes at a finite number of levels converges weakly to the
finite dimensional distribution of Brownian excursion local times. They further extended
the result to a convergence of the entire profile to the Brownian excursion local time.

The foregoing discussion suggests that, although there is no clear exact reduction of un-
labelled non-plane trees to random walks, such trees largely behave like simply generated
families of ordered trees. In particular, it suggests that the rescaled heightHn/

√
n is likely

to admit a limit distribution of the theta-function type [16, 18, 27, 38]. We shall prove that
such is indeed the case for non-plane binary trees in Theorems 1 and 2 below. We also
provide moderate and large deviations estimates (Theorems 4 and 5), as well as asymp-
totic estimates for moments (Theorem 3), see §5. Equipped with solid analytic estimates
regarding height, we can then proceed to characterize the diameter of unrooted trees in §6,
this both in a local and central form (Theorems 6 and 7). Some a posteriori observations
that complete the picture are offered in our Conclusion section, §7.

A preliminary investigation of the distribution of height in rooted trees is reported in the
extended abstract [7]. Our interest in this range of problems initially arose from questions
of Jean-François Marckert and Grégory Miermont [32], in their endeavour to extend the
probabilistic methods of Aldous to non-plane trees and develop corresponding continuous
models—we are indebted to them for being at the origin of the present study.

1. Trees and generating functions

Tree enumeration. Our approach is entirely based on generating functions. The class Y
of (non-plane, unlabelled, rooted) binary trees is defined to include the tree with a single
external node. A tree has size n if it has n external nodes, hence n − 1 internal nodes.
The cardinality of the subclass Yn of trees of size n is denoted by yn and the generating
function (GF) of Y is

y(z) :=
∑
n≥1

ynz
n = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + 23z8 + · · · ,

the coefficients corresponding to the entry A001190 of Sloane’s On-line Encyclopedia of
Integer Sequences. The trees of Y with size at most 6 are shown in Figure 1.

A binary tree is either an external node or a root appended to an unordered pair of two
(not necessarily distinct) binary trees. In the language of analytic combinatorics [19], this
corresponds to the (recursive) specification

Y = Z + MSet2(Y),
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Figure 1. The binary unlabelled trees of size less than six.

where Z represents a generic atom (of size 1) and MSet2 forms multisets of two elements.
The basic functional equation

(1) y(z) = z +
1

2
y(z)2 +

1

2
y(z2),

closely related to the early works of Pólya (1937; see [36, 37], and first studied by Ot-
ter (1948; see [35]), follows from fundamental principles of combinatorial enumeration [19,
25]. The term 1

2y(z2) accounts for potential symmetries—hereafter, we refer to such terms
involving functions of z2, z3, . . . , as Pólya terms. According to the general theory of ana-
lytic combinatorics, we shall operate in an essential manner with properties of generating
functions in the complex plane. The following lemma is classical but we sketch a proof, as
its ingredients are needed throughout our work.

Lemma 1 (Otter [35]). Let ρ be the radius of convergence of y(z). Then, one has 1/4 ≤
ρ < 1/2, and ρ is determined implicitly by ρ + 1

2y(ρ2) = 1
2 . As z → ρ−, the generating

function y(z) satisfies

(2) y(z) = 1− λ
√

1− z/ρ+O (1− z/ρ) , λ =
√

2ρ+ 2ρ2y′(ρ2).

Furthermore, the number yn of trees of size n satisfies asymptotically

(3) yn =
λ

2
√
π
· n−3/2ρ−n

(
1 +O

(
1

n

))
,

Proof. The number of plane binary trees with n external nodes is given by the Catalan
number Cn−1 = 1

n

(
2n−2
n−1

)
. The number of symmetries in a tree of size n being a priori

between 1 and 2n−1, one has the bounds

Cn−121−n ≤ yn ≤ Cn−1.

As it is well known, the Catalan numbers satisfy Cn ∼ π−1/24nn−3/2, so that the radius
of convergence ρ satisfies the bounds 1/4 ≤ ρ < 1/2. It follows that y(z2) is analytic
in a disc of radius

√
ρ, which properly contains {|z| ≤ ρ}. Then, from (1), upon solving

for y(z), we obtain

(4) y(z) = 1−
√

1− 2z − y(z2),

which can only become singular when the argument of the square root vanishes. By
Pringsheim’s Theorem [19, p. 240], the value ρ is then the smallest positive solution of
2z+ y(z2) = 1, corresponding to a simple root, and, at this point, we must have y(ρ) = 1,
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given (4). This reasoning also justifies the singular expansion (2), which is seen to be valid
in a ∆-domain [19, §VI.3], i.e., a domain of the form

(5) {z : |z| < ρ+ ε, z 6= ρ, | arg(z − ρ)| > θ} ε, θ > 0

that extends beyond the disc of convergence |z| ≤ ρ.
Equation (3) constitutes Otter’s celebrated estimate: it results from translating the square

root singularity of y(z) by means of either Darboux’s method [25, 35, 36] or singularity
analysis [19]. �

Numerically, one finds [17, 19, 35]:

ρ
.
= 0.40269 750367, λ

.
= 1.13003 37163,

λ

2
√
π

.
= 0.31877 66259.

Height. In a tree, height is defined as the maximum number of edges along branches
connecting the root to an external node. Let yh,n be the number of trees of size n and
height at most h and let yh(z) =

∑
n≥1 yh,nz

n be the corresponding generating function.
The arguments leading to (1) yield the fundamental recurrence

(6) yh+1(z) = z +
1

2
yh(z)2 +

1

2
yh(z2), h ≥ 0,

with initial value y0(z) = z, and

(7)
{
y1(z) = z + z2, y2(z) = z + z2 + z3 + z4,
y3(z) = z + z2 + z3 + 2z4 + 2z5 + 2z6 + z7.

A central rôle in what follows is played by the generating function of trees with height
exceeding h:

eh(z) ≡
∑
n≥1

eh,nz
n := y(z)− yh(z),

Then, a trite calculation shows that the eh(z) satisfy the main recurrence

(8) eh+1(z) = y(z)eh(z)

(
1− eh(z)

2y(z)

)
+
eh(z2)

2
, e0(z) = y(z)− z,

on which our subsequent treatment of height is entirely based.
Analysis. The distribution of height is accessible by

(9) P {Hn > h} =
yn − yn,h

yn
=
eh,n
yn

,

where eh,n = [zn]eh(z). Lemma 1 provides an estimate for yn, and we shall get a handle
on the asymptotic properties of eh,n by means of Cauchy’s coefficient formula,

(10) en,h =
1

2iπ

∫
γ

eh(z)
dz

zn+1
,

upon choosing a suitable integration contour γ in (10), of the form commonly used in sin-
gularity analysis theory [19]; see Figure 2 below. This task necessitates first developping
suitable estimates of eh(z), for values of z both inside and outside of the disc of conver-
gence |z| < ρ. Precisely, we shall need estimates valid in a “tube” around an arc of the
circle |z| = ρ, as well as inside a “sandclock” anchored at ρ (see Figure 2).

Definition 1. The “tube” T (µ, η) of width µ and angle η is defined as

(11) T (µ, η) := {z : −µ < |z| − ρ < µ, | arg(z)| > η}.
The “sandclock” of radius r0 and angle θ0 anchored at ρ is defined as

(12) S(r0, θ0) := {z : |z − ρ| < r0, π/2− θ0 < | arg(z − ρ)| < π/2 + θ0}.



HEIGHT AND DIAMETER IN RANDOM BINARY TREES 5

ρρ

γ1

γ2

γ3

γ4

γ5

sandclock�

tube
@
@@R

Figure 2. Left: the “tube” and “sandclock” regions. Right: the Hankel contour used to estimate eh,n
(details are given in Figure 3).

Strategy and overview of the results. Estimates of the sequence of generating func-
tions (eh(z)) within the disc of convergence and a tube, where z stays away from the
singularity ρ, are comparatively easy: they form the subject of Section 2. In particular,
Proposition 1 states that we can always find thinner and thinner tubes that come arbitrarily
close to the singularity ρ and where the convergence yh → y, eh → 0 is ensured. The bulk
of the technical work is relative to the sandclock, in Section 3, where Proposition 2 grants
us the existence of a suitable sandclock for convergence. We can then develop in Section 4
our main approximation:

(13) eh(z) ≡ y(z)− yh(z) ≈ 2
1− y
1− yh

yh.

Here, the symbol “≈” is to be loosely interpreted in the sense of “approximately equal” ; a
formal statement is postponed and summarized in Proposition 3.

The form of the approximation in (13) is similar to that in the original paper by Flajolet
and Odlyzko [18] where trees are ordered. Its justification ranges in Sections 2–4, which
closely follow the general strategy in [18]; however, nontrivial adaptations are needed, due
to the presence of Pólya terms, so that the problem is no longer of a “pure” iteration type.

We then reap the crop in Section 5. There, we use (9), the approximation in (13) and the
square root singularity of y at ρ to prove the following theorem relative to the distribution
of height Hn:

Theorem 1 (Limit law of height). The height Hn of a random tree taken uniformly from
Yn admits a limiting theta distribution: for any fixed x > 0, there holds

lim
n→∞

P(Hn ≥ λ−1x
√
n) = Θ(x), λ :=

√
2ρ+ 2ρ2y′(ρ2),

where Θ(x) :=
∑
k≥1

(k2x2 − 2)e−k
2x2/4.

Our formal version of approximation in (13) (Proposition 3) is also strong enough to
grant us access to a limit law for the height Hn:
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Theorem 2 (Local limit law of height). The distribution of the height Hn of a random
tree taken uniformly from Yn admits a local limit: for x in a compact set of R>0 and
h = λ−1x

√
n an integer, there holds uniformly

P(Hn = h) ∼ λ√
n
ϑ(x),

where ϑ(x) = −Θ′(x) = (2x)−1
∑
k≥1

(k4x4 − 6k2x2)e−k
2x2/4.

Note that the results above appear to parallel the weak limit theorem and and local limit
laws known in the planar case [20]. Further theorems about the asymptotics of (integer)
moments of Hn, together with moderate and large deviations may also be extracted from
(13) ; we only state the one for the moments, the others may be found in Section 5.

Theorem 3 (Moments of height). Let r ≥ 1. The rth moment of height Hn satisfies

(14) E [Hn] ∼ 2

λ

√
πn and E[Hr

n] ∼ r(r− 1)ζ(r)Γ(r/2)

(
2

λ

)r
nr/2, r ≥ 2.

Finally, in Section 6, we analyse the diameter of unrooted trees using a reduction to the
rooted tree case. There, we provide theorems similar to Theorem 1, 2 and 3, i.e., a weak
limit theorem, a local limit law, and asymptotics for the moments. The precise definition of
the model of unrooted trees, and the statement of the results are postponed until Section 6.

2. Convergence away from the singularity in tubes

Our aim in this section1 is to extend the domain where eh is analytic beyond the disc of
convergence |z| ≤ ρ, when z stays in a “tube” T (µ, η) as defined in (11) and is thus away
from ρ. The main result is summarized by Proposition 1, at the end of this section. Its
proof relies on the combination of two ingredients: first, the fact, expressed by Lemma 2,
that the eh converge to 0, equivalently, yh → y, in the closed disc of radius ρ (this property
is the consequence of the n−3/2 subexponential factor in the asymptotic form of yn, which
implies convergence of y(ρ)); second, a general criterion for convergence of the eh to 0,
which is expressed by Lemma 3. The criterion implies in essence that the convergence do-
main is an open set, and this fact provides the basic analytic continuation of the generating
functions of interest.

Lemma 2. For all z such that |z| ≤ ρ, and h ≥ 1, one has

|eh(z)| ≤ 1√
h

(
|z|
ρ

)h
.

Proof. To have height at least h, a tree needs at least h + 1 nodes, so that |eh(z)| ≤∑
n>h yn|z|n.We first note an easy numerical refinement of (3), namely, yn ≤ 1

2ρ
−nn−3/2,

obtained by combining the first few exact values of yn with the asymptotic estimate (3).
(See [22] for a detailed proof strategy in the case of a similar but harder problem.) This
implies

|eh(z)| ≤ 1

2

(
|z|
ρ

)h∑
n>h

1

n3/2
≤ 1

2

(
|z|
ρ

)h ∫ ∞
h

dt

t3/2
=

(
|z|
ρ

)h
1√
h
,

and the statement results. �

1In what follows, we freely omit the arguments of y(z), eh(z), yh(z) . . . , whenever they are taken at z. (We
reserve h for height and n for size, so that no ambiguity should arise: yh means yh(z), whereas yn invariably
represents [zn]y(z).)



HEIGHT AND DIAMETER IN RANDOM BINARY TREES 7

We now devise a criterion for the convergence of eh(z) to zero. This criterion, adapted
from [18, Lemma 1], is crucial in obtaining extended convergence regions, both near the
circle |z| = ρ (in this section) and near the singularity ρ (in Section 3).

Lemma 3 (Convergence criterion). Define the domain2

(15) D := {z : |y(z)| < 1}.
Assume that z satisfies the conditions z ∈ D and |z| < √ρ. The sequence {|eh(z)|, h ≥ 0}
converges to 0 if and only if there exist an integer m ≥ 1 and real numbers α, β ∈ (0, 1),
such that the following three conditions are simultaneously met:

(16) |em| < α, |y|+ α

2
< β, αβ +

(
|z|2

ρ

)m
< α.

Furthermore, if (16) holds then, for some constant C and β0 ∈ (0, 1), one has the geomet-
ric convergence

(17) |eh| ≤ Chβh0 ,
for all h ≥ m.

Proof. (i) Convergence implies that (16) is satisfied, for some m. Assume that z ∈ D,
|z| < √ρ, and eh(z) → 0 as h → ∞. Then choose β such that |y| < β < 1. This gives
a possible value for α, say, α = (β − |y|). Choose m0 such that, for all µ > m0, one has
|eµ| < α; then choose m1 large enough, so that the third condition of (16) is satisfied. The
three conditions of (16) are now satisfied by taking m = max(m0,m1).

(ii) Condition (16) implies convergence and the bound (17). Conversely, assume the
three conditions in (16), for some value m. Then, they also hold for m + 1. Indeed,
recalling (8), we see that, for any h ≥ 1,

(18) |eh+1| ≤ |eh|
(
|y|+ |eh|

2

)
+
|eh(z2)|

2
≤ |eh|

(
|y|+ |eh|

2

)
+

(
|z|2

ρ

)h
,

where the Pólya term involving |eh(z2)| has been bounded using Lemma 2. The hypothe-
ses of (16) together with (18) above taken at h = m, yield the inequality |em+1| < α. So,
once the conditions (16) hold for some m, they hold for m+ 1; hence, for all h ≥ m.

The fact that, under these conditions, there is convergence, eh → 0, now results from
unfolding the recurrence (8): we find, for all h ≥ m,

|eh+1| ≤ βh−m+1|em|+
h−m∑
i=0

βi
(
|z|2

ρ

)h−i
≤ βh−m+1|em|+ hmax

{
β,

(
|z|2

ρ

)}h
,

where Lemma 2 has been used again to bound the Pólya term. The additional assertion
that |eh| ≤ Chβh0 in (17) finally follows from choosing β0 := max(β, |z|2/ρ). �

We can now state the main convergence result of this section:
Proposition 1 (Convergence in “tubes”). For any angle η > 0, there exists a tube T (µ, η)
with width µ > 0, such that |eh(z)| → 0, as h→∞, uniformly for z in T (µ, η).

Proof. We thus start from a fixed η, assumed to be suitably small. If we exclude a small
sector of opening angle 2η around the positive real axis, then the quantity,

λ0 := sup { |y(z)|; |z| = ρ, | arg(z)| ≥ η } ,
satisfies λ0 < 1: this results from the strong triangle inequality (see also the “Daffodil
Lemma” of [19]) and the fact that y(ρeiθ) is a continuous function of θ. (By the argument

2This domain will sometimes be referred to as the “cardioid-like” domain, as it contains the {|z| ≤ ρ}
punctured at ρ (Proposition 1) and has a cusp at z = ρ, associated to the square root singularity of y(z) at ρ.
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introduced in the proof of Lemma 1, the function y(z) is analytic at all points of |z| = ρ,
z 6= ρ, hence continuous.) Fix then ε by λ0 = 1 − 2ε. By continuity of y again, for
each z on the circle of radius ρ satisfying | arg(z)| ≥ η, there exists a small open disc δ(z),
centred at z and such that |y(ζ)| < 1 − ε for all ζ ∈ δ(z). From now on, we assume that
the discs δ(z) are taken small enough, so that they are entirely contained in the larger disc
{w ∈ C : |w| < √ρ}.

We can then make use of the convergence criterion of Lemma 3, supplemented once
more by a continuity argument. In the notations of (16), choose first α = ε, then β =
1 − ε/2. For all sufficiently large m, say m ≥ ν, the last two conditions of (16) are
satisfied. Then, since the eh(z) are analytic (hence continuous) at every point of the unit
circle punctured at ρ, there exists, around each z on |z| = ρ with | arg(z)| ≥ η, a small
open disc δ1(z) ⊆ δ(z) and an integer M(z) such that |em| < α for all m ≥ M(z). We
may also freely assume that M(z) > ν.

Finally, by compactness of the arc {ρeiθ} defined by |θ| ≥ η, there exists a covering
of the arc by a finite collection of small discs, say {δ1(zj)}rj=1. The union of these small
discs must then contain a tube of angle η and width µ > 0. By design, in this tube, all three
conditions of the convergence criterion of Lemma 3 (Equation (16)) are now satisfied, with
m = maxrj=1M(zj). �

3. Convergence near the singularity in a sandclock

We now focus on the behaviour of eh(z) in a “sandclock” around the singularity. When
z approaches ρ, the quantity |y| is no longer bounded away from 1, so that the criterion for
convergence obtained earlier (Lemma 3) cannot be used directly. We then need to proceed
in two stages: first, we prove in Subsection 3.1 that, in a suitable sandclock, the initial terms
decay “enough”; next, in Subsection 3.2, we establish the existence of a sandclock where
convergence of the eh to 0 is ensured—this is expressed by the main Proposition 2 below.
We shall then be able to build upon these results in the next section and derive suitable
singular approximations of the eh outside of the original disc of convergence |z| ≤ ρ
of y(z), when z is near ρ.

Alternative recurrence. So far, we have operated with the main recurrence (8) relating
the eh, then applied some partial unfolding supplemented by simple continuity arguments.
To proceed with our programme, we need to adapt a classical technique in the study of
slowly convergent iterations near an indifferent fixed point [11, p. 153], which simply
amounts to “taking inverses” and leads to a useful alternative form of the original recur-
rence.

Lemma 4 (Alternative recurrence). Assume, for a value z, the conditions

ei(z) 6= 0 and ei(z)
[
1− ei(z2)/ei(z)

2
]
6= 2y(z), for i = 0, . . . , h− 1.

Then, the following two recurrence relations hold

yh

eh
=

1

e0
+

1

2y

h−1∑
i=0

yi
[
1− ei(z

2)

e2i

](
1− ei

2y

[
1− ei(z

2)

e2i

])−1
(19)

yh

eh
=

1

e0
+

1

2y

1− yh

1− y
−
h−1∑
i=0

yi−1ei(z
2)

2e2i
+

1

4y2

h−1∑
i=1

yiei

[
1− ei(z

2)
e2i

]2
1− ei

2y

[
1− ei(z2)

e2i

] .(20)

The form (19) is referred to as the simplified alternative recurrence; the form (20) is the
extended alternative recurrence.
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Proof. Starting with the recurrence relation (8), rewritten as

ei+1

yi+1
=
ei
yi

(
1− ei

2y

[
1− ei(z

2)

e2i

])
,

the trick is to take inverses (cf also [18]). The identity (1−u)−1 = 1+u(1−u)−1 implies

yi+1

ei+1
− yi

ei
=
yi−1

2

[
1− ei(z

2)

e2i

](
1− ei

2y

[
1− ei(z

2)

e2i

])−1
.

Summing the terms of this equality for i = 0, . . . , h − 1 then yields the first version. The
extended version follows from the expansion (1− u)−1 = 1 + u+ u2(1− u)−1. �

Lemma 4 is used to complete the proof of Lemma 5 below (see Equation (31)) and it
serves as the starting point of the proof of Proposition 2 (see Equation (33)). It then proves
central in establishing the main approximation of Proposition 3 in the next section. The
interest of these alternative recurrences is that they relate the inverse 1/eh to essentially
polynomial forms in the previous ei. In particular they serve to convert lower bounds into
upper bounds, and vice versa.

3.1. Initial behaviour of eh. We establish in this subsection (cf Lemma 6) that the quan-
tities |eh(z)| first exhibit a decreasing behaviour for h ≤ N , with some appropriate
N = N(z). At that point, |eN (z)| appears to be small enough to guarantee that the crite-
rion of Lemma 3 becomes applicable, whence eventually the convergence |eh(z)| → 0 as
h→∞ in a sandclock.

The following preparatory lemma serves to control the effect of Pólya terms, when z is
close to ρ, so that z2 is close to ρ2, well inside of the disc of radius ρ. It is evocative of the
theory of iteration near an attractive fixed point (see, e.g., [34, Ch. 8]).

Lemma 5 (Smooth iteration for Pólya terms). Fix z0 ∈ (0, ρ). There exists a constant
R0 > 0, dependent upon z0, such that, for all h ≥ 0, and for all z satisfying |z−z0| < R0,
one has

eh(z) = Ch(z) · y(z)h,

where, uniformly with respect to z, Ch(z) = C(z)+o(1), as h→∞, and C(z) is analytic
at z0. Furthermore, for some K1,K2, c0 all positive, one has3, in the disc |z − z0| < R0,

K1 < |Ch(z)| < K2 and | arg(eh(z))| ≤ c0(h+ 1)|z − z0|.

Proof. Starting from the main relation (8) and unfolding only the eh that is factored, we
obtain by induction

(21)
eh+1

yh+1
= e0

h∏
i=0

(
1− ei

2y

)
+
eh(z2)

2yh+1
+

1

2y

h−1∑
i=0

ei(z2)

yi

h∏
j=i+1

(
1− ej

2y

) .
We let Ch(z) := eh(z)/y(z)h and proceed to prove properties of these quantities.

(i) Upper bound on Ch and existence of C(z). When z lies in a small enough neigh-
bourhood of z0 ∈ (0, ρ), the convergence of ei to zero is geometric by Lemma 2, and it
remains so, uniformly with respect to z restricted to a small neighbourhood of z0. Further-
more, the inequality |y(z)| > |z|, which holds at z = z0, persists, by continuity, for z in
a suitably small neighbourhood of z0. It follows that both the product and the sum in the
right-hand side of (21) converge geometrically and uniformly, so that Ch(z) → C(z) as
h → ∞, where C(z) is analytic at z0. These arguments also imply that |Ch(z)| remains
bounded from above by an absolute constant: |Ch(z)| < K2.

3 The argument of a complex number w 6= 0 taken to be the number θ ∈ (−π,+π] such that w = |w|eiθ .
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(ii) Lower bound on Ch. We next observe that, in a small enough neighbourhood
of z0, the quantity |C(z)| must be bounded from below. Indeed, a contrario, if this was
not the case, then we would need to have C(z0) = 0. Now, because of the convergence
of Ch(z) to C(z), we would have Ch(z0) = o(1), implying eh(z0) = o(y(z0)h). This last
fact is finally seen to contradict Equation (21), since the left hand side taken at z0 would
tend to 0, while the right hand side remains bounded from below by the positive quantity
e0
∏∞
i=0(1− ei/(2y)) taken at z0. A contradiction has been reached. Thus, we must have

|C(z)| > K?
1 for some K?

1 > 0; hence the claimed inequality |Ch(z)| > K1 for all h large
enough, say h > h0. (For h ≤ h0, we can complete the argument by referring again to
Equation (21), which precludes the possibility that eh(ζ) = 0 for ζ ∈ (0, ρ). A continuity
argument then provides a small domain around z0 where Cj(z) is bounded from below, for
all j ∈ {1, . . . , h0}.)

(iii) Bound on the argument. Finally, the argument of eh can be expressed as follows:

(22) arg eh = =(log eh) = =(logCh) + h=(log y) (mod 2π).

We now consider a disc |z − z0| < R and momentarily examine the effect of letting
R→ 0. By analyticity of y(z) at z0 and since y(z0) is positive real, we have=(log y(z)) =
O(R). Next, since |Ch(z)| is bounded from above and below in a small enough fixed
neighbourhood of z0, Ch(z0) is positive real, and Ch(z) → C(z), we have, similarly,
=(logCh(z)) = O(R), where the implied constant in O(·) can be taken independent of h.
This means that, there exist constants d0, d1 > 0 such that, provided R is chosen small
enough, one has | arg(eh(z))| < d0R + d1Rh. This last form implies the stated bound on
the argument of eh. �

With Lemma 5 in hand, we can obtain a first set of properties of eh(z), which hold for
z in a sandclock S(r0, θ0) and for h “not too large”. These will be used in Proposition 2 to
derive an upper bound on |eN | (for some suitably chosen N depending on z), to the effect
that eN eventually satisfies the criterion of Lemma 3. In the following, we only need to
consider z ∈ S(r0, θ0), with =(z) ≥ 0, since we clearly have eh(z̄) = eh(z), where z̄
denotes the complex conjugate of z.

Lemma 6 (Initial behaviour of eh). Suppose =(z) > 0. Define the integer

(23) N(z) :=

⌊
arccos(1/4)

arg y(z)

⌋
− 2.

Fix θ0 ≤ π
8 , with θ0 > 0. There exists a constant r0 > 0 such that, if z lies in the sandclock

S(r0, θ0), then, for all h such that 1 ≤ h ≤ N(z), the following inequalities hold:

(24)
|y|h+1

2(h+ 1)
< |eh(z)| < 1/2 and 0 ≤ arg(eh) ≤ (h+ 2) arg(y).

Furthermore, one has |eh(z)| < 1/5, for 6 ≤ h ≤ N(z).

Observe that we can also assume, in a small enough sandclock,

(25)
1

2
< |e0(z)| < 2

3
,

since e0(ρ) = 1− ρ has numerical value .
= 0.59730 and e0(z) is continuous at z = ρ.

Proof. As a preamble, we note thatN(z) tends to infinity as z → ρ, since y(ρ) = 1 is real,
hence has argument 0. Consider next the basic recurrence relation (8) rewritten as

(26)
eh+1

y
= y · eh

y
·
(

1− eh/y

2

)
+
eh(z2)

2y
.
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The behaviour of the first term in the right-hand side of (26) is dictated by properties of the
mapping

(27) g : w 7→ w(1− w/2).

(A very similar function appeared in the analysis of Flajolet and Odlyzko [18, Lemma 3].)
By a simple modification of the proof in [18], we can check elementarily the implication

(28)
{

|w| ≤ 1
0 ≤ argw ≤ arccos(1/4)

⇒
{

|g(w)| ≤ |w|
0 ≤ arg g(w) ≤ argw.

(i) Weak upper bounds on modulus and bounds on argument. We are first going to use
(28) and induction on h (with 1 ≤ h ≤ N(z)), in order to establish a suitably weakened
form of (24); namely,

(29) |eh/y| < 1 and 0 ≤ arg(eh/y) ≤ (h+ 1) arg y.

We start with the basis of the induction relative to (29), the case h = 1, where e1 =
y − z − z2. Observe that e1(ρ) = 1 − ρ − ρ2

.
= 0.43, so that |e1(z)| < 1/2 (and, a

fortiori, |e1/y| < 1) is granted for z close enough to ρ. Write next z/ρ = 1 + reiθ, with θ
close to π/2 and r a small positive number. Then, by virtue of the singular expansion (2)
of Lemma 1, we have,

y(z) = 1 + iλ
√
reiθ/2 +O(r),

as r → 0, hence
e1
y

= 1− ρ− ρ2 + iλ(ρ+ ρ2)eiθ/2
√
r +O(r).

Since θ/2 now lies in (π/4 − π/16, π/4 + π/16), there results from the last expansion
that the argument of e1/y is essentially a small positive multiple of

√
r. A precise com-

parison of the arguments of y and e1/y, as provided by the last two displayed equations,
confirms (routine details omitted) that we can choose a small enough r0 such that, in the
sandclock S(r0, π/8), we have both |e1/y| < 1 and 0 < arg(e1/y) ≤ 2 arg(y).

Suppose now that (29) holds for all integers up to h ≤ N(z). In order to determine
whether it also holds for h + 1, we have to take into account the Pólya term, that is, the
second term in the right-hand side of (26). By possibly further restricting r0, we can
guarantee that, for all z ∈ S(r0, π/8), this second term does not contribute any increase in
the argument of eh/y. Indeed, observe that for z ∈ S(r0, π/8), we have arg(y) ≥ δr1/2,
with some δ > 0. In addition, by Lemma 5, Equation (22), we have arg eh(z2) ≤ c0(h+
1)|z2 − ρ2|, so that |z2 − ρ2| = O(r) is of a smaller order than O(

√
r). Thus, in (26),

the second (Pólya) term on the right hand side of the equality has an argument which is of
order hr, and, for r small enough, may be taken to satisfy

0 ≤ arg(eh(z2)/(2y)) ≤ h/2 · arg(y).

Now, the simple geometry of parallelograms implies that two complex numbers ζ and ζ ′,
whose arguments lie in [0, π2 ], satisfy arg(ζ + ζ ′) ≤ max(arg(ζ), arg(ζ ′)). There results,
from the induction hypothesis, the chain of inequalities

0 ≤ arg(eh+1/y) ≤ max{arg(eh/y) + arg(y), arg(eh(z2)/y)}
≤ max{(h+ 1) arg y + arg(y)}
≤ (h+ 2) arg(y).

Note that the first inequality follows from the use of (28). In particular, this step requires
that arg(eh/y) be lower than arccos(1/4), which we can only garantee as long as our upper
bound (h+ 1) arg(y) is itself at most arccos(1/4). This is why we only proceed with the
induction only as long as h ≤ N(z). At this stage, the induction is complete and (29) is
established for h ≤ N(z).
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(ii) Improved upper bound on modulus. The upper bound on the modulus provided
by (29), being (slightly) weaker than the upper bound on |eh| asserted in (24), needs to
be strengthened. The y(z) and eh(z) are analytic, hence continuous, in the domain D
of (15) and all the sandclooks it contains. Also, we have seen that e1(ρ) < 1/2, while,
by definition, e1(ρ) > e2(ρ) > · · · . So, after possibly restricting r0 to a smaller value
once more, for all z ∈ S(r0, π/8), the inequality |eh(z)| ≤ 1/2 is guaranteed to hold with
h = 1, . . . , 6, this by virtue of continuity. Next, if h ≥ 6, the alternative recurrence and the
fact that |eh/y| < 1 (asserted in (29) and proved in Part (i) above) imply, via the triangle
inequality∣∣∣∣ehy

∣∣∣∣ ≤ |y| |g(eh/y)|+
∣∣∣∣eh(z2)

2y

∣∣∣∣ , where g(eh/y) =
eh
y
·
(

1− eh
2

)
(g(w) is as defined in (27)). Now, for h < N(z), the quantity g(w) is taken at w = eh/y,
which is such that |w| < 1 and arg(w) < arccos(1/4), so that, by (28),

(30)
|eh+1/y| ≤ |e6(z)/y|+ 1

2
·
h+1∑
i=6

|ei(z2)/y|

≤ |e6(ρ)|+K
√
r +

1

2
·
∞∑
i=6

(ρ+ 3r)i,

for some constant K ; here the last line makes use of the inequality |ei(z2)| ≤ (|z|2/ρ)i

granted by Lemma 2. It follows easily that, for h ≥ 6,

|eh+1/y| ≤ |e6(ρ)|+ 1

2
· ρ6

1− ρ
+ 2K

√
r,

for all r ≤ r0, with r0 chosen small enough. In particular, for h ∈ [6, N(z)] and r ≤ r0
small enough, we have |eh/y| < 1/5. Combined with previous observatiosn regarding the
initial values of ej(z), this implies the inequality |eh/y| < 1

2 for all h ≤ N(z), as asserted.

(iii) Lower bound on modulus. It finally remains to establish the lower bound on |eh| in
(24). We start with the recurrence relation (26). For h ≤ N(z), the additional Pólya term
eh(z2) only contributes to making |eh+1| larger. Indeed, for z ∈ S(r0, θ0), by Lemmas 5
and the upper bound on arguments proved in Part (i), both terms are such that, for h <
N(z),

|eh+1/y| ≥ |y| · |eh/y| ·
(

1− |eh/y|
2

)
.

Since x 7→ x(1− x/2) is increasing in [0, 1], we have |eh/y| ≥ fh, , for all h ≥ 0, where
the sequence (fh)h≥0 is defined by

f0 =
|e0|
|y|

=
|y − z|
|y|

and fh+1 = |y| · fh ·
(

1− fh
2

)
.

(The latter recurrence relation is precisely the one analysed by Flajolet and Odlyzko [18]
in the case of simply generated trees.) For r0 small enough, a process analogous to the
derivation of the alternative recurrence in Lemma 6 yields

(31)
|y|h

fh
=

1

f0
+

1

2
·
h−1∑
i=0

|y|i +
1

2
·
h−1∑
i=0

fi
1− fi/2

· |y|i ≤ 1

f0
+

3

2
·
h−1∑
i=0

|y|i ≤ 2 +
3h

2
.

This last last bound directly implies the lower bound on |eh| asserted in (24). �
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3.2. Existence of a convergence sandclock. We can now turn to a proof of the main result
of this section, Proposition 2 stated below, which establishes the existence of a sandclock
in which the eh converge to 0. This proof follows the lines of the analogous statement [18,
Proposition 4], where the iteration is “pure”. In the present context, we need once more to
control the effect of the Pólya terms, which can be done thanks to an easy auxiliary result,
Lemma 7.

Lemma 7. There exist r0, θ0 > 0 small enough, so that, for z ∈ S(r0, θ0) and for all h
satisfying 0 ≤ h ≤ N , with N ≡ N(z) as specified in (23), one has

|eh(z2)|
|eh(z)2|

≤ 1

2
·
(

4

5

)h
.

Proof. Set z = ρ + reiθ, with z ∈ S(r0, θ0), for r0, θ0 > 0 taken small enough, which
will be successively constrained, as the need arises. The inequality

(32)
|eh(z2)|
|eh(z)2|

≤ 4(h+ 1)2

y2

∣∣∣∣ z2ρy2
∣∣∣∣h , 0 ≤ h ≤ N,

combines the upper bound on eh(z2) provided by Lemma 2 (with z in the statement to be
replaced by z2) and the lower bound on eh(z) guaranteed by Lemma 6.

Now, at z = ρ, the upper bound (32) takes the form 4(h+1)2ρh, where ρ .
= 0.40269, so

that its decay is about 0.4h. By continuity of the exponential rate |z2/(ρy2)|, there exists
a small sandclock such that the decrease is less than 4(h + 1)20.45h (say). Furthermore,
we verify easily that this last quantity is less than 1

2 · 0.8
h for all h ≥ 13. Thus, the

statement is established for h large enough (h ≥ 13). On the other hand, examination of
initial values shows that the ratio ej(ρ2)/ej(ρ) decreases rapidly from a value of about
0.0543, at j = 0, to about 7.8 10−10, at j = 12; furthermore, we observe numerically that
2 ·0.8−jej(ρ2)/ej(ρ) is always less than 1/9, for j = 0 . . . , 12. Thus, by continuity again,
in a small enough sandclock, we must have |ej(z2)/ej(z)| < 1

2 ·0.8
j for j = 0, . . . , 12. �

Proposition 2 (Convergence in a “sandclock” around ρ). There exist constants r0, θ0 > 0
such that the sequence {eh(z), h ≥ 0} converges to zero for all z in the sandclock S(r0, θ0).

Proof. It suffices to verify that, for h = N ≡ N(z) as specified in Equation (23), the quan-
tity eN satisfies the convergence criterion of Lemma 3, which then grants us convergence
of the ej to 0 for j > N . For this purpose, we appeal to the alternative recurrence stated in
Lemma 4

(33)
yh

eh
=

1

2y

1− yh

1− y︸ ︷︷ ︸
M

+
1

e0
−
h−1∑
i=0

yi−1ei(z
2)

2e2i︸ ︷︷ ︸
A

+
1

4y2

h−1∑
i=1

yiei

[
1− ei(z

2)
e2i

]2
1− ei

2y

[
1− ei(z2)

e2i

]
︸ ︷︷ ︸

B

and devise an asymptotic lower bound for the right-hand side. (Observe that we can indeed
use the relation since, by Lemmas 6 and 7, for all i = 0, . . . , N , the denominators do not
vanish.)

Write 1 − y(z) = εeit. As in Lemma 6, we assume without loss of generality that
=(z) > 0. We need to establish properties of the various quantities, which intervene
in (33); this, in a small sandclock, that is, for small ε > 0 and t close to −π/4. The
following expansions are valid uniformly for t ∈ [−π/4− δ,−π/4 + δ] with 0 < δ < π/4
when ε→ 0:

(34) 1− |y| = ε cos t+O(ε2),
arg(y) = −ε sin t+O(ε2),

and
N(z) = −ϕ/(ε sin t) +O(1)

1− |y|N = 1− eϕ·cot t +O(ε),
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where ϕ := arccos(1/4).
The first term M of the right-hand side of (33) will be seen to bring the main contribu-

tion. It satisfies, as ε→ 0:

|M | =
∣∣∣∣ 1

2y

1− yN

1− y

∣∣∣∣ =
1

2|y|
· |1− y

N |
|1− y|

≥ 1

2

1− |y|N

|1− y|
=

1− eϕ·cot t

2ε
+O(1),

Next, regarding the term A, we have

|A| ≤ 1

|e0|
+

∣∣∣∣∣ 1

2y

N−1∑
i=0

yiei(z
2)

ei(z)2

∣∣∣∣∣ ≤ 1

|e0|
+

1

2|y|

N−1∑
i=0

∣∣∣∣ei(z2)

ei(z)2

∣∣∣∣ = O(1),

since, by Lemma 7, the summands decrease geometrically.
It now remains to analyseB. We split it further: by Lemma 7, for all i such 18 ≤ i ≤ N ,

we have |ei(z2)|/|ei(z)2| ≤ 1/100. Then, by Lemma 6, and for ε small enough, we obtain

|B| ≤ 9

4(1− ε)
·

(
3
2

)2
1− 1/2

2−2ε
3
2

+
1/5

4(1− ε)
·

(
101
100

)2
1− 1/5

2−2ε
101
100

1− |y|N

1− |y|
< 22 +

3

50
· 1− |y|N

1− |y|
.

It follows that

(35)
|yN |
|eN |

≥ 1− eϕ·cot t

ε

(
1

2
− 3

50 cos t

)
+O(1) >

2

5
· 1− eϕ·cot t

ε
,

where the last inequality holds for all z ∈ D such that ε < ε0 and |t+ π/4| < δ0, as soon
as both ε0 and δ0 are small enough.

We can now return to the criterion for convergence (Lemma 3) and verify that in a small
enough sandclock the conditions in (16) are satisfied for m = N and some well chosen
parameters α and β. Equation (35) provides the required upper bound on eN , which fixes
our choice for α:

|eN | ≤ α :=
5

2
· ε · e

ϕ cot t

1− eϕ·cot t
.

We now focus on the second condition in Lemma 3. From (34) and (35) we have, for ε > 0
small enough,

|y|+ α

2
≤ 1− ε ·

(
cos t− 5

4
· eϕ·cot t

1− eϕ·cot t

)
+O(ε2).

Next, one can verify that there exists δ0 > 0 such that for all t ∈ [−π/4− δ0,−π/4 + δ0],
we have

cos t− 5

4
· eϕ·cot t

1− eϕ·cot t
>

1

4
.

Thus, for all ε > 0 small enough, we can choose β ∈ (0, 1), so that the first two conditions
in Lemma 3 are satisfied; namely,

(36) |eN | ≤ α =
5

2
· ε · e

ϕ cot t

1− eϕ·cot t
and |y|+ α

2
< β := 1− ε

4
.

One then easily verifies that the third condition also holds for small enough ε > 0: here,
α(1 − β) = Ω(ε2), and, by (34), we have (|z|2/ρ)N = o(ε2). So for ε small enough,
(|z|2/ρ)N < α(1 − β). This shows that the criterion for convergence of Lemma 3 is
satisfied with values of α and β specified in (36). As a consequence, eh(z) → 0 for all z
in a small enough sandclock. �
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4. Main approximation

In this section, we develop precise quantitative estimates of eh(z) near the singularity ρ
and in a sandclock; these estimates serve as the main ingredient required for developing
limit laws for height in the next section.

Proposition 3 (Main estimate for eh in a sandclock). There exist r1, θ1 > 0 andK,K ′ > 0
such that for all z ∈ S(r1, θ1) and all h ≥ 1,

(37)
yh

eh
=

1

2

1− yh

1− y
+Rh(z), where |Rh(z)| ≤ K min

{
log

1

1− |y|
, log(1 + h)

}
.

Furthermore, |Rh −Rh+1| < K ′/h.

In order to prove this proposition, we need a better control on error terms, which can
be achieved by extending the bounds obtained in Section 3 for h > N , knowing now that
the eh converge (Proposition 2). The proof requires the bounds to be uniform both in the
distance to the singularity |z − ρ| and in the height h, as expressed by Lemmas 8 and 9
below. The bound (38) below serves as a useful complement to the lower bound in (24),
only holds for h ≤ N .

Lemma 8 (Uniform lower bound for |eh|). For any δ ∈ (0, 1), there exist constants
r1, θ1 > 0 such that if z ∈ S(r1, θ1) then one has

(38) |eh(z)| ≥ (1− δ)h+2

2(h+ 1)
, for all h ≥ 0.

Proof. Let δ ∈ (0, 1). We have |y| > 1 − δ/4 provided r := |z − ρ| < r0 small enough.
Then, by Lemma 6, the estimate (38) holds for h ≤ N .

We thus only need to consider now the case h > N . Assume further that z ∈ S(r0, θ0),
as in Proposition 2. Then, |eh| ≤ α, for α as in (36). The recurrence relation (8) implies

(39) |eh+1| ≥ |y| |eh|
(

1− |eh|
2|y|

)
− |eh(z2)|

2
≥ |y|

(
1− α

2|y|

)
· |eh| −

|eh(z2)|
2

.

However, by (36), we have |y|+ α/2 < 1 so that |y| − α/2 > 1− δ/2. Lemma 2, which
serves to bound the Pólya term |eh(z2)|, then yields |eh+1| ≥ (1 − δ/2)|eh| − (ρ + r)h.
Therefore dividing both side of the recurrence relation by (ρ+r)h+1, we obtain for h ≥ N ,

(40)
|eh+1|

(ρ+ r)h+1
≥
(

1− δ/2
ρ+ r

)
|eh|

(ρ+ r)h
− 1

ρ+ r
.

The remainder of the proof then consists in extracting the desired bound (38) from the
latter relation by unfolding the recurrence from h down to N . To this effect, recall that, by
Lemma 6, |eN | > yN+1/(2(N + 1)) and N < K/

√
r, for some constant K. Hence, we

can set r to a value small enough that,

(41)
|eN |

(ρ+ r)N
>

2

δ
and

1− δ
ρ+ r

> 1.

Then, for such r, using (40) and (41), it is easly verified by induction on h (with h ≥ N )
that |eh|/(ρ+ r)h > 2/δ. Using this last bound in (40) gives, for h ≥ N :

|eh+1|
(ρ+ r)h+1

≥
(

1− δ
ρ+ r

)
|eh|

(ρ+ r)h
≥
(

1− δ
ρ+ r

)h+1−N |eN |
(ρ+ r)N

.
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We can finally recover the information on |eh| by means of the lower bound for |eN | in
Lemma 6. For all h > N , we then have

|eh| ≥ |eN | · (1− δ)h−N+1 ≥ (1− δ)h+2

2(N + 1)
≥ (1− δ)h+2

2(h+ 1)
,

and the proof is complete. �

We can now develop a uniform upper bound for |eh| when z ∈ S(r1, θ1).

Lemma 9 (Uniform upper bound for |eh(z)|). There exist constants r1, θ1 > 0 and c1 > 0
such that, for any h ≥ 1, and z ∈ S(r1, θ1), we have

|eh(z)| ≤ c1
h
.

Proof. Write 1 − y = εeit for some ε > 0 and t. It suffices to prove that the result holds
for all such z provided ε is small enough and t close enough to −π/4. Observe that ε is of
the order of

√
z − ρ.

Our starting point is again (33), which we now use to obtain an upper bound on |eh|.
The first term M is such that

(42) |M | =
∣∣∣∣ 1

2y

1− yh

1− y

∣∣∣∣ =
1

2|y|
· |1− y

h|
|1− y|

≥ 1− |y|h

2|1− y|
=

1− |y|h

2ε
.

On the other hand, for all h ≥ 0 and ε > 0 small enough, by Lemmas 2 and 8, the first
error term A in (33) satisfies

|A| ≤ 1

|e0|
+

1

2|y|

h−1∑
i=0

∣∣∣∣ei(z2)

ei(z)2

∣∣∣∣ ≤ 1

|e0|
+

1

2(1− ε)

∞∑
i=0

4(i+ 1)2
(

ρ+ ε

(1− ε)2

)i
.

There exists ε1 > 0 such that for all ε < ε1 the geometric term in the series above is at
most 2ρ < 1; together with the fact that e0 = y − z = 1 − ρ + O(ε), this implies that
|A| ≤ 11/(1− 2ρ)3.

We now bound the second error term B in (33). Note first that, for all ε small enough,
we have |ei| ≤ 1/2 for all i ≥ 0: for h ≤ N , this is implied by Lemma 6, while for h ≥ N
we have |eh| < α < 2(1 − |y|) = O(ε). Furthermore, by Lemmas 2 and 8, for all ε < ε1
small enough |ei(z2)|/|ei(z)2| < 1/100, for i ≥ h0 depending only on ε1. It follows that

|B| ≤ 3

2
h0 +

1

8
· (101/100)2

1− 1
4 ·

101
100

·
h∑

i=h0+1

|y|i−2 ≤ 3

2
h0 +

1

5
· 1− |y|h

1− |y|
.

As a consequence, using Lemma 4, and combining the bounds just obtained on |A| and
|B| with (42), one sees that, for all h ≥ 0,

(43)
|yh|
|eh|
≥ 1− |y|h

ε

(
1

2
− 1

5 cos t

)
− h0 −

11

(1− 2ρ)3
>

1− |y|h

5ε
− h0 −

11

(1− 2ρ)3
,

for |π/4 + t| small enough.
The relation above provides a decent upper bound on |eh| provided that |yh| is small

enough. With this in mind, we now prove an upper bound on |yh| for all h ≥ 0. First,
when h is not too large, |y|h should decrease at least linearly in h: we show that for some
small enough δ > 0, |y|h ≤ 1 − δhε for all h ≤ N . For some fixed z, the sequence
(|y|h, h ≥ 0) is convex; thus if |y|N ′ ≤ 1− δN ′ε for some N ′ ≥ N , then |y|h ≤ 1− δhε
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for all 0 ≤ h ≤ N . Recall that ϕ = arccos(1/4); we now prove that we might take
N ′ := −2ϕ/(ε sin t). By (34), for ε small enough, |y| ≤ 1− ε

2 cos t and N < N ′ and

|y|N
′
≤
(

1 +
ε cos t

2

)N ′
≤ exp

(
−N

′ε cos t

2

)
= eϕ cot t.

However, for |t+ π/4| < 1/100, then eϕ cot t < 1/2, so that we can pick δ > 0 such that

eϕ cot t < 1 +
2δϕ

sin t
= 1− δN ′ε.

It follows by (43) that there exists δ > 0 small enough such that |eh| ≤ 10/(δh), for
0 ≤ h ≤ N ′, for all |π/4 + t| < 1/100 and ε > 0 small enough.

On the other hand, if h ≥ N and ε > 0 is small enough and |π/4 + t| < 1/100, then
1− |y|h ≥ 1− 2eϕ cot t > 1/4 by (34). As a consequence,

|eh| ≤ 40ε|y|h ≤ 40ε(1− ε cos t+O(ε2))h ≤ 40ε(1− ε/2)h,

for all ε small enough and t close enough to −π/4. Now, seen as a function of ε, the
maximum of the right-hand side above is obtained for ε = 2/(h + 1), which implies that
|eh| ≤ 80/(h + 1), for h ≥ N. Finally, by Lemma 6, and the bounds above, the result
follows by choosing c1 = max{h0, 10/δ, 80}. �

Proof of Proposition 3. The proof consists in using Lemma 9 above to bound the error
terms in (33) for z ∈ S(r2, θ2), with r2 = min{r0, r1} and θ2 = min{θ0, θ1}. For some
constants c2 and c3, we have

|A|+ |B| ≤ 11

(1− 2ρ)3
+ c2

(
1 +

h∑
i=1

|yi|
i

)
≤ c3 min

{
log

(
1

1− |y|

)
, 1 + log h

}
,

which proves the main statement of Proposition 3. Finally, since A and B are partial sums,
we obtain

|Rh −Rh+1| =

∣∣∣∣∣yh−12

eh(z2)

eh(z)2
+
yh−2

4
eh

[
1− eh(z2)

eh(z)2

]2(
1− eh

2y

[
1− eh(z2)

eh(z)2

])−1∣∣∣∣∣ ,
a quantity which is easily seen to be uniformly O(1/h), thanks to Lemmas 8 and 9. �

5. Asymptotic analysis and distribution estimates

The basis of our estimates relative to the distribution of height is the main approximation
of eh in Proposition 3, which is valid in a fixed sandclock at ρ. Given its importance, we
repeat it under the simplified form:

(44) eh(z) ≡ y(z)− yh(z) ≈ 2
1− y
1− yh

yh.

(Here, the symbol “≈” is to be loosely interpreted in the sense of “approximately equal”.)
This approximation acquires a precise meaning, when z remains fixed and h tends to in-
finity, in which case it expresses the geometric convergence of eh(z) to 0 (since |y| < 1);
also, when h remains fixed and z tends to ρ, it reduces to the numerical approximation
eh(ρ) ≈ 2/h, whose accuracy increases with increasing values of h. In other words, the
precise version of (44) provided by Proposition 3 consistently covers, in a uniform manner,
the case when both z → ρ and h→∞. (Analogues of the formula (44) surface in the case
of general plane trees in [12], plane binary trees [18], and labelled Cayley trees in [38].)

The exploitation of the enhanced versions of (44) relies on Cauchy’s coefficient for-
mula (10). The contour γ in Cauchy’s integral (10) will be comprised of several arcs and
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0 ρ

6

ρn

<(z) = ρ

ρ+ r2e
iπ/2−iθ1

��
���

���

�
���

���
����

ρ+ r2e
iπ/2+iθ2 = ρne

iη2

γ1

γ4γ3

uz0 u
z1

Figure 3. Fine details of the Cauchy integration contour γ in the vicinity of ρ.

line segments4 that lie outside of the disc |z| ≤ ρ and taken in the union of a suitable
sandclock (as granted by Proposition 3) and of a tube, overlapping with the sandclock
(where properties of Proposition 1 are in effect). The strategy just described belongs to
the general orbit of singularity analysis methods expounded in [19, Ch. VI–VII]. We pro-
pose to apply it to the height-related generating functions eh(z) (weak limit, Theorem 1)
and eh−1(z)− eh(z) (local limit law, Theorem 2).

Before proceeding with the proof of Theorem 1, recall that we aim at showing that for
any fixed x > 0, we have

lim
n→∞

P(Hn ≥ λ−1x
√
n) = Θ(x), λ :=

√
2ρ+ 2ρ2y′(ρ2),

where Θ(x) :=
∑
k≥1

(k2x2 − 2)e−k
2x2/4.

Proof of Theorem 1. We aim at using Cauchy’s formula (10) with a well-chosen5 integra-
tion contour γ. The reader should consult Figures 2 and 3. First, we choose a priori a
sandclock S, whose existence is granted by Proposition 2 and such that the approximation
properties of Proposition 3 hold. By design, this sandclock contains in its interior a small
arc of the circle {|z| = ρ}. Choose arbitrarily a point z0 on this small arc, with z0 6= ρ,
=(z0) > 0, and set z0 = r2e

iπ/2+iθ0 . Proposition 1 guarantees the existence of a tube
T that has z0 in its interior and for which the convergence eh → 0 is ensured. We have
now determined a sandclock and a partially overlapping tube, whose union will be seen to
contain the contour γ (where eh → 0) and whose intersection contains z0 = r2e

iθ0 .

4 In order to have well-defined determinations of square roots, one may think of the two segments as in fact
joined by an infinitesimal arc of a circle that passes to the left of the singularity ρ.

5It might be that none of the tubes corresponding to Proposition 1 includes points to the right of the vertical
line<(z) = ρ, hence the need to insert “joins” γ4 and γ5. (The discussion of this case was inadvertently omitted
from the earlier version [7].) An alternative would be to make use of a contour that is squeezed in between the
circle |z| = ρ and the vertical line<(z) = ρ (this is done in [38], where the circle itself is used); but then the near
stationarity of the modulus of the Cauchy kernel, |z|−n, makes it technically harder, or at least less transparent,
to translate approximations of generating functions into coefficient estimates.
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The contour γ is essentially a Hankel contour escaping from ρ along rectilinear portions
γ1 and γ2 such that

γ1 = γ̄2 =
{
ρ+ ξeiπ/2−iθ1 : ξ ∈ [0, r2]

}
,

where θ1 is chosen positive and strictly less than the half-angle of the sandclock S. By
design, the segments γ1 and γ2 lie entirely inside the sandclock S.

The component γ3 of the contour is a subarc of the circle

Cn := {z : |z| = ρn}, where ρn := ρ

(
1 +

log2 n

n

)
.

Precisely, let z1 ≡ z1(n) be the intersection point in the upper half-plane of the circle Cn
and the circle {|z| = r2}. When n gets large, this point z1 comes closer and closer to z0,
so that, for all n large enough, it must belong to the intersection S ∩T . In other words, we
can write

z1 = ρne
iη2 = ρ+ r2e

iπ/2+iθ2 ,

where η2 = η2(n) and θ2 ≡ θ2(n) both depend on n and tend to finite limits as n→ +∞
(in particular, θ2 → θ0). Then we take

γ3 =
{
ρne

iθ : θ ∈ [η2, 2π − η2]
}
,

and for n large enough, the arc γ3 entirely lies in the tube T .
We can finally complete the contour to make it connected, with joining arcs γ4 and γ5,

which are arcs of {|z − ρ| = r2} defined by

γ4 = γ̄5 = {r2eiπ/2+iθ : θ ∈ [−θ1, θ2]},
so that both arcs lie inside the sandclock S.

Outer circular arc γ3. By Proposition 1, we have eh(z) → 0 uniformly on γ3 as
h→∞. In particular, all moduli |eh(z)| are bounded by an absolute6 constant K. On the
other hand the Cauchy kernel z−n is small on the contour, so that

(45)
∣∣∣∣∫
γ3

eh(z)
dz

zn+1

∣∣∣∣ < K1ρ
−n exp

(
− log2 n

)
.

Join portions γ4, γ5. By Proposition 2, one has eh → 0 uniformly on γ4 ∪ γ5 as
h → ∞. In particular |eh(z)| ≤ K2 for some absolute constant K2. By definition, for all
z ∈ γ4 ∪ γ5, |z| ≥ ρn so that, for the same reasons as in (45),

(46)
∣∣∣∣∫
γ4∪γ5

eh(z)
dz

zn+1

∣∣∣∣ ≤ K3ρ
−n exp(− log2 n).

Outer rectilinar parts of γ1 and γ2. Let Dn := {|z − ρ| ≥ δn}, with

δn =
log2 n

n
.

Note that for z ∈ γ1 ∩ Dn, we have |z| ≥ ρ+ δn sin θ1. For the same reason as before,

(47)

∣∣∣∣∣
∫
(γ1∪γ2)∩Dn

eh(z)
dz

zn+1

∣∣∣∣∣ ≤ K4ρ
−n exp(−K ′4 log2 n).

The total contribution of the outer circular arc γ3, of both join portions γ4 and γ5, and
of the outer rectilinear parts γ1∩Dn, γ2∩Dn are thus exponentially small compared to yn,
hence totally negligible in the present context.

6In what follows, we use generically K,K1, . . . to denote absolute positive constants, not necessarily of the
same value at different occurrences.
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Inner rectilinear parts of γ1 and γ2. This is where action takes place. From now on, we
operate with the normalization

h = λ−1x
√
n,

where x is taken to range over a fixed compact interval of R>0. We now focus on the
portions of γ1 and γ2 lying outside Dn. We denote them by γ̃1 and γ̃2, respectively, and
note that all their points are at a distance from ρ that tends to 0, as n→ +∞. Our objective
is to replace eh by the simpler quantity

(48) êh(z) ≡ êh := 2
1− y
1− yh

yh,

as suggested by Proposition 3. Along γ̃1, γ̃2, the singular expansion of y(z) applies, so that
1− y = O((log n)/n1/2) and the error term Rh(z) from Equation (37) is O(log n). There
results that (1− yh)/(1− y) is always at least as large in modulus as K5

√
n/ log n (this,

by a study of the variation of |1− e−hτ |/|1− e−τ |), and we have

(49)
yh

eh
=
yh

êh

(
1 +O

(
log2 n√

n

))
.

It proves convenient to define

(50) E(h, n) :=
1

2iπ

∫
γ̃1∪γ̃2

êh
dz

zn+1
,

and to make the change of variables

(51) z = ρ

(
1− t

n

)
, dz = − ρ

n
dt .

With this rescaling, the point t then starts from −iρ−1nδne−iθ1 , loops to the right of the
origin, then steers away to iρ−1nδneiθ1 . Given the singular expansion of y(z) in (2), we
have on the small arcs γ̃1, γ̃2,

(52) z−n = ρ−net
(

1 +O

(
log4 n

n

))
, y(z) = 1− λ

√
t

n
+O

(
t

n

)
,

and, with h = λ−1x
√
n and |t| ≤ K6 log2 n, since δn = log2 n/n:

(53) yh = exp
(
−x
√
t
)(

1 +O

(
t√
n

))
= exp

(
−x
√
t
)(

1 +O

(
log2 n√

n

))
.

We also find7, for the range of values of t corresponding to γ̃1, γ̃2:

1− yh

1− y
=

1− exp(−x
√
t)(1 + t/

√
n)

λ
√
t/n

(
1 +O

(
log? n√

n

))
=

[√
n · 1− exp(−x

√
t)

λ
√
t

+O(
√
t)

](
1 +O

(
log? n√

n

))
(54)

=

[√
n · 1− exp(−x

√
t)

λ
√
t

](
1 +O

(
log? n√

n

))
.

The approximations (52), (53), and (54) motivate considering, as an approximation
of E(h, n) in (50), the contour integral

(55) J(X) :=
1

2iπ

∫
L

exp(−X
√
t)

1− exp(−X
√
t)

√
tet dt =

1

2iπ

∑
k≥1

∫
L

exp(−kX
√
t)
√
tet dt,

7The expression log? n represents an unspecified positive power of logn.
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where L goes from −∞+ i∞ to −∞− i∞ and winds to the right of the origin. We now
make J(X) explicit. Each integral on the right side of (55) can be evaluated by the change
of variables w = i

√
t, equivalently, t = −w2. By completing the square and flattening the

image contour L′ onto the real line, we obtain:

(56) J(X) =
1

4
√
π

∑
k≥1

e−k
2X2/4(k2X2 − 2).

From the chain of approximations in Equations (48) to (55), we are then led to expect
the approximation

E(h, n) ∼ 2λρ−nn−3/2J(x),

which is justified next.
Error management. In order to justify the replacement of eh by êh, following (49)

and (50), we observe the estimate

(57)
∣∣∣∣∫
γ̃1∪γ̃2

|y|h |1− y|
|1− yh|

|dz|
|z|n+1

∣∣∣∣ = O

(
ρ−n

log4 n

n3/2

)
.

This results from the discussion of the lower bound on (1−yh)/(1−y) that follows (48), the
inequality |yh| ≤ 1, and the fact that the length of the integration interval is O(log2 n/n).
The error in our approximation has three sources: the two successive replacements

(58) eh 7→ êh,
1− yh

1− y
7→ 1− exp(−λx

√
t)

λ
√
t/n

and the integration on a finite contour. We have, for z ∈ γ̃1 ∪ γ̃2:

eh = êh

(
1 +O

(
log2 n√

n

))
= 2λ

√
t

n
· exp(−x

√
t)

1− exp(−x
√
t)
·
(

1 +O

(
log? n√

n

))
.

Finally, the infinite extension of the contour only entails an additive error term of the form
O(exp(−K log4 n)), since ∫ ∞

log2 n

e−w
2

dw = O(e− log4 n).

This implies, for h = λ−1x
√
n:

eh,n ≡ [zn]eh(z) = 2λρ−nn−3/2J(x) +O

(
ρ−n

log? n

n2

)
.

The explicit form of J(X) in (56) and the asymptotic form of yn (Lemma 1) jointly yield
the statement. �

The main message of the proof of Theorem 1 is twofold: (i) for any “reasonable”
expression involving eh, the estimation of the Cauchy coefficient formula can be limited to
a small neighbourhood of ρ (parts γ̃1 and γ̃2), since the other parts of the contour γ have
exponentially negligible contributions; (ii) the approximation provided by Proposition 3
and Equation (37) is normally sufficient to derive first-order asymptotic estimates.

The convergence in law expressed by Theorem 1 is illustrated by Figure 4. The proof
of the theorem points to an error term, in the convergence to the limit, that is of the form
O((loga n)/

√
n), with an unspecified exponent a. As a matter of fact, the value a =

1 is suggested by the logarithmic character of the error term in (37) of Proposition 3.
Convergence is, at any rate, somewhat slow, a fact that is perceptible from Figure 4.
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Figure 4. The normalized distribution functions P(Hn ≤ λ−1x
√
n), for n =

10, 20, 50, 100, 200, 500, as a function of x, and the limit distribution function 1 − Θ(x), where
Θ(x) is specified in Theorem 1.

On an other register, the distribution function 1−Θ(x) belongs to the category of elliptic
theta functions [42, Ch. XXI], which are of the rough form8 ∑ qk

2

e2ikz and are well-
known to satisfy transformation formulae [42, p. 475]. Regarding Θ(x), such formulae
provide an alternative form, which we state for the density function, ϑ(x) := −Θ′(x):

(59) ϑ(x) =
8
√
π3

x3
ϑ

(
4π

x

)
.

Theorem 2 states that the Hn indeed satisfies a local limit law with density function
ϑ( · ): for x in a compact set of R>0 and h = λ−1x

√
n an integer, there holds uniformly

P(Hn = h) ∼ λ√
n
ϑ(x),

where ϑ(x) = −Θ′(x) = (2x)−1
∑
k≥1

(k4x4 − 6k2x2)e−k
2x2/4.

Proof of Theorem 2. We abbreviate the discussion, since it is technically very similar to
the proof of Theorem 1: only the approximations near z = ρ differ. Proceeding in this
way, based on Proposition 3, we can justify approximating the number of trees of height
exactly h and size n by the integral

1

2iπ

∫
γ̃1∪γ̃2

(êh−1 − êh)
dz

zn+1
,

with êh as defined in (48). We have

(60) êh−1 − êh = 2yh−1
(1− y)2

(1− yh)(1− yh−1)
.

The approximations (53) and (54) then motivate considering the quantity

J1(X) :=
1

2iπ

∫
L

exp(−X
√
t)

(1− exp(−X
√
t))2

tet dt .

8 Do q = e−x
2/4 and z = 0 to recover θ(x).
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Figure 5. Left: the normalized histograms of the distribution of height P(Hn = h) (as a function
of x, with h = bλ−1x

√
nc), for n = 100, 200, . . . , 500. Right: the limit density θ(x) = −Θ′(x).

One then finds (with the auxiliary estimate |Rh − Rh+1| = O((log? n)/
√
n) provided by

Proposition 3):

yn,h − yn,h+1 = 2λ2ρ−nn−2J1(x) +O

(
ρ−n

log? n

n5/2

)
.

On the other hand, differentiation under the integral sign yields J1(X) = −J ′(X), which
proves the statement. �

Figure 5 displays the normalized histograms of the distribution of height and a plot of
the corresponding limit density.

Revisiting the proof of Theorems 1 and 2 shows that one can allow x to become ei-
ther small or large, albeit to a limited extent. Indeed, it can be checked, for instance, that
allowing x to get as large as O(

√
log n) only introduces extra powers of log n in error esti-

mates. However, such extensions are limited by the fact that the main theta term eventually
becomes smaller than the error term. We state (compare with [20, Th. 1.1]):

Theorem 4 (Moderate deviations). There exist constants A,B,C > 0 such that for h =
(x/λ)

√
n with A/

√
log n ≤ x ≤ A

√
log n and n large enough, there holds

(61)
∣∣P(Hn ≥ λ−1x

√
n)−Θ(x)

∣∣ ≤ C

nB
.

In particular, if x→∞ in such a way that x ≤ A
√

log n, then, uniformly,

P(Hn ≥ λ−1x
√
n) ∼ x2e−x

2/4.

Similar estimates hold for the local law. These estimates can furthermore be supple-
mented by (very) large deviation estimates in the style of [20, Th.1.4]:

Theorem 5 (Very large deviations). There exists a continuous increasing function I(u)
satisfying I(u) > 0 for 0 < u ≤ 1 and such that, given any fixed δ > 0, one has for
all x ∈ [δ, 1− δ] and all n

P(Hn ≥ xn) ≤ Kn3/2e−nI(x),

where K only depends on δ.



24 NICOLAS BROUTIN AND PHILIPPE FLAJOLET

Proof. We propose to use saddle point bounds [19, p. 246]: for any r ∈ (0, ρ), one has

(62) P {Hn ≥ h} =
eh,n
yn
≤ 1

yn

(
eh(r)

rn

)
.

The first step is to obtain an upper bound on eh(r), for r ∈ (0, ρ). For such r, all terms
in the recurrence relation (8) are non-negative and expanding the relation with the help of
Lemma 2 yields, for all h ≥ 0, the inequality

eh+1(r) ≤ y(r)eh(r) +

(
r2

ρ

)h
≤ y(r)h

(
h∑
i=1

(
r2

ρy(r)

)i
+ e1(r)

)
.

However, it is easily verified that for all r ∈ (0, ρ), we have y(r) > r + r2 + r3 ≥ r2/ρ.
As a consequence, the series above converges and there exists a universal constant K such
that

eh(r) ≤ Ky(r)h, for h ≥ 0 and r ∈ (0, ρ).

The last estimate, the saddle point bound (62), and Lemma 1 yield, in the region h = xn,

P {Hn ≥ h} ≤ K ′n3/2
(
y(r)x

ρ

r

)n
,

for some other universal constant K ′ and for any r ∈ (0, ρ).
The goal is now to make an optimal choice of the value of r. For x kept fixed and

regarded as a parameter, we consider

J(r, x) :=
y(r)x

r

as a function of r, and henceforth abbreviated as J(r). We have J(0) = +∞ and J(ρ) =
ρ−1. The point, to be justified shortly, is that J(r) decreases from +∞ to some minimal
value J(ξ), when r = ξ; then it increases again to ρ−1 for r ∈ (ξ, ρ). In particular, we
must have J(ξ) < ρ−1, which suffices to imply a non-trivial exponential bound on the
probabilities.

The unimodality of J(r) ≡ J(r, x) results from the usual convexity properties of gen-
erating functions (see [13] or [19, pp. 250 and 580]). Indeed it suffices to observe that the
logarithmic derivative (all derivatives being taken with respect to r), namely,

J ′(r)

J(r)
= x

(
ry′(r)

y(r)
− 1

x

)
,

varies monotonically from x − 1 ≤ 0 to +∞, as r varies from 0 to ρ. This last fact is a
consequence of the positivity of

v :=
∂

∂r

(
ry′(r)

y(r)
− 1

x

)
,

itself granted, since V = rv is the variance of a random variable X with probability
generating function E

[
uX
]

= J(ru)/J(r).
In summary, from the preceding considerations, the system

I(x) = x log y(ξ)− log ξ + log ρ with ξ = ξ(x) such that xξy′(ξ)− y(ξ) = 0

uniquely determines a function I(x), which precisely satisfies the properties asserted in
Theorem 5. �

Finally, the approximation of eh by êh in (48) is good enough to grant us access to
moments (cf also [18]) stated in Theorem 3: as n→∞, we have

E [Hn] ∼ 2

λ

√
πn and E[Hr

n] ∼ r(r − 1)ζ(r)Γ(r/2)

(
2

λ

)r
nr/2, r ≥ 2.
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Proof of Theorem 3. The problem reduces to estimating generating functions of the form

Mr(z) = 2(1− y)2
∑
h≥1

hr
yh

(1− yh)2
,

which are accessible to the Mellin transform technology [21], upon setting y = e−t. If we
let Fr(t) =

∑
h≥1 h

r e−ht

1−e−ht , then the Mellin transform F ?r (s) is given by

F ?r (s) = ζ(s− r)ζ(s− 1)Γ(s),

and is valid in the fundamental strip s > r+1. The information relative to the distribution is
concentrated around the singularity, hence for values of y such that y → 1, or equivalently
t → 0. The asymptotics of Fr(t) as t → 0 correspond to the singular expansion of its
Mellin transform F ?r (s) to the left of the strip.

For r ≥ 2, the main contribution is due to the simple pole at s = r + 1, which has
residue ζ(r)Γ(r + 1). It follows that

Fr(t) ∼ ζ(r)Γ(r + 1)t−r−1 r ≥ 2.

Since 1− y ∼ λ
√

1− z/ρ, and y = e−t, we have t ∼ λ
√

1− z/ρ and

Mr(z) ∼ 2ζ(r)Γ(r + 1)λ−r+1(1− z/ρ)−(r−1)/2.

Singularity analysis theorems imply

[zn]Mr(z) ∼ 2ζ(r)λ−r+1Γ(r + 1)ρ−n
n−(r+1)/2

Γ((r − 1)/2)
.

The duplication formula for the Gamma function, combined with the estimate for yn, then
yields:

E [Hr
n] ∼ [zn]Mr(z)

yn
∼
(

2

λ

)r
ζ(r)r(r − 1)Γ(r/2)nr/2 r ≥ 2.

When r = 1, the Mellin transform F ?r (s) has a double pole at s = 2 and the asymptotic
form of Fr(t) at zero involves logarithmic terms. We then obtain, as n→∞,

E [Hn] ∼ 2λ−1
√
πn

using similar arguments �

6. The diameter of unrooted trees

In this section, we put to use the approximations of Section 4 in order to quantify ex-
treme distances in random unrooted trees. Developments parallel those of Riordan [39], as
regards formal generating functions, and especially Szekeres [41], as regards asymptotic
developments.

In the class Y of rooted binary trees, every node has total degree three or one, except
for the root, which has degree two. Consider now the class U of unrooted ternary trees
where each node has degree either three or one, without exception (no special root node is
now distinguished). Let Un be comprised of the elements of U with n nodes of degree one,
the leaves, which determine size, hence (n − 2) nodes of degree three. Denote by un the
number of such trees. The trees of U of size at most 8 are displayed in Figure 6. We write
the generating function of U as u(z) :=

∑
n≥0 unz

n, so that

u(z) = z2 + z3 + z4 + z5 + 2z6 + 2z7 + 4z8 + 6z9 + 11z10 + 18z11 + · · · ,
and the coefficients constitute sequence A000672 of Sloane’s On-line Encyclopedia of
Integer Sequences [40].
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Figure 6. The unlabelled trees of sizes from 2 to 8, with external nodes (leaves) represented by
squares.

Using considerations about the dissimilarity characteristic of trees found in Otter’s
work [35] and developed in [5, 25], we obtain

(63) u(z) = z2 + u•(z)− 1

2
y(z)2 +

1

2
y(z2),

where u•(z) is the generating function of unrooted trees with a distinguished node. (Note
that because of the special degree condition in rooted trees u•(z) 6= y(z).) The distin-
guished node might be a leaf or a node of degree three, which leads to

(64) u•(z) = zy(z) +
1

6
y(z)3 +

1

2
y(z2)y(z) +

1

3
y(z3).

The equations (63) and (64) fully characterize u(z) and, together with Lemma 1, they
determine the singular expansion of u(z). The following classical lemma reduces to simple
manipulations based on Lemma 1, supplemented by routine singularity analysis of the
generating function.

Lemma 10. The generating function u(z) of unrooted ternary trees expands in a neigh-
bourhood of ρ as follows

u(z) = µ0 + µ1(1− z/ρ) +
1

3
λ3(1− z/ρ)3/2 +O

(
(1− z/ρ)2

)
,

for some constants µ0, µ1 ∈ R and λ =
√

2ρ+ 2ρ2y′(ρ2). Furthermore, the number un
of unrooted trees of size n satisfies the asymptotic estimate

un =
λ3

4
√
π
· n−5/2ρ−n

(
1 +O

(
1

n

))
.

We now turn to the analysis of the diameter of unrooted trees. A diameter in a graph or
a tree is any simple path of maximal length and we also refer to the common length of all
diameters as the diameter of the tree. Let ud,n be the number of unrooted trees on n leaves
with diameter exactly equal to d, and let ud(z) =

∑
n≥0 ud,nz

n denote the associated
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generating function9. To simplify notations, we set

gh(z) := eh−1(z)− eh(z),

which is the generating function of rooted unlabelled binary trees having height exactly h.
We have u1(z) = z2 and u2(z) = z3. Unrooted trees of size at least 4 may be recur-

sively decomposed into sets of rooted trees; the decomposition depends on the parity of the
diameter d. If d = 2h+ 1 is odd, with d ≥ 3, all diameters share a unique edge (bicentre)
that splits the tree into a pair of two rooted trees of height exactly h each, so that

(65) u2h+1(z) =
1

2
gh(z)2 +

1

2
gh(z2).

On the other hand, trees with even diameter d = 2h, with d ≥ 4, decompose into three
rooted trees around a central vertex (center), with two of the trees of height exactly h and
a third subtree of height at most h:

u2h(z) =
1

6
gh−1(z)3 +

1

2
gh−1(z2)gh−1(z) +

1

3
gh−1(z3)

+
1

2
gh−1(z)2yh−2(z) +

1

2
gh−1(z2)yh−2(z).(66)

In this way, one can enumerate the trees of odd and even diameter (the “bicentred” and
“centred” trees), whose generating functions start, respectively, as

uodd(z) = z2 + z4 + z6 + +z7 + 2z8 + 2z9 + 6z10 + 8z11 + · · ·
ueven(z) = z3 + z5 + z6 + z7 + 2z8 + 4z9 + 5z10 + 10z11 + · · · ,

with coefficients forming sequences A000673 and A000675 of Sloane’s Encyclopedia.
We now turn to singular asymptotics in a ∆–domain10 (see [19, §VI.3] and Equation (5),

and Figure 3). As usual, the Pólya terms in (65), (66), which are the ones containing func-
tional terms involving z2 or z3, will turn out to be of negligible effect. Indeed, Lemma 2
guarantees, for |z| < √ρ:

(67)
∣∣gh(z2)

∣∣ ≤ ∣∣eh−1(z2)
∣∣ ≤ 1√

h− 1

(
|z|2

ρ

)h
.

Thus, fixing some R with ρ < R <
√
ρ, we have for some C > 0 and A ∈ (0, 1):

(68)
∣∣gh(z2)

∣∣ < C ·Ah,

whenever z lies in a suitable ∆–domain anchored at ρ, and the same bound on the right
of (68) obviously holds for gh(z3). In other words, the Pólya terms involving z2 and z3

are exponentially small. This gives us, relative to (65) and (66) and for z in a ∆–domain,
the estimate

(69) u2h+1(z) =
1

2
gh(z)2 +O(Ah)

and, similarly,

(70) u2h(z) =
1

2
gh−1(z)2yh−2(z) +

1

6
gh−1(z)3 +O(Ah).

9 We reserve n for the size of trees, so that un ≡ [zn]u(z) is the number of trees of size n; we make use
of indices d, 2h, 2h + 1 for diameter and occasionally abbreviate ud(z), . . ., as ud, . . ., so that no ambiguity
should occur.

10 To be precise, we only need to consider the part of a ∆-domain that is interior to a γ-contour of the type
introduced in the previous section.
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Figure 7. Left: the raw histograms of the distribution of diameter in unrooted trees, for n =

50, 100, 150, . . . , 500. Right: a plot of the limit density function θ̃(x) of Theorem 6.

The latter asymptotic form may be further simplified: by Lemmas 1 and 9, for z → ρ in a
sandclock, we have

y − eh = 1−O(
√

1− z/ρ)− eh, |gh| ≤ |eh−1| = O(1/h),

and it follows that, in this sandclock,

(71) u2h(z) =
1

2
gh−1(z)2

(
1 +O(1/h) +O(

√
1− z/ρ)

)
.

(The cubic term 1
6gh−1(z)3 essentially corresponds to trees having a centre from which

there spring three trees of equal height; such configurations are still negligible, but now
polynomially, rather than exponentially.) Additionally, in a tube, all terms in (69) and (70)
are exponentially small, by virtue of Equation (17) of Lemma 3 and Proposition 1; the
induced contributions for coefficients are thus going to be exponentially small, and we do
not need to discuss these any further.

In a way similar to the asymptotic simplification (60) of eh−eh+1 ≡ gh+1, the estimates
of (69) and (71) now suggest to introduce the following approximation of ud,

(72) ûd := 2(1− y)4
yd

(1− yd/2)4
,

regardless of the the parity of d: we have (in a sandclock)

(73) ud = ûd

(
1 +O(1/d) +O(

√
1− z/ρ)

)
.

Following the line of proof of Theorems 1, 2, and 3, it is now a routine matter to work
out the consequences, at the level of coefficients, of the main approximations (72) and (73).
Note that, since we have access to generating functions of diameter exactly h, we start with
a local limit law, then proceed to estimate the distribution function by summation. Figure 7
presents supporting numerical data for the local limit law of diameter.

Theorem 6 (Local limit law for diameter). The diameter Dn of an unrooted tree sampled
from Un uniformly at random satisfies a local limit law: for x in any compact set of R>0,
uniformly, with (x/λ)

√
n an integer, one has:

lim
n→∞

P
{
Dn = (x/λ)

√
n
}

=
λ√
n
ϑ̃(x)
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where ϑ̃(x) =
1

768

∑
k≥1

k(k2 − 1)
(
k5x5 − 80k3x3 + 960kx

)
e−k

2x2/16.

Proof. We start from the approximations (72) and (73), then make use of Cauchy’s coef-
ficient formula together with the contour γ specified in the proof of Theorem 1. As noted
already, the contributions of the outer circle γ3, the joins γ4 and γ5 and the further portions
of the rectilinear pieces γ1 and γ2 are exponentially small, so that we can restrict attention
to what happens in a small sandclock, along γ̃1 and γ̃2.

The change of variable z = ρ(1 − t/n) and approximations that are justified in Equa-
tions (50) to (54) of the proof of Theorem 1 lead to

[zn]ûd(z) = −2ρ−nn−3λ4J2(λx/2) +O(ρ−nn−7/2 log? n),

where we have set

J2(X) :=
1

2iπ

∫
L

e−2X
√
t

(1− e−X
√
t)4

t2etdt,

with L that goes from −∞+ i∞ to −∞− i∞ and winds to the right of the origin. As in
Equations (55) and (56), we can make J2(X) explicit:

J2(X) =
1

2iπ

∑
k≥3

k(k − 1)(k − 2)

6

∫
L
e−X(k−1)

√
tt2etdt(74)

= − 1

192
√
π

∑
k≥2

k(k2 − 1)
(
k5X5 − 20k3X3 + 60

)
e−k

2X2/4.

A normalization by un, as provided by Lemma 10, then yields the claim. �

Theorem 7 (Limit distribution of diameter). The diameter Dn of a unrooted tree sampled
from Un uniformly at random admits a limit distribution: for x in a compact set of R>0,
we have

lim
n→∞

P
{
Dn ≥ (x/λ)

√
n
}

= Θ̃(x),

where Θ̃(x) ≡
∫ ∞
x

ϑ̃(w) dw =
1

96

∑
k≥1

(k2 − 1)(k4x4 − 48k2x2 + 192)e−k
2x2/16.

Proof. The convergence of distribution functions results from earlier approximations through
integration. Indeed, approximating a Riemann sum by the corresponding integral, we find,
for d = x

√
n,

[zn]
∑
`≥d

u` ∼ [zn]
∑
`≥d

û` ∼ −2λ4ρnn−3/2
∫ ∞
x

J2(λs/2)ds,

as n→∞. The integral is easily computed from (74): write X = λx/2 to obtain∫ ∞
x

J2(λs/2)ds =
1

3λ

∑
k≥1

(k2 − 1)
1

2iπ

∫
L
ekX

√
tt3/2etdt

= − 1

3 · 24
√
π

∑
k≥1

(k2 − 1)(k4X4 − 12k2X2 + 12)e−k
2X2/4.

A final normalization based on Lemma 10 yields the result. �

Theorem 8 (Moments of diameter). The moments of the diameter Dn of a random un-
rooted tree with n leaves satisfy

E [Dn] ∼ 8

3λ

√
πn E

[
D2
n

]
∼ 16

3λ2

(
1 +

π2

3

)
n E

[
D3
n

]
∼ 64

λ3

√
πn3,
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and, for all r > 3,

E [Dr
n] ∼ 22r

3
r(r − 1)(r − 3)Γ(r/2)(ζ(r − 2)− ζ(r))λ−rnr/2.

Proof. By definition, the moments of Dn are given by

(75) E [Dr
n] =

1

un
[zn]

∑
d≥1

drud(z),

and, from (72) and (73) once more, we are led to the approximation E [Dr
n] ∼ ([zn]M̂r)/un,

where

M̂r(z) := 2(1− y)4
∑
d≥1

dr
yd

(1− yd/2)4

results from replacing ud by ûd in the generating function of (75).
As for the moments of height, the singular asymptotic form of M̂r(z) is conveniently

determined by means of the Mellin transform technology. Set y = e−τ , so that z → ρ

corresponds to τ → 0, with τ ∼ λ
√

1− z/ρ. We then need the asymptotic estimation of
M̂r(e

−τ ) when τ → 0. Define

Fr(τ) :=
∑
d≥1

dr
e−dτ

(1− e−dτ/2)4
,

which is such that Mr(z) ∼ 2λ4τ4Fr(τ). By the “harmonic sum rule” [21], the Mellin
transform F ?r (s) of Fr(τ) satisfies, for <(s) > max{1 + r, 4},

F ?r (s) =
2s

6
ζ(s− r)(ζ(s− 3)− ζ(s− 1))Γ(s).

The singularities in a right half-plane are known to dictate the asymptotic expansion of
Fr(τ), as τ → 0. For r > 3, the main contribution comes from a simple pole at s = r + 1
(due to the factor ζ(s− r)), and we find

Fr(τ) ∼ 2r

6
(ζ(r − 2)− ζ(r))Γ(r + 1)τ−r−1, τ → 0,

which provides in turn the main term in the expansion of M̂r(z) as z → ρ:

Mr(z) ∼
2r

3
λ−r (ζ(r − 2)− ζ(r))F (r + 1) (1− z/ρ)

−r+1
, z → ρ.

Singularity analysis combined with the estimate of un in Lemma 10 and the duplication
formula for the Gamma–function then automatically yields the asymptotic form of E [Dr

n],
in the case r > 3.

For r ≤ 3, the approach is similar, but a little more care is required. For r = 1, 2
one needs to consider the second terms of the singular expansion of F ?r (s), at s = 2 and
s = 3, respectively. Also, the cases r = 1 and r = 3 involve logarithmic terms due to
double poles of F ?1 (s) and F ?3 (s) at s = 2 and s = 4. The claim follows by routine Mellin
technology and singularity analysis. �

7. Conclusion

We finally conclude with two corollaries and a general comment. First, as a byproduct
of (72) and (73), via summation and singularity analysis, we can estimate the proportion
of centred and bicentred trees.
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Cayley trees Otter trees

mean depth
√
πn

2

1

λ

√
πn

mean height
√

2πn
2

λ

√
πn

mean diameter
4

3

√
2πn

8

3λ

√
πn

Figure 8. A table comparing the asymptotic forms of the expectations of several parameters of trees,
for the two models of Cayley trees (non-plane labelled trees) and Otter trees (non-plane unlabelled
binary trees), based on [33, 38, 41] and the present paper. Depth refers to the depth of a randomly
chosen node in the tree; height is the maximum distance of any node from the root; diameter is
relative to the unrooted version of the trees under consideration.

Corollary 1. There are asymptotically as many centred trees (trees of even diameter) as
bicentred trees (trees of odd diameter):

[zn]uodd(z) ∼ [zn]ueven(z) ∼ 1

2
un.

This perhaps unsurprising observation parallels one made by Szekeres [41, p. 394] in the
case of labelled trees, where all degrees are allowed.

Next, a comparison of expectations of height and diameter in random nonplane trees
shows the following.

Corollary 2. The ratio of the expected diameter of an unrooted tree and the expected
height of a rooted tree of the same size satisfies asymptotically

lim
n→∞

E [Dn]

E [Hn]
=

4

3
.

Again, a similar observation was made by Szekeres [41, p. 396] regarding labelled trees
and the same property, with a “universal” 4

3 factor is expected to hold for any “ordered”
tree family (i.e., trees whose nodes have neighbours that are distinguishable; cf our Intro-
duction), as argued heuristically by Aldous in [3].

The fact, established rigorously in the present paper (Theorems 1 to 8 and Corollaries 1,
2), is that, up to scaling, height and diameter behave for some non-plane unlabelled trees
similarly to what is known for ordered trees: see Figure 8 for some striking data. This
brings further evidence for the hypothesis that probabilistic models, such as the Contin-
uum Random Tree, may be applicable to unordered trees—this has indeed been recently
confirmed, in the binary case at least, by Marckert and Miermont [32]. It is piquant to note
that the probabilistic approach of [32] relies in part on large deviation estimates for height,
which were developed analytically by us in the earlier conference version [7] of the present
paper. (Recently, Haas and Miermont [24] have developped an alternative approach that
further allows them to prove the convergence of a large class of trees towards continuum
limits. This encompasses a self-contained proof of the result in [32] and other more exam-
ples with stable tree limits.) An analytic treatment of the height of unordered trees with
all degrees allowed has been given recently by Drmota and Gittenberger (see [15] and the
account in [14]). Together with the present study, it confirms, among unordered trees, the
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existence of universal phenomena regarding height and profile, which parallel what has
been known for a long time regarding their ordered counterparts. As usual, the analytic
approach advocated in the present paper has the advantage of providing precise estimates,
with speed of convergence estimates, local limit laws, and convergence of moments.

Finally, the fact that, up to a possible linear change of scale, some of the main char-
acteristics of trees, such as height and diameter, are not sensitive to whether trees are
planar (ordered) or not, is also of some relevance to the emerging field of “probabilis-
tic logic” [29, 31]. For instance, there is interest there in determining the probability
of satisfiability of random boolean formulae obeying various randomness models (see,
e.g., [10, 23]). In this context, our results suggest that the commutativity of logical conjunc-
tion and disjunction (reflected by the non-planarity of associated expression trees) should
not, in many cases, have a major effect on complexity properties of random Boolean ex-
pressions.
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to Alexis Darrasse and Carine Pivoteau for designing and programming for us efficient
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[37] G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs and Chem-

ical Compounds. Springer Verlag, 1987.
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