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Abstract

We prove conditional negative association for random variables xj = 1{|σ−1(j)|≥tj} (j ∈ [n] :=
{1, . . . , n}), where σ(1), . . . , σ(m) are i.i.d. from [n]. (The σ(i)’s are thought of as the locations
of balls dropped independently into urns 1, . . . , n according to some common distribution, so
that, for some threshold tj , xj is the indicator of the event that at least tj balls land in urn
j.) We mostly deal with the more general situation in which the σ(i)’s need not be identically
distributed, proving results which imply conditional negative association in the i.i.d. case. Some
of the results—particularly Lemma 8 on graph orientations—are thought to be of independent
interest.

We also give a counterexample to a negative correlation conjecture of D. Welsh, a strong
version of a (still open) conjecture of G. Farr.

1 Introduction

Competing urns refers to the experiment in whichm balls are dropped, randomly and independently,
into urns 1, . . . , n. Formally, we have a random σ : [m] → [n] (where [m] = {1, . . . ,m}) with the
σ(i)’s independent. We then take xj to be the indicator for occupation of urn j and are interested
in the law, µ, of (x1, . . . ,xn) (a measure on {0, 1}n). In the traditional case where the balls are
identical (i.e. the σ(i)’s are i.i.d.) we call µ an urn measure, or, for emphasis, an ordinary urn
measure. More generally, setting Bj = |σ−1(j)|, we may consider thresholds t1, . . . , tn, and let xj

be the indicator of {Bj ≥ tj}; for i.i.d. balls, we then call the law of (x1, . . . ,xn) a threshold urn
measure. When the balls are not required to be identical we speak of generalized urn measures and
generalized threshold urn measures.

We are interested in correlation properties of these measures, but before proceeding further
need to briefly recall a few definitions. A fuller version of the following discussion is given in [10],
and further background and motivation may be found e.g. in [15].

Recall that events A,B in a probability space are positively correlated—we write A ↑ B—if
Pr(AB) ≥ Pr(A) Pr(B), and negatively correlated (A ↓ B) if the reverse inequality holds.

We will be interested in measures on finite product spaces Ω =
∏n

i=1Ωi with each Ωi a chain
(totally ordered set), often simply {0, 1}. We useM(Ω), or simplyM, for the set of probability mea-
sures on Ω, and MS for M({0, 1}S). We will occasionally identify {0, 1}S with 2S ({subsets of S}
ordered by inclusion) in the usual way.

Recall that an event A ⊆ Ω is increasing (really, nondecreasing) if x ≥ y ∈ A ⇒ x ∈ A
(where Ω is endowed with the product order), and similarly for decreasing. For real-valued random
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variables X,Y , write X ↓ Y if

{X ≥ s} ↓ {Y ≥ t} ∀s, t ∈ ℜ, (1)

or, equivalently, if

Ef(X)g(Y ) ≤ Ef(X)Eg(Y ) for all increasing f, g : ℜ → ℜ. (2)

(N.B. this differs from the usage in [15]. Of course X ↑ Y means the reverse inequalities hold, but
we don’t need this.)

Say i ∈ [n] affects A ⊆ Ω if there are η ∈ A and τ ∈ Ω \ A with ηj = τj ∀j 6= i, and write
A ⊥ B if no coordinate affects both A and B. Then µ ∈ M is negatively associated (or has negative
association; we use “NA” for either) if A ↓ B whenever A,B are increasing and A ⊥ B. We say µ
has negative correlations (or is NC) if ηi ↓ ηj (where η is the random string) whenever i 6= j.

We are primarily concerned with conditional negative association: µ ∈ M is conditionally
negatively associated (CNA) if any measure obtained from µ by conditioning on the values of some
of the variables is NA. (Throughout the paper we assume that any conditioning event we consider
has positive probability.) Conditional negative correlation (CNC) for µ is defined similarly.

When Ω = {0, 1}n, stronger properties are obtained by demanding NC (resp. NA) for every
measure W ◦ µ ∈ M of the form

W ◦ µ(η) ∝ µ(η)
∏

W ηi
i

with W = (W1, . . . ,Wn) ∈ ℜn
+. (Borrowing Ising terminology, one says that W ◦µ is obtained from

µ by imposing an external field.) Then µ is said to be Rayleigh or NC+ (resp. NA+), the reference
in the former case being to Rayleigh’s monotonicity law for electric networks (see e.g. [4] or [3]).

The competing urns model was explored in some detail by Dubhashi and Ranjan [5]∗, who proved
inter alia that threshold urn measures are NA. Another proof of this is given in [15]. Actually the
argument of [5], which proves the stronger statement that the (law of the) r.v.’s

ξij = 1{σ(i)=j} (3)

is NA, does not require identical balls. (The argument of [15] does not work for nonidentical balls.)
The main purpose of the present note is to prove

Theorem 1 Threshold urn measures are CNA.

In contrast, as observed in [10], even ordinary urn measures need not be Rayleigh (but see the
remark on R+ in Section 5). We don’t know whether Theorem 1 extends to nonidentical balls
(again see Section 5).

Let us quickly say what Theorem 1 has to do with [10]. Following [15], we say that µ ∈
M({0, 1}n) is ultra-log-concave (ULC) if its rank sequence, {ri := µ(|η| = i)}ni=0 (where |η| =

∑

ηi),
has no internal zeros and the sequence {ri/

(n
i

)

}ni=0 is log-concave. A set of four conjectures from
[15] (see his Conjecture 4) states that each of CNC, CNA, NC+ and NA+ implies ULC; but, as
shown in [1] and [10], even the weakest of these (NA+ ⇒ ULC) is false. Theorem 1 provides a
more natural counterexample to the stronger “CNA ⇒ ULC,” since, as observed in [10] (disproving
another conjecture from [15]), urn measures need not be ULC.

∗They say “bins” rather than “urns.”
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The proof of Theorem 1 gives something a little more general, as follows. Suppose that for each
j ∈ [n] we are given a sequence 0 = a0(j) < · · · < akj(j) = m+ 1, and for σ : [m] → [n] set

xj(σ) = t iff at(j) ≤ Bj < at+1(j). (4)

Theorem 2 If the σ(i)’s are i.i.d. then the xj ’s in (4) are CNA.

Call the law of (x1, . . . ,xn) as in (4) a (generalized) interval urn measure.

The paper is organized as follows. Section 2 reduces Theorem 2 to either of our two main
inequalities, (10) and (14). Each of these is valid at the level of generalized interval urns; they are
equivalent in the case of ordinary urns but not obviously so in general (though the argument in
Section 3 uses some interplay between the two). It is only in the derivation of Theorem 2 from (10)
that we need the σ(i)’s to be i.i.d.

We give two quite different ways of getting at these main inequalities. Theorem 4 in Section
3 essentially restates (10) and (14) in induction-friendly form; the proof of the theorem given in
this section is inspired by [5]. Section 4 takes a different approach, based on a graph-theoretic
observation, Lemma 8, that is thought to be of independent interest. The lemma is used to:
reprove (10); in combination with a result from [11] (Theorem 11 below), to prove a stronger,
ultra-log-concavity version of (14); and to prove “log-submodularity” for some classes of measures.

Finally, Section 5 contains some discussion of the question of whether Theorem 1 extends to
nonidentical balls, mentions a conjecture of G. Farr and a stronger one of D. Welsh, and sketches
a counterexample to the latter.

Some notation. For a nonnegative vector

γ = (γij : i ∈ [m], j ∈ [n]), (5)

A ⊆ [m] and K ⊆ [n], the probability measure on KA (functions from A to K) corresponding to γ
is that given by

Pr(σ) ∝ W (σ) :=
∏

i∈A

γi,σ(i). (6)

Thus the r.v.’s σ(i) are independent; they are i.i.d. if γij does not depend on i, in which case
we write simply γj. We also use PrL (L ⊆ [m]) for the measure on [n]L corresponding to γ (so
Pr = Pr[m]).

2 Setting up

Let the law of σ ∈ [n][m] be given by (6) and let x1, . . . ,xn be as in (4). Let I∪J ∪K be a partition
of [n] and tj ∈ {0, . . . , kj − 1} for j ∈ K, and set

Q := {x(σ) ≡ t on K} (= {atj (j) ≤ |σ−1(j)| < atj+1(j) ∀j ∈ K}), (7)

X = |σ−1(I)| and Y = |σ−1(J)|. The main point for the proof of Theorem 2 is

X ↓ Y given Q, (8)

given which we finish easily:

Proof of Theorem 2. With notation as above, let A,B ⊆ Ω be increasing events determined by
I and J (more precisely, by the values of the variables xj indexed by I and J) respectively. For
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Theorem 2 we should show A ↓ B given Q. Define f, g : N → ℜ (where N = {0, 1, . . .}) by
f(k) = Pr(A|X = k), g(l) = Pr(B|Y = l). A standard coupling argument shows that f and g are
increasing, whence, according to (8),

Pr(A ∩ B|Q) = E[f(X)g(Y )|Q] ≤ E[f(X)|Q]E[g(Y )|Q] = Pr(A|Q) Pr(B|Q)

(where the first equality follows from conditional independence of A and B given (X,Y )).

We continue to condition on Q and write µk for the law of Y given {X = k}; that is,

µk(l) = Pr(Y = l|X = k). (9)

We will actually prove
µk+1(l + 1)

µk+1(l)
≤

µk(l + 1)

µk(l)
(10)

(whenever neither side is 0/0, where we agree that x/0 = ∞ for x > 0), which is a strengthening
of (8) once we rule out some pathologies. We recall the standard

Definition 3 C ⊆ Nn is convex if a, c ∈ C and a ≤ b ≤ c imply b ∈ C.

It will follow from Proposition 6 below that

supp(Pr) := {(k, l) : Pr(X = k, Y = l) > 0} is convex. (11)

Given this, (10) implies that Y is stochastically decreasing in X—that is,

µk+1(Y ≥ t) ≤ µk(Y ≥ t) ∀k, t

(the easy implication is essentially Proposition 1.2 of [15])—which in turn easily implies X ↓ Y .

Let
Z = |σ−1(I ∪ J)|. (12)

When the σ(i)’s are i.i.d., an alternate way to specifyX and Y is: let Z be as in (12), X ∼ Bin(Z,α)
and Y = Z−X, where α = γI/γI∪J (with γI =

∑

i∈I γi) and Bin(Z,α) is the binomial distribution
with parameters Z and α.

In general, for ν the law of an N-valued r.v. Z and α ∈ [0, 1], let X = Xν,α ∼ Bin(Z,α),
Y = Yν,α = Z −X and, for lack of a better name, say ν is binomially negatively associated (BNA)
if X ↓ Y for every α. Call a nonnegative sequence a = (ai)

∞
i=0 strongly log-concave (SLC) if

ia2i ≥ (i+ 1)ai−1ai+1 ∀i ≥ 1 (13)

(that is, (i!ai)
∞
i=0 is log-concave), and say ν ∈ M(N) is SLC if the sequence (ν(i))∞i=0 is. A

straightforward calculation shows that this is equivalent to saying that (10) holds for any α, X =
Xν,α and Y = Yν,α (and µk as in (9)): since

µk(l) =
ν(k + l) Pr(X = k|Z = k + l)

Pr(X = k)
=

ν(k + l)
(k+l

k

)

αk(1− α)l

Pr(X = k)
,

we may rewrite (10) as

ν(k + l + 2)
(k+l+2

k+1

)

ν(k + l)
(k+l

k

)

≤ ν(k + l + 1)
(k+l+1

k+1

)

ν(k + l + 1)
(k+l+1

k

)

,
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which is SLC for ν. (If ν is Poisson—that is, if (13) holds with equality—then X and Y are
independent Poisson r.v.’s and the inequalities (1) are equalities.) Thus, in the i.i.d. case, (10) is
equivalent to saying that Z as in (12) is SLC. The latter again turns out to be true at the level of
generalized urns; that is, for any γ as in (5), σ ∈ [n][m] with law given by (6), Q as in (7) and Z as
in (12),

the law of Z is SLC. (14)

It’s also easy to see that absence of internal zeros in (ν(i)) is equivalent to (11) for X = Xν,α,
Y = Yν,α (which, again, is given by Proposition 6), so that (14) again implies (8) (and Theorem 2).
It seems interesting that both (10) and (14) are valid for generalized urns, though the equivalence
that holds for i.i.d. balls disappears in the more general setting.

As mentioned earlier, in Section 4 we will combine Lemma 8 with a result from [11] to obtain
an improvement of (14):

the law of Z is ultra-log-concave. (15)

(Recall—see following Theorem 1—this means that the sequence {Pr(|Z| = i)/
(m
i

)

}mi=0 is log-
concave without internal zeros.)

3 First proof

Let Pr be the measure on [n][m] corresponding to some γ (see the end of Section 1), and for
a, b ∈ Nn−1 and k ∈ N, set

p(k, a, b) = Pr(Bn = k|Bj ∈ [aj, bj ] ∀j ∈ [n− 1]) (16)

(recalling that Bj = |σ−1(j)|).

Theorem 4 With notation as above,

(a)
p(k + 1, a, b)

p(k, a, b)
is nonincreasing in (a, b), and

(b)
p(k + 1, a, b)

p(k, a, b)
≤

k

k + 1
·

p(k, a, b)

p(k − 1, a, b)
,

where we say nothing about the case 0/0 and agree that x/0 = ∞ when x > 0.

See also Theorem 14 in Section 5 for a related result.
As noted earlier, part (b) of Theorem 4 is just a reformulation of (14), while (a) is a mild

generalization of (10) (which in fact—see (19)—quickly reduces to (10)). To see this, note that in
(10) we may assume that each of I, J is a singleton, say K = [n−2], I = {n−1}, J = {n}—formally
we could pass to

γ′ij =











γij if j ∈ K = [n− 2]
∑

{γij : j ∈ I} if j = n− 1
∑

{γij : j ∈ J} if j = n

—and similarly in (14) we may assume K = [n − 1], I = {n} and J = ∅. Then Theorem 4(b),
which may also be stated

for fixed a, b ∈ N[n−1] the sequence {p(k, a, b)} is SLC,
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is (up to some name changes) the same as (14), while (10) is equivalent to

p(k + 1, a, b)/p(k, a, b) ≥ p(k + 1, a′, b′)/p(k, a′, b′),

where an−1 = bn−1 = t, a′n−1 = b′n−1 = t+ 1 (for some t) and aj = a′j, bj = b′j for j ∈ [n− 2].
On the other hand, the inductive proof of Theorem 4 employs both the more general form of

(a) and some interplay between the two parts.

Before proving the theorem we note one further consequence and give the promised Proposition
6. For f, a ∈ Nn, let Mf (a) = {σ ∈ [n][m] : |σ−1(j)| ∈ [aj , aj + fj] ∀j ∈ [n]} and Mf (a) =
Pr(Mf (a)). Though we won’t use the next result (but see the remark following Corollary 9), it
seems natural and worth mentioning.

Corollary 5 For each f ∈ Nn, M = Mf satisfies the negative lattice condition:

M(a)M(c) ≥ M(a ∨ c)M(a ∧ c) ∀a, c ∈ Nn. (17)

This is more or less immediate from Theorem 4 once we have the next little observation, which, as
noted earlier, also gives (11) and absence of internal zeros in the law of Z in (12).

Proposition 6 For any f and Mf as above, the support of M = Mf is convex.

Proof. This will follow easily from

Claim. For any σ, τ ∈ [n][m] with Pr(σ),Pr(τ) > 0 and i ∈ [n] with |σ−1(i)| > |τ−1(i)|, there are
j ∈ [n] and ρ ∈ [n][m] with Pr(ρ) > 0, |σ−1(j)| < |τ−1(j)| and

|ρ−1(k)| =











|σ−1(i)| − 1 if k = i
|σ−1(j)| + 1 if k = j
|σ−1(k)| if k ∈ [n] \ {i, j}.

This is a standard type of graph-theoretic observation: regarding σ and τ as edge sets of bipartite
graphs on [m]∪ [n] in the natural way,† we need a path with edges alternately from σ \ τ and τ \ σ
that begins with a σ-edge at i and ends with a τ -edge at some j as above. (We then get ρ by
switching σ and τ on this path.) We omit the routine proof that such a path must exist.

To prove Proposition 6, we should show that for all distinct a, b, c ∈ Nn with a ≤ b ≤ c and
a, c ∈ supp(M), we also have b ∈ supp(M). Of course it suffices to show this when there is some
i ∈ [n] with bi = ci − 1 and bk = ck for all k 6= i. Choose τ ∈ M(a) := Mf (a) and σ ∈ M(c) with
Pr(τ),Pr(σ) > 0. We assume |σ−1(i)| = ci + fi, since otherwise σ ∈ M(b) and we are finished.
Letting j, ρ be as in the claim (note |τ−1(i)| < ci + fi), we have

|ρ−1(i)| = bi + fi

and
|ρ−1(j)| = |σ−1(j)| + 1 ∈ [cj + 1, aj + fj] ⊆ [bj, bj + fj],

whence ρ ∈ M(b) and b ∈ supp(M).

†We pretend [m] ∩ [n] = ∅.
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Proof of Corollary 5. It is easy to see (and standard) that convexity of M (given by Proposition 6)
implies that it’s enough to prove (17) when there are indices i and j with ai = ci − 1, aj = cj + 1,
and ak = ck for all k 6= i, j. In this case—assuming, w.l.o.g., that i = n− 1 and j = n—we set

p1(k) = Pr(Bn = k|Bl ∈ [al, al + fl] ∀l ∈ [n− 1])

and
p2(k) = Pr(Bn = k|Bl ∈ [cl, cl + fl] ∀l ∈ [n− 1]).

Then (17) is





cn+fn+1
∑

k=cn+1

p1(k)









cn+fn
∑

k=cn

p2(k)



 ≥





cn+fn+1
∑

k=cn+1

p2(k)









cn+fn
∑

k=cn

p1(k)





and follows immediately from

p1(k)p2(l) ≥ p1(l)p2(k) whenever k ≥ l,

which is a consequence of Theorem 4(a) (and Proposition 6).

We now assume (as we may) that
∑

j γij = 1 for each i. The proof of Theorem 4 resembles that
of Theorem 33 in [5], and is based on

Observation 7 For any i ∈ [n], k ∈ N, and event Q determined by (σ−1(j) : j 6= i),

Pr(Bi = k + 1, Q) =
1

k + 1

∑

l∈[m]

γli Pr
[m]\{l}(Bi = k,Q).

(Recall PrL was defined at the end of Section 1.) We also use the trivial

min
i

αi

βi
≤

α1 + · · ·+ αk

β1 + · · ·+ βk
≤ max

i

αi

βi
(18)

(for all α1, . . . , αk, β1, . . . , βk ≥ 0 with β1 + · · ·+ βk > 0, where, again, x/0 := ∞ when x > 0).

Proof of Theorem 4. We proceed by induction on m, omitting the easy base cases with m = 1.
For (a), it’s enough to show that the ratio in question does not increase when we increase a single
entry—w.l.o.g. the (n− 1)st—of one of a, b. Thus, by (18), it suffices to show that

Pr(Bn = k + 1|Bn−1 = t, R)

Pr(Bn = k|Bn−1 = t, R)
is nonincreasing in t,

where R = {aj ≤ Bj ≤ bj ∀j ∈ [n− 2]}; and by Proposition 6, this will follow if we show

Pr(Bn = k + 1|Bn−1 = t+ 1, R)

Pr(Bn = k|Bn−1 = t+ 1, R)
≤

Pr(Bn = k + 1|Bn−1 = t, R)

Pr(Bn = k|Bn−1 = t, R)
(19)

for all t for which the probabilities appearing in (19) are positive. (This is the easy reduction of
(a) to (10) mentioned earlier.)

7



By Observation 7 we may write the left side of (19) as
∑

l∈[m] γl,n−1Pr
[m]\{l}(Bn = k + 1, Bn−1 = t, R)

∑

l∈[m] γl,n−1 Pr
[m]\{l}(Bn = k,Bn−1 = t, R)

,

which, by (18), is at most

max
l∈[m]

Pr[m]\{l}(Bn = k + 1|Bn−1 = t, R)

Pr[m]\{l}(Bn = k|Bn−1 = t, R)
.

Thus, setting Q = {Bn−1 = t} ∧R and assuming (w.l.o.g.) that the maximum occurs at l = m, we
will have (19) if we show

Pr(Bn = k + 1|Q)

Pr(Bn = k|Q)
≥

Pr[m−1](Bn = k + 1|Q)

Pr[m−1](Bn = k|Q)
. (20)

Now
Pr(Bn = k + 1|Q)

Pr(Bn = k|Q)
=

∑

j∈[n]Pr(σ(m) = j|Q) Pr(Bn = k + 1|Q,σ(m) = j)
∑

j∈[n]Pr(σ(m) = j|Q) Pr(Bn = k|Q,σ(m) = j)
,

so that (20) will follow (again using (18)) from

Pr(Bn = k + 1|Q,σ(m) = j)

Pr(Bn = k|Q,σ(m) = j)
≥

Pr[m−1](Bn = k + 1|Q)

Pr[m−1](Bn = k|Q)
for all j ∈ [n] (21)

(where, again, “for all j ∈ [n]” really includes only those for which Pr(Q,σ(m) = j) > 0).
There are three cases to consider. If j = n, the left side of (21) is

Pr[m−1](Bn = k|Q)

Pr[m−1](Bn = k − 1|Q)
,

which is at least the right side of (21) by (part (b) of) our induction hypothesis. If j = n− 1, the
left side of (21) is

Pr[m−1](Bn = k + 1|Bn−1 = t− 1, R)

Pr[m−1](Bn = k|Bn−1 = t− 1, R)
,

which is at least the right side of (21) by (part (a) of) the induction hypothesis. Finally, if j 6=
n− 1, n, the left side of (21) is

Pr[m−1](Bn = k + 1|Bn−1 = t, R∗)

Pr[m−1](Bn = k|Bn−1 = t, R∗)
,

where R∗ is obtained from R by replacing the condition aj ≤ Bj ≤ bj by the condition aj − 1 ≤
Bj ≤ bj − 1; again this is at least the right side of (21) by part (a) of the induction hypothesis.

We now turn to (b) and set Q = {aj ≤ Bj ≤ bj ∀j ∈ [n − 1]}. Then we have, again using
Observation 7 and (18),

Pr(Bn = k + 1|Q)

Pr(Bn = k|Q)
=

k
∑

l∈[m] γln Pr
[m]\{l}(Bn = k,Q)

(k + 1)
∑

l∈[m] γln Pr
[m]\{l}(Bn = k − 1, Q)

≤ max
l∈[m]

k Pr[m]\{l}(Bn = k,Q)

(k + 1)Pr[m]\{l}(Bn = k − 1, Q)

w.l.o.g.
=

kPr[m−1](Bn = k,Q)

(k + 1)Pr[m−1](Bn = k − 1, Q)

8



(noting that we may assume, by Proposition 6, that Pr(Bn = r|Q) is positive for r ∈ {k−1, k, k+1});
so we will be done if we can show

Pr[m−1](Bn = k|Q)

Pr[m−1](Bn = k − 1|Q)
≤

Pr(Bn = k|Q)

Pr(Bn = k − 1|Q)
. (22)

Proceeding as in the proof of part (a), we may rewrite

Pr(Bn = k|Q)

Pr(Bn = k − 1|Q)
=

∑

j∈[n]Pr(σ(m) = j|Q) Pr(Bn = k|Q,σ(m) = j)
∑

j∈[n]Pr(σ(m) = j|Q) Pr(Bn = k − 1|Q,σ(m) = j)
;

so for (22) it is enough to show that, for each j ∈ [n],

Pr(Bn = k|Q,σ(m) = j)

Pr(Bn = k − 1|Q,σ(m) = j)
≥

Pr[m−1](Bn = k|Q)

Pr[m−1](Bn = k − 1|Q)
,

which, as did (21), follows easily from our induction hypothesis (here we only need to consider the
two cases j = n and j 6= n).

4 A graphical approach

We begin here with a natural and seemingly new graph theoretic statement which we regard as
the main point of this section. Given a multigraph G on vertex set V and a, b ∈ NV , let O(a, b) =
OG(a, b) be the set of orientations of G for which

d+(x) ≥ ax and d−(x) ≥ bx for all x ∈ V

and N(a, b) = NG(a, b) = |O(a, b)|. Here d+ and d− are, as usual, out- and in-degrees. We will also
use dx for the degree of x in G. Note we regard a loop (at x, say) as having two orientations, each
of which contributes 1 to each of d+(x) and d−(x).

Lemma 8 If a, b, r, s ∈ NV satisfy

a ≥ r, s and a+ b ≥ r + s

(where the inequalities are with respect to the product order on NV ), then

N(a, b) ≤ N(r, s). (23)

Of course the idea is that it’s harder to satisfy a set of demands that always requires large out-
degrees than one for which these requirements are mixed. For the sake of comparison, let us also
mention the specialization of Corollary 5 to the present situation:

Corollary 9 If a+ b = r + s then

N(a, b)N(r, s) ≥ N(a ∨ r, b ∧ s)N(a ∧ r, b ∨ s). (24)

Proof. Interpret vertices of G as urns and edges as balls, and assume that for each edge (ball) e
we have γex = 1 or 0 according to whether x is or is not an end of e. Then (24) is just Corollary 5
with f = d− a− b (= d− r − s), where d = (dx : x ∈ V (G)) is the vector of degrees.

9



Remark. It’s possible to simplify the proof of Lemma 8 using Corollary 9; but of course this depends
on Theorem 4, so is really harder than the following direct proof. On the other hand, it’s not too
hard to derive Theorem 4(a) from Lemma 8; see [14]. (And below we use Lemma 8 to prove (15),
which is stronger than Theorem 4(b).)

Proof of Lemma 8. We proceed by induction on ϕ(G, a, b) := |E(G)|+
∑

x∈V (dx − ax − bx), calling
x ∈ V saturated if ax + bx = dx. Since N is nonincreasing in each of its arguments, we may assume
a+ b = r + s (or we can increase r or s).

Suppose first that there is at least one saturated vertex, x. We may assume there are no loops
at x, since otherwise (23) follows easily from the induction hypothesis applied to the graph gotten
from G by deleting such loops. Let α = ax, β = bx, ρ = rx, σ = sx, and let X = {e1, . . . , eα+β} be
the set of edges incident with x.

Consider a set π consisting of β pairs {ei, ej} ⊆ X, with the 2β edges appearing in π distinct,
and, say, yi the vertex joined to x by ei (so the yi’s need not be distinct). Let G(π) be the graph
with vertex set V \ {x} and edge set E(G) \X ∪ {eij : {ei, ej} ∈ π}, where eij joins yi and yj. Let
U(π) be the set of edges in X not belonging to pairs from π, and Uz(π) the set of edges of U(π)
incident to z.

Define aπ, bπ ∈ NV (G(π)) by

aπz = az and bπz = max{bz − |Uz(π)|, 0} for all z ∈ V \ {x} (= V (G(π))).

For each π as above and T ∈
(U(π)
ρ−β

)

(where
(A
k

)

= {B ⊆ A : |B| = k}), define rπ,T , sπ,T ∈ NV (G(π))

by
rπ,Tz = max{rz − |Uz(π) \ T |, 0}

and
sπ,Tz = max{sz − |Uz(π) ∩ T |, 0}

for all z ∈ V \ {x}.
Each σ ∈ OG(π)(a

π, bπ) maps naturally to a (unique) σ̂ ∈ OG(a, b), namely: σ̂ agrees with σ on
E(G − x); orients all edges of U(π) away from x; and orients ei from yi to x and ej from x to yj
whenever σ orients eij from yi to yj (where, when yi = yj, we interpret one orientation of the loop
eij as yi → yj and the other as yj → yi). Since each τ ∈ OG(a, b) is in the range of this map for
exactly

(α
β

)

β! choice of π, we have

N(a, b) =
1

(α
β

)

β!

∑

π

NG(π)(a
π, bπ). (25)

Similarly,

N(r, s) =
1

(ρ
β

)(σ
β

)

β!

∑

π

∑

T∈(U(π)
ρ−β)

NG(π)(r
π,T , sπ,T ). (26)

Since aπ + bπ ≥ rπ,T + sπ,T and aπ ≥ rπ,T , sπ,T , it follows from the induction hypothesis that

NG(π)(a
π, bπ) ≤ NG(π)(r

π,T , sπ,T ) for all π and T ∈
(U(π)
ρ−β

)

. (27)
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(Note that ϕ(G(π), aπ , bπ) < ϕ(G, a, b), since |E(G(π))| < |E(G)| and, for z ∈ V \ {x}, aπz + bπz ≥
az + bz − |Uz(π)|, while the degree of z in G(π) is dz − |Uz(π)|.) Combining (25), (26) and (27), we
have

N(r, s) ≥
1

(ρ
β

)(σ
β

)

β!

∑

π

(

α− β

ρ− β

)

NG(π)(a
π, bπ) =

α!β!

ρ!σ!
N(a, b) ≥ N(a, b),

where the last inequality follows from the assumptions α ≥ ρ, σ and α+ β = ρ+ σ.
So we may assume there are no saturated vertices. In this case we fix x ∈ V with ax > bx. (Of

course if there is no such vertex, then a = b = r = s and (23) is an equality.) For γ, δ ∈ N let
N ′(γ, δ) be the number of orientations of G with

(d+y , d
−
y ) ≥

{

(ay, by) if y 6= x
(γ, δ) if y = x,

and let N ′′(γ, δ) be defined analogously with (r, s) in place of (a, b). Let α = ax, β = bx, ρ = rx, σ =
sx, so that (23) is

N ′(α, β) ≤ N ′′(ρ, σ). (28)

By induction we have

N ′(γ, δ) ≤ N ′′(η, ξ) whenever γ ≥ η, ξ and γ + δ = η + ξ > α+ β. (29)

We apply this to the identity

N ′(α, β) = N ′(α, β + 1) +N ′(dx − β, β). (30)

If α > σ, then, by (29), the right side of (30) is at most

N ′′(ρ, σ + 1) +N ′′(dx − σ, σ) = N ′′(ρ, σ).

If α > ρ, then, again using (29), the right side of (30) is at most

N ′′(ρ+ 1, σ) +N ′′(ρ, dx − ρ) = N ′′(ρ, σ).

(And, since α > β, we have at least one of α > σ, α > ρ.)

The next result isolates (and generalizes) the main point in the derivation of (15) from Lemma
8. We consider a hypergraph H = H1 ∪H2 on a set W of size 2l, where

(i) the edges of H1 are pairwise disjoint and

(ii) the edges of H2 are of size 2 and pairwise disjoint.

Let S be the set of vertices of H not covered by edges of H2, and |S| = 2t. Given α : H1 → N,
let Ni be the number of partitions (X,Y ) of W with each of X,Y a vertex cover of H2, each of
|X ∩H|, |Y ∩H| at least α

H
for each H ∈ H1, and |X| = i.

Lemma 10 In the above situation, Nl ≥
t+1
t
Nl+1.
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Proof. For i ∈ N and π a collection of t− 1 disjoint 2-sets contained in S, let Ni(π) be the set of
partitions as above for which each of X,Y also covers the edges of π, and set Ni = |Ni|. We assert
that (for each π)

Nl(π) ≥ 2Nl+1(π). (31)

This implies the proposition since (as is easily seen)

Nl =
1

t · t!

∑

π

Nl(π)

and

Nl+1 =
1

(t+1
2

)

(t− 1)!

∑

π

Nl+1(π).

For the proof of (31) let x, y be the two vertices of W not contained in members of H′
2 := H2∪π.

Noting that (X,Y ) ∈ Nl+1(π) implies {x, y} ∈ X, we may regard (X,Y ) as an orientation of H′
2,

where orienting {u, v} from u to v corresponds to putting u in X (and v in Y ). The orientations
corresponding to (X,Y )’s from Nl+1 are those for which, for each H ∈ H1,

d+(H) ≥ α
H
− |H ∩ {x, y}| and d−(H) ≥ α

H
,

where, for the given orientation, d+(H) (resp. d−(H)) is the number of oriented edges whose tails
(resp. heads) lie in H.

If we let G be the multigraph gotten from (H, π) by collapsing each H ∈ H1 to a single vertex
(so for example, any {u, v} ∈ H′

2 contained in some H ∈ H1 becomes a loop in G), then the above
discussion says that Nl+1(π) = NG(a, b) (see Lemma 8 for the notation), where

az = α
H
− |H ∩ {x, y}| and bz = α

H

if z is the vertex of G corresponding to H ∈ H1, and az = bz = 0 if z is not of this type (i.e.
z ∈ W \ ∪{H : H ∈ H1}).

A similar discussion shows that Nl(π) = NG(r, s) +NG(s, r), where

rz = α
H
− 1{x∈H} and sz = α

H
− 1{y∈H}

if z is the vertex of G corresponding to H ∈ H1, and rz = sz = 0 if z is not of this type. (For
example, NG(r, s) counts pairs (X,Y ) with x ∈ X (and y ∈ Y ).)

Finally, Lemma 8 gives NG(r, s), NG(s, r) ≥ NG(a, b), so we have (31). (Strictly speaking we
may be applying Lemma 8 with some negative entries in b, r and/or s; but it’s easy to see that this
slightly more general version follows from the lemma as stated.)

As mentioned earlier, the proof of (15) also requires Theorem 11 below. (If we just wanted (14)
then Lemma 10 alone would suffice.) For µ ∈ Mm := M(2[m]), set

αi(µ) =

(

m

i

)−1
∑

{µ(A)µ(Ā) : A ⊆ [m], |A| = i} (32)

(where Ā = [m]\A). Say µ ∈ M2k has the antipodal pairs property (APP) if αk(µ) ≥ αk−1(µ), and
µ ∈ Mm has the conditional antipodal pairs property (CAPP) if every measure obtained from µ
by conditioning on the values of some m− 2k variables (for some k) has the APP (where we view
conditioning on the values indexed by T as producing a measure in M(2[m]\T ).
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Theorem 11 ([11]) A measure with the CAPP and no internal zeros in its rank sequence is ULC.

Proof of (15). It’s again enough to show this when K = [n − 1], I = {n} and J = ∅. Setting
U = σ−1(K) and letting µ be the law of U , we prove the equivalent

µ is ULC. (33)

For A ⊆ [m] and σ ∈ KA, say σ ∈ Q if it satisfies the conditions in (7), which we now rewrite

Sj ≤ |σ−1(j)| ≤ Tj ∀j ∈ K, (34)

where Sj = atj (j) and Tj = atj+1(j)− 1. (This extends the Q of (7), which was a subset of [n][m].)
Write σ ∼ A if σ ∈ KA ∩ Q and σ ∼ l if σ ∼ A for some A of size l, and set T (A) =

∏

{γin : i ∈
[m] \A}. Then µ is given by

µ(A) ∝ T (A)
∑

{W (σ) : σ ∼ A} (A ⊆ [m]).

By Theorem 11 we will have (33) if we show that µ satisfies the CAPP and its rank sequence
has no internal zeros. The latter condition is given by Proposition 6, applied with

fj =

{

Tj − Sj if j ∈ K
0 if j = n

(so that µ(|U | = k) = Mf (S1, . . . , Sn−1,m− k).
To show that µ has the CAPP, we should verify the APP for the conditional measures µX,Y ∈

MY \X given by
µX,Y (A) ∝ µ(A ∪X) (A ⊆ Y \X),

where X ⊆ Y ⊆ [m] and |Y \X| = 2k (for some k). Fixing X,Y and letting A,B run over subsets
of Z := Y \X, this amounts to

T (X)T (Y )
∑

|A|=k

∑

{W (σ)W (τ) : σ ∼ A ∪X, τ ∼ (Z \A) ∪X}

≥
k + 1

k
T (X)T (Y )

∑

|B|=k−1

∑

{W (α)W (β) : α ∼ B∪X,β ∼ (Z \B)∪X} (35)

Regard each of σ, τ, α, β in (35) as a bipartite graph on the vertex set [m] ∪K in the natural way.
Then for each pair (σ, τ) appearing in (35) the multiset union G = σ ∪ τ is a bipartite multigraph
with exactly 2(|X| + k) edges and

dG(i) =











2 if i ∈ X
1 if i ∈ Y \X
0 if i ∈ [m] \ Y

(and similarly for pairs (α, β)). We may thus rewrite (35) as

∑

G

∑

{W (σ)W (τ) : σ ∪ τ = G,σ ∼ |X| + k}

≥
k + 1

k

∑

G

∑

{W (α)W (β) : α ∪ β = G,α ∼ |X|+ k − 1},

13



and it is enough to show that for each fixed G we have the corresponding inequality for the inner
sum, i.e.

∑

{W (σ)W (τ) : σ∪τ = G,σ ∼ |X|+k} ≥
k + 1

k

∑

{W (α)W (β) : α∪β = G,α ∼ |X|+k−1}. (36)

This has the advantage that the weights no longer play a role, since for σ, . . . , β as in (36),

W (σ)W (τ) = W (α)W (β);

so we will have (36) if we show
Nk ≥ k+1

k
Nk−1, (37)

where Ni = Ni(G) is the number of partitions G = γ ∪ δ with γ ∼ |X|+ i.
Now let H = H1 ∪H2 be the hypergraph with vertex set W = E(G),

H1 = {Hj : j ∈ K},

where Hj = {e ∈ W : j ∈ e}, and

H2 = {{e, f} : e 6= f , e and f have the same end in [m]}.

Define α : H1 → N by
α

Hj
= max{Sj, dG(j) − Tj}

(recall Sj, Tj were defined following (34)). We are then in the situation of Lemma 10: a partition
W = W1 ∪ W2 with |W1| = |X| + i (and |W2| = |Y | − i) as in the lemma (i.e. with (W1,W2) in
place of (X,Y )) is the same thing as a partition G = γ ∪ δ with γ ∼ |X|+ i (and δ ∼ |Y | − i), and
the t in the lemma is equal to the present k; so we have (37).

Remark. Log-concavity results being of some interest, we mention one appealing specialization
of (15). (See e.g. [16] or [2] for much more on log-concavity in combinatorial settings.) For a
bipartite graph G = (V ∪ K,E), define a G-map to be a function f : A → K with A ⊆ V and
(v, f(v)) ∈ E for all v ∈ A. Given l, u ∈ NK (with lj ≤ uj), call a G-map valid if |f−1(j)| ∈ [lj , uj ]
for all j ∈ K. Let sk = sk(G, l, u) be the number of valid G-maps f : A → K with |A| = k.

Theorem 12 For any G, l, u the sequence (s0, . . . , s|V |) is ultra-log-concave.

In the special case l ≡ 0, u ≡ 1, sk becomes Φk = Φk(G), the number of matchings of size k in G.
Heilman and Lieb [8, 9] and Kunz [12] (see also [13, Chapter 8]) proved that for any (not necessarily
bipartite) graph G, the matching generating polynomial

p(x) =
ν
∑

k=0

Φkx
k

(where, as usual, ν = max{k : Φk > 0} is the matching number of G) has all real (negative) roots.
This implies, by Newton’s inequalities (e.g. [7, Theorem 51]), that

(Φ0, . . . ,Φν) is ULC, (38)
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which, if ν < |V |, is somewhat stronger than this case of Theorem 12. In contrast, for general l
and u the polynomial

|V |
∑

k=0

skx
k

need not have all real roots. (For example, let V = {y, v, w}, K = {1}, E(G) = {{y, 1}, {v, 1}, {w, 1}},
l1 = 1, u1 = 3.)

Actually Theorem 11 can be used to show that for any G, (Φ0, . . . ,Φτ ) is ULC (where, as usual,
τ = τ(G) is the vertex cover number), which in particular recovers (38) when G is bipartite. As this
doesn’t use Lemma 8, we won’t go into it here. It would be very interesting to see a combinatorial
proof of (38) for general G.

Before closing this section we point out one further consequence of Lemma 8, which seems to
us interesting for its own sake. With notation as in the above proof of (15), set f(A) =

∑

{W (σ) :
σ ∈ KA ∩Q} (A ⊆ [m]). We assert that f satisfies the negative lattice condition:

f(A ∪B)f(A ∩B) ≤ f(A)f(B) ∀A,B ⊆ [m]. (39)

While we don’t see how to get (14) (or (15)) from this in general, it’s not hard to see that it does
imply (14) in case the σ(i)’s are i.i.d., so gives yet another proof Theorem 2. We omit the details.

Proof of (39). We may rewrite the inequality as

∑∑

{W (σ)W (τ) : σ ∼ A ∪B, τ ∼ A ∩B} ≤
∑∑

{W (α)W (β) : α ∼ A, β ∼ B}. (40)

As before we regard σ, τ, α, β in (40) as bipartite graphs on [m]∪K. For each pair (σ, τ) appearing
in (40), the (multiset) union G = σ ∪ τ is a bipartite multigraph with

dG(i) =











2 if i ∈ A ∩B
1 if i ∈ A△B
0 otherwise

(and similarly for pairs (α, β)), and it’s enough to show that, for each such G, (40) still holds if we
restrict to pairs (σ, τ) and (α, β) with

σ ∪ τ = α ∪ β = G. (41)

Again the weights (W (σ) etc.) cancel and it’s enough to show

N(A ∪B,A ∩B) ≤ N(A,B), (42)

where, for C,D ⊆ [m], N(C,D) = NG(C,D) is the number of partitions E(G) = γ ∪ δ with γ ∼ C
and δ ∼ D.

Notice now that we are really counting partitions σ̂ ∪ τ̂ and α̂ ∪ β̂ of the edges of G′ :=
G[(A ∩ B) ∪K], since for any σ, . . . , β (as in (40)) satisfying (41), any edge of G with an end in
A \B (resp. B \ A) must belong to σ ∩ α (resp. σ ∩ β).

For j ∈ K and C ⊆ [m] write dC(j) for the number of edges of G joining j to C. In terms of
σ̂, . . . , β̂ the requirement that σ, . . . , β satisfy (34) becomes the condition that for each j ∈ K,

Sj − dA∆B(j) ≤ |σ̂−1(j)| ≤ Tj − dA∆B(j); Sj ≤ |τ̂−1(j)| ≤ Tj ;

Sj − dA\B(j) ≤ |α̂−1(j)| ≤ Tj − dA\B(j) and Sj − dB\A(j) ≤ |β̂−1(j)| ≤ Tj − dB\A(j).
(43)
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Now let H be the multigraph on vertex set E(G′) with edge set {ex : x ∈ A ∩ B}, where ex joins
the two edges of G′ containing x. We may identify a partition E(G′) = γ ∪ δ with the orientation
of H gotten by directing ex from a to b whenever a ∈ γ and b ∈ δ, where a, b are the edges on x in
G′. The orientations corresponding to pairs (σ̂, τ̂) as in (43) are then those satisfying

Sj − dA∆B(j) ≤ d+(j) ≤ Tj − dA∆B(j) and Sj ≤ d−(j) ≤ Tj ∀j ∈ K

while those corresponding to pairs (α̂, β̂) are those with

Sj − dA\B(j) ≤ d+(j) ≤ Tj − dA\B(j) and Sj − dB\A(j) ≤ d−(j) ≤ Tj − dB\A(j) ∀j ∈ K.

That the number of orientations of the first type is at most the number of the second type is then
an instance of Lemma 8.

5 Final remarks

The most interesting question left open by the present work is whether Theorem 1 (even without
thresholds) extends to nonidentical balls; that is,

Question 13 Are generalized urn measures (or generalized threshold or interval urn measures)
CNA?

As mentioned in the introduction, Dubhashi and Ranjan [5] showed NA for the ξij ’s defined in (3),
which immediately gives NA for generalized threshold urn measures. That the weaker (than CNA)
CNC, at least, does hold for generalized threshold (or, more generally, “interval”) urn measures is
a special case of the following result; this is a somewhat more general version of Corollary 34 of [5],
which implies CNC for generalized threshold urn measures. We again take Pr to be the measure
on [n][m] corresponding to some γ, and, for A ⊆ 2[m] and a, b ∈ Nn−1, set p(A, a, b) = Pr(σ−1(n) ∈
A|Bj ∈ [aj , bj ] ∀j ∈ [n− 1]).

Theorem 14 For any increasing A, p(A, a, b) is decreasing in (a, b).

The proof is more or less the same as that of Theorem 4(a), so will not be given here; see [14,
Theorem 1.23]. (The proof of Corollary 34 in [5] is not quite correct, since it depends on the
incorrect Proposition 24.)

Thus one reason to be interested in whether generalized urn measures are CNA is that a negative
answer would provide a counterexample to an important conjecture of Pemantle [15] stating that
CNC implies CNA. (He also conjectures that the Rayleigh property NC+ implies NA+.) Pursuing
this a little further, say µ ∈ M({0, 1})n is R+ if every W ◦ µ with Wi ∈ {0} ∪ [1,∞) ∀i is NC.
An easy simulation shows that CNC for the class of generalized urn measures is the same as R+

for this class. (Note this is without thresholds; it’s easy to see that R+ need not hold for (even
ordinary) threshold urn measures.) So failure of CNA here would in fact disprove

Conjecture 15 R+ implies CNA,

a weakening of the first conjecture of Pemantle above.
At this writing we can (e.g.) give a positive answer to Question 13 when each ball chooses

from just two urns; this is of course quite special, but seems of some interest since it corresponds
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to in- and out-degree statistics for a random orientation of a graph (where edges are oriented
independently, but the two orientations of an edge may have different probabilities). Even this
special case seems to require an interesting argument, but we will not give this here as the paper
seems long enough without it.

As far as we can see, even the following very general statement could be true.

Question 16 Suppose T0 ∪ T1 ∪ · · · ∪ Ts is a partition of [m]× [n], and ar, br ∈ N for r = 1, . . . , s.
Is it true that the ξij’s in (3) are NA given

{ξ(Tr) ∈ [ar, br] ∀r ∈ [s]}

(where ξ(T ) =
∑

(i,j)∈T ξij)?

This would be a considerable strengthening of CNA for generalized threshold urn measures.
Let us also just mention one possible approach to Question 13. Recall that for µ, ν ∈ M({0, 1}n),

µ stochastically dominates ν (written µ � ν) if µ(A) ≥ ν(A) for each increasing A ⊆ {0, 1}n, and
that µ has the normalized matching property if, withX chosen according to µ and ξ = |X|, µ(·|ξ = k)
is stochastically increasing in k (meaning, of course, that µ(·|ξ = k) � µ(·|ξ = l) whenever k > l).
It is not too hard to show (this is somewhat like the derivation of CNA from CNC in [6]) that CNA
for generalized interval urn measures would follow from a positive answer to

Question 17 Is it true that for any σ ∈ [n][m] with law given by (6) and Q as in (7), the law of
σ−1(K) given Q has the normalized matching property?

Finally we turn to the conjectures of Farr (unpublished circa 2004; see [18]) and Welsh [18]
mentioned at the end of Section 1. To put these in our framework, we add an urn Λ and assume

Pr(σ(i) = j) = p ∀i ∈ [m], j ∈ [n].

(So Pr(σ(i) = Λ) = 1 − np.) Let I ⊆ 2[m] be decreasing and set Aj = {σ−1(j) ∈ I} and
AJ = ∩{Aj : j ∈ J}. Then Farr’s conjecture (somewhat rephrased) is

Conjecture 18 If G is a graph on [m] and I is the collection of independent sets of G, then for
any disjoint I, J,K ⊆ [n], AI ↓ AJ given AK .

It’s not clear why this should require that I be of the type described, and Welsh’s conjecture was
that the same conclusion holds for an arbitrary I. Here we sketch a counterexample to this stronger
version. At present we don’t see how to extend to a counterexample to Conjecture 18, though we
feel that this too is likely to be false.

Example. Let n = 3 and p = 1/3 (so we don’t need Λ). Let M ∪ A ∪ B ∪ C be a partition of
V := [m] with |M | = s (large) and |A| = |B| = |C| = t = s+ 3. Let I1 = 2V \M ,

I2 = {X ⊆ V : |X ∩M | < .4|M | and X meets at most two of A,B,C},

and I = I1 ∪ I2. Then, we assert,

Pr(A{3}) Pr(A{1,2,3}) > Pr(A{1,3}) Pr(A{2,3}),
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which contradicts Welsh’s conjecture (with I = {1}, J = {2} and K = {3}). We omit the precise
calculations; roughly, with α = (2/3)t and c = (3/2)3, we have (as t → ∞)

Pr(AL) ∼











(c+ 3)α if |L| = 1
6α2 if |L| = 2
6α3 if |L| = 3.
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