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Abstract. In this paper we study a relatively new combinatorial object called
staircase tableaux. Staircase tableaux were introduced by Corteel and Williams

in the connection with Asymmetric Exclusion Process and has since found in-
teresting connections with Askey–Wilson polynomials. We develop a proba-

bilistic approach that allows us to analyze several parameters of a randomly

chosen staircase tableau of a given size. In particular, we obtain limiting distri-
butions for statistics associated with appearances of Greek letters in staircase

tableaux.
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1. introduction

An interesting combinatorial structure, called staircase tableaux, was introduced
in recent work of Corteel and Williams [11, 12]. Staircase tableaux are related to the
asymmetric exclusion process on an one-dimensional lattice with open boundaries,
the ASEP. This is an important and heavily studied particle model in statistical
mechanics (we refer to [12] for some background information on several versions of
that model and their applications and connections to other branches of science).
The study of the generating function of the staircase tableau has given a combina-
torial formula for the steady state probability of the ASEP. Explicit expressions for
the steady state probabilities were first given in [15]. In their work [12, 11] Corteel
and Williams used staircase tableaux to give a combinatorial formula for the mo-
ments of the (weight function of the) Askey-Wilson polynomials; for a follow–up
work see [7].

† LIAFA, Université Paris Diderot–Paris 7, F-75205 Paris, France, dasse@liafa.jussieu.fr.

‡ Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa,
Poland and Department of Mathematics and Information Science, Warsaw University of Technol-

ogy, Pl. Politechniki 1, 00-661 Warszawa, Poland, phitczenko@math.drexel.edu.

* The work of the first author was carried out while she held an ANR Gamma internship at
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2 SANDRINE DASSE–HARTAUT AND PAWE L HITCZENKO

The authors of [12] called for further investigation of the staircase tableaux be-
cause of their combinatorial interest and their potential connection to geometry.
In this paper we take up that issue and study some basic properties of staircase
tableaux. More precisely, we analyze the distribution of various parameters associ-
ated with appearances of Greek letters α, β, δ, and γ in randomly chosen staircase
tableau of size n (see the next section or, e.g. [12, Section 2], for the definitions
and the meaning of these symbols).

Staircase tableaux are generalizations of permutation tableaux (see e.g. [6, 9,
10, 20] and references therein for more information on these objects and their con-
nection to a version of ASEP referred to as the partially asymmetric exclusion
process; PASEP). For permutation tableaux, the authors of [6] developed a proba-
bilistic approach that later allowed the derivation of the limiting (and even exact)
distributions of various parameters of the permutation tableaux. Our goal here
is the same: in Section 3 we develop a probabilistic approach parallel to that of
[6] that allows us to compute generating functions of various quantities associated
with staircase tableaux (see Corollary 6 in Section 4 and Proposition 11 in Subsec-
tion 6.1.3). As a consequence, we obtain the exact or limiting distributions of the
parameters we study.

Our main results are gathered in Section 5 and may be summarized by stating
that the five parameters we consider have asymptotically normal distribution when
normalized in a usual way (i.e. centered by the mean and scaled by the square root
of the variance). Thus, for example, Theorem 9 asserts that the number An of α
or γ on the diagonal of a randomly chosen staircase tableau of size n has expected
value n/2, variance (n+1)/12 and that (An−n/2)/

√
n/12 converges in distribution

to the standard normal random variable. We refer to Theorems 8 and 9 for precise
statements.

In Section 6 below (see comments at the beginning of Subsection 6.1.3 and a
remark at the end of it) we find that one of the parameters we study coincides
with a generalization of Eulerian numbers (see [23, sequence A060187]) related to
Whitney numbers of Dowling lattices (see [23, sequences A145901, A039775] and
[16, 2, 3, 5] for definitions and further information on these numbers). This rather
unexpected and intriguing connection has not been explained and merits, perhaps,
further studies. One consequence of our work is that the triangle of numbers [23,
sequence A060187], when suitably normalized, satisfies the central limit theorem.
As far as we can tell this result is new (although it is an easy consequence of a
general theorem of Bender [1]). Limit theorems for a related sequence [23, A145901]
are established in [5]. This link to the Whitney numbers of Dowling lattices may
have unraveled connection to geometry alluded to in [12] as the sequences A060187,
A145901, and A039775 from [23] all have a very strong geometrical flavor.

2. definitions and notation

We recall the following concept first introduced in [11, 12]: A staircase tableau
of size n is a Young diagram of shape (n, n − 1, . . . , 2, 1) whose boxes are filled
according to the following rules:

• each box is either empty or contains one of the letters α, β, δ, or γ;
• no box on the diagonal is empty;
• all boxes in the same row and to the left of a β or a δ are empty;
• all boxes in the same column and above an α or a γ are empty.
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An example of a staircase tableau is given in Fig. 1(a).

(a) (b) (c)

Figure 1. (a) A staircase tableau of size is 7. Its top row is
indexed by β, the next one by α. (b) Its type (◦ ◦ • • • ◦ ◦). (c)
The same tableau with u’s and q’s.

As we mentioned, staircase (or earlier permutation) tableaux were studied in
the connection with ASEP. Because of the importance of this connection we briefly
recall its nature. The ASEP is a Markov chain on words of size n on an alphabet
A = {◦, •} consisting of two letters. Each such word represents an one-dimensional
lattice of length n with some sites occupied by particles (represented by •), and
others not (represented by ◦). A particle can only hop to the right or the left
(with the probabilities u and q, respectively), provided that the adjacent site is
unoccupied, or enter or quit the lattice. Entering from the left (right) happens with
the probability α (resp., δ) if the first (last) site is unoccupied. Exiting to the left
(right) happens with the probability γ (resp., β) if the first (last) site is occupied.
At a given time one of the n+ 1 possible locations for a move is selected (uniformly
at random) and, if possible, a transition described above is performed with the
given probability. We refer to [14, 15, 17] or [12] for more detailed description and
further references.

To describe the connection to staircase tableaux, define the type of a staircase
tableau S of size n to be a word of the same size on the alphabet {◦, •} obtained by
reading the diagonal boxes from northeast (NE) to southwest (SW) and writing •
for each α or δ, and ◦ for each β or γ. (Thus a type of a tableau is a possible state
for the ASEP.) Fig. 1(b) shows a tableau with its type. We also need a weight of a
tableau S. To compute it, we first label the empty boxes of S with u’s and q’s as
follows: first, we fill all the boxes to the left of a β with u’s, and all the boxes to
the left of a δ with q’s. Then, we fill the boxes above an α or a δ with u’s, and the
boxes above a β or a γ with q’s. When the tableau is filled, its weight, wt(S), is a
monomial of degree n(n+ 1)/2 in α, β, γ, δ, u and q, which is the product of labels
of the boxes of S. Fig. 1(c) shows a tableau filled with u’s and q’s. Its weight is
α3β2δ3γ3u8q9.

Corteel and Williams [12, 11] have shown that the steady state probability that
the ASEP is in state σ is

Zσ(α, β, γ, δ, q, u)

Zn(α, β, γ, δ, q, u)
,

where Zn(α, β, γ, δ, q, u) =
∑

S of size n

wt(S) and Zσ(α, β, γ, δ, q, u) =
∑

S of type σ

wt(S).
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We denote the set of all staircase tableaux of size n by Sn, n ≥ 1. It is known
that the cardinality of Sn is 4nn!. There are several proofs of this fact (c.f. [7] for
one of them and for references to further proofs). All these proofs are based on
combinatorial approaches and we wish to mention that a probabilistic technique
that we develop in this paper provides a yet another proof of that fact. We present
it in Section 4 below as an illustration of how our method works.

We now define some parameters that are the objects of our study. Let ∗ be a
subset of the set of symbols {α, β, δ, γ}. We say that a row of a staircase tableau
is indexed by ∗ if its leftmost entry is a member of ∗. For the sake of brevity we
will refer to rows indexed by ∗ simply as ∗ rows. Thus, for example, the number of
α/γ rows is the number of rows indexed by α or γ. The tableau in Figure 1(a) has
two α/γ rows, the second from the top (indexed by α) and the bottom (indexed by
γ). For a given staircase tableau S ∈ Sn we denote this quantity by rn(S) and we
occasionally skip the subscript n if there is no risk of confusion. As we demonstrate
in Section 3 below this parameter plays a fundamental role in our approach. Other
parameters we consider are: the total number of entries β or δ (β/δ for short), the
total number of entries α or γ (α/γ), the number of entries β/δ on the diagonal of
the tableau, and the number of entries α/γ on the diagonal. For a given tableau
S ∈ Sn these parameters will be denoted by ∆n(S), Γn(S), Bn(S), and An(S),
respectively. We gather the names and the notation we use for the parameters we
consider along with their values for a tableau given in Figure 1(a) in the following
table

parameter notation value in Fig. 1(a)
α/γ rows rn 2

total # of β/δ ∆n 5
total # of α/γ Γ 6

# of β/δ on diagonal Bn 3
# of α/γ on diagonal An 4

As we mentioned earlier our viewpoint is probabilistic. Thus, we equip the set
Sn with the uniform probability measure denoted by Pn. This means that for each
S ∈ Sn we have

Pn(S) =
1

4nn!
.

As is customary we refer to a tableau chosen according to that measure as a random
tableau of size n. We denote the integration with respect to the measure Pn by
En. Our goal is to analyze probabilistic properties, like expected values, variances,
and exact or limiting distributions, of random variables (or statistics) rn, ∆n, Γn,
Bn, and An. We follow the probability theory conventions of [22], and the reader
is pointed there for any unexplained terms.

3. Preliminaries and outline of the argument

In this section we detail main ideas beyond our approach and also derive basic
properties of the fundamental parameter, i.e. the number of α/γ rows.

Our method is analogous to what has been done in the case of permutation
tableaux (see [6] or [20]). Let us recall at this point that permutation tableaux
have been used to give a combinatorial description of a stationary distribution
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for the PASEP. We refer to e.g. [9, 10, 6, 20] for the definition, connections to
PASEP, further properties and details. Just as PASEP is a particular case of
ASEP, permutation tableaux of size n are in bijection with a subset of staircase
tableaux of that size corresponding to the case γ = δ = 0.

The approach used in [6, 20] for the permutation tableaux was to identify a
fundamental parameter, trace its evolution as the size of a tableau is increased
by 1, and then use successively conditioning to reduce the size of a tableau. We
refer the reader to either [6] or [20] for more details, here we only recall that this
fundamental parameter was the number of unrestricted rows, Un, in a permutation
tableau, and that its conditional distribution was given by 1+Bin(Un−1, 1/2) (here
Bin(n, p) denotes a binomial random variable with parameters n and p). This is
to mean that if a size of a permutation tableau with Un−1 unrestricted rows was
increased from n − 1 to n, then the number of unrestricted rows in this extension
had (the conditional) distribution 1 + Bin(Un−1, 1/2). As it turns out, in the case
of staircase tableaux the role of a fundamental parameter is played by the number
of α/γ rows.

To make our approach work we need to know two things. One is the knowledge of
the conditional distribution of statistics of interest in extension of a given tableau of
size n−1. This would allow us to use the so–called tower property of the conditional
expectation to reduce the size of staircase tableaux by 1. Roughly speaking, this
reducing would amount to relating a function of a statistic on, say, Sn to another
function of the same statistics on Sn−1. Keeping track of how the functions are
related would in principle allow for an iteration of this process to reduce the size
of the tableaux to 1. There is, however, another difficulty. Namely, when passing
from Sn to Sn−1, not only a function of statistic changes but also a measure over
which we integrate. More specifically, the image of the uniform probability measure
Pn on Sn under a natural mapping associated with our reduction does not yield
the uniform probability measure Pn−1 on Sn−1. To handle this difficulty we need a
second ingredient which we refer to as the change of measure. It simply describes the
relation between the two probability measures and allows to return to the uniform
probability measure on Sn−1 after the reduction (see Section 3.2 for more details).

In the reminder of this section we develop the details for the number of α/γ rows,
a key statistic in further considerations. We do it in two separate subsections. In
the first we analyze the evolution of the number of α/γ rows as the size of the
tableaux increases. The key step is the computation of the conditional generating
function of rn as the size of the tableau is extended from n − 1 to n (Lemma 3
below). In the second subsection we discuss the change of measure.

3.1. The conditional generating function for rn. Our analysis progresses in
steps. We first find the number of extensions of a given tableau of size n − 1. We
then find the conditional distribution of the number of α/γ rows. This enables us
to compute the conditional generating function of the number of such rows in an
extension of a given tableau of size n − 1. The formula expresses this generating
function in terms of the number of α/γ rows of the tableau being extended and is
of crucial importance for our approach.

To begin the analysis we need to briefly recall the evolution process of staircase
tableaux described by Corteel, Stanton, and Williams in [8]. Let S be a staircase
tableau of size n− 1. To extend its size by 1, we add a new column of length n at
the left end and we fill it according to the rules. Any such filling gives a tableau
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of size n which is an extension of S. The number of extensions clearly depends on
the number of α/γ rows of S and is as follows:

Lemma 1. Let S ∈ Sn−1 be a tableau with rn−1 = rn−1(S) α/γ rows. Then there
are 4 · 3rn−1 different staircase tableaux of size n that are extensions of S.

Proof. We consider two cases:
1. If rn−1 = 0 then all n− 1 rows of S are β/δ rows and hence the top n− 1 boxes
of the new column have to be empty since no entries are allowed to the left of a
β/δ in the same row. Thus, if rn−1 = 0 we obtain four different tableaux of size n
by putting one of the four symbols in the bottom box of the new column.

(a) (b)

Figure 2. Extension of a tableau of size 6: (a) α/γ is put in the
bottom corner of the 7th column. All boxes above it are to be
empty. (b) β/δ is put in the bottom box and α/γ in the 3rd of the
four α/γ rows in the 7th column. A box in an α/γ row above is to
be empty; ]’s in two α/γ rows below it indicate that these boxes
can be filled with β/δ or left empty.

2. If rn−1 ≥ 1 we count the number of extensions as follows (see Figure 2 for an
illustration): we can either put one of the symbols α/γ in the bottom corner (and
then we are forced to leave all other boxes in that column empty), or we can put
a β/δ in the bottom box of the new column. In the latter case, we need to fill the
rn−1 boxes in the new column corresponding to the α/γ rows of S. According to
the rules, if we put an α/γ in any of them, then we need to leave all boxes above it
empty, otherwise we have a complete freedom. It follows from these considerations
that any tableau of size n with rn−1 α/γ rows gives 4 · 3rn−1 different staircase
tableaux of size n. Indeed, if rn−1 = 0 then there are 4 extensions and if rn−1 ≥ 1
then there are

2 + 2(2(1 + 3 + · · ·+ 3rn−1−1) + 3rn−1)

extensions. Here, the first 2 is from putting an α/γ in the bottom box of the new
column, the next 2 is from putting a β/δ in that box, the term 2·3i−1, 1 ≤ i ≤ rn−1,
is from putting the first α/γ in a box of the new column corresponding to the ith
(counting from bottom) α/γ row of S as then there are 3i−1 ways of filling the
earlier i− 1 boxes with symbols β, δ, or leaving them empty, and finally, the 3rn−1

term comes from not putting an α/γ in any of the rn−1 boxes and thus filling them
with β/δ’s or leaving them empty.



GREEK LETTERS IN STAIRCASE TABLEAUX 7

Summing the above gives

2 + 2

(
2

3rn−1 − 1

2
+ 3rn−1

)
= 2 + 2(3rn−1 − 1 + 3rn−1) = 4 · 3rn−1 ,

as claimed. �

As the next step we find the conditional distribution of the number of α/γ rows
over the extensions of a given tableau of size n−1. To do that we phrase the preced-
ing discussion in a more probabilistic language using what Shiryaev [22, Chapter I,
§8 ] refers to as “decompositions” (which is just a special case of conditioning with
respect to σ–algebra).

Note that every tableau from Sn is an extension of a unique tableau S from Sn−1.
Therefore, denoting by DS the set of all tableaux from Sn which are obtained from
S by the process described above (as we just discussed, there are 4 · 3rn−1(S) such
tableaux), we can write

Sn =
⋃

S∈Sn−1

DS ,

where (DS)S∈Sn−1
are pairwise disjoint, non–empty subsets of Sn. We denote this

decomposition of Sn by Dn−1. We wish to compute the conditional probabilities
P( · |Dn−1) and the conditional expectations E( · |Dn−1) with respect to this de-
composition. We have

Lemma 2. Let S ∈ Sn−1 be a tableau with rn−1 = rn−1(S) α/γ rows and let r be
the number of such rows in any of its extensions to a tableau of size n. Then

(1) P(r = rn−1 + 1|DS) =
1

2 · 3rn−1
,

and, for k = 0, 1, . . . , rn−1

(2) P(r = rn−1 − k|DS) =
2k+1(2

(
rn−1

k+1

)
+
(
rn−1

k

)
)

4 · 3rn−1
.

Proof. Let S and r be as in the statement. Clearly, the possible values for r are
rn−1 + 1, rn−1, rn−1 − 1, . . . , 1, 0 and we need to know the probability of each of
these possibilities. First, r = rn−1 + 1 means that we must have placed an α/γ
in the bottom box of the new column since this is the only way we can increase
the number of α/γ rows. Consequently, all other boxes in the new column are to
remain empty. Obviously there are two such extensions which in view of Lemma 2
gives

P(r = rn−1 + 1|DS) =
2

4 · 3rn−1
=

1

2 · 3rn−1
,

which justifies (1).
Next, for k = 0, 1, . . . , rn−1 we compute P(r = rn−1 − k|DS). Since k is the

number of β/δ’s that we put in the rn−1 allowable (i.e. corresponding to α/γ rows
of S) boxes, r = rn−1−k means that we put a β/δ in the bottom box and additional
k β/δ’s in the rn−1 allowable boxes above it. If we do not put an α/γ in any of
those k boxes, we have 2 · 2k

(
rn−1

k

)
possibilities (2 is for putting either a β or a δ

at the bottom, and the rest accounts for putting β/δ’s in any k of the allowable
rn−1 boxes). If we do put an α/γ in one of the boxes we need to pick k + 1 of
the allowable rn−1 boxes, put an α/γ in the topmost of them and put β/δ’s in
the remaining k of them (and at the bottom). This gives 2k+2

(
rn−1

k+1

)
possibilities.
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Adding up the two pieces and dividing by the total number of extensions given in
Lemma 2 we obtain,

P(r = rn−1 − k|DS) =
2 · 2k

(
rn−1

k

)
+ 2k+2

(
rn−1

k+1

)
4 · 3rn−1

=
2k+1(2

(
rn−1

k+1

)
+
(
rn−1

k

)
)

4 · 3rn−1

as required. �

Lemma 2 completely describes the conditional distribution of rn given Dn−1 and
leads, in particular, to the following basic relation:

Lemma 3. For a complex number z and n ≥ 1 (with the understanding that r0 ≡ 0)

(3) E(zrn |Dn−1) =
z + 1

2

(
z + 2

3

)rn−1

.

Proof. Recall that as we extend a tableau with rn−1 α/γ rows, we have rn = rn−1+1
if and only if we put an α/γ at the bottom of the new column and rn = rn−1− k if
and only if we put a β/δ there and additional k β/δ’s in the rn−1 boxes above it.
Therefore, letting C∗ denote the event that we put the symbol * at the bottom of
the new column we have

E(zrn |Dn−1) = E(zrnICα/γ |Dn−1) + E(zrnICβ/δ |Dn−1)

= zrn−1+1 1

2 · 3rn−1
+

rn−1∑
k=0

zrn−1−kP(rn = rn−1 − k|Dn−1)

=
z

2

(z
3

)rn−1

+
2

4 · 3rn−1

rn−1∑
k=0

zrn−k2k
(

2

(
rn−1

k + 1

)
+

(
rn−1

k

))

=
z

2

(z
3

)rn−1

+
1

2

(
2 + z

3

)rn−1

+
1

3rn−1

rn−1−1∑
k=0

zrn−k2k
(
rn−1

k + 1

)
.

The last term is

z

2 · 3rn−1

rn−1−1∑
k=0

2k+1zrn−k−1

(
rn−1

k + 1

)
=

z

2 · 3rn−1
((2 + z)rn−1 − zrn−1) ,

so that we obtain

E(zrn |Dn−1) =
z

2

(z
3

)rn−1

+
1

2

(
2 + z

3

)rn−1

+
z

2

(
2 + z

3

)rn−1

− z

2

(z
3

)rn−1

=
1 + z

2

(
2 + z

3

)rn−1

.

This proves (3). �

As we already mentioned, Lemma 3 (or its versions) plays a crucial role in our
approach.

3.2. The change of measure. In this subsection we describe the second ingredi-
ent, namely the change of measure. It it is necessitated by the fact that there are
two different probability measures on Sn−1 that naturally appear in our consider-
ations. The first is, of course, the uniform measure Pn−1. We discuss the second
one and the relation between them below.

Consider Sn−1, the set of all staircase tableaux of size n− 1. The second prob-
ability measure on Sn−1 is obtained from the uniform probability measure on Sn
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by ”collapsing” all the elements of Sn that are extensions of the same element
S ∈ Sn−1. More formally, consider a map f : Sn → Sn−1 defined by f(T ) = S if
and only if T is an extension of S. The measure of interest is the image of Pn under
f . We denote this measure Pn(S) (there is an apparent ambiguity of notation here,
however, it disappears once we remember whether S is in Sn or Sn−1). Since both
of these measures appear in the course of our argument, it is important to find the
relationship between them. But this is straightforward: since a tableau S ∈ Sn−1

with rn−1 α/γ rows gives 4 · 3rn−1 tableaux in Sn we have

(4) Pn(S) =
4 · 3rn−1

|Sn|
=

4 · 3rn−1 |Sn−1|
|Sn|

1

|Sn−1|
= 4 · 3rn−1

|Sn−1|
|Sn|

Pn−1(S).

Consequently, for any random variable Xn−1 on Sn−1 we have

(5) EnXn−1 = En−14 · 3rn−1
|Sn−1|
|Sn|

Xn−1 = 4
|Sn−1|
|Sn|

En−13rn−1Xn−1.

Here we have used the same convention as above; for a random variable X on Sn−1,
En−1X denotes the expectation with respect to the uniform measure on Sn−1 while
EnX denotes the expectation with respect to the measure that is induced on Sn−1

by the uniform measure on Sn.
The relations (3) and (5) are key and will allow us to analyze the distributions

of the various statistics on Sn. Note that (4) and (5) are true regardless of whether
we know the cardinalities of Sn−1 and Sn or not. As a matter of fact, one can use
(5) to provide a yet another argument that |Sn| = 4nn! as we will see in the next
section.

4. Generating function for the number of α/γ rows and some
consequences

In this section we demonstrate how we intend to apply (3) and (5) to derive
recurrences for generating functions that upon solving yield information on the
corresponding statistics. We focus here on the number of α/γ rows which, on one
hand is the easiest to analyse, and on the other is central in the analysis of other
statistics.

Proposition 4. For every complex number z we have

(6) Enz
rn =

2n

|Sn|

n∏
k=1

(z + 2k − 1).

Proof. By the basic properties of the conditional expectation (see e.g. [22, For-
mula (16), p. 79]) the expectation on the right–hand side is equal to EnE(zrn |Dn−1).
Using first (3) and then (5) we further get

Enz
rn =

z + 1

2
En

(
z + 2

3

)rn−1

=
(z + 1)

2

4|Sn−1|
|Sn|

En−13rn−1

(
z + 2

3

)rn−1

= 2(z + 1)
|Sn−1|
|Sn|

En−1(z + 2)rn−1 .

Applying the same procedure with z replaced by z + 2 and n by n− 1 we obtain

Enz
rn = 22(z + 1)(z + 3)

|Sn−2|
|Sn|

En−2(z + 4)rn−2 .
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Further iteration yields

Enz
rn = 2n−1(z + 1)(z + 3) . . . (z + 2n− 3)

|S1|
|Sn|

E1(z + 2(n− 1))r1 .

Since |S1| = 4 and E1(z+2(n−1))r1 = 1
2 (z+2(n−1))+ 1

2 the above can be written
as

Enz
rn =

2n

|Sn|
(z + 1)(z + 3) . . . (z + 2n− 1),

which is precisely (6). �

Proposition 4 has a number of consequences. First, by putting z = 1 in (6) we
obtain an independent confirmation of the count of staircase tableau of a given size.

Corollary 5. Let Sn be the set of all staircase tableaux of size n ≥ 1. Then

|Sn| = 4nn!

Note that once this corollary is known (4) and (5) simplify to

(7) Pn(S) =
3rn−1

n
Pn−1(S) and EnXn−1 =

1

n
En−13rn−1Xn−1,

respectively, and this is the form we will be using from now on.
Next, by combining this corollary with (6) we obtain

Corollary 6. The probability generating function of the number of α/γ rows in a
random staircase tableau of size n is given by

Enz
rn =

2n

4nn!

n∏
k=1

(z + 2k − 1) =

n∏
k=1

z + 2k − 1

2k
.

The last corollary gives, in turn, a complete information on the distribution of
rn.

Corollary 7. For every n ≥ 1 we have

(8) rn
d
=

n∑
k=1

Jk,

where Jk’s are independent and Jk is a random variable which is 1 with probability
1/(2k) and 0 with the remaining probability. In particular,

(9) Enrn =

n∑
k=1

1

2k
=
Hn

2
, var(rn) =

n∑
k=1

1

2k

(
1− 1

2k

)
=
Hn

2
− H

(2)
n

4
,

where Hn =
∑n
k=1

1
k and H

(2)
n =

∑n
k=1

1
k2 are harmonic numbers of the first and

second order, respectively. Furthermore,

(10)
rn − lnn

2√
lnn
2

d−→ N(0, 1).

Proof. Note that a factor

z + 2k − 1

2k
=

z

2k
+ 1(1− 1

2k
),

given in the previous corollary is the probability generating function of a random
variable Jk which is 1 with probability 1/(2k) and 0 with the remaining probability.



GREEK LETTERS IN STAIRCASE TABLEAUX 11

Since the product of the probability generating functions corresponds to adding
independent random variables, we obtain (8) and thus also (9). Finally, since
Jk are uniformly bounded and variances of their partial sums go to infinity, the
Lindeberg condition for the central limit theorem (see e.g. [22, Chapter III §4])
holds trivially. Since as n→∞, Enrn ∼ var(rn) ∼ lnn

2 , (10) holds. �

5. Main results

Our technique allows us to obtain further results concerning the distributions
(sometimes exact, sometimes only asymptotic) of the statistics discussed above.
We gather our results in the following two statements, concerning the total number
of entries and the number of entries on the diagonal, respectively. Recall that ∆n

and Γn denote the total number of β/δ and α/γ in the tableau of size n, respectively.

Theorem 8. Consider the set Sn with the uniform probability measure Pn. Then:

(i) For every n ≥ 1 we have

(11) ∆n
d
=

n∑
k=1

Ik,

where (Ik) are independent and P(Ik = 1) = 1 − 1
2k , P(Ik = 0) = 1

2k . In
particular,

(12) En∆n = n− Hn

2
, var(∆n) =

Hn

2
− H

(2)
n

4
,

and, as n→∞,

(13)
∆n − n+ 1

2 lnn√
1
2 lnn

d−→ N(0, 1).

(ii) For every n ≥ 1

Γn
d
= ∆n.

In particular, (11), (12), and (13) hold with ∆n replaced by Γn.

Our second result concerns the entries on the diagonal. Recall that An (resp.
Bn) denote the number of α/γ (resp. β/δ) on the diagonal of a tableau of size n.
For these parameters we get

Theorem 9. The expected value and the variance of the number An of α/γ on the
diagonal of a random staircase tableau of size n are, respectively,

(14) EnAn =
n

2
and var(An) =

n+ 1

12
.

Moreover,

(15)
An − n/2√

n/12

d−→ N(0, 1).

Furthermore, for every n ≥ 1 we have

(16) Bn
d
= An.

In particular, (14) and (15) hold for Bn in place of An.
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Remark: While it seems intuitively clear that the expected number of letters α/γ
on the diagonal is n/2 as (14) asserts, the expression for the variance is much less
intuitive. It implies, in particular, that the entries α/γ and β/δ along the diagonal
are not chosen independently from one another with equal probabilities as one
might have hoped (if that were the case the variance would be n/4).

6. proofs

We begin by observing that, as is obvious from the definition, staircase tableaux
are symmetric under taking the transpose and exchanging the α’s with the β’s and
the γ’s with the δ’s. It therefore is immediate that parts (ii) of both theorems
follow from the respective parts (i). Furthermore, the proof of Theorem 8 (i) may
be completed by using Corollary 7 and the relation

(17) rn(S) + ∆n(S) = n

since then

∆n = n− rn =

n∑
k=1

(1− Jk)
d
=

n∑
k=1

Ik.

But (17) is clear once we notice that for any row of a staircase tableau exactly one
of the following statements is true

• it contains a β/δ
• it is indexed by α/γ.

This proves Theorem 8 and we now turn our attention to a considerably more
involved proof of Theorem 9 (i).

6.1. Proof of Theorem 9 (i). The idea is the same as for Corollary 7 except that
this time we will actually need the joint probability generating function of An and
rn. The final expression will turn out to be substantially more complicated than
what we encountered earlier and thus harder to analyze. Nonetheless, the situation
is quite analogous to the case of the number of rows in permutation tableaux (see
[20, Section 4]). For the reader’s convenience we break up our proof into several
steps each of them discussed in a separate section below. We now briefly outline
the major steps in the proof indicating the section in which they are treated. We
begin in the forthcoming section with the derivation of the probability generating
function. Its coefficients satisfy certain recurrences. This, in particular, enables
us to derive the exact formulas for the expected value and the variance of An
(see Subsection 6.1.2 below). Furthermore, the nature of these recurrences suggests
that the coefficients are related to the classical Eulerian number associated with the
number of rises in random permutations. In fact, our coefficients exactly match the
numbers often called the “Eulerian numbers of type B”. We establish and discuss
further this connection in Subsection 6.1.3. We think it is of independent interest
and perhaps worthy of further exploration.

Once this connection is made it is then expected that the the coefficients follow
the normal law (just as the classical Eulerian numbers do). As a matter of fact, one
of the proofs (although not the first) of the asymptotic normality of the classical
Eulerian numbers is via a fairly general device due to Bender ([1]) and nowadays
referred to as Bender’s theorem. This is, indeed, the approach we take and in the
subsection 6.1.4 we verify the conditions of Bender’s theorem to conclude our proof.
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6.1.1. Bivariate generating function. We give the formula for the joint generating
function of rn and An in the following statement.

Proposition 10. Let z, t be complex numbers. Then we have

(18) Ent
Anzrn =

1

2nn!

n∑
k=0

(t− 1)n−kcn,k(z),

where the coefficients {cm,`(z) : 0 ≤ ` ≤ m ≤ n} satisfy the following recurrence

cm+1,`(z) = (z + 2`)cm,`(z) + (z + 2(`− 1) + 1)cm,`−1(z), 1 ≤ ` ≤ m,
with the following boundary conditions:

c0,0(z) = 1, cm+1,m+1(z) = (z + 2m+ 1)cm,m(z), cm+1,0(z) = zcm,0(z).

Proof. If n = 0 and we set c0,0(z) = 1 then both sides of (18) are 1. Otherwise, let
Ij indicate the event that we put an α/γ in the jth box on the diagonal (counting
from NE to SW). Then An =

∑n
j=1 Ij and we have

Ent
Anzrn = EnE(tAn−1+Inzrn |Dn−1) = Ent

An−1E(tInzrn |Dn−1),

where we have used the basic properties of the conditional expectations (see [22,
Formulas (16), p. 79 and (17), p. 80]). Now, In = 1 means that we put an α/γ in
the SW corner. In that case we have rn = rn−1 + 1 and since this happens with
probability 1/(2 · 3rn−1) we get

E(tInzrn |Dn−1) = tzrn−1+1 1

2 · 3rn−1
+ E(tInzrnIIn=0|Dn−1).

The second term is equal to

E(zrnIIn=0|Dn−1) = E(zrn |Dn−1)− E(zrnIIn=1|Dn−1)

=
z + 1

2

(
z + 2

3

)rn−1

− zrn−1+1

2 · 3rn−1
.

Combining we obtain

E(tAnzrn |Dn−1) =
z(t− 1)

2

(z
3

)rn−1

+
z + 1

2

(
z + 2

3

)rn−1

.

Using the second part of (7) leads to the basic recurrence

Ent
Anzrn =

z(t− 1)

2
Ent

An−1

(z
3

)rn−1

+
z + 1

2
Ent

An−1

(
z + 2

3

)rn−1

=
1

2n

{
z(t− 1)En−1t

An−1zrn−1 + (z + 1)En−1t
An−1(z + 2)rn−1

}
.

Upon further iteration of this relation we obtain for any 0 ≤ m < n:

Ent
Anzrn =

1

2mn(n− 1) . . . (n−m+ 1)

m∑
`=0

(t− 1)m−`cm,`En−mt
An−m(z+ 2`)rn−m ,

for some coefficients cm,` = cm,`(z), 0 ≤ ` ≤ m. To see that they satisfy the stated
recurrence, we apply the basic recurrence (with n−m instead of n and z+2` instead
of z) to the expectation on the right–hand side above. We get that it is equal to

1

2(n−m)

{
(z + 2`)(t− 1)En−m−1t

An−m−1(z + 2`)rn−m−1

+(z + 2`+ 1)En−m−1t
An−m−1(z + 2(`+ 1))rn−m−1

}
.
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Substituting this into the above formula for Ent
Anzrn and multiplying both sides

by 2m+1n(n− 1) · · · · · (n−m) (to avoid writing a denominator on the right–hand
side) we get

m∑
`=0

(t− 1)m−`cm,`

{
(z + 2`)(t− 1)En−m−1t

An−m−1(z + 2`)rn−m−1

+(z + 2`+ 1)En−m−1t
An−m−1(z + 2(`+ 1))rn−m−1

}
.

Splitting this in two sums, isolating the ` = 0 term in the first, and the ` = m in
the second, and then shifting the index in the second sum, we further obtain

(t− 1)mcm,0z(t− 1)En−(m+1)t
An−(m+1)zrn−(m+1)

+

m∑
`=1

(t− 1)m−`cm,`(z + 2`)(t− 1)En−m−1t
An−m−1(z + 2`)rn−m−1

+

m−1∑
`=0

(t− 1)m−`cm,`(z + 2`+ 1)En−(m+1)t
An−(m+1)(z + 2(`+ 1))rn−(m+1)

+cm,m(z + 2m+ 1)En−(m+1)t
An−(m+1)(z + 2(m+ 1))rn−(m+1)

= (t− 1)m+1cm,0zEn−(m+1)t
An−(m+1)zrn−(m+1)

+

m∑
`=1

(t− 1)m+1−`cm,`(z + 2`)En−(m+1)t
An−(m+1)(z + 2`)rn−(m+1)

+

m∑
`=1

(t− 1)m−(`−1)cm,`−1(z + 2(`− 1) + 1))En−(m+1)t
An−(m+1)(z + 2`)rn−(m+1)

+cm,m(z + 2m+ 1)En−(m+1)t
An−(m+1)(z + 2(m+ 1))rn−(m+1) .

So, if we write it as

m+1∑
`=0

(t− 1)m+1−jcm+1,`En−(m+1)t
An−(m+1)(z + 2`)rn−(m+1) ,

as postulated above, we see that

cm+1,0 = zcm,0, cm+1,m+1 = (z + 2m+ 1)cm,m

and, upon combining the two middle sums, that

cm+1,` = (z + 2`)cm,` + (z + 2(`− 1) + 1)cm,`−1, for 1 ≤ ` ≤ m.

Taking m = n− 1 we get

Ent
Anzrn =

1

2n−1n!

n−1∑
`=0

(t− 1)n−1−`cn−1,`E1t
A1(z + 2`)r1 ,

and since

E1t
A1(z + 2`)r1 =

1

2
t(z + 2`) +

1

2
=

1

2
(t− 1)(z + 2`) +

1

2
(z + 2`+ 1),

we can write

Ent
Anzrn =

1

2nn!

n∑
k=0

(t− 1)n−kcn,k,
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where the coefficients {cm,` : 0 ≤ ` ≤ m ≤ n} satisfy the stated recurrence and the
boundary conditions. The proof is complete. �

6.1.2. Expected value and the variance. A number of properties of (An) can be
deduced from Proposition 10. We illustrate this by obtaining the exact expression
for the expected value and for the variance of An. To help facilitate that we put
the coefficients (cn,k) in a Pascal type triangle.

c0,0
↙ ↘

c1,0 c1,1

↙ ↘ ↙ ↘
. . . . . . . . .
. . . . . . . . .

↙ ↘ ↙ . . . ↘ ↙ ↘
cn,0 cn,1 . . . cn,n−1 cn,n

The SW move from a coefficient cm,` has weight z + 2` and a SE move has weight
z+ 2`+ 1. The value of a given coefficient is obtained by summing over all possible
paths leading to it from the root c0,0 the products of weighs corresponding to the
moves along the path. For example, there is only one path leading to cn,n (all
moves are SE) and hence

cn,n =

n−1∏
j=0

(z + 2j + 1).

Likewise, paths leading to cn,n−1 have exactly one SW move; thus there are n of
them and if the sole SW move is from ck,k, 0 ≤ k ≤ n− 1, then the weight of that
path is k−1∏

j=0

(z + 2j + 1)

 (z + 2k)

n−2∏
j=k

(z + 2j + 1)

 .

Consequently,

cn,n−1(z) =

n−1∑
k=0

k−1∏
j=0

(z + 2j + 1)

 (z + 2k)

n−2∏
j=k

(z + 2j + 1)

 .

The significance of this is that

EnAn =
∂

∂t
Ent

Anzrn∣∣t=1,z=1
=

1

2nn!
cn,n−1(1)

=
1

2nn!

n−1∑
k=0

k−1∏
j=0

2(j + 1)

 (2k + 1)

n−2∏
j=k

2(j + 1)

 .

=
1

2nn!
2n−1(n− 1)!

n−1∑
k=0

(2k + 1) =
n

2
.

This proves the first part of (14). Similarly, to compute the variance we use
var(An) = EAn(An − 1) + EAn − (EAn)2 and the fact that EAn(An − 1) =
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∂2

∂t2 (EtAn)|t=1 = 2
2nn!cn,n−2(1). Paths leading to cn,n−2(1) have exactly two SW

moves, the first could be from any ck,k, 0 ≤ k ≤ n − 2 and the second from c`,`−1

for some k < ` ≤ n−1. These two moves have weights 2k+1 and 2`−1 respectively,
and the remaining SE moves have weights

2 · 1, 2 · 2, . . . , 2k, 2(k + 1), 2(k + 2) . . . , 2(`− 1), 2`, . . . , 2(n− 1).

Therefore,

cn,n−2(1) =

n−2∑
k=0

n−1∑
`=k+1

(2k + 1)(2`− 1)2n−2(n− 2)!

= 2n−2(n− 2)!

n−1∑
`=1

(2`− 1)

`−1∑
k=0

(2k + 1)

= 2n−2(n− 2)!
n−1∑
`=1

(2`− 1)`2

= 2n−2(n− 2)!
1

6
n(n− 1)(3n2 − 5n+ 1)

= 2n−2n!(
1

2
n2 − 5

6
n+

1

6
).

Hence

var(An) = 2
2n−2n!

2nn!
(
1

2
n2− 5

6
n+

1

6
)+

n

2
− n

2

4
=
n2

4
− 5

12
n+

1

12
+

6n

12
− n

2

4
=
n+ 1

12
.

Thus we have proved the second part of (14) as well.

6.1.3. Connections to generalized Eulerian numbers. Before establishing the as-
ymptotic normality of (An) we take a closer look at the doubly indexed sequence
{cn,k} since it has intriguing connections that may be of interest in their own right.
It is featured as entry A145901 in [23] and is closely related to another sequence
from [23], namely A039755. More precisely, cn,k = 2kk!W2(n, k) where Wm(n, k)
are the Whitney numbers of the second kind satisfying the recurrence

Wm(n, k) = (mk + 1)Wm(n− 1, k) +Wm(n− 1, k − 1).

The numbers (Wm(n, k)) were introduced in [16] and their properties were studied
in [2, 3, 4]. Since we are dealing exclusively with the case m = 2 we drop the
subscript and we write W (n, k) for W2(n, k). Thus, the generating function of An
may be written as

(19) ψn(t) = Ent
An =

1

2nn!

n∑
k=0

2kk!W (n, k)(t− 1)n−k.

It is perhaps of interest to mention that the numbers (2kk!W (n, k)) themselves
satisfy the central (and local) limit theorem as was shown in [5]. However, this is
not exactly what we want since the generating function above is in powers of t− 1
rather than t. In terms of powers of t ψn(t) has the following form.

Proposition 11. The probability generating function of the number of α/γ entries
on the diagonal of a random staircase tableau of size n has the form

(20) ψn(t) =
1

2nn!

n∑
m=0

V (n,m)tm,
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where the numbers {V (n,m), 0 ≤ m ≤ n} satisfy the boundary condition V (n, 0) =
1, the symmetry relation V (n,m) = V (n, n−m), and the recurrence

(21) V (n,m) = (2m+ 1)V (n− 1,m) + (2(n−m) + 1)V (n− 1,m− 1).

The explicit expression for V (n,m) is given by

(22) V (n,m) =

n−m∑
k=0

2kk!W (n, k)

(
n− k
m

)
(−1)n−k−m, 0 ≤ m ≤ n.

Proof. We start out with (19). To rewrite it in powers of t, note that the mth
derivative of ψn at t = 0 is

ψ(m)
n (0) =

1

2nn!

n−m∑
k=0

2kk!W (n, k)(n− k) · · · · · (n− k − (m− 1))(−1)n−k−m

=
1

2nn!

n−m∑
k=0

2kk!W (n, k)
(n− k)!

(n− k −m)!
(−1)n−k−m.

Therefore,

ψn(t) =

n∑
m=0

ψ
(m)
n (0)

m!
tm =

1

2nn!

n∑
m=0

V (n,m)tm

which shows that (20) holds with V (n,m) given by (22).
It remains to verify the claimed properties of the numbers V (n,m), 0 ≤ m ≤ n.

Since the symmetry condition follows by induction from the recurrence it suffices to
verify the recurrence and the boundary condition. For the boundary condition, we
see immediately that for n ≥ 0 V (n, n) = W (n, 0) = 1, so that once we verify the
recurrence (and thus also the symmetry) we will have that V (n, 0) = 1 for all n ≥ 0.
To verify (21), we use the basic recurrence for W (n, k)’s to write the left–hand side
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of (21) as

V (n,m) =

n−m∑
k=0

2kk!
(

(2k + 1)W (n− 1, k) +W (n− 1, k − 1)
)(n− k

m

)
(−1)n−m−k

=

n−m∑
k=0

2kk!(2k + 1)W (n− 1, k)

(
n− k
m

)
(−1)n−m−k

+

n−m∑
k=1

2kk!W (n− 1, k − 1)

(
n− k
m

)
(−1)n−m−k

=

n−m∑
k=0

2kk!(2k + 1)W (n− 1, k)

(
n− k
m

)
(−1)n−m−k

+

n−m−1∑
k=0

2k+1(k + 1)!W (n− 1, k)

(
n− k − 1

m

)
(−1)n−m−k−1

= 2n−m(n−m)!(2(n−m) + 1)W (n− 1, n−m)

+

n−m−1∑
k=0

2kk!(2k + 1)W (n− 1, k)

(
n− k
m

)
(−1)n−m−k

−
n−m−1∑
k=0

2kk!(2(k + 1))W (n− 1, k)

(
n− k − 1

m

)
(−1)n−m−k.

On the other hand, the right–hand side of (21) is

(2m+ 1)

n−m−1∑
k=0

2kk!W (n− 1, k)

(
n− 1− k

m

)
(−1)n−m−k−1

+(2(n−m) + 1)

n−m∑
k=0

2kk!W (n− 1, k)

(
n− k − 1

m− 1

)
(−1)n−m−k

= (2m+ 1)

n−m−1∑
k=0

2kk!W (n− 1, k)

(
n− k − 1

m

)
(−1)n−m−k−1

+(2(n−m) + 1)

n−m−1∑
k=0

2kk!W (n− 1, k)

(
n− k − 1

m− 1

)
(−1)n−m−k

+(2(n−m) + 1)2n−m(n−m)!W (n− 1, n−m).

So, we see that the coefficients in front of W (n−1, n−m) in both expressions are the
same, and to complete the verification of (21) we need to see that the coefficients
are the same for the remaining values of k, 0 ≤ k ≤ n − m − 1. Cancelling the
common factors, we need to see that

(2k + 1)

(
n− k
m

)
− 2(k + 1)

(
n− k − 1

m

)
= (2(n−m) + 1)

(
n− k − 1

m− 1

)
− (2m+ 1)

(
n− k − 1

m

)
.
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But that is straightforward: using
(
n−k
m

)
=
(
n−k−1
m

)
+
(
n−k−1
m−1

)
and grouping the

terms this boils down to verifying that(
n− k − 1

m

)
(2k + 1− 2(k + 1) + 2m+ 1) =

(
n− k − 1

m− 1

)
(2(n−m) + 1− 2k − 1),

or, equivalently, that

m

(
n− k − 1

m

)
= (n−m− k)

(
n− k − 1

m− 1

)
,

which follows immediately from the defining property of the binomial coefficients.
�

Remark: Triangle of numbers V (n,m), 0 ≤ m ≤ n is featured in the Online
Encyclopedia of Integer Sequences [23] as a sequence A060187 (with the shift in
indexing: V (n,m) = T (n+ 1,m+ 1)) and is called ”Eulerian numbers of type B”.
This sequence can be traced back in the literature to MacMahon’s paper [21] and
it was subsequently studied in more detail in [19, Sec. 3.2] as a sequence Bn,k(1).
In particular, it appears that the expression for a bivariate generating function of
(V (n, k)) was derived for the first time in [19]. We use this expression in the next
section to derive the asymptotic normality of (An).

6.1.4. Conclusion of the proof by Bender’s theorem. Using the properties of the
numbers V (n,m) given in Proposition 11 (and the identification with the sequence
A060187 from [23]) we can complete the proof of Theorem 9 by establishing (15).
To do that we will rely on a general theorem due to Bender [1, Theorem 1]. (Ben-
der result is also described in [18]; see Section IX.6 in general, and Theorem IX.9,
Example IX.12, and Proposition IX.9 in particular). Recall from [23] or [19, For-
mula (3.23)] (and see Section 3 of [19] for a proof) that the bivariate generating
function of the numbers (V (n, k)), called in [19] (Bn,k(1)), is∑

n≥0

n∑
k=0

V (n, k)
wkzn

n!
=

(1− w)e(1−w)z

1− we2(1−w)z
.

Therefore, it follows from (20) that the bivariate probability generating function of
the sequence (An) is

f(z, w) :=
∑
n≥0

ψn(z)zn =
∑
n≥0

n∑
k=0

V (n, k)
wk

n!

(z
2

)n
=

(1− w)e(1−w)z/2

1− we(1−w)z
,

where we define f(z, 1) = 1/(1− z). We now closely follow the way Bender applied
his result. First,

f(z, es) =
(1− es)e(1−es)z/2

1− ese(1−es)z

has a simple pole at z = r(s) = s/(es − 1). Furthermore,

e(1−es)z = e(1−es)(z−r(s))e(1−es)r(s) = e(1−es)(z−r(s))e−s,

so that

f(z, es) =
(1− es)e−s/2e(1−es)(z−r(s))/2

1− e(1−es)(z−r(s)) =
(1− es)e−s/2

e(es−1)(z−r(s))/2 − e−(es−1)(z−r(s))/2 .

Since for bounded u
1

eu − e−u
=

1

2u
+O(1),



20 SANDRINE DASSE–HARTAUT AND PAWE L HITCZENKO

we get

f(z, es) =
(1− es)e−s/2

(es − 1)(z − r(s))
+O(1),

with the constant in O(1) bounded when both s and z − r(s) are close to 0. Thus,
by a comment at the very beginning of Section 3 of [1], the conditions of Theo-
rem 1 of that paper are satisfied, and hence the central limit theorem holds (with

centering by EAn ∼ n/2 and scaling by
√

var(An) ∼
√
n/12 as implied by (14)).

Alternatively, we see that

r(0) = 1, r′(0) = −1

2
, and r′′(0) =

1

6
,

so that by [1, Theorem 1] EAn ∼ n
2 and var(An) ∼ n

12 which conforms to what we
have found in (14). In any event, (15) follows.

7. Conclusion and further remarks

In this paper we have developed a probabilistic approach to the analysis of
properties of random staircase tableaux. Using this approach we established the
asymptotic normality of several parameters associated with appearances of Greek
letters α, β, γ, and δ in a randomly chosen tableau. We certainly hope that this
approach will be useful in the analysis of other properties of staircase tableaux.
From the combinatorial point of view, it would be of interest to analyse the number
of appearances of the letter q in such tableaux. It is not clear at this point, that
the method we develop is adequate to address that question, and if so, how difficult
it would be to achieve. This is probably an issue worth resolving in the future.
The fact that our method can be used to give new and rather complete results
concerning Greek letters and the fact that it gives an easy way of enumerating of
staircase tableaux of a given size makes us cautiously optimistic.

It is perhaps worth making the following point. In our arguments we relied
on observations like (17) and symmetries of staircase tableaux to minimize the
amount of work. We wish to emphasize, however, that our probabilistic approach
does provide a unified and systematic way of analyzing each of the statistics we
considered in a self–contained manner (i.e. not relying on relations between various
parameters). In fact, a direct proof that Γn satisfies (11), (12), and (13) was given
in [13]. This is partly a reason we believe that our approach has potential of being
useful in addressing other questions concerning statistics of staircase tableaux. To
reiterate that point we wish to briefly sketch a proof of (16) in Theorem 9 not
relying on symmetries of the parameters.

7.1. The number of β/δ on the diagonal. We show that An and Bn have
identical probability generating functions which, of course, implies (16). Write
Bn =

∑n
j=1 bj , where bj is 1 if we put a β or δ in the jth box on the diagonal

(counting SW from the top) and is 0 otherwise. We first derive the expression for
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the conditional probability generating function: For z, t complex,

E(tbnzrn |Dn−1) = E(tbnzrnIbn=1|Dn−1) + E(tbnzrnIbn=0|Dn−1)

= tE(zrnIbn=1|Dn−1) + zrn−1+1P (bn = 0|Dn−1)

= tE(zrn |Dn−1)− tE(zrnIbn=0|Dn−1) + zrn−1+1 1

2 · 3rn−1

= t
z + 1

2

(
z + 2

3

)rn−1

− tzrn−1
1

2 · 3rn−1
+
z

2

(z
3

)rn−1

= t
z + 1

2

(
z + 2

3

)rn−1

+ (1− t)z
2

(z
3

)rn−1

.

This gives an expression for the bivariate probability generating function for rn and
Bn and a recurrence for the coefficients:

Ent
Bnzrn = Ent

Bn−1

{
t
z + 1

2

(
z + 2

3

)rn−1

+ (1− t)z
2

(z
3

)rn−1
}

=
1

2n

{
t(z + 1)En−1t

Bn−1(z + 2)rn−1 + (1− t)zEn−1t
Bn−1zrn−1

}
=

1

2n2(n− 1) · · · · · 2(n−m+ 1)

{
m∑
`=0

bm,`En−mt
Bn−m(z + 2`)rn−m

}
.

Now,

En−mt
Bn−m(z + 2`)rn−m =

1

2(n−m)

{
t(z + 2`+ 1)En−m−1t

Bn−m−1(z + 2`+ 1)rn−m−1

+(1− t)(z + 2`)En−m−1t
Bn−m−1(z + 2`)rn−m−1

}
,

so that

bm,`En−mt
Bn−m(z + 2`)rn−m = t(z + 2`+ 1)bm,`En−m−1t

Bn−m−1(z + 2(`+ 1))rn−m−1

+(1− t)(z + 2`)bm,`En−m−1t
Bn−m−1(z + 2`)rn−m−1 ,

which means that the coefficient in front of

En−(m+1)t
Bn−(m+1)(z + 2`)rn−(m+1)

is

(1− t)(z + 2`)bm,` + t(z + 2(`− 1) + 1)bm,`−1.

So, if we write bm,` = am,`t
`(1 − t)m−` we see that the coefficients am,` = am,`(z)

satisfy the recurrence

am+1,` = (z + 2`)am,` + (z + 2`− 1)am,`−1,

with the initial condition

a0,0 = 1, and am,` = 0, for ` > m.

This is exactly the same recurrence as for the sequence (cn,k) defined in the last
section and thus

(23) Ent
Bnzrn =

1

2nn!

n∑
k=0

cn,kt
k(1− t)n−k.
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In particular, putting z = 1, differentiating with respect to t, evaluating at t = 1,
and using cn,n = 2nn! and cn,n−1 = 2n−1n!n we confirm that

EnBn =
1

2nn!
(−cn,n−1 + ncn,n) =

1

2nn!
(−2n−1n!n+ n2nn!) =

n

2
.

Finally to see that Bn and An have, in fact, the same distribution, put z = 1 in
(23) and expand (1− t)n−k to get

n∑
k=0

cn,kt
k(1− t)n−k =

n∑
k=0

cn,kt
k
n−k∑
j=0

(
n− k
j

)
(−1)n−k−jtn−k−j

=

n∑
k=0

n−k∑
j=0

tn−jcn,k

(
n− k
j

)
(−1)n−k−j

=

n∑
m=0

tm

{
m∑
k=0

cn,k

(
n− k
n−m

)
(−1)m−k

}

=

n∑
m=0

tm

{
m∑
k=0

2kk!W (n, k)

(
n− k
n−m

)
(−1)m−k

}
.

Now recall that by symmetry

V (n,m) = V (n, n−m) =

n−(n−m)∑
k=0

2kk!W (n, k)

(
n− k
n−m

)
(−1)n−k−(n−m)

=

m∑
k=0

2kk!W (n, k)

(
n− k
n−m

)
(−1)m−k,

so that

Ent
Bn =

1

2nn!

n∑
k=0

cn,kt
k(1− t)n−k =

1

2nn!

n∑
m=0

V (n,m)tm,

which is exactly the same as the generating function of An as claimed.
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