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Xavier Pérez-Giménez∗ and Nicholas Wormald†

Department of Combinatorics and Optimization

University of Waterloo

Waterloo ON, Canada

xperez@uwaterloo.ca, nwormald@uwaterloo.ca

Abstract

We derive an asymptotic formula for the number of strongly connected digraphs with
n vertices and m arcs (directed edges), valid for m − n → ∞ as n → ∞ provided m =
O(n log n). This fills the gap between Wright’s results which apply to m = n+O(1), and
the long-known threshold for m, above which a random digraph with n vertices and m
arcs is likely to be strongly connected.

1 Introduction

One of the most fundamental properties of a directed graph (digraph), and possibly the most
useful for communication networks, is that of being strongly connected, that is, possessing
directed paths both ways between every pair of vertices. It was long ago shown by Moon and
Moser [8] that almost all of the 2n

2

digraphs with n vertices are strongly connected due to
having paths of length 2 between each pair of vertices. So, from the asymptotic enumeration
perspective, a more interesting problem is the enumeration of strongly connected digraphs
on n vertices with m arcs (i.e. directed edges). In this paper, all digraphs are labelled. Our
results cover only simple digraphs (i.e. digraphs with no multiple arcs), but unless otherwise
stated we allow digraphs to have loops. We also give results for digraphs in which loops are
forbidden, which we refer to as loop-free digraphs.

Palásti [9] determined the threshold of strong connectivity, as follows. Let α be fixed
and define m(α, n) = ⌊n log n + αn⌋. Then, for a random directed graph having n vertices

and m arcs, so that each of the
(
n2

N

)
possible choices is equiprobable, the probability that the

digraph is strongly connected tends to exp(−2e−α) as n → ∞. Multiplying this probability by(n2

N

)
consequently gives an asymptotic formula for the number S(n,m) of strongly connected

digraphs with n vertices and m arcs, for such m. This also easily implies that S(n,m) ∼
(n2

N

)
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if m = m(αn, n) with αn → ∞. On the other hand, Wright [13] obtained recurrences for the
exact value of S(n,m) when m = n + O(1). (We must require m ≥ n to avoid the failure to
be strongly connected for trivial reasons.) In this paper, we fill the entire gap between these
results, deriving an asymptotic formula for S(n,m), valid for m−n → ∞ as n → ∞ provided
m = O(n log n). Our main result is as follows.

Theorem 1.1. Uniformly for m = O(n log n) and m − n → ∞, the number of strongly
connected digraphs with n vertices and m arcs is asymptotic to

(m− 1)!(eλ − 1)2n

2π(1 + λ− c)λ2m
exp(−λ2/2)

eλ(eλ − 1− λ)2

(e2λ − eλ − λ)(eλ − 1)
, (1)

where c = m/n > 1 and λ is determined by the equation c = λeλ/(eλ − 1).

Note. In particular, if c → 1 then the expression (1) simplifies asymptotically to

(m− 1)!(eλ − 1)2n

6πλ2m
, (2)

whilst if c → ∞ then (1) is asymptotic to

(m− 1)!(eλ − 1)2n

2πλ2m
exp(−λ2/2). (3)

Our result has counterparts for undirected graphs. An asymptotic formula for the number
of connected graphs with n vertices and m edges was given for all m such that m−n → ∞ as
n → ∞ by Bender, Canfield and McKay [2]. This improved the range of m for which earlier
estimates were found, and also the bounds on the error term. A simpler approach to the same
problem was given in [12]. This begins by counting connected graphs with no end-vertices,
and then consider the number of ways to attach a forest. One of the ways used there to count
connected 2-cores was to count connected kernels, which have no vertices of degree 2, and
insert vertices of degree 2 into their edges, and another way was based on eliminating isolated
cycles by inversion. In the present paper, for the case m = O(n) we use this first of these
two alternatives. This has some advantage in providing direct information on properties of
the kernel, such as was used in [5] for studying long cycles in the supercritical random graph.
In a similar way, we can study the analogous structure for a digraph, which we call its heart.
For m/n → ∞ we use a rather different approach to show that random digraphs with all in-
and out-degrees at least 1 are strongly connected with high probability.

Our argument requires a formula for the number of digraphs with all in- and outdegrees
at least 1 and given number of arcs, which we obtain using the method for counting graphs
with given minimum degree developed by Pittel and the second author in [11].

Theorem 1.2. Uniformly for m = O(n log n),

|G1,1(n,m)| ∼ m!(eλ − 1)2n

2πnc(1 + λ− c)λ2m
exp(−λ2/2)

where c = m/n and λ is determined by c = λeλ/(eλ − 1).
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Using the same method, we also extend this to digraphs with all outdegrees at least k+ and
all indegrees at least k−.

Theorem 1.3. Fix positive integers k+ and k−. Uniformly for m = O(n log n), m− k+n →
+∞ and m − k−n → +∞, the number of digraphs on n vertices, m arcs, outdegrees at least
k+ and indegrees at least k− is asymptotic to

(m− 1)!(fk−(λ
−)fk+(λ

+))n

2π
√

(1 + η+ − c)(1 + η− − c)λ2m
exp(−λ−λ+/2),

where c = m/n,

fk(λ) =
∑

i≥max{k,0}
λi/i!,

λ+ and λ− are the unique positive roots of

c = λ+fk+−1(λ
+)/fk+(λ

+), c = λ−fk−−1(λ
−)/fk−(λ

−)

respectively, and

η+ = (λ+)2fk+−2(λ
+)/fk+−1(λ

+), η− = (λ−)2fk−−2(λ
−)/fk−−1(λ

−).

The results stated so far refer to digraphs that are allowed to have loops but not multiple
arcs. In Section 7 we extend these results to the case when loops are forbidden, and obtain
the following analogues of Theorems 1.1 and 1.3.

Theorem 1.4. Uniformly for m = O(n log n) and m − n → +∞, the number of strongly
connected loop-free digraphs with n vertices and m arcs is asymptotic to

(m− 1)!(eλ − 1)2n

2π(1 + λ− c)λ2m
exp(−c(1− e−λ)2 − λ2/2)

eλ(eλ − 1− λ)2

(e2λ − eλ − λ)(eλ − 1)
,

where c and λ are as in is Theorem 1.1.

Note that, for Theorem 1.4, the only effect of forbidding loops was to introduce the extra
factor exp(−c(1 − e−λ)2).

Theorem 1.5. Fix positive integers k+ and k−, and recall the notation of Theorem 1.3.
Uniformly for m = O(n log n), m− k+n → +∞ and m− k−n → +∞, the number of loop-free
digraphs on n vertices, m arcs, outdegree at least k+ and indegree at least k− is asymptotic to

(m− 1)!(fk−(λ
−)fk+(λ

+))n

2π
√

(1 + η+ − c)(1 + η− − c)λ2m
exp(−c− λ−λ+/2).

For Theorem 1.5, forbidding loops just gave only the factor e−c.

Cooper and Frieze [4, Theorem 3(vi)] obtained a significant result relevant to this prob-
lem, in the form of the asymptotic probability that a random digraph with given degree
sequence is strongly connected, under certain assumptions on the degree sequence. It would
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be rather straightforward to combine this with our Theorem 1.2, along with properties of de-
gree sequences which we use in our paper, to deduce an asymptotic formula for S(n,m) when
m/n > 1 is bounded away from 1 and is bounded. For completeness, we derive this case of
the formula in a different way, following the same approach as we use for the case m/n → 1,
which we consider in Section 5.

Boris Pittel [10] has independently investigated the second approach of [12] mentioned
above. Applying it to this problem in the loop-free case, he has simultaneously obtained a
formula similar to that in Theorem 1.4 under the restriction that m = O(n), but also including
an explicit error estimate.

2 Basics and notation

2.1 Truncated Poisson distribution

We consider a discrete probability distribution that will be used many times in the argument.
Given λ > 0 and a nonnegative integer k, we say that a random variable (r.v.) Y has a

k-truncated Poisson distribution of parameter λ (or simply Y
d∼ TPok(λ)) if

P(Y = i) =





λi

fk(λ) i!
if i ≥ k,

0 if 0 ≤ i < k,

where fk(λ) =
∑

i≥k λ
i/i!. For later convenience we also define fk(λ) = eλ for integer k < 0.

We first give a rough tail bound for a random variable Y
d∼ TPok(λ) for constant k but λ

possibly depending on n. Consider constants A > B > e, and let p be a constant nonnegative
integer. Then for j ≥ max{Aeλ, k} we have

E([Y ]p 1Y≥j) =
1

fk(λ)




∑

j≤i<j+p

[i]p
λi

i!
+
∑

i≥j+p

[i]p
λi

i!


 ≤ 1

fk(λ)


p(j + p)p

λj

j!
+ λp

∑

i≥j

λi

i!




= O

(
jp + λp

fk(λ)
(eλ/j)j

)
= O

(
B−j

)
.

In particular,

P(Y ≥ j) = O
(
B−j

)
, E(Y 1Y≥j) = O

(
B−j

)
and E([Y ]2 1Y≥j) = O

(
B−j

)
. (4)

(We use [x]k to denote the falling factorial x(x− 1) · · · (x− k + 1) throughout this paper.)

Our main use of the TPok(λ) distribution is to allow us to make computations on the
multinomial distribution truncated from below. The following lemma establishes a connection
between these distributions, and will be used throughout the paper often without an explicit
mention. (See for example [3, Section 2] for a proof of this lemma.)

Lemma 2.1. Distribute M ≥ kN distinguishable balls randomly into N distinguishable bins
u.a.r. subject to the condition that each bin receives at least k ≥ 1 balls. Let Yi be the numbers
of balls in bin i. Then the joint distribution of Y1, . . . , YN is the same as that of N independent
copies of TPok(λ) for arbitrary λ > 0 conditional upon Y1 + · · ·+ YN = M .

4



It is easy to see that a variable Y
d∼ TPok(λ) has EY = c given by

c =
λfk−1(λ)

fk(λ)
. (5)

Henceforth, given c > k, we assume that λ is set equal to the unique (by [11, Lemma 1])
positive root of this equation. We also define

η =
λ2fk−2(λ)

fk−1(λ)
. (6)

Elementary computations show that, for such choice of λ and η, we have E(Y (Y − 1)) = ηc.
More properties of the TPok(λ) distribution are given in [11]. It is easy to check that 0 < λ ≤ c
in all cases. From [11, Theorem 4(a)] we have the following.

Lemma 2.2. Let M = O(N logN) be integer such that r := M−kN → ∞ and put c = M/N .
Let Y1, . . . , YN be i.i.d. random variables with TPok(λ) distribution, for fixed k, where λ is
determined from c in (5), and define η as in (6). Then, as N → ∞,

P(Y1 + · · ·+ YN = M) ∼ 1√
2πNc(1 + η − c)

= Θ
(
1/
√
r
)
.

Throughout the paper, we mostly focus our attention to the case k = 1 and simply refer
to the TPo1(λ) distribution as TPo(λ) or simply truncated Poisson. In this particular case,
(5) can be rewritten as

c =
λeλ

eλ − 1
, (7)

and moreover we have η = λ.

On several occasions we use Chernoff bounds for a binomially distributed Bin(n, p) random
variable X in the common form

P(|X − np| > a) < 2e−2a2/n, (8)

or the variation more useful when p is small:

P(|X − np| > a) < 2e−a2/3np for a ≤ np (9)

(from Molloy [7]; see also Alon and Spencer [1, Theorems A.1.11 and A.1.13]).

We close this subsection with some rather technical lemmas on independent variables with
TPok(λ) distribution.

Lemma 2.3. Let Y1, . . . , YN be independent r.v.s with TPok(λ) distribution, for fixed k and
for 0 < λ ≤ logN . Put C = EY1. Then for any t ≥

√
N log2N we have

P

(∣∣∣
N∑

i=1

Yi − CN
∣∣∣ > t

)
= O

(
e−(t2/8N)1/3

)
,

asymptotically as N → ∞.
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Proof. Let Ymax = maxi{Yi}. Setting ∆ = (t2/8N)1/3, we have P(Ymax > ∆) ≤ NP(Y1 >
∆) = O(e−∆) by (4) and since ∆ = Ω(log4/3 N). Now define

Wi = Yi −C and W ∗
i = Wi 1Yi≤∆,

and again from (4) deduce

|EW ∗
i | = | −E(Wi 1Yi>∆)| ≤ E(Yi 1Yi>∆) = O

(
e−∆

)
. (10)

Moreover, we have −C ≤ W ∗
i ≤ ∆−C, and then |W ∗

i −EW ∗
i | < ∆, so by the Azuma-Hoeffding

inequality

P

(∣∣∣
n∑

i=1

(W ∗
i −EW ∗

i )
∣∣∣ ≥ t/2

)
≤ 2 exp

( −t2

8∆2N

)
= 2e−∆. (11)

P

(∣∣∣
N∑

i=1

Yi − CN
∣∣∣ > t

)
≤ P(Ymax > ∆) +P

(∣∣∣
N∑

i=1

W ∗
i

∣∣∣ > t

)

≤ O
(
e−∆

)
+P

(∣∣∣
N∑

i=1

(W ∗
i −EW ∗

i )
∣∣∣ > t−

∣∣∣
N∑

i=1

EW ∗
i

∣∣∣
)

≤ O
(
e−∆

)
+P

(∣∣∣
N∑

i=1

(W ∗
i −EW ∗

i )
∣∣∣ > t/2

)

= O
(
e−∆

)
,

where we used (11) and the fact that |∑N
i=1 EW ∗

i | < t/2, which follows from (10).

The following result was essentially shown in [11].

Lemma 2.4. Let Y1, . . . , YN be independent r.v.s with TPok(λ) distribution, for fixed k and
for 0 < λ ≤ logN . Put C = E(Y1(Y1 − 1)). Then

P

(∣∣∣
N∑

i=1

Yi(Yi − 1)−CN
∣∣∣ > 4N1/2 log8 N

)
= O

(
exp(− log3 N)),

asymptotically as N → ∞.

Proof. The statement in the lemma comes directly from equation (33) in [11], considering
(16), (22), (28), (29) and Lemmas 1 and 2 of that paper. See also the proof of Lemma 2.3
which uses the same method in full detail.

We will use the following for k = 1, 2.

Lemma 2.5. Let k ≥ 1 be an integer, and let Y1, . . . , YN be independent TPok(λ) r.v.s.
Consider N bins, place Yi balls in bin i (i = 1, . . . , N), and then select each ball independently
with probability q ≤ 1/2 where Nq ≥ log2 N . Then the number X of bins containing at least
one selected ball satisfies

P(|X −EX| >
√
EX logN) = e−Ω(log2 N)

6



asymptotically as N → ∞, and moreover

EX/n > kq(1− (k − 1)/4 + (2−k/k)P(Y1 ≥ k + 1)).

Proof. Let q′ be the probability that a bin contains at least one selected ball. We have

1− q′ < (1− q)kP(Y = k) + (1− q)k+1P(Yi ≥ k + 1)

= (1− q)k − q(1− q)kP(Yi ≥ k + 1).

Using the elementary bound (1− q)k ≤ 1− kq +
(k
2

)
q2 and the fact that q ≤ 1/2, we obtain

q′ > kq(1− (k − 1)q/2) − q(1− q)kP(Yi ≥ k + 1)

≥ kq(1− (k − 1)/4 + (2−k/k)P(Yi ≥ k + 1)), (12)

and trivially q′ ≥ q in any case. Since X
d∼ Bin(N, q′), it follows by (9) that

P
(
|X −Nq′| >

√
Nq′ logN

)
< 2e− log2 N/3. (13)

2.2 Probability spaces of digraphs and degree sequences

Let G(n,m) be the set of digraphs on n labelled vertices and m arcs. In our definition of
digraph we allow loops but not multiple arcs. It is a simple matter to adjust our arguments
for loop-free digraphs (see Section 7). For a given digraph in G(n,m), let ~d+ = (d+1 , . . . , d

+
n )

and ~d− = (d−1 , . . . , d
−
n ) denote respectively the sequences of out- and indegrees of the vertices.

The degree of vertex i is defined to be the tuple di = (d+i , d
−
i ), so the joint in- and outdegree

sequences can be represented by ~d = (d1, . . . , dn). For feasibility, it is necessary that

n∑

i=1

d+i =

n∑

i=1

d−i = m. (14)

Let c = m/n and assume that c > 1 throughout the article, thoughm and hence c are functions
of n. Let G1,1(n,m) be the set of digraphs in G(n,m) such that d+i , d

−
i ≥ 1 for all i ∈ {1, . . . , n}.

(Note that this is a necessary condition for strong connectedness when n > 1.) Elements of
G1,1(n,m) we call (1, 1)-dicores or simply dicores. We also write G(n,m) and G1,1(n,m) to
denote the corresponding uniform probability spaces. We define r = m − n = (c − 1)n and
assume r → ∞. We distinguish three subcases: very sparse, with r = o(n) or equivalently
c → 1; moderately sparse, with r = Θ(n); and a denser case, with c → ∞ but c = O(log n).
(All logarithms are natural unless otherwise specified.)

Let D be the set of sequences ~d = (d1, . . . , dn), with di = (d+i , d
−
i ) for i ∈ {1, . . . , n},

where the 2n entries d+i and d−i are positive integers. Let D̂ be the subset of sequences in D
satisfying the total sum conditions (14). Note that D̂ coincides with the set of all possible
degree sequences of dicores in G1,1(n,m). Given any ~d ∈ D̂, let G(~d) denote the set (and also the

corresponding uniform probability space) of digraphs with degree sequence ~d. Also consider
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the usual directed pairing model P(~d), defined as follows. Take n bins, where the i-th bin
contains points of two types, namely d+i out-points and d−i in-points, and consider a random

matching of the m out-points with the m in-points. Each element in P(~d) corresponds to a
multidigraph in the obvious way, and the restriction to simple digraphs (i.e. with no multiple
arcs) generated this way is uniform.

In order to study the distribution of degree sequences of G1,1(n,m), it will prove useful to

turn the sets D and D̂ into suitable probability spaces, as follows. Random degree sequences
~d ∈ D are chosen by taking the 2n entries d+i and d−i as independent copies of TPo(λ). Let Σ

be the event in D that (14) holds, and define D̂ to be the corresponding conditional probability
space. Moreover, let P1,1(n,m) be the probability space of random pairings in P(~d) where

the degree sequence ~d is drawn from the distribution of D̂ defined above. Each pairing in
P1,1(n,m) corresponds to a multidigraph, and as will become apparent later the restriction of
P1,1(n,m) to simple digraphs generates elements of G1,1(n,m) uniformly.

We also need the notation d+max = max{d+i : 1 ≤ i ≤ n} and d−max = max{d−i : 1 ≤ i ≤ n}.

3 Asymptotic enumeration of dicores

Here we prove Theorems 1.2 and 1.3 by adapting the main argument of [11]. Before that, we
need some lemmata. The following result is an immediate consequence of Theorem 4.6 in [6]
by McKay (we just need to use the standard interpretation of digraphs with loops as bipartite
graphs).

Lemma 3.1 (McKay). Let ~d ∈ D̂ be a sequence of degrees and suppose that d+max, d
−
max ≤ ∆

for some ∆ = o(m1/4). Then the probability that a random element of P(~d) has no multiple
arcs is

exp


− 1

2m2

n∑

i,j=1

d+i (d
+
i − 1)d−j (d

−
j − 1) +O

(
∆4

m

)
 ,

uniformly for all ~d.

The following technical result estimates the probability that a degree sequence in D sat-
isfies (14), and averages the probability that a random pairing is simple over any subset of
degree sequences with that property. Here λ and c are defined as in Theorem 1.2.

Lemma 3.2. Assume that m− n → ∞ and m = O(n log n).

(a) PD(Σ) ∼
1

2πnc(1 + λ− c)
= Θ(1/(m − n)).

Moreover, if S is the event that a random pairing in P(~d) or P1,1(n,m) is simple, then

(b) PP1,1(n,m)(S) = ED̂
(
PP(~d)

(S)
)
∼ e−λ2/2;

(c) for any r.v. X on D̂ satisfying |X| ≤ x for some fixed constant x ∈ R,

ED̂
(
PP(~d)(S) ·X

)
= (1 + o(1)) e−λ2/2 ED̂X +O

(
e− log3 n

)
.

8



Proof. From Lemma 2.2, the independent events
∑

i d
+
i = m and

∑
i d

−
i = m each have

probability (1 + o(1))/
√

2πnc(1 + λ− c), which gives (a). Note that (b) follows from (c) by
setting X = 1, since the bound on m implies λ = O(log n), so it only remains to prove (c).
For this, we follow the proof of [11, Theorem 4(b)] almost exactly.

We require some definitions. Let F = F (~d) = PP(~d)
(S) and

F̃ = exp

(
−1

2
D+D−

)
,

where

D+ =
1

m

n∑

i=1

d+i (d
+
i − 1) and D− =

1

m

n∑

j=1

d−j (d
−
j − 1).

We set ∆ = log3 n, and let B1 denote the ‘bad’ event that d+max > ∆ or d−max > ∆. From (4)
we obtain PD(B1) ≤ 2nP(Y > ∆) = O(nA−∆). Then, we use the result from (a) to deduce

that PD̂(B1) ≤ PD(B1)/PD(Σ) = O(n2c(1 + λ− c)A−∆) = O
(
e− log3 n

)
.

In view of Lemma 3.1 and bearing in mind that 0 ≤ F, F̃ ≤ 1 and |X| ≤ x, we can write

ED̂(FX) = ED̂(FX 1B1
) +ED̂(FX 1B1

)

= O(PD̂(B1)) + (1 +O(∆4/m))ED̂(F̃X 1B1
)

= O
(
e− log3 n

)
+ (1 +O(∆4/m))ED̂(F̃X 1B1

). (15)

Simple computations show that ED+ = ED− = λ (with D+ and D− independent). Set
t = 8n−1/2 log9 n, and define B2 to be the ‘bad’ event that |D+D−/2 − λ2/2| > t. Whenever
B2 does not hold, we have F̃ = exp(−λ2/2 +O(t)) = (1 +O(t)) exp(−λ2/2), so

ED̂(F̃X 1B1
) = ED̂(F̃X 1B1∧B2

) +ED̂(F̃X 1B1∧B2
)

= O(PD̂(B2)) + (1 +O(t)) e−λ2/2 ED̂(X). (16)

It only remains to bound PD̂(B2). Set s = t/(2 log n) = 4n−1/2 log8 n, and note that if
|D+ − λ| ≤ s and |D− − λ| ≤ s then

|D+D−/2− λ2/2| ≤ 1

2
(|D+ − λ||D− − λ|+ λ|D+ − λ|+ λ|D− − λ|) ≤ s2 + 2s log n

2
≤ t.

Therefore, by Lemma 2.4,

PD̂(B2) ≤ PD̂(|D
+ − λ| > s) +PD̂(|D

− − λ| > s) = O
(
e− log3 n

)
. (17)

Part (c) in the statement follows by combining (15), (16) and (17).

Now we are in good shape to prove the theorem.

Proof of Theorem 1.2. Observe that |P(~d)| = m!, and that each simple digraph with degree
sequence ~d comes from exactly

∏n
i=1 d

+
i !d

−
i ! different pairings in P(~d). Thus

|G(~d)| =
m!PP(~d)

(S)
∏n

i=1 d
+
i !d

−
i !

,

9



where S denotes the event that a random pairing in P(~d) has no multiple arcs. Define

Q =
∑

~d∈D̂

n∏

i=1

1

d+i !d
−
i !

=
(eλ − 1)2n

λ2m
PD (Σ) .

Therefore, summing over all degree sequences, we can write

|G1,1(n,m)| =
∑

~d∈D̂

m!PP(~d)
(S)

∏n
i=1 d

+
i !d

−
i !

= m!QED̂

(
PP(~d)

(S)
)

= m!
(eλ − 1)2n

λ2m
EP1,1(n,m)(S)PD (Σ)

∼ m!(eλ − 1)2n

2πnc(1 + λ− c)λ2m
exp(−λ2/2),

where we used Lemma 3.2.

In addition, the computations in the proof of Theorem 1.2 give the following.

Corollary 3.3. The elements in G1,1(n,m) can be uniformly generated by restricting the
probability space P1,1(n,m) to simple pairings and considering the corresponding digraph.

Proof. A dicore G in G1,1(n,m) with degree sequence ~d comes from exactly
∏n

i=1 d
+
i !d

−
i !

different pairings. Each of these pairings must be simple and has probability

λ2m/(eλ − 1)2n

m!
∏n

i=1 d
+
i !d

−
i !

(
PP1,1(n,m)(S)

)−1
(18)

in the space P1,1(n,m) conditional upon the event S of being simple. The product of (18)

times
∏n

i=1 d
+
i !d

−
i ! does not depend on the particular ~d, and therefore the distribution of G

when generated from simple pairings is uniform.

Finally, we can extend the concept of dicore defined in Section 2 as follows. Given k =
(k+, k−) where k+ and k− are positive integer constants, a k-dicore is an element of G(n,m)
with a degree sequence satisfying d+i ≥ k+ and d−i ≥ k−, for all i ∈ {1, . . . , n}. Let Gk(n,m)
denote both the set of k-dicores and the corresponding uniform probability space.

In order to study the degree sequences of Gk(n,m), we need some definitions. Let λ+ and
η+ (resp., λ− and η−) be obtained from (5) and (6) after replacing k, λ and η by k+, λ+ and
η+ (resp., by k−, λ− and η−). Define the set of degree sequences Dk analogously to D, with
the extra condition that d+i ≥ k+ and d−i ≥ k−, for all i ∈ {1, . . . , n}, and similarly let D̂k

be the subset of sequences in Dk satisfying (14). Moreover, we endow Dk with a probability
distribution by selecting the d+i and the d−i independently according to the TPok+(λ

+) and

the TPok−(λ
−) distributions, respectively. The D̂k space is simply Dk conditional upon (14).

Furthermore, we define Pk(n,m) as we did for P1,1(n,m) but randomising the degree sequence
~d according to the distribution of D̂k defined above.

Now we are in good shape to extend the argument in the proof of Theorem 1.2 to general
k-dicores.
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Proof of Theorem 1.3. The proof is straightforward by going along the same steps as the
proof of Theorem 1.2, but replacing D, D̂ and P1,1(n,m) by Dk, D̂k and Pk(n,m), and
considering the distributions TPok+(λ

+) or TPok−(λ
−) instead of TPo(λ) when appropriate.

The key part is extending Lemma 3.2 to the new setting, which is also straightforward. The
extended statement is as follows. Assume that m − k+n → ∞, m − k−n → ∞ and m =
O(n log n). Then

(a) PDk
(Σ) ∼ 1

2πnc
√

(1 + η+ − c)(1 + η− − c)
.

Moreover, if S is the event that a random pairing in P(~d) or Pk(n,m) is simple, then

(b) PPk(n,m)(S) = ED̂k

(
PP(~d)

(S)
)
∼ e−λ+λ−/2;

(c) for any r.v. X on D̂k satisfying |X| ≤ x for some fixed constant x ∈ R,

ED̂k

(
PP(~d)

(S) ·X
)
= (1 + o(1)) e−λ+λ−/2 ED̂k

X +O
(
e− log3 n

)
.

4 Moderately sparse case: c bounded

In this section we will prove Theorem 1.1 for the case that c = m/n is bounded and also
bounded away from 1.

A sink-set in a digraph G is a non-empty proper subset S of vertices such that the out-set
of S is a subset of S. That is, no arc goes from S to V (G) \S. A set of vertices is a source-set
if its complement is a sink-set. A sink-set in a digraph with minimum outdegree at least
1 is plain if its vertices all have outdegree exactly 1, and is otherwise complex. Plain and
complex source-sets are defined analogously by replacing outdegree by indegree. Observe that
a digraph G is strongly connected iff it has no sink-set (and equivalently no source-set). We
use the term s-set to denote sets of vertices which are a sink-set or a source-set.

We first show that a.a.s. any complex s-set of G1,1(n,m) must contain more than m/2 arcs.
Therefore, the strong connectedness of G1,1(n,m) can be characterised in terms of plain s-sets.

Proposition 4.1. Suppose that c = m/n is bounded and bounded away from 1. A digraph in
G1,1(n,m) a.a.s. has no complex s-set containing at most m/2 arcs.

Proof. It is presumably possible to analyse G1,1(n,m) or P1,1(n,m) directly to achieve the
desired result, by an expectation argument similar to that commonly used for connectivity of
graphs. However, the expectation itself seems to be difficult to analyse. Instead we introduce
another probability space, by partitioning according to the indegree sequence and to the
multiset of outdegrees. More precisely, we will consider slices of P1,1(n,m) with indegree

sequence ~d− and outdegree sequence being a permutation of ~d+, for each ~d ∈ D.

One could argue by partitioning according to the joint values of ~d− and ~d+, but certain
nasty combinations of in- and outdegrees, in which the vertices of outdegree 1 all have large
indegree, are likely to cause trouble, and rather ad-hoc arguments may be required to bound
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the troublesome cases (see e.g. the approach in [4]). It is conceivable that allowing permuta-
tions of the outdegree sequence instead helps to explain a little more of the structure of the
typical digraph in G(n,m).

To facilitate calculations of probabilities, for each ~d ∈ D̂ we introduce a probability space,
P ′(~d), which is similar to common models (called pairing or configuration models) for random
graphs or digraphs with given degree sequence. Consider two sets of points A = {a1, . . . , am}
and B = {b1, . . . , bm}, with A partitioned into nonempty sets (which we call bins) Ai, i =
1, . . . , n (corresponding to the vertices of the digraph) with |Ai| = d+i for each i, and similarly
B partitioned into nonempty sets (bins) Bi, i = 1, . . . , n with |Bi| = d−i for each i. We write

α(ai) = j if ai ∈ Aj, and β(bi) = j if bi ∈ Bj. A random element of P ′(~d) is a random
bijection φ : A → B together with a random permutation σ of [n], such that the pair (φ, σ) is
chosen u.a.r. Each element in P ′(~d) can be mapped in a natural way to a pairing in P1,1(n,m),
obtained by identifying points in Aσ(j) and points in Bj with out-points and in-points of bin j.
This corresponds in turn to a multidigraph M which has an arc (u, v) for each point ai ∈ Aσ(u)

such that φ(ai) ∈ Bv, or equivalently the arc (multi)set is {σ−1(α(ai))β(φ(ai)) : 1 ≤ i ≤ m}.
Observe that M has indegree sequence ~d− and an outdegree sequence which is a random
permutation of ~d+. As usual, all graph theory statements referred to an element in P ′(~d)
should be understood in terms of the corresponding multidigraph.

Define U to be the event, defined on any relevant probability spaces, that there is a
complex proper sink-set containing at most m/2 arcs. Ultimately, we will do the calculations
in the space P ′(~d) with ~d randomised according to its distribution in the space D̂. Call this
space P ′

1,1(n,m). Averaging over ~d makes computations a little easier than arguing about its

typical values. In fact, observe that the distribution of a random degree sequence ~d ∈ D̂ stays
invariant if we randomly permute the entries of the outdegree sequence ~d+. Hence, we deduce
that

PP1,1(n,m)(U) = ED̂

(
PP(~d)

(U)
)
= ED̂

(
PP ′(~d)

(U)
)
= PP ′

1,1(n,m)(U). (19)

Thus, in view of Corollary 3.3 and Lemma 3.2, we have

PG1,1(n,m)(U) = PP1,1(n,m)(U | S) ≤ (1 + o(1))eλ
2/2 PP1,1(n,m)(U) = O(PP ′

1,1(n,m)(U)). (20)

Therefore, we only need to show that PP ′
1,1(n,m)(U) = o(1) in order to prove the theorem

statement for complex sink-sets. The result extends immediately to complex source-sets by
considering the converse digraph.

The remainder of the proof consists of bounding the probability that an element of
P ′
1,1(n,m) has a complex sink-set with at most m/2 arcs. Observe that, if S is a complex

sink-set and v0 is a vertex in S with outdegree strictly greater than 1 (there must exist at
least one of these because S is complex), then the set S′ ⊆ S of vertices reachable from v0
is also a complex sink-set. Therefore, we only need to consider complex sink-sets which are
precisely the set of vertices reachable from some vertex v0.

Given a vertex v0, the following algorithm will terminate with S being the set of vertices
reachable from v0. The algorithm works by maintaining a set S of bins Ai corresponding to
vertices reachable from v0, and investigating the vertices reachable from S. It does this by
looking at the points in bin in S. The set T contains precisely such points which have not yet
been investigated.

12



Algorithm

Let v0 be the initially chosen vertex. Start with S = {v0}, T = Aσ(v0), and repeat the following
until T is empty. Pick ai ∈ T , add to S the vertex v = β(φ(ai)) (if it is not already there),
delete ai from T and, if v was not already in S, add all elements in Aσ(v) to T .

If the algorithm terminates with S being a complex sink-set containing at most half of the
arcs of M , we say that it terminates properly, and otherwise improperly. We complete the
proof of the theorem by showing that the probability that there exists a vertex v0 such that
the algorithm terminates properly, when begun from v0, is o(1).

As is common in analysing algorithms like this, we will make use of the fact that, con-
ditioning on any set of values of a uniformly random permutation, the remaining values are
still uniformly at random. Thus, the algorithm can be performed simultaneously with the
generation of the random bijection φ and permutation σ. At the start, φ and σ entirely un-
determined and we can choose φ(ai) at random from the unused points of B at each step of
the algorithm. Similarly, we may choose σ(v0) initially, and then σ(v) at each step where the
vertex v was not already in S, randomly from the indices i of the unused bins Ai. Thus, we
may initially choose u.a.r. a permutation φ1, . . . , φm of B, and independently a permutation
σ1, . . . , σn of [n] u.a.r., and use φ1 for the first value of φ called for in the algorithm, φ2 for the
second, and so on, and similarly for σ. Set Kk = {φ1, . . . , φk} and Js = {σ1, . . . , σs}. Since
the φi and σi are pre-chosen randomly, it follows that, for given k and s,

for given k and s, Js ⊆ [n] and Kk ⊆ B are independent and u.a.r. (21)

In particular, the joint distribution of Js and Kk does not not depend on the algorithm, which
is the important feature that simplifies analysis.

Now define
k̂ =

∑

j∈Js
|Aj |, (22)

and let Uv0 denote the event that the algorithm terminates properly, with k and s defined as
above, in particular with S being a complex sink-set with at most m/2 arcs. In the event Uv0 ,
since the termination condition implies that T is empty, it follows that

k̂ = k. (23)

Also define
ŝ = |{u : u = v0 or Kk ∩Bu 6= ∅}|. (24)

Note that at each step, since β(φ(ai)) is added to S, we have S = {v0} ∪ {u : Kk ∩ Bu 6= ∅}
and hence

ŝ = s. (25)

Moreover, the fact that S is complex is equivalent to the condition that there are more arcs
chosen than vertices in S, and so k > s. Hence, an upper bound on P(Uv0) is the probability
that (23) and (25) hold for some k and s with k ≤ m/2 and s < k.

Denote the event that (25) holds, given k and s, with ŝ generated according to (24)
given (21), by H−

k,s, and similarly the event that (23) holds, given k and s, with k̂ generated
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according to (22), by H+
k,s. Also put Hk,s = H+

k,s ∧H−
k,s. We will prove that

P

( ⋃

k≤m/2

⋃

s<k

Hk,s

)
= o(n−1). (26)

ThenPP ′
1,1(n,m)(Uv0) = o(n−1), and the result follows by taking the union boundPP ′

1,1(n,m)(U) ≤∑
v0
PP ′

1,1(n,m)(Uv0) and from (20).

It only remains to show (26), for which we split k into two intervals.

Case 1. log4 n < k ≤ m/2.

We first bound probabilities in the distribution of ŝ as determined by (24). Recall the truncated
Poisson distribution as defined in Section 2. Let Ω = Ω(n, c, q) denote the probability space in
which there are n bins Bi with |Bi| = d−i , where d

−
1 , . . . , d

−
n are independent random variables

each with the distribution of TPo(λ), and such that a random subset T of the points in the
bins is chosen by including each point independently with probability

q = k/m.

Let ŝ be the number of the bins that are either occupied by at least one point of T or happen
to be the bin v0. It follows from Lemma 2.5 that

PΩ

(
|ŝ− nq′| >

√
nq′ log n

)
= o(n−3), (27)

where q′ is the probability that a bin contains some point of T . Note that q′ > q(1+ǫ) for some
positive constant ǫ that can be determined from (12). Now define E to be the event in Ω that
the total content of bins is

∑n
i=1 d

−
i = m and that exactly k points are chosen in T . Observe

that, in the probability space Ω conditional upon E, the number ŝ of bins containing at least
one element of T is distributed as in the definition of H−

k,s. From Lemma 2.2,
∑n

i=1 d
−
i = m

holds with probability Θ(n−1/2), and—conditional on that—the event |T | = k has probability

Θ(k−1/2), since |T | d∼ Bin(m,k/m). Hence, PΩ(E) = Ω(n−1) and by (27)

P

(
⋃

|s−nq′|>√
nq′ logn

H−
k,s

)
= PΩ(|ŝ − nq′| >

√
nq′ log n | E) = o(n−2). (28)

The next (and simpler) step is to define Ω′ = Ω′(n, c, s) to be the probability space in which
there are n bins Ai with |Ai| = d+i all independent random variables each with the distribution
of TPo(λ), and such that a uniformly random set of s of the bins is chosen. Assume that s
lies in the range |s − nq′| ≤ √

nq′ log n, and in particular s = Ω(log4 n). Let k̂ be the total
number of points in the selected bins. From Lemma 2.3 we obtain the tail bound

PΩ′

(
k̂ ≤ cs

1 + ǫ/2

)
≤ e−Θ(s1/3) = o(n−4). (29)

Now let E′ be the event in Ω′ that
∑n

i=1 d
+
i = m, and recall from Lemma 2.2 that PΩ′(E′) =

Θ(n−1/2). Observe that in Ω′ conditional upon E′ the distribution of k̂ is the same as the
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one in the definition of H+
k,s. Moreover, the fact that |s − nq′| ≤ √

nq′ log n implies that

k ≤ cs/(1+ǫ+o(1)). In view of all that and from (29), we obtain that for |s−nq′| ≤ √
nq′ log n

P(H+
k,s) ≤ PΩ′

(
k̂ ≤ cs

1 + ǫ+ o(1)
| E′

)
= o(n−3). (30)

Taking the union bound over all s such that |s−nq′| ≤ √
nq′ log n, combining it with (28) and

summing over all k between log4 n and m/2 completes the proof of (26) for this range of k.

Case 2. k ≤ log4 n.

For ~d ∈ D̂, the event d−max < log2 n, or equivalently |Bi| < log2 n for each i, holds with
probability 1− o(n−1). This follows readily from bounding the probability of the complement
in D and then conditioning upon

∑
i d

−
i = m (see (4) and Lemma 2.2). Since P ′

1,1(n,m) is just

P ′(~d) with ~d distributed as in D̂, we may focus on P ′(~d) for a particular ~d satisfying the above
property. Note that ŝ = s < k according to (24) if the random choice {φ1, . . . , φk} of elements
of B determines at most k − 2 bins other than v0. This has probability O(k4(log2 n/m)2).
Hence, in P ′(~d)

∑

k≤log4 n

P

( ⋃

s<k

H−
k,s

)
=

∑

k≤log4 n

P(ŝ ≤ k − 1) = O(log24 n/n2) = o(1/n).

Next consider plain s-sets of G1,1(n,m).

Proposition 4.2. Suppose that c = m/n is bounded and bounded away from 1. The probability
that a digraph in G1,1(n,m) has no plain s-set is asymptotic to

eλ(eλ − 1− λ)2

(e2λ − eλ − λ)(eλ − 1)
, (31)

with λ determined by the equation c = λeλ/(eλ − 1).

Proof. The simplest sink-sets or source-sets are those whose vertices induce a directed cycle.
Call them sink-cycles or source-cycles accordingly. An s-cycle is just a set of vertices which is
either a sink-cycle or a source-cycle. Observe that each plain s-set must contain one s-cycle,
so we can restrict our attention to s-cycles.

For any constant natural k ≥ 1, let Ck be the number of s-cycles of order at most k. Let
D be the number of double arcs. Define

µk =

k∑

j=1

2(c/eλ)j − (c/e2λ)j

j
.

Easy computations show that 2(c/eλ)j > (c/e2λ)j , so that there are no cancellations in any
term of the definition of µk. We first claim that EP1,1(n,m)Ck ∼ µk, EP1,1(n,m)D ∼ λ2/2, and
moreover Ck and D are asymptotically jointly independent Poisson. Elementary calculations
show that

µ = lim
k→∞

µk = log

(
(e2λ − eλ − λ)(eλ − 1)

eλ(eλ − 1− λ)2

)
.
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On the other hand, we claim that the probability there is an s-cycle of order greater than k
can be bounded by some function fk such that limk→∞ fk = 0. In view of all this, setting S
to be the event that P1,1(n,m) has no multiple arcs and V to be the event in G1,1(n,m) or
P1,1(n,m) that there are no s-cycles, we get

PP1,1(n,m)(V ∩ S) ∼ e−µ−λ2/2.

Then the proof of the result follows immediately from Lemma 3.2(b) and the fact that
PG1,1(n,m)(V ) = PP1,1(n,m)(V | S).

Now we proceed to verify the claims we made about Ck, D and the expected number of
“long” s-cycles. To make the computations easier, we generate the elements of P1,1(n,m) using
a slight variation of the P ′

1,1(n,m) model in which the in-points a1, . . . , am (resp. out-points
b1, . . . , bm) are assigned independently and u.a.r. to the in-bins A1, . . . , An (resp. out-bins
B1, . . . , Bn) conditional upon each bin receiving at least one point (note that the degree
sequence thus obtained is distributed as in D̂). In addition to that, a random bijection φ of
the out- and in-points, and a random permutation of the labels of the out-bins are chosen as
before independently and u.a.r. (alternatively we may consider σ to be a random bijection of
the out- and in-bins).

First we wish to compute the joint factorial moments of Ck and D. We shall index all
possible s-cycles of length at most k by their position (i.e. the vertices they use in cyclic order).
More precisely, the position of a cycle of length ℓ is determined by a tuple of ℓ distinct in-bins
Bi1 , . . . , Biℓ given in cyclic order together with and ordered tuple of out-bins Ai1 , . . . , Aiℓ . A
random element of P ′

1,1(n,m) has an s-cycle at c, if it has an s-cycle on vertices v1, . . . , vℓ
where each vertex vj corresponds to the bins Aσ(ij ) and Bij .

Fix c1, . . . , cr, where each ci is the position of a cycle of length ℓi and the bins used for
each position are pairwise disjoint. Let Xc1,...,cr be the indicator function for the event that
there is an s-cycle at each position ci. We compute the probability that this event holds. The
probability that the out-bins are assigned to the corresponding in-bins is

1/[n]ℓ1+···+ℓr ∼ 1/nℓ1+···+ℓr . (32)

Condition on this, and note that the degrees of the bins and the matching of the points occur
independently from that. Now we claim that the probability that the right s-cycles occur at
c1, . . . , cr is asymptotic to ∏

i

(2aℓi/nℓi − a2ℓi/mℓi), (33)

where a = λ/(eλ−1) = c/eλ. Observe that the events of having a sink-cycle or having a source-
cycle at ci are not disjoint, so the probability of the union is the sum of probabilities minus the
probability of having both a sink- and a source-cycle at ci. Thus, in order to estimate (33), we
can specify for each ci one of the three former events (sink-cycle, source-cycle or both). More
precisely, given r1+r2+r3 = r and relabelling c1, . . . , cr to c1, . . . , cr1 , c

′
1, . . . , c

′
r2 , c

′′
1 , . . . , c

′′
r3 and

ℓ1, . . . , ℓr to ℓ1, . . . , ℓr1 , ℓ
′
1, . . . , ℓ

′
r2 , ℓ

′′
1 , . . . , ℓ

′′
r3 , we shall compute w.l.o.g. the following probabil-

ity: having a sink-cycle at c1, . . . , cr1 (and possibly a source-cycle too); having a source-cycle
at c′1, . . . , c

′
r2 (and possibly a source-cycle too); or having both a sink- and a source-cycle at

c′′1 , . . . , c
′′
r3 . We shall see that this probability is asymptotic to

aℓ1+···+ℓr1+ℓ′1+···+ℓ′r2+2(ℓ′′1+···+ℓ′′r3)

nℓ1+···+ℓr1+ℓ′
1
+···+ℓ′r2mℓ′′

1
+···+ℓ′′r3

, (34)
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and this leads to (33) by easy inclusion-exclusion.

To arrive at (34), we require that ℓ1+ · · ·+ ℓr1 + ℓ′′1 + · · ·+ ℓ′′r3 specific out-bins determined
by c1+ · · ·+cr1+c′′1+ · · ·+c′′r3 contain exactly one point each. By symmetry, the probability of
this is (E[N ]ℓ1+···+ℓr1+ℓ′′

1
+···+ℓ′′r3

)/[n]ℓ1+···+ℓr1+ℓ′′
1
+···+ℓ′′r3

, whereN is the number of out-bins with

only one point. N is concentrated around an by [3, Lemma 1] since the distribution of balls

in bins is truncated multinomial. Hence E[N ]ℓ1+···+ℓr1+ℓ′′
1
+···+ℓ′′r3

∼ (an)ℓ1+···+ℓr1+ℓ′′
1
+···+ℓ′′r3

and the probability is (1 + o(1))aℓ1+···+ℓr1+ℓ′′1+···+ℓ′′r3 . Analogously, we need that some specific
ℓ′2 + · · · + ℓ′r2 + ℓ′′1 + · · · + ℓ′′r3 in-bins contain only one point, which is independent from the

previous and has probability (1 + o(1))aℓ
′
2
+···+ℓ′r2+ℓ′′

1
+···+ℓ′′r3 . Conditional upon all this, we

need that for each c1, . . . , cr1 , the only point in each out-bin is matched to some point in the
corresponding in-bin; for each c′1, . . . , c

′
r2 , the only point in each in-bin is matched to some

point in the corresponding out-bin; and for each c′′1 , . . . , c
′′
r3 , the only point in each out-bin is

matched to the only point in the corresponding in-bin. Observe that the number of points in
these out-bins that have not been exposed remains independent truncated Poisson conditional
to fixed sum m − ℓ1 + · · · + ℓr1 + ℓ′′1 + · · · + ℓ′′r3 . An analogous thing happens for in-bins
that were not exposed and the sum of their degrees is m − ℓ′1 + · · · + ℓ′r2 + ℓ′′1 + · · · + ℓ′′r3 .
The probability of matching the in- and out-points appropriately for s-cycles at c′′1, . . . , c

′′
r3

is 1/[m]ℓ′′
1
+···+ℓ′′r3

∼ 1/mℓ′′1+···+ℓ′′r3 . We condition on that and on the event that no out-point

corresponding to c1, . . . , cr1 is matched to any in-point corresponding to c′1, . . . , c
′
r2 (which

happens with probability 1 + o(1)). This makes the construction of the remaining sink-cycles
independent from that of source-cycles. For the sink-cycles, we have to match the only point
in each out-bin with some point in the corresponding in-bin. By symmetry, the first matching
has probability 1/(n − ℓ′1 + · · · + ℓ′r2 + ℓ′′1 + · · · + ℓ′′r3) ∼ 1/n. Conditional to some matchings
being exposed, the probability that the next out-point is matched to a point in an in-bin which
contains one matched point already is O(1/n) since there is negative correlation between the
events that two out-points are matched to in-points in the same bin (condition on any given
degree). Thus that out-point is matched to some point in an unexposed in-bin with probability
1+ o(1) and conditional to that, again by symmetry, chooses the right in-bin with probability
(1 + o(1))/n. This gives a probability (1 + o(1))/nℓ1+···+ℓr1 for having the matchings required

for the sink-cycles. Analogously, the source-cycles give a (1+ o(1))/nℓ′
1
+···+ℓ′r2 factor, and this

establishes the estimate (34).

So far we were dealing with fixed cycle tuples c1, . . . , cr. Let Ck be the random number
of s-cycles occurring. To compute the r-th factorial moment it suffices to multiply (32) and
(33) by the number of ways of choosing r different c1, . . . , cr, which is

∑

ℓ1,...,ℓr∈{1,...,k}

([n]ℓ1+···+ℓr)
2

ℓ1 · · · ℓr
.

Hence,

E[Ck]r ∼
(

k∑

ℓ=1

2aℓi − (a2/c)ℓi

ℓi

)r

= µk
r.

Let D be the number of double arcs occurring. Recall that the out-points are placed in the
out-bins (and the in-points in the in-bins) uniformly at random and independently conditional
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upon getting at least one point in each bin. We index double arcs according to their position,
where each position j is a set of two different out-points in the same out-bin along with a set
of two different in-points in the same in-bin. Let Z be the number of positions for double arcs.
We have the trivial bound Z ≤ m4. Combining together Lemmas 2.1, 2.4 and 2.2, we have
that |Z − (λcn/2)2| < n1.6 with probability 1 − O(n1/2e− log3 n). Hence, E[Z]s ∼ (λcn/2)2s.
We say that there is a double arc at j if the out-points are matched to the in-points in any of
the two possible ways. Fix s different positions j1, . . . , js. The probability of having double
arcs at j1, . . . , js is is 2s/[m]2s. Therefore,

E[D]s = E[Z]m2s/[m]2s ∼ (λ2/2)s.

In order to compute joint moments of Ck and D, we condition to s-cycles happening at some
fixed positions c1, . . . , cr and we specify the type of each cycle (sink-, source- or both) in
the same fashion we used in the previous computations (sink does not exclude source and
vice-versa). To make computations easier we also condition on the particular in-points and
out-points matched to create the s-cycles. Conditional upon all this, we compute E[D]s. The
same computations we did before are still valid if applied to the in- and out-points that were
not used in the construction of the s-cycles, and this yields the the same asymptotic value
(λ2/2)s. So

E[Ck]r[D]s ∼
(

k∑

ℓ=1

2aℓi − (a2/c)ℓi

ℓi

)r

(λ2/2)s

The claim that the distributions are asymptotically independent Poisson now follows by the
standard method of moments.

It only remains to bound the probability of existence of s-cycles of length greater than k
by some function fk such that limk→∞ fk = 0. It is enough to deal with sink-cycles, since the
result for source-cycles follows by considering the converse digraph. Take a length ℓ > k. We
now condition on the number N as defined above. We can choose ([n]ℓ)

2/ℓ different positions
for such a cycle. For each of these, the probability that the bins are matched the right way is
1/[n]ℓ (regardless of N). The probability that each of the ℓ out-bins contains exactly one point
is at most (N/n)ℓ. The probability that each of the ℓ out-points is matched to a point in the
corresponding in-bin is at most 1/[n]ℓ (since conditional upon i matched pairs, the probability
of the next matched pair is 1/(n− i) times the probability of hitting a point in an in-bin not
previously hit). This is again regardless of N .

Putting this together, this expectation is at most

∑

ℓ>k

(N/n)ℓ/ℓ.

this tends to 0 for large k provided N/n < (a + 1)/2. The probability that N is larger than
this is o(1) by the concentration mentioned above.

From Theorem 1.2, Proposition 4.1 and Proposition 4.2 we immediately obtain Theo-
rem 1.1 for the case c is bounded and bounded away from 1.
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5 Very sparse case: c → 1

Here we proof Theorem 1.1 for the case c → 1. Thus r = m − n = o(n), and we assume
r = m− n → ∞. We define the directed graph analogue of the kernel of a graph as follows.
A cycle component of a digraph is a connected component which is simply a directed cycle.
A digraph with each in-and outdegree at least 1 and with no cycle components is called a
preheart. The heart of a preheart G is the multidigraph H(G) obtained from G by repeatedly
choosing a vertex v of in- and outdegrees both 1, deleting v and its two incident arcs uv and
vw, and inserting the arc uw. The condition that G contains no isolated cycle ensures that
the heart is always a multidigraph. The vertices of H(G) are just the vertices of G of total
degree at least 3.

Note that a digraph is strongly connected iff it is an isolated cycle or a preheart with
strongly connected heart. Thus we may use ideas similar to those in Section 4 to study the
heart, as a key step to enumerate strongly connected digraphs. Connectivity properties of the
heart can be easier to prove than for just the (1, 1)-dicore. In the dicore, some complex s-sets
can involve many vertices of in- and outdegree 1 and just a few other vertices. We will focus
on the heart and also use randomisation of the in- and outdegree sequences, as in the P(~d)
and P ′(~d) models in Section 4.

Consider any given degree sequence ~d ∈ D̂, and let T = T (~d) = {i : d+i + d−i ≥ 3}. We put
n′ = |T | and m′ =

∑
i∈T d+i =

∑
i∈T d−i , and note that m − n = m′ − n′. For simplicity of

presentation, renumber the vertices if necessary so that T = [n′].

Let H(~d) be the probability space of heart configurations generated as follows. For each
i ∈ T consider consider a bin containing labelled points of two types, namely d+i out-points
and d−i in-points, and then choose a random matching of the in-points with the out-points

(there are m′ of each kind). Note that each heart configuration in H(~d) corresponds to a
multidigraph on vertex set T obtained in a natural way by identifying bins with vertices and
adding an arc (u, v) for each out-point in u matched to an in-point in v.

Moreover, given a heart configuration H, we construct a preheart configuration Q by
taking an assignment of [n] \ T to the arcs of H (i.e. the pairs of matched up points), such
that the numbers assigned to each arc are are given a linear ordering. Denote this assignment,
including the linear orderings, by f . Let Q(~d) be the probability space of random preheart
configurations created by taking H ∈ H(~d) and choosing f u.a.r. Note that each Q ∈ Q(~d)
corresponds to a multidigraph with n vertices, m arcs and degree sequence ~d. Henceforth,
any graph terminology referring to a heart or preheart configuration should be interpreted in
terms the corresponding multidigraph.

Lemma 5.1. The digraphs generated from the restriction of Q(~d) to simple preheart configu-
rations (i.e. with no multiple arcs) are uniformly distributed.

Proof. Each simple digraph comes from
∏n

i=1 d
+
i !d

−
i ! different preheart configurations.

As will become apparent later in the argument, it turns out that the degree sequence
distribution induced by the uniform probability space of all prehearts on n vertices and m
arcs is close in some sense to D̂. This motivates considering the probability spaces H(n,m)
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and Q(n,m), defined by choosing a random element from H(~d) and Q(~d) respectively, where
the degree sequence ~d is also random and distributed as in D̂.

Given a degree sequence ~d ∈ D̂, we distinguish four kinds of vertices depending on whether
their in- and outdegree are equal to 1, or larger. For i, j ∈ {1, 2}, let Ni,j be the set of vertices
with indegree of type i and outdegree of type j (type 1 means 1 and type 2 means greater
than 1). Let a = (a1,1, a1,2, a2,1, a2,2), where ai,j = |Ni,j|. This a is of course a function of
~d. Observe that any a which is feasible (i.e. occurs in D̂ with nonzero probability) satisfies
a1,1 + a1,2 + a2,1 + a2,2 = n, 1 ≤ a1,2 + a2,2 ≤ r and 1 ≤ a2,1 + a2,2 ≤ r. Conversely, it is easy
to check that, for sufficiently large n, any nonnegative tuple a satisfying the above conditions
is feasible. Note also that n′ = a1,2 + a2,1 + a2,2 and m′ = r + a1,2 + a2,1 + a2,2.

We will want to condition on “typical” values of a. Denote by Γ the event that

|a1,2 − r| ≤ √
r log r, |a2,1 − r| ≤ √

r log r and a2,2 ≤ max{2r2/n,√r}.

Note in particular that Γ implies

n′ ∼ 2r m′ ∼ 3n′/2 ∼ 3r, a1,2 ∼ a2,1 ∼ r, a2,2 = o(r). (35)

We next show something somewhat stronger than PD̂(Γ) = 1− o(1).

Lemma 5.2.

ED̂(m
′(1− 1Γ)) = o(1).

Proof. First we observe that m′ is deterministically at most 3r in D̂. This upper bound is
immediate from the fact that the underlying undirected graph of the heart has n′ vertices,
m′ = n′ + r edges and average degree 2m′/n′ ≥ 3. Hence, by Lemma 3.2(a), it suffices to
bound the probability that Γ fails by o(1/r2) in D. Here, a1,2, a2,1 and a2,2 are binomially
distributed with expectations r, r and r2/n respectively. (Note that r → ∞, but r2/n need
not be large.) Hence, standard bounds (if r grows very slowly, (9) does not suffice, but in
any case we can simply consider ratios of consecutive binomial probabilities) shows that the
conditions on a1,2 and a2,1 in the definition of Γ hold with probability 1− o(1/r2). A similar
argument ensures that a2,2 has the required concentration with probability 1 − o(1/r2), but
the analysis is split into two cases. If r ≤ n3/5, then r2/n ≤ r1/3 and we easily bound the
probability that a2,2 >

√
r, for instance by comparing with a binomial with mean r1/3. On

the other hand, if r > n3/5, we bound the probability that a2,2 > 2r2/n using (9).

This result allows us to condition on feasible a satisfying Γ. In fact, for any given feasible
tuple a, we denote by H(a) and Q(a) respectively the probability spaces H(n,m) and Q(n,m)
conditional on having that particular a.

Lemma 5.3. Let a be any feasible tuple satisfying Γ. Then a random heart configuration in
H(a) a.a.s. has no complex s-set of at most m′/2 arcs.

Proof. The argument shares many features with the proof of Proposition 4.1, in particular
using auxiliary randomisation to simplify computations. Let N ′ denote [n′] (which was also
T , the relevant set of vertices for the heart configuration). For each ~d ∈ D̂ consider, as in the
definition of P ′(~d), two sets of points A = {a1, . . . , am′} and B = {b1, . . . , bm′}, partitioned
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respectively into bins A1, . . . , An′ and bins B1, . . . , Bn′ , with |Ai| = d+i and |Bi| = d−i for each
i ∈ N ′. We write α(ai) = j if ai ∈ Aj , and β(bi) = j if bi ∈ Bj . Define the probability

space H′(~d) to be a random bijection φ : A → B chosen u.a.r. together with two random
permutations σ and τ of [n′], chosen independently of φ and of each other and u.a.r. subject
to the conditions that d+σ(i) = 1 whenever d+i = 1, and d−τ(i) = 1 whenever d−i = 1. We need an

appropriate randomisation of the degrees. Thus, consider the probability space H′(a), whose
elements are selected at random from H′(~d) with ~d a random member of D̂ but conditional
on the particular value of the vector a = a(~d).

Observe that each element H ′ in H′(a) corresponds in a natural way to an element H
in H(a), obtained by identifying the points in Aσ(j) and those in Bτ(j) with the out-points

and in-points, respectively, of bin (vertex) j (in the same way that elements in H′(~d) can be
mapped to elements in H(~d)). Moreover, the H obtained this way has the same distribution
as in H(a), since the distribution of the degree sequence and thus a stay invariant after
permuting the indices of the vertices in N ′ by σ and τ (so it does not matter if we condition
to a particular a before or after applying σ and τ). Hence, setting U to be the event in H(a)
or H′(a) that there is a complex sink-set containing at most m′/2 arcs, we have

PH(a)(U) = PH′(a)(U).

Henceforth we can do all calculations in H′(a), which simplifies the analysis as P ′
1,1(n,m) did

in Section 4.

By the same argument as in the proof of Proposition 4.1, in order to bound the probability
of U , we can restrict our attention to complex sink-sets whose vertices are all reachable from
some vertex v0. If the set of vertices reachable from vertex v0 is a complex sink-set then
essentially the same algorithm as in Section 4 will terminate with S being such a sink-set. We
restate the algorithm in the current setting as follows:

Start with S = {v0}, R = Aσ(v0), and repeat the following until R is empty. Pick i ∈ R, add
to S the vertex v such that φ(ai) ∈ Bτ(v) (if it is not already there), delete i from R and, if v
was not already in S, add all elements in Aσ(v) to R.

As in the proof of Proposition 4.1, the algorithm can be performed simultaneously with
the generation of the random bijection φ and permutations σ and τ , piecemeal at each step
of the algorithm.

We need some notation to describe the generation of σ and τ . Let

N+
2 = N2,1 ∪N2,2 = {i ∈ N ′ : d+i > 1}, N−

2 = N1,2 ∪N2,2 = {i ∈ N ′ : d−i > 1},

N+
1 = N ′ \N+

2 , N−
1 = N ′ \N−

2 .

Also, at the start generate u.a.r. random permutations σ̂j of N
+
j and τ̂j of N

−
j (j = 1, 2), and φ̂

of B, which we will view precisely as orderings of these sets (as in the proof of Proposition 4.1).
Initially, let σ(v0) be the first element of τ̂j, where j is determined by v0 ∈ N+

j . At each step,

φ(ai) is defined to be the next element of B in the ordering φ̂. At each step where τ−1(β(φ(ai)))
has not yet been determined, choose v to be the next unused member of N−

j in the ordering
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τ̂j. Set τ(v) = β(φ(ai)). Then, if σ(v) is not yet determined, define it as the next member of
N+

j (where v ∈ N+
j determines j) in the ordering σ̂j.

At any given stage, when k points φ(ai) have been chosen so far, let K ⊆ B denote the set
of these points, which must be the first k points of φ̂. (This corresponds to the set Kk in the
proof of Proposition 4.1; we suppress the indices such as k for simplicity.) Also let J+ denote
the set of values σ(v) determined so far (note this is precisely {σ(v) : v ∈ S}), and somewhat
asymmetrically, define J− to be the set of vertices whose image under τ has been determined.
Then J− = S if v0 was chosen at some stage as v, and otherwise J− = S \ v0. Define the
following random sets referring to a step after which precisely k < m′ arcs have been exposed:

J+
1 = J+ ∩N+

1 ,

J+
2 = J+ ∩N+

2 ,

J−
1 = J− ∩N−

1 ,

J−
2 = J− ∩N−

2 ,

and put t+1 = |J+
1 | and so on. Then at each step of the algorithm, conditional upon having

given cardinalities that can feasibly occur, the permutations σ̂ etc. determine these sets, and
ensure that each of these sets occurs u.a.r. as subsets of N+

1 , N+
2 , N−

1 and N−
2 respectively,

and the same property holds for K as a subset of points in B with cardinality k. Furthermore,
all these sets occur jointly independently of each other. For t = (t+1 , t

+
2 , t

−
1 , t

−
2 ), let Ω(k, t)

denote the probability space of such independently chosen sets, K and the J+
i etc., with these

cardinalities. Next define

k̂ =
∑

j∈J+

|Aj |, (36)

t̂+1 = |(J− ∪ {v0}) ∩N+
1 |, (37)

t̂+2 = |(J− ∪ {v0}) ∩N+
2 |, (38)

t̂−1 = |i ∈ N−
1 : K ∩Bi 6= ∅|, (39)

t̂−2 = |i ∈ N−
2 : K ∩Bi 6= ∅|. (40)

By the form of the algorithm, at each iteration, precisely after the point when a new image
of σ is exposed, we have that t+1 + t+2 = t−1 + t−2 and also

t̂+i = t+i and t̂−i = t−i , i = 1, 2. (41)

Moreover, in the event Uv0 that the algorithm terminates with S being a sink-set, we have

k̂ = k (42)

and
k > t+1 + t+2 (43)

if it is complex.

Thus, setting Fk,t to be the event that the tuple t occurs in the algorithm after k arcs are
exposed, and H the event that (41) and (42) hold, we have by the union bound

PH′(a)(Uv0) ⊆
∑

k≤m′/2

∑

t+
1
+t+

2
=t−

1
+t−

2
<k

PH′(a)(Fk,t ∩H). (44)
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Note that H in also defined the space Ω(k, t).

We now note that, using the earlier observation that motivated defining Ω(k, t),

PH′(a)(Fk,t ∩H) ≤ PH′(a)(H | Fk,t) = PΩ(k,t)(H).

Thus it suffices to show

∑

k≤m′/2

∑

t+
1
+t+

2
=t−

1
+t−

2
<k

PΩ(k,t)(H) = o(1/n′), (45)

as the lemma follows from this using the argument in Proposition 4.1 from (26) onwards.

Conditional on the values of k and t, the random variables k̂ etc. depend only on the
random permutations φ̂ etc., and in particular the distribution of k̂ only depends on t+1 , t

+
2

and ~d+; the distributions of t̂−1 and t̂−2 only depend on k and ~d−; the distributions of t̂+1 and

t̂+2 only depend on t−1 , t
−
2 and ~d+.

Case 1. log4 n′ < k ≤ m′/2

Let g = 1/1000. Let E1 be the event that |t̂−1 /(k/3) − 1| ≤ g and t̂−2 /(k/2) − 1 > −g.
Let E2 be the event that |t̂+1 /t−2 − 1| ≤ g and |t̂+2 /t−1 − 1| ≤ g. Let E3 be the event that

|k̂/(t+1 + 2t+2 ) − 1| ≤ g. Given any fixed values for k and t with k > log4 n′, if both (41)
and (42) hold then, clearly, at least one of E1, E2 and E3 must fail for n′ sufficiently large.
We claim that each of E1, E1 \E2, and (E1∩E2)\E3 have probability o((n′)−5) in the spaces
Ω(k, t) occurring in (45). Thus PΩ(k,t)(H) = o((n′)−5) in all cases, yielding (45) by summing
over k and the constrained t.

To verify the claims about the Ei, the same type of argument as in Case 1 in the proof of
Proposition 4.1 suffices. For instance, regarding E1, recall that K is a random subset of the
points in B of cardinality k. We can instead assume that the points of B are independently
choosen with probability k/m′, and condition later on obtaining precisely k points, which holds
with probability Θ(1/

√
k). Therefore, it is enough to show that E1 has probability 1−o((n′)−6)

in the unconditional probability space where elements of B are chosen independently. Noting
by (35) that |N−

1 | ∼ r, |N−
2 | ∼ r and m′ = Θ(n′), we have by (9) that the probability that

the number t−1 of points chosen in N−
1 satisfies |t−1 /(k/3) − 1| > g is o(1/(n′)6). Similarly,

from Lemma 2.5 (applied to |N−
2 | copies of TPo2(λ) with q = k/m′), the probability that

|t−2 /(k/2) − 1| > g is o(1/(n′)6). For E2, note that t̂+1 = |V ∩ N+
1 |, where V denotes the

set of the first t−2 elements of τ̂2. Since V is a random subset of N−
2 , and since by (35)

|N−
2 \ N+

1 | = o(|N−
2 |), we have |t̂+1 /t−2 − 1| ≤ g with probability o((n′)−5) provided say

t−2 > log2 n′. This is guaranteed by E1. The other statement in E2 works exactly the same,
and thus the probability of E1 \ E2 is o((n′)−5). Finally, for E3, conditional on a, we just
consider the fixed number r + a2,1 + a2,2 of balls thrown randomly into the a2,1 + a2,2 bins
conditional on at least two in each bin, (one ball in all other bins) and argue as for (29) to
deduce that when t+2 bins are selected u.a.r., with high probability they contain approximately
2t+2 balls.

Case 2. k ≤ log4 n′

The argument for Case 2 in the proof of Proposition 4.1 applies almost directly to the
current setting, with of course P ′(~d) and P ′

1,1(n,m) replaced by H′(~d) and H′(a). The only

23



twist is that we have to show that, conditional upon a, the indegree sequence has maximum
less than log2 n with probability 1 − o(1/n). Such a sequence can be generated by putting
r + n′ − a2,1 elements randomly into a1,2 + a2,2 bins subject to each bin receiving at least
two balls. By (35) the excess of balls over bins is o(r) and so the required property follows
easily.

Lemma 5.4. Let a be any feasible tuple satisfying Γ. Then a random preheart configuration
in Q(a) is simple and strongly connected with probability 1/9 + o(1).

Proof. A preheart configuration Q ∈ Q(a) is strongly connected iff its underlying heart
configuration H = H(Q) is. Note moreover that H is distributed as in H(a), by construction.

Recall the definition of s-cycle from the proof of Proposition 4.2, and note that if H has no
complex s-set of at most m′/2 arcs, then strong connectedness of H is equivalent to H having
no s-cycles. Thus, in view of Lemma 5.3, we only need to show that a heart configuration in
H(a) has no s-cycles with probability 1/9 + o(1), and that when inserting m−m′ vertices in
the arcs in order to generate a preheart configuration Q ∈ Q(a) we get a simple digraph a.a.s.

Since Γ holds, we have (35). We first claim that this implies that a.a.s. the number S of
pairs of points that lie in the same in-bin is O(r). Let n2 := a2,1+a2,2 which must be r−o(r).
We have a distribution of r+n2 points into n2 in-bins chosen u.a.r. conditional upon each bin
receiving at least two points. If r − n2 = o(log r) say, immediately S ≤ r +O(log2 r) = O(r).
If on the other hand r−n2 → ∞ (but recall it is o(r)), then this multinomial distribution can
be approached by n2 independent 2-truncated Poissons conditional upon having sum r + n2

(see Lemma 2.1). Combining Lemmas 2.4 and 2.2, we deduce that S = O(r) with probability

1−O((r − n2)
1/2e− log3 r) = 1− o(1).

The same holds for out-bins, so we may assume that the number of ways of choosing a set
{a1, a2} of out-points in the same bin and a set {b1, b2} of in-points in the same bin is O(r2).
The probability that a1, a2 are matched to b1, b2 thus creating a double arc is O(1/r2). The
probability that a given double arc in H gets no vertex inserted during the construction of
Q is (m′ − 2)(m′ − 1)/(m − 2)(m − 1) = O(r2/n2) = o(1). Combining these conclusions, the
expected number of double arcs in H that get no vertex inserted during the construction of
Q is o(1), and therefore Q is simple a.a.s.

Let

µk =

k∑

j≥1

2

j

(
2

3

)j

and µ = lim
k→∞

µk = 2 log
1

1− 2/3
= log 9.

The number of s-cycles of order at most k in H(a) is asymptotically Poisson of mean µk. This
follows from estimating the factorial moments of this number of s-cycles in a similar way as
in the proof of Proposition 4.2. The present case is simpler in two ways: firstly, there are no
sets of vertices which are both a sink-cycle and a source-cycle, since this would imply having
isolated cycles consisting of vertices of degree (1, 1). Secondly, the fact that the number of
bins with degree exactly (1, 2) and the number of bins with degree exactly (2, 1) are each
concentrated around r, and that the number of points in bins with higher degrees is negligible
makes calculations much simpler than those in the proof of Proposition 4.2. As before, the
probability of having some s-cycles of order greater than k can easily be bounded by some fk
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such that limk→∞ fk = 0. Therefore, the probability of having no s-cycles is e−µ + o(1) as
required.

Finally, we proceed to prove Theorem 1.1 for the case c → 1. Denote by K(n,m) the
number of strongly connected digraphs with n vertices and m arcs. Given any degree se-
quence ~d ∈ D̂, there are exactly m!(m′/m) preheart configurations in Q(~d). Thus, in view of
Lemma 5.1 and setting A to be the event simple and strongly connected, we can write

K(n,m) =
∑

~d∈D̂

m!(m′/m)PQ(~d)
(A)

∏n
i=1 d

+
i !d

−
i !

= (m− 1)!ED̂

(
m′PQ(~d)

(A)
) (eλ − 1)2n

λ2m
PD (Σ)

∼ (m− 1)!

2π(m− n)

(eλ − 1)2n

λ2m
ED̂

(
m′PQ(~d)(A)

)
, (46)

since PD(Σ) ∼ 1
2πnc(1+λ−c) ∼ 1

2π(m−n) by Lemma 3.2.

To estimate ED̂

(
m′PQ(~d)

(A)
)
we will restrict ourselves to the event Γ. If Γ holds, then (35)

gives m′ ∼ 3n′/2 ∼ 3(m−n). From Lemmata 5.3 and 5.4, for any any a satisfying Γ, we have

PQ(a)(A) ∼
1

9
.

Moreover, from Lemma 5.2, we have that ED̂(m
′(1 − 1Γ)) = o(1) and in particular P(Γ) =

1 + o(1). Therefore,

ED̂

(
m′PQ(~d)

(A)
)
= ED̂

(
m′1ΓPQ(~d)

(A)
)
+ED̂

(
m′(1− 1Γ)PQ(~d)

(A)
)

= (1 + o(1))3(m − n)PQ(n,m)(A | Γ) + o(1)

∼ (m− n)/3.

Combining this with (46), we obtain (2) and thus complete the proof of the theorem.

6 Denser case: c → ∞

In this section, we treat the case that c → ∞ with c = O(log n). For such c, it follows easily
from (7) that

c = λ+ o(1). (47)

Our goal is to obtain the asymptotic number of strongly connected digraphs in this case, and
therefore complete the proof of Theorem 1.1. The main result in this section is the following.

Proposition 6.1. For c := m/n → ∞ with c = O(log n), a random digraph in G1,1(n,m) is
a.a.s. strongly connected.

This result, combined with Theorem 1.2, gives the asymptotic number of strongly con-
nected digraphs in the case that c → ∞ with c = O(log n), which by (47) is asymptotic to (3),
and thus the proof of Theorem 1.1 is complete.
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Proof. As explained at the start of Section 4, it suffices to show that a.a.s. there are no sink-
sets. As before, we let s be the cardinality of a hypothetical sink-set. By duality it suffices to
consider only s ≤ n/2.

Let G ∈ G1,1(n,m). We consider two cases. Let K be fixed, and chosen sufficiently large
as determined by the argument in Case 2 below.

Case 1: s ≤ cK

Let N1 be the number of vertices of outdegree 1 in G. Define f = λ/(eλ − 1)+n−1/3. The
probability that one truncated Poisson r.v. equals 1 is λ/(eλ − 1). Hence, by (8), in the space
D with N1 interpreted in the natural way, we have

P(N1 ≥ f(c)n) = e−Ω(log3 n).

Then the same conclusion holds in D̂ by Lemma 3.2(a). This also transfers to the random
graph G ∈ G1,1(n,m) by Lemma 3.2(b) and Corollary 3.3, which show that probabilities

multiply by at most eO(log2 n).

We will condition on N1 = n1 where n1 < f(c)n, and consider the set N = {n1 : n1 <
f(c)n, P(N1 = n1) > 1/n2}. Then P(N1 /∈ N ) < 1/n = o(1). Let H denote the event of not
being strongly connected. We will show that

max
n1∈N

P(H | N1 = n1) = o(1),

which implies the result immediately. It helps to consider separately the event J that the
maximum in- or outdegree in the digraph is less than log2 n. By (4) and Lemma 2.2, P(J) =
1−o(1/n2). So, letting Xs denote the number of sink-sets of cardinality s, the above equation
follows if we show ∑

1≤s≤n/2

E(Xs ∧ 1J | N1 = n1) = o(1) (48)

for all n1 ∈ N .

By symmetry, we can assume the n1 vertices of outdegree 1 are specified in advance, so we
may work in the restricted model, Ĝ1,1(n,m, n1), in which V (G) is partitioned into two sets of
vertices, n1 in a set A all of outdegree 1, and the rest in a set B all of higher outdegrees. This
is equivalent to G1,1(n,m) conditioned on the set of vertices of outdegree 1 being precisely A.
We use E∗ to denote expectation in this probability space.

We will bound the probability p(s, i, q) that G ∈ D and some given set of vertices S is a
sinkset of G (also put R = V \ S), where |S ∩ A| = i and the set Q of arcs with both ends
in S satisfies |Q| = q. The vertices in B have outdegree at least 2, so q ≥ 2s − i. By vertex
symmetry,

E∗(Xs ∧ 1J) =

s∑

i=0

(
n1

i

)(
n− n1

s− i

) ∑

q≥2s−i

p(s, i, q) ≤ ns
∑

i,q

(f(c))ip(s, i, q). (49)

We bound p(s, i, q) using a switching technique. Take any digraph G ∈ J with a sinkset
S as above, choose a set Q′ of arcs with both ends not in S and with |Q′| = q, match up the
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arcs in Q with those in Q′ in any manner, delete all arcs in Q and Q′, and for each matched
pair uv ∈ Q and u′v′ in Q′, add the arcs uv′ and u′v. We call this operation a switching.
The number of ways it can be performed on G without creating any multiple arcs depends
on the maximum degree (in- or out-) of G, which we denote by ∆. For each arc uv ∈ Q,
there are at most ∆ arcs wv and at most ∆2 arcs wx excluded from choice as u′v′ due to
causing double arcs. A similar number of exclusions of the form wx come from arcs ux also
at least m− 2s∆ arcs have both ends in B. Hence the number of valid switchings is at least
(m − O(∆2 + s∆))q. Performing such a switching produces some digraph G′ with the same
(in,out)-degree sequence as G. How many such switchings can produce the same digraph G′?
Assume G has r arcs directed from R to S, so G′ has r + q such arcs. Choose q of these and
pair them up with the q arcs of G′ from S to R, to reverse the switching. This gives an upper
bound (some reverse switchings may be invalid) of say (r+ q)q digraphs G which can produce
G′.

At this point, we may deduce that the contribution to p(s, i, q) from digraphs G with the
given values of r and ∆ is at most

(r + q)q

(m−O(∆2 + s∆))q
=

(
O(1)(r + q)

m

)q

, (50)

since G ∈ J and ∆ < log2 n. Note that the contribution to p(s, i, q) from all r such that
r ≤ c3s3 or r ≤ 18q is (

(c+ q)O(1)

m

)q

. (51)

To eliminate the influence of unusually large values of r will require a more elaborate argument.
If a vertex v of S in G′ is adjacent from k vertices in R, where k > 8c, perform an additional
switching to G′: choose k−⌊4c⌋ arcs u1v, . . . , uk−⌊4c⌋v, ui ∈ R, and replace them by arcs uiwi

with each wi ∈ R (without producing multiple arcs). This produces a digraph G1 having A
as its set of vertices of outdegree 1. The number of ways of performing this switching is at
least (omitting floor functions for simplicity)

( k
k−4c

)
(n − s −∆)k−4c since each vertex ui has

outdegree at most ∆. Each possible G1 is produced in at most
( m
k−4c

)
s ways, so the number

of G divided by the number of G1 is at most
( m
k−4c

)
s

( k
k−4c

)
(n− s−∆)k−4c

≤ s(ec/k)k−4cs(1 +O(s/n+∆/n))k−4cs = O(s)(2ec/k)k/2,

bounding the upper binomial above by (em/(k− 4c))k−4c and the lower one below by (k/(k−
4c))k−4c, and using 8c < k ≤ ∆ < log2 n.

If any vertex of G1 in A is still adjacent from more than 8c vertices of B, we may repeat
the previous step, to obtain G2, and so on, up to some graph G′′. If the switching is applied
to j vertices of indegrees k1, . . . , kj with

∑
ki = k̃, the factors multiply to give

sj(ec)k̃/2
∏

i

k
−ki/2
i ≤ sj(ec)k̃/2(j/k̃)−k̃/2

by convexity of xx. The worst case is j = s which shows that the number of possible G′ is
s(O(1)c)/(k̃/s))k̃/2 times the number of G′′, where k̃ ≥ r−8cs. Note that G′′ ∈ Ĝ1,1(n,m, n1).
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Thus, the contribution to p(s, i, q) from G with given r is at most

(O(1))q(r + q)q

mq

(
O(1)cs

r − 8cs

)(r−8cs)/2

ss, (52)

where, by the conclusion using G′, the second factor can be taken to be 1 for any particular r
(such as r ≤ 8cs). Note that q ≤ s∆ ≤ cK log2 n. For r larger than c3s3 and larger that 18q,
factor (O(1)cs/(r − 8cs))(r−8cs)/2 is at most r−r/4 (for large enough n) and s ≤ rr/18, so the
product, summed over such r, is (o(1)/m)q . In view of this and of (51), (49) gives

E∗(Xs ∧ 1J) ≤ ns
∑

i,q

(f(c))i((c+ q)O(1)/m)q,

where i ≤ s and q ≥ 2s− i = s+ s− i. So this is at most

(cO(1)n/m)s
∑

i,t≥0

(f(c))i(cO(1)/m)s−i+t,

which is at most
(
cO(1)max{f(c), 1/m}

)s
. Summing this over s ≤ cK gives o(1) for the

contribution to (48) from Case 1.

Case 2: cK < s ≤ n/2

LetN+
≤3 be the number of vertices of outdegree at most 3 inG, and let h = c3/(ec−1)+c3/n.

Then EN+
≤3 ≤ nh/2, and by comparing with a binomial r.v. with expected value nh/2, and

using (9), we have

PD(N
+
≤3 ≥ hn) = e−Ω(hn) = o(m−1e−c2).

So by Lemma 3.2(a,b), we deduce that N+
≤3 < hn a.a.s. in G1,1(n,m), and it suffices to prove

that, conditional on this event, a.a.s. there are no sink-sets with cardinality s in the range
under consideration.

Henceforth, we consider P ′
1,1(n,m) (defined near the start of Section 4) conditional upon

a fixed outdegree sequence satisfying N+
≤3 = n+

≤3 for some n+
≤3 < hn. Again by Lemma 3.2(b),

it is enough to show that if R is the event that there exists a sink-set of size s satisfying
cK ≤ s ≤ n/2,

P(R) = o(e−c2). (53)

We note that our usual approach to proving properties of the degree sequence would be to
work with independent truncated Poisson r.v.s for the degree sequences, prove what we want,
and then condition on the sums. However, the last step increases probabilities of bad events
in a manner unacceptable for the present argument. To avoid this, we define an auxiliary
sequence d̂−1 , . . . , d̂

−
n of independent copies of Bin(n̂, ĉ/n), where n̂ = (1+δ)n and ĉ = (1+δ)c,

and we set
δ = ǫ/8, ǫ = 0.1.

This sequence will be used to stochastically dominate some random variables defined on the
indegree sequence of P ′

1,1(n,m).
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We next define some events that hold with high probability for the degree sequence. Let
∆ = ⌊5 log n/ log log n + c2⌋ (so in particular ∆ ≤ log3 n, which suffices for most of our
argument). This ∆ turns out to be a typical bound on the maximum indegree. Let

pj = P(TPo(λ) = j) =
λj

(eλ − 1)j!
,

p̂j = P(Bin(n̂, ĉ/n) = j) =

(
n̂

j

)
(ĉ/n)j(1− ĉ/n)n̂−j,

and set
j0 = min{j ≥ 1 : npj ≥ log10 n}, j3 = max{j : npj ≥ log10 n}. (54)

Define the interval I = {j0, . . . , j3} and let I ′ = {1, . . . ,∆} \ I. Informally speaking, I is the
set of common indegrees and I ′ the set of rare indegrees. Let V and V ′ be the set of vertices
with indegrees in I and I ′, respectively. Define H to be the event that the following holds:
d−max ≤ ∆ (so V and V ′ partition the set of vertices); there exists a permutation σ of {1, . . . , n}
with the property that d−i ≤ 1 + d̂−σ(i) for each i ∈ V ; and moreover |V ′| = o(log13 n). (The

‘+1’ in the inequality d−i ≤ 1 + d̂−σ(i) is to make it easier for our argument to cope with the

fact that the Poisson variable is truncated at 1, whereas the binomial is not.)

We make several claims whose proofs are postponed. The first is the following.

Claim 1: P(H) = 1− o(e−c2).

The rest of the proof consists of showing that E(X1H) = O(0.93s). This, together with
Claim 1, gives (53) and we are done.

Given a set S of vertices (|S| = s), we may generate P ′
1,1(n,m) by specifying the random

bijection φ last, which shows that

P(S is sinkset) ≤
(
d−(S)
m

)d+(S)

≤
(
d−(S)
m

)4s−3i

where i is the number of vertices in S of outdegree at most 3. Since the outdegree sequence
was fixed and n+

≤3 < hn, the number of sets S of size s with parameter i is

(
n+
≤3

i

)(
n− n+

≤3

s− i

)
≤
(
s

i

)
(hn)ins−i

s!
≤
(
2en

s

)s

hi.

Putting these together, we can bound the expected number X of sink-sets of size s re-
stricted to the event H by distinguishing cases according to the size of d−(S):

E(X1H) ≤
s∑

i=0

(
2en

s

)s

hi



(
(1 + ǫ)cs

m

)4s−3i

+

∆s∧m∑

t≥(1+ǫ)cs

(
t

m

)4s−3i

P
(
(d−(S) = t) ∧H

)

 .

(55)

We need some care in treating the terms with t ≥ (1 + ǫ)cs. Let t1 = t(1 + ǫ/2)/(1 + ǫ)
and t2 = tǫ/

(
2(1 + ǫ)

)
. Note that t1 + t2 = t with t1 ≥ (1 + ǫ/2)cs and t2 ≥ (ǫ/2)cs.

Let SI and SI′ be the subsets in S with degrees in I and I ′ respectively.
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Claim 2: P
(
(d−(SI) ≥ t1) ∧H

)
≤ e−Ω(t).

Claim 3: P
(
(d−(SI′) ≥ t2) ∧H

)
= e−Ω(t log logn).

From these claims, it immediately follows that P
(
(d−(S) = t) ∧H

)
= e−Ω(t), and with (55)

in mind we note that

∆s∧m∑

t≥(1+ǫ)cs

(
t

m

)4s−3i

e−Ω(t) = O

((
(1 + ǫ)cs

m

)4s−3i

e−Ω(cs)

)
= o

((
(1 + ǫ)cs

m

)4s−3i
)
,

so then from (55) and using m = cn,

E(X1H) ≤ (1 + o(1))

s∑

i=0

(
2en

s

)s

hi
(
(1 + ǫ)s

n

)4s−3i

. (56)

For i ≤ s/100 (recalling ǫ = 0.1 and s ≤ n/2),

(
2en

s

)s

hi
(
(1 + ǫ)s

n

)4s−3i

≤ (2e(1 + ǫ))s
(
(1 + ǫ)s

n

)3s−3i

< (2e(1.1))s
(
1.1

2

)2.97s

< 0.92s,

whilst for i ≥ s/100,

(
2en

s

)s

hi
(
(1 + ǫ)s

n

)4s−3i

≤
(
2en

s

)s

hs/100
(
1.1s

n

)s

≤
(
2.2eh1/100

)s
< 0.92s.

Thus, (56) gives E(X1H) = O(s0.92s) ≤ 0.93s, as desired. It only remains to prove Claims 1–3.

Proof of Claim 1. If Y
d∼ TPo(λ), then

P(Y ≥ ∆) = O(P(Y = ∆)) = O((eλ/∆)∆) = O(n−5e−c2).

Thus the statement holds for the first part ofH by taking union bound and using Lemma 3.2(a).

For the second part, consider a sequence d−1 , . . . , d
−
n of independent truncated Poisson r.v.s,

and a sequence d̂−1 , . . . , d̂
−
n of independent Binomial r.v.s, as follows:

di
d∼ TPo(λ), d̂i

d∼ Bin(n̂, ĉ/n),

where n̂ = (1 + δ)n and ĉ = (1 + δ)c (recalling δ = ǫ/8).

Recalling the definitions of pj and p̂j above (54), we have that

P(d−i = j) = pj ∼ e−λλ
j

j!
and P(d̂−i = j) = p̂j ∼ e−(1+δ)2c ((1 + δ)2c)j

j!
.

Let Yj and Ŷj be the numbers of vertices of degree at least j for each of the models, and
similarly, Zj and Ẑj the numbers of vertices of degree at most j. We have

EYj = nP(d−i ≥ j), EŶj = nP(d̂−i ≥ j), EZj = nP(d−i ≤ j), EẐj = nP(d̂−i ≤ j).
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Recall the definition of j0 and j3 in (54), and let j1 = c − √
c/100 and j2 = (1 + 3δ/2)c.

It is straightforward to check that 1 ≤ j0 ≤ j1 ≤ j2 ≤ j3 ≤ ∆. If j2 ≤ j ≤ j3, we easily
verify that P(d−i ≥ j) = Θ(pj), and also that pj = o(p̂j) (by considering the ratios pj+1/pj
and pj/p̂j). Hence, we have that P(d−i ≥ j) = o(P(d̂−i ≥ j)). If j1 ≤ j ≤ j2, we have that
P(d−i ≥ j) ≤ 3/4 (since TPo(λ) is asymptotically normal with mean λ and variance λ, and

truncation has a negligible effect on this), and clearly P(d̂−i ≥ j) ∼ 1 (for similar reasons or

using second moment method). Therefore for j1 ≤ j ≤ j3 we have that EYj ≤ (4/5)EŶj .
Moreover, note that Yj and Ŷj are binomially distributed, and for j in this range we have
that EYj ≥ npj ≥ log10 n. Hence, by (9) and taking a union bound, the probability that

|Yj/EYj − 1| > 1/10 or |Ŷj/EŶj − 1| > 1/10 for some j in the range j1 ≤ j ≤ j3 is e−Ω(log10 n).

In particular, this implies that Yj ≤ Ŷj for all j ∈ [j1, j3] with probability 1− e−Ω(log10 n).

On the other hand, if j0 ≤ j ≤ j1, we easily verify that P(d̂−i ≤ j) = Θ(p̂j), and also that

p̂j = o(pj) (considering the ratios p̂j−1/p̂j and pj/p̂j). Therefore, EẐj = o(EZj). Similarly as
before, Zj and Ẑj are binomially distributed and EZj ≥ npj ≥ log10 n. Using (9) again, we

conclude that Ẑj ≤ Zj for all j ∈ [j0, j1] with probability 1− e−Ω(log10 n). Here we distinguish
the two cases EẐj ≥ (log10 n)/2 and EẐj < (log10 n)/2, and for the second case use stochastic
domination of Ẑj by a binomial r.v. of expectation (log10 n)/2.

Summarising, we have that

Yj ≤ Ŷj , ∀j ∈ [j0 + 1, j3] (57)

with probability 1 − e−Ω(log10 n), where we used that Zj + Yj+1 = Ẑj + Ŷj+1 = n. However,
what we really want is a suitable modification of (57) that holds for the range j ∈ [j0, j3]
and incorporates the ‘+1’ shift in the definition of H. To do this, we distinguish two cases.
If j0 > 1, then it is straightforward to verify that pj0−1n ≥ log8 n, so the same argument as
before but changing j0 to j0 − 1 shows that Yj ≤ Ŷj ≤ Ŷj−1 for all j ∈ [j0, j3] with probability

1 − e−Ω(log8 n). Otherwise if j0 = 1, we trivially deduce from (57) that Yj ≤ Ŷj−1 for all

j ∈ [j0, j3] with probability 1− e−Ω(log10 n). Putting everything together, we conclude that

Yj ≤ Ŷj−1, ∀j ∈ [j0, j3]

with probability 1 − e−Ω(log8 n). Thus, if this last inequality holds, then we can rearrange
{1, . . . , n} by some permutation σ in such a way that d−i ≤ 1 + d̂−σ(i) for all i ∈ I.

Conditioning on the truncated Poisson r.v.s of the sequence d−1 , . . . , d
−
n having fixed sum

m only multiplies the probability of failure by O(
√
m) = o(n). The claim follows immediately.

Proof of Claim 2. Since we are restricting the probability space to the event H and the
choice of S is uniformly randomised, we can bound the probability in question by replacing
P
(
(d−(SI) ≥ t1) ∧H

)
by P(d̂−(S) + s ≥ t1), where d̂−(S) =

∑
i∈S d̂−i (informally speaking,

d̂−(S) + s is the total indegree of S after having replaced the original indegree sequence by

d̂−1 + 1, . . . , d̂−n + 1.) In this model d̂−(S) d∼ Bin(sn̂, ĉ/n), and it is immediate to verify (using

standard deviation bounds on binomials; see also (9)) that P(d̂−(S) ≥ t1 − s) ≤ e−Ω(t), since
t1/Ed̂−(S) ≥ (1 + ǫ/2)/(1 + δ)2 > 1 and s = o(t1).
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Proof of Claim 3. Recall that V ′ is the set of vertices with degrees in I ′, and that H
implies that |V ′| ≤ log13 n. So the contribution of these to d−(S) is at most log16 n. Thus, if
s > log16 n, we have P(d−(SI′) ≥ t2) = 0, since t2 ≥ ǫcs/2 > log16 n.

So we may assume that s ≤ log16 n. In this case c ≤ log16/K n ≤ log1/5 n (if say K ≥ 100).
Thus, c2 is negligible in the definition of ∆ and we have ∆ ∼ 5 log n/ log log n. (Here we must
be precise, since the trivial bound ∆ ≤ log3 n is not enough for this part of the argument.)
Let us fix any r ≤ log13 n and restrict to the event that |V ′| = r. Then we may use a model
in which elements of S are chosen independently, each with probability s/n, and condition on
the size s being achieved. Before conditioning, the number Z = |V ′ ∩ S| of red vertices in S

is Z
d∼ Bin(|V ′|, s/n), and conditioning on the size s multiplies any probabilities by O(s−1/2).

Note that EZ = o(1) and thus, by elementary consideration of the binomial distribution,
P(Z ≥ j) = O(P(Z = j)). Hence

P(d−(V ′ ∩ S) ≥ t2 ∧H) ≤ P(Z ≥ t2/∆) = O(P(Z = t2/∆)) =

= O

(( |V ′|
t2/∆

)
(s/n)t2/∆

)
= O

((
e|V ′|s∆
t2n

)t2/∆
)

= O
(
e−Ω(t log logn)

)
.

7 Loop-free case

This section treats the case that digraphs are not permitted to have loops. We prove Theo-
rems 1.4 and 1.5, which are analogues of Theorems 1.1 and 1.3. To prove these theorems, we
need the following result, which is similar to Lemmas 2.4 and 2.3.

Lemma 7.1. Let Y +
1 , . . . , Y +

N , Y −
1 , . . . , Y −

N be independent r.v.s with TPok(λ) distribution, for
fixed k and for 0 < λ ≤ logN . Let c = EY +

1 . Then for any t ≥
√
N log3N we have

P

(∣∣∣
N∑

i=1

Y +
i Y −

i − c2N
∣∣∣ > t

)
= O

(
e−(t2/8N)1/5

)
,

asymptotically as N → ∞.

Proof. The argument is almost identical to that of Lemma 2.3, so we just state the main
differences. Here, we redefine ∆ = (t2/8N)1/5, Ymax = max1≤i≤N{Y +

i , Y −
i }, Wi = Y +

i Y −
i − c2

and W ∗
i = Wi 1Ei , where Ei is the event that Y +

i ≤ ∆ and Y −
i ≤ ∆. Note that ∆ =

Ω(log6/5 N), and that λ ≤ c ≤ (1 + o(1)) logN . It only remains to find appropriate bounds
on P(Ymax > ∆), |EW ∗

i | and |W ∗
i − EW ∗

i |, and then apply the same steps as in the proof of
Lemma 2.3. The bound P(Ymax > ∆) = O(e−∆) is obtained analogously. In view of (4) and
the fact that E((c− Y −

i ) 1Y −
i >∆) < 0, we easily deduce

|EW ∗
i | = E

(
(c+ Y +

i ) 1Y +

i ≤∆

)
E
(
(Y −

i − c) 1Y −
i >∆

)
≤ 2cE

(
Y −
i 1Y −

i >∆

)
= O(e−∆).

Finally, we have k2 − c2 ≤ W ∗
i ≤ ∆2 − c2, and therefore |W ∗

i −EW ∗
i | < ∆2.

32



Proof of Theorem 1.5. After extending Lemma 3.2 to the loop-free case, the proof is iden-
tical to that of Theorem 1.3. So we just describe this extension of Lemma 3.2, which requires
inserting an e−c factor in the asymptotic expressions in parts (b) and (c). The main adjust-
ment in the proof is to redefine F̃ = exp(−D0−D+D−/2), where D0 =

1
m

∑n
i=1 d

+
i d

−
i . Instead

of Lemma 3.1, we use a version which excludes loops. Again, we can use [6, Theorem 4.6] with
digraphs loop-free digraphs interpreted as bipartite graphs with a specific perfect matching
being forbidden. Under the same conditions as Lemma 3.1, this implies that the probability
that a random element of P(~d) has no loops and no multiple arcs is

exp


− 1

m

n∑

i=1

d+i d
−
i − 1

2m2

n∑

i,j=1

d+i (d
+
i − 1)d−j (d

−
j − 1) +O

(
∆4

m

)
 ,

uniformly for all ~d. B2 is the event that |D0 − c| > t or |D+D−/2− λ+λ−/2| > t. We bound
the probability that |D0 − c| > t using Lemma 7.1.

Proof of Theorem 1.4. Again, we only need to point out how to change the proof of The-
orem 1.1. For the case that c is bounded and bounded away from 1, we simply extend Propo-
sitions 4.1 and 4.2 in Section 4 to the loop-free case, and combine them with Theorem 1.5.
Proposition 4.1 implies its own extension in this new setting, since the probability of an s-set
when conditioning on loop-free digraphs can only increase by the inverse of the probability
of having no loops, which is Θ(1) by comparing Theorems 1.5 and 1.3. Proposition 4.2 is
extended as follows.

Proposition 7.2. Suppose that c = m/n is bounded and bounded away from 1. The probability
that a digraph in G1,1(n,m) has no plain s-set is asymptotic to

ec(2/e
λ−1/e2λ) eλ(eλ − 1− λ)2

(e2λ − eλ − λ)(eλ − 1)
, (58)

with λ determined by the equation c = λeλ/(eλ − 1).

Proof. The argument is almost identical to that of Proposition 4.2. We sketch the main
differences. Ck is again the number of s-cycles of order at most k but we exclude s-cycles of
order 1 since they will be regarded as loops. D is redefined to be the number of loops and
double arcs. We have

µk =

k∑

j=2

2(c/eλ)j − (c/e2λ)j

j
,

and

µ = lim
k→∞

µk = log

(
(e2λ − eλ − λ)(eλ − 1)

eλ(eλ − 1− λ)2

)
− c(2/eλ − 1/e2λ).

The rest of the argument consists in bounding the probability of having s-cycles of order
greater than k for large k and showing that Ck and D are asymptotically jointly independent
Poisson with expectations EP1,1(n,m)Ck ∼ µk and EP1,1(n,m)D ∼ c+ λ2/2.
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The formula (2), for the very sparse case (c → 1) of Theorem 1.1, remains unchanged:
in the proof of Lemma 5.4 one can easily see that the expected number of loops that get no
vertices inserted while creating the preheart from the heart is o(1) using an approach similar
to the one for double arcs.

Finally, for the denser case (c → ∞ with c = O(log n)) it suffices to verify that Proposi-
tion 6.1 is still valid if loops are not permitted. Actually, the argument in Section 6 works for
this setting with only the following trivial modifications. Note that for the first case in the
proof (s ≤ cK), the initial switchings do not create or destroy loops. The additional switchings
can be performed in at least

( k
k−4c

)
(n − s − ∆ − 1)k−4c ways without creating loops (which

only requires replacing ∆ by ∆+ 1) and the resulting bounds obtained in Section 6 are unaf-
fected. The argument for the second case of the proof (cK < s ≤ n/2) remains valid with the
only difference that we have to additionally condition on having no loops. The extra effect of
forbidding loops gives an additional asymptotic e−c factor to the probability in Lemma 3.2(b)
(see the proof of Theorem 1.5 for the extension of Lemma 3.2 to loop-free digraphs). Since
e−c2 = o(e−c−λ2/2), showing (53) still suffices in the loop-free context.
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