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Tight upper tail bounds for cliques

B. DeMarco
∗
and J. Kahn
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Abstract

With ξk = ξn,pk the number of copies of Kk in the usual (Erdős-
Rényi) random graph G(n, p), p ≥ n−2/(k−1) and η > 0, we show when
k > 1

Pr(ξk > (1 + η)Eξk) < exp
[

−Ωη,k min{n2pk−1 log(1/p), nkp(k

2
)}
]

.

This is tight up to the value of the constant in the exponent.

1 Introduction

Let G(n, p) be the Erdős-Rényi random graph on n vertices, in which every
edge occurs independently with probability p, and let H be a fixed graph
with vH = |V (H)| and eH = |E(H)|. A copy of H in G(n, p) is any subgraph
of G(n, p) isomorphic to H. It has been a long studied question (e.g. [5,
6, 11, 12, 13, 15, 17]) to estimate, for η > 0 and ξH = ξn,pH the number of
copies of H in G(n, p),

Pr (ξH > (1 + η)EξH) . (1)

To avoid irrelevancies, let us declare at the outset that we always assume
p ≥ n−1/mH , where, as usual (e.g. [10, p.6]),

mH = max{eK/vK : K ⊆ H} (2)

(so n−1/mH is a threshold for “G ⊇ H”; see [10, Theorem 3.4]); in particular,
when H = Kk we assume p ≥ n−2/(k−1). For smaller p the problem is not
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very interesting (e.g. for bounded η the probability in (1) is easily seen to
be Θ(min{nvKpeK : K ⊆ H, eK > 0}); see [10, Theorem 3.9] for a start),
and we will not pursue it here.

Janson and Ruciński [12] offer a nice overview of the methods used prior
to 2002 to obtain upper bounds on the probability in (1), by far the more
challenging part of the problem. To get an idea of the difficulty, note that
even for the case that H is a triangle, only quite poor upper bounds were
known until a breakthrough result of Kim and Vu [15], who used, inter alia,
the “polynomial concentration” machinery of [14] to show, for p > n−1 log n,

expp[Oη(n2p2)] < Pr(ξH > (1 + η)EξH) < exp[−Ωη(n2p2)]. (3)

(The easy lower bound, seemingly first observed in [17], is, for example, the
probability of containing a complete graph on something like (1 + η)1/3np
vertices. Of course the subscript η in the lower bound is unnecessary if,
for example, η ≤ 1, which is what we usually have in mind.) Polynomial
concentration was also used by Vu [16] to show that if H is strictly balanced
and EξH ≤ log n, then

Pr(ξH > (1 + η)EξH) < exp[−Ωη(EξH)]. (4)

The result of [15] was vastly extended in a beautiful paper of Janson,
Oleszkiewicz and Ruciński [11], where it was shown that for any H and η,

expp[OH,η(MH(n, p))] < Pr(ξH > (1 + η)EξH) < exp[−ΩH,η(MH(n, p))],
(5)

thus determining the probability (1) up to a factor O(log(1/p)) in the ex-
ponent for constant η. A definition of M is given in Section 10; for now we
just mention that (for p ≥ n−2/(k−1)) MKk

(n, p) = n2pk−1. (It should also
be noted that in the limited range where it applies, the upper bound in (4)
is better than the one in (5).)

While it seems natural to expect that the lower bound in (5) is “usually”
the truth (see Section 10 for a precise guess), the only progress in this
direction until quite recently was [13], which established the upper bound
exp[−Ω(MH(n, p) log1/2(1/p))] for H = K4 or C4 (the 4-cycle) and some
values of p.

The log(1/p) gap was finally closed for the case H = K3 by Chatterjee
[5] and, independently, the present authors [6]. More precisely, [5] showed
that for a suitable C depending on η and p > Cn−1 log n,
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Pr(ξK3
> (1 + η)EξK3

) < pΩη(n2p2),

while [6] showed, somewhat more generally, that for p > n−1,

exp[−Oη(f(3, n, p))] < Pr(ξK3
> (1 + η)EξK3

) < exp[−Ωη(f(3, n, p))],

where f(k, n, p) := min{n2pk−1 log(1/p), nkp(k
2
)}. (In what follows we will

often abbreviate f(k, n, p) = f(k, n).)
In this paper we considerably extend the method of [6] to settle the

problem for general cliques and a bit more.

Theorem 1.1. Assume H on k vertices has minimum degree at least k− 2
(that is, the complement of H is a matching). Then for all η > 0 and
p ≥ n−2/(k−1),

Pr (ξH ≥ (1 + η)E(ξH)) ≤ exp [−Ωη,H(f(k, n, p))] .

Theorem 1.2. For H = Kk and for all p ≥ n−2/(k−1),

Pr (ξH ≥ 2E(ξH)) ≥ exp [−OH(f(k, n, p))] .

Remarks. 1. We are most interested in the “nonpathological” range where
f(k, n, p) = n2pk−1 log(1/p), so when p ≥ n−2/(k−1)(log n)2/[(k−1)(k−2)] (or a
bit less). It may be helpful to think mainly of this range as we proceed.

2. Though mainly concerned with the case H = Kk in Theorem 1.1, we
prove the more general statement for inductive reasons. For noncliques the
bound of Theorem 1.1 is not usually tight; more precisely: it is tight (up
to the constant in the exponent) if p = Ω(1) or if ∆ := ∆H = k − 1 and
p = Ω(n−1/∆), in which cases our upper bound agrees with the lower bound
in (5); it is not tight if ∆ = k− 2 and p = o(1) (see the proof of Lemma 2.4)
or if H 6= Kk and p < n−c/∆ for some fixed c > 1 (see the proof of Lemma
2.5; in fact p = o(n−1/∆) is probably enough here—which would complete
this little story—but we don’t quite show this).

In the next section we show that Theorem 1.1 follows from an analogous
assertion for k-partite graphs; most of the paper (Sections 3-8) is then con-
cerned with this modified problem. Section 9 gives the proof of Theorem
1.2 and Section 10 contains a few concluding remarks.
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2 Reduction

For the rest of the paper we set t = log(1/p) and take H to be a graph with
vertices v1, v2, . . . , vk. We define G = G(n, p,H) to be the random graph
with vertex set V = V1 ∪ · · · ∪ Vk, where the Vi’s are disjoint n-sets and
Pr(xy ∈ E(G)) = p whenever x ∈ Vi and y ∈ Vj for some vivj ∈ E(H), these
choices made independently. We define a copy of H in G to be a set of vertices
{x1, . . . , xk} with xi ∈ Vi and xixj ∈ E(G) whenever vivj ∈ E(H); use Xn,p

H

for the number of such copies; and set Ψ(H,n, p) = E(Xn,p
H ) = nkpeH . When

there is no danger of confusion we will often use Xn
H—or, for typographical

reasons X(H,n)—for Xn,p
H and Ψ(H,n) for Ψ(H,n, p).

The next two propositions show an equivalence between G(n, p) and
G with regard to upper tails for subgraph counts. In each we set α =
|Aut(H)|nk/(kn)k ∼ k−k|Aut(H)| (where as usual (a)b = a(a − 1) · · · (a −
b + 1)).

Proposition 2.1. For η > 0 and ε = η/(2 + η),

Pr(Xn,p
H ≥ (1 + ε)Ψ(H,n, p)) >

αε

1 − α + αε
Pr(ξkn,pH ≥ (1 + η)E(ξkn,pH ))

We omit the proof of Proposition 2.1 since it is a straightforward general-
ization of the case H = K3 proved in [6].

Proposition 2.2. For any ε > 0 there is a C = Cε,H such that for p >
Cn−1/mH ,

Pr
(

Xn,p
H ≥ (1 + ε)Ψ(H,n, p)

)

< 2 Pr(ξkn,pH ≥ (1 + αε/2)E(ξkn,pH )).

(See (2) for mH .)

Proof. We may choose G∗ = G(kn, p) by first choosing G = G(n, p,H) and
then letting

E(G∗) = E(G) ∪ S

where Pr(xy ∈ S) = p whenever x 6= y, x ∈ Vi and y ∈ Vj for some vivj 6∈
E(H), these choices made independently. Write ξ and X for the numbers

of copies of H in G∗ and G respectively (thus ξ = ξkn,pH and X = Xn,p
H ), and

set ξ∗ = ξ −X. Since EX = αEξ, we have, using Harris’ Inequality,

Pr(ξ > (1 + αε
2 )Eξ) ≥ Pr(X > (1 + ε)EX) Pr(ξ∗ > Eξ∗ − αε

2 Eξ); (6)
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so we need to say that the second probability on the right is at least 1/2.
This is standard, but we summarize the argument for completeness.

A result of Janson from [9] (see [10, (2.14)]) gives

Pr(ξ∗ ≤ Eξ∗ − t) < exp[− t2

2∆̄
], (7)

with
∆̄ =

∑∗
σ∼τ EIσIτ ≤ ∑

σ∼τ EIσIτ , (8)

where (recycling notation a little) H1, . . . are the copies of H in Kkn; Iσ =
1{Hσ⊆G∗}; “σ ∼ τ” means Hσ and Hτ share an edge (so σ ∼ σ); and

∑∗

means we sum only over σ, τ for which Hσ,Hτ cannot appear in G.

But (very wastefully),

∆̄ < nvH
∑

{nvH−vKp2eH−eK : K ⊆ H, eK > 0}

< n2vHp2eH
∑

{n−vK (Cn−1/mH )−eK : K ⊆ H, eK > 0}
= O(C−1E2ξ),

where C is the constant from (9), which may be taken large compared to
the implied constant in “O(·).” Thus, using (7) with the above bound on ∆̄
and t = (αε/2)Eξ, we find that the second probability on the right side of
(6) is at least 1 − exp[−Ω((αε)2C)] > 1/2.

According to Proposition 2.1, Theorem 1.1 will follow from the corre-
sponding k-partite statement, viz.

Theorem 2.3. If H has minimum degree at least k − 2, then

(a) for all ε > 0,

Pr
(

Xn,p
H ≥ (1 + ε)Ψ(H,n, p)

)

< exp [−ΩH,ε (f(k, n, p))] ;

(b) for any τ ≥ 1,

Pr
(

Xn,p
H ≥ 2τΨ(H,n, p)

)

< exp[−ΩH(f(k, nτ1/k, p))].
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Note that (b) for a given H follows from (a), since (noting that τΨ(H,n) =
Ψ(H,nτ1/k) and using (a) for the second inequality)

Pr (Xn
H ≥ 2τΨ(H,n)) ≤ Pr

(

Xnτ1/k
H ≥ 2Ψ(H,nτ1/k)

)

≤ exp
[

−ΩH

(

f(k, nτ1/k, p)
)]

.

We include (b) because it will be needed for induction; that is, for a given
H we just prove (a), occasionally appealing to earlier cases of (b).

We have formulated the theorem for all p so that the inductive parts of
the proof don’t require checking that p falls in some suitable range. Note,
however, that for the proof we can assume (for our choice of positive con-
stants C and c depending on H and ε)

p > Cn−2/(k−1), (9)

since for smaller p (> n−1/mH ) the theorem is trivial, and

p < c, (10)

since above this the desired bound is given by (5). As detailed in the next
two lemmas, (5), together with some auxiliary results from [11], also allows
us to ignore certain other cases of Theorem 2.3(a).

Lemma 2.4. If ∆H ≤ k − 2 then

Pr
(

Xn,p
H ≥ (1 + ε)Ψ(H,n, p)

)

≤ pΩH,ε(n
2pk−1).

Proof. By Proposition 2.2, it is enough to show

Pr
(

ξn,pH ≥ (1 + ε)E(ξn,pH )
)

≤ pΩH,ε(n
2pk−1); (11)

but this follows from (5), which since MH(n, p) ≥ n2p∆H (see [11, Lemma
6.2]), bounds the left side of (11) by

exp[−ΩH,ε(n
2p∆H )] ≤ exp[−ΩH,ε(n

2pk−1t)].

Lemma 2.5. For any H 6= Kk on k vertices and γ > 0, if p < n−(1+γ)/(k−1)

then
Pr(Xn

H ≥ (1 + ε)Ψ(H,n)) < pΩH,ε,γ(n
2pk−1).
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Proof. By Lemma 2.4 we may assume ∆ := ∆H = k − 1 (and will write ∆
in place of k − 1 in this section). By Proposition 2.2 it’s enough to show

Pr(ξn,pH ≥ (1 + ϑ)E(ξn,pH )) < pΩϑ,H (n2p∆),

which, in view of (5) and the definition of MH(n, p), will follow if we show
that, for any K ⊆ H, nvKpeK = Ω((n2p∆t)α

∗

K ), or, more conveniently,

nvK−2α∗

KpeK−∆α∗

K = Ω(tα
∗

K ). (12)

We need one easy observation from [11] (see their Lemma 6.1):

eK ≤ ∆(vK − α∗
K).

Then, noting that
eK − ∆α∗

K < 0 (13)

(since eK < ∆vK/2 ≤ ∆α∗
K) and using our upper bound on p, we find that

the left side of (12) is at least

nvK−2α∗

K−(1+γ)(eK−∆α∗

K)/∆ ≥ nvK−2α∗

K−(vK−2α∗

K)+γ(∆α∗

K−eK)/∆

= nγ(∆α∗

K−eK)/∆,

which (again using (13)) gives (12).

3 Large deviations

This section collects a few standardish large deviation basics that will be
used throughout the paper. It’s perhaps worth noting that these elementary
inequalities are the only “machinery” we will need.

We use B(m,α) for a random variable with the binomial distribution
Bin(m,α). The next lemma, which is easily derived from [2, Theorem
A.1.12] and [10, Theorem 2.1] respectively (for example), will be used re-
peatedly, eventually without explicit mention.

Lemma 3.1. There is a fixed C > 0 so that for any λ ≤ 1, K > 1 + λ, m
and α,

Pr(B(m,α) ≥ Kmα) < min{(e/K)Kmα, exp[−Cλ2Kmα]}. (14)

7



Remark. We may assume Kmα ≥ 1. Thus, if emαc < 1 then e/K < α1−c

and the bound in (14) is at most α(1−c)Kmα.

The next lemma, an immediate consequence of Lemma 3.1 (and the
above Remark), will also be used repeatedly, usually following a preliminary
application of Lemma 3.1 to justify the assumption enqc < 1.

Lemma 3.2. Fix c < 1 and assume enqc < 1. If S ⊆ Vi is random with
Pr(x ∈ S) ≤ q ∀x ∈ Vi, these events independent, then for any T ,

Pr(|S| ≥ T ) < q(1−c)T .

We also need the following inequality, which is an easy consequence of,
for example, [3, Lemma 8.2].

Lemma 3.3. Suppose w1, . . . , wm ∈ [0, z]. Let ξ1, . . . , ξm be independent
Bernoullis, ξ =

∑

ξiwi, and Eξ = µ. Then for any η > 0 and λ ≥ ηµ,

Pr(ξ > µ + λ) < exp[−Ωη(λ/z)].

4 Outline

In this section we list the steps in the proof of Theorem 2.3(a), filling in
some definitions as we go along. The proof proceeds by induction on (say)
k2 + eH , so that in proving the statement for H we may assume its truth
for all graphs with either fewer than k vertices or with k vertices and fewer
than eH edges. The case k = 2 is trivial and k = 3 is the main result of [6],
so we assume throughout that k ≥ 4.

Most of the proof (Lemmas 4.1-4.3) consists of identifying certain anoma-
lies, for example vertices of unusually high degree, and bounding the number
of copies of H in which they appear. The remaining copies are then easily
handled (in Lemma 4.4) using Lemma 3.3.

Here and throughout we use C and Cε for (positive) constants depending
on (respectively) H and (H, ε), different occurrences of which will usually
denote different values. Similarly, we use Ω and Ωε as shorthand for ΩH and
ΩH,ε. We say an event E occurs with large probability (w.l.p.) if Pr(E) >
1 − exp[−Ωε(n

2pk−1t)], and write “α <∗ β” for “w.l.p. α < β” (where ε
is as in the statement of the theorem). Note that (9) (with a suitable C)
guarantees that an intersection of, for example, n5 w.l.p. events is itself a
w.l.p. event, a fact we will sometimes use without mention in what follows.

By Lemma 2.4 we may assume ∆H = k − 1. We reorder the vertices of
H so that k − 1 = d(v1) ≥ d(v2) ≥ . . . ≥ d(vk) and if d(v2) = k − 2 then

8



v2 6∼ v3. We set A = V1, B = V2, C = V3 and always take a, b and c to be
elements of A,B and C respectively. For disjoint X,Y ⊆ V we use ∇(X,Y )
for the set of edges with one end in each of X and Y , and ∇(X) for the set
of edges with one end in X. We use N(x) for the neighborhood of (set of
vertices adjacent to) a vertex x.

For K ⊆ H with vertex set {vi : i ∈ T} (T ⊆ [k]), define a copy of K
in G (= G(n, p,H)) to be a set of vertices {xi : i ∈ T} with xi ∈ Vi and
xixj ∈ E(G) whenever vivj ∈ E(K). For x1, x2, . . . , xl vertices belonging to
distinct Vi’s we use wK(x1, . . . , xl) for the number of copies of K containing
x1, . . . , xl; when K = H we call this the weight of {x1, . . . , xl}. We use
HS = H−{vi : i ∈ S} (S ⊂ [k]), and abbreviate H{i} = Hi, wHS

(·) = wS(·),
w{i} = wi and w∅(·) (= wH(·)) = w(·).

Set ϑ = .05ε and define δ by (1 + δ)k = 2. For x ∈ V and i ∈ [k], let
di(x) = |N(x) ∩ Vi|, and set d(x) = max{di(x) : i ∈ [k]}. Say a vertex x is
high degree if d(x) > (1 + δ)np, and a copy of H is type one if contains a
high degree vertex from A,B or C.

Lemma 4.1. W.l.p. G contains less than 7ϑΨ(H,n) type one copies of H.

Let A′, B′, C ′ denote the subsets of A,B,C respectively of vertices which
are not high degree. For vertices x, y ∈ G let dj(x, y) = |N(x) ∩N(y) ∩ Vj |
and d(x, y) = maxj≥4 dj(x, y). A pair of vertices (x, y) is high degree if
d(x, y) > np3/2. For k > 4 a copy of H is type two if it contains a high
degree pair (x, y) belonging to either A′ ×C ′ or B′ ×C ′; for k = 4 we don’t
need this, and simply declare that there are no copies of type two.

Lemma 4.2. W.l.p. G contains less than 2ϑΨ(H,n) type two copies of H.

Set s = min{t, nk−2p

(k−1
2

)

}, the two regimes corresponding to the two
ranges of f(k, n, p) (= n2pk−1s). Define w

∗(·) in the same way as w(·), but
with the count restricted to copies of H that are not type one or two. Set

ζ =

{

3k−2Ψ(H,n, p)/(n2pk−1s) if k ≥ 5
225Ψ(H,n, p)/(n2p3s) if k = 4

(15)

and (in either case) say ab ∈ ∇(A,B) is heavy if w∗(a, b) > ζ. Finally, say
a copy of H is type three if it is not type one or two and contains a heavy
edge, and type four if it is not type one, two or three.

Lemma 4.3. W.l.p. G contains less than 4ϑΨ(H,n) type three copies of
H.
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Lemma 4.4. With probability at least 1 − exp[−Ωε(f(k, n, p))] G contains
less than (1 + 2ϑ)Ψ(H,n) type four copies of H.

Of course Theorem 2.3(a) (for k ≥ 4) follows from Lemmas 4.1-4.4; these
are proved in the next four sections.

5 Proof of Lemma 4.1

For i ∈ [3] set D1(i) = {x ∈ Vi : d(x) > np2/5} and D2(i) = {x ∈ Vi :
np2/5 ≥ d(x) > (1 + δ)np}, and for j ∈ [2] set Sj(i) =

∑{d(x) : x ∈ Dj(i)}.
We will show

Proposition 5.1. For all 1 ≤ i ≤ 3,

w.l.p. ∀x ∈ Dj(i), w(x)/d(x) <

{

2nk−2peH−(k−1) if j = 1

2nk−2peH−k+2(k−1)/5 if j = 2

and

Proposition 5.2. For all 1 ≤ i ≤ 3,

w.l.p. Sj(i) <

{

ϑn2pk−1 if j = 1
kn2pk−1t if j = 2.

(16)

The lemma follows since the number of type one copies of H is at most

∑

x:xhigh degree

w(x) <∗
3
∑

i=1

(S1(i) · 2nk−2peH−(k−1) + S2(i) · 2nk−2peH−k+2(k−1)/5)

<∗ 3(2ϑΨ(H,n) + 2kΨ(H,n)p2(k−1)/5−1t)

< 7ϑΨ(H,n),

using Propositions 5.1 and 5.2 for the first and second inequalities.

Proof of Proposition 5.1. Fix i and condition on ∇(Vi) (thus determining
D1(i) and D2(i)). If dH(vi) = k− 1, then for any x ∈ D1(i), induction gives

Pr(w(x) ≥ 2Ψ(Hi, d(x))) < exp[−Ω(f(k − 1, d(x)))],

whence (noting Ψ(Hi, ·) = Ψ(H1, ·))

Pr(∃x ∈ D1(i) : w(x) ≥ 2Ψ(H1, d(x))) < n exp[−Ω(f(k − 1, np2/5))]

< pn
2pk−1

. (17)
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Similarly,

Pr(∃x ∈ D2(i) : w(x) ≥ 2Ψ(H1, np
2/5)) < nPr(Xnp2/5

Hi
≥ 2Ψ(Hi, np

2/5))

< n exp[−Ω(f(k − 1, np2/5))]

< pn
2pk−1

(18)

Note that, here and throughout, we omit the routine verifications of inequal-
ities like those in the last lines of (17) and (18).

If d(vi) = k − 2, then vi 6∼ vj for some j ∈ [k]. We partition Vj =
P1 ∪ · · · ∪ P⌊1/p⌋ with each Pℓ of size at most (1 + δ)np, and write w

ℓ(x) for
the number of copies of H containing x and meeting Pℓ. Noting that here
Ψ(H1, ·) = p−1Ψ(Hi, ·) (and w(x) =

∑

ℓ w
ℓ(x)), we have

Pr (w(x) ≥ 2Ψ(H1, d(x))) < Pr(∃ℓ wℓ(x) ≥ 2Ψ(Hi, d(x)))

< p−1 exp [−Ω(f(k − 1, d(x)))]

for a given x, so that

Pr (∃x ∈ D1(i) : w(x) ≥ 2Ψ(H1, d(x))) < np−1 exp
[

−Ω(f(k − 1, np2/5))
]

< pn
2pk−1

, (19)

and

Pr(∃x ∈ D2(i) : w(x) ≥ 2Ψ(H1, np
2/5)) < np−1 Pr(Xnp2/5

Hi
≥ 2Ψ(Hi, np

2/5))

< np−1 exp[−Ω(f(k − 1, np2/5))]

< pn
2pk−1

. (20)

Finally, (17)-(20) imply that w.l.p.

w(x)/d(x) < 2Ψ(H1, d(x))/d(x) = 2(d(x))k−1peH−(k−1)/d(x)

≤ 2nk−2peH−(k−1) ∀x ∈ D1(i)

and

w(x)/d(x) < 2Ψ(H1, np
2/5)/d(x) = 2(np2/5)k−1peH−(k−1)/d(x)

≤ 2nk−2peH−k+2(k−1)/5 ∀x ∈ D2(i).

11



Proof of Proposition 5.2. We bound |∇(Dj(i))|, which is, of course, an upper
bound on Sj(i). We first assert that, for any i ∈ [3], w.l.p.

|D1(i)| < ϑnpk−7/5 and |D2(i)| < npk−2t. (21)

This will follow from Lemmas 3.1 and 3.2 (so really two applications of
Lemma 3.1), a combination we will see repeatedly. For a given i and j the
events {x ∈ Dj(i)} (x ∈ Vi) are independent with (using Lemma 3.1)

Pr (x ∈ D1(i)) < k Pr(B(n, p) > np2/5) < k(ep3/5)np
2/5

< p0.5np
2/5

and

Pr (x ∈ D2(i)) < k Pr(B(n, p) > (1 + δ)np) < exp[−Ω(np)].

An application of Lemma 3.2 now shows that (21) holds w.l.p.

Assume then that (21) holds, and for convenience rename its bounds
ϑnpk−7/5 = r and npk−2t = u; we may of course assume r ≥ 1 if proving the
first bound in (16) and u ≥ 1 if proving the second. We have (a bit crudely)

Pr(|∇(D1(i))| ≥ ϑn2pk−1) < Pr(∃T ∈
(V (i)

r

)

: |∇(T )| ≥ ϑn2pk−1)

<
(

n
r

)

Pr(B((k − 1)rn, p) ≥ ϑn2pk−1)

< nr(e(k − 1)p3/5)ϑn
2pk−1

< pΩε(n2pk−1)

and

Pr(|∇(D2(i))| ≥ kn2pk−1t) < Pr(∃T ∈
(V (i)

u

)

: |∇(T )| ≥ kn2pk−1t)

<
(n
u

)

Pr(B((k − 1)un, p) ≥ kn2pk−1t)

< nu exp[−Ω(n2pk−1t)]

< pΩ(n2pk−1),

with the third inequality in each case given by Lemma 3.1.
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6 Proof of Lemma 4.2

(Here we are only interested in k ≥ 5.) We bound the contribution of high-
degree (A′, C ′)-pairs, the argument for (B′, C ′)-pairs being similar.

Let A′′ be the (random) set of vertices of A′ involved in high-degree (A′, C ′)-
pairs—that is, A′′ = {a ∈ A′ : ∃c ∈ C ′ d(a, c) > np3/2}—and define C ′′

similarly. We will show that

w.l.p. |A′′|, |C ′′| < npk−5/2 (22)

and
w.l.p. w(a, c) < 2tΨ(H{1,3}, (1 + δ)np) ∀(a, c) ∈ A′ ×C ′. (23)

Combining these we find that the total weight of high degree (A′, C ′)-pairs
is w.l.p. at most

(npk−5/2)22tΨ(H{1,3}, (1 + δ)np) < 4n2p3k−7tΨ(H{1,3}, n) < ϑΨ(H,n),

where the second inequality uses Ψ(H{1,3}, n) ≤ n−2p−(2k−3)Ψ(H,n) and

4pk−4t < ϑ (see (10)). Since, as noted above, the same argument shows that
the contribution of high-degree (B′, C ′)-pairs is w.l.p. at most ϑΨ(H,n),
the lemma follows.

Proof of (22). Given ∇(C), the events {a ∈ A′′} are independent, with

Pr
(

a ∈ A′′
)

< n(k − 2) Pr[B((1 + δ)np, p) > np3/2]

< n(k − 2)(e(1 + δ)p1/2)np
3/2

< p0.4np
3/2

=: q,

where we use (9), (10) and k ≥ 5 for the last inequality. Thus, since enq1/2 <
1, Lemma 3.2 gives (22) for A′′, and of course the same argument applies to
C ′′.

Proof of (23). Here we have lots of room and just bound max{w3(a) :
a ∈ A′}, a trivial upper bound on max{w(a, c) : a ∈ A′, c ∈ C ′}. Since
d(a) < (1 + δ)np (for a ∈ A′) and v1 ∼ vℓ ∀ℓ ∈ [k] \ {2, 3}, Theorem 2.3(b)
gives (inductively)

Pr[∃a ∈ A′
w3(a) ≥ 2tΨ(H{1,3}, (1 + δ)np)]

< n exp[−Ω(f(k − 2, (1 + δ)npt
1

k−2 ))] < pΩ(n2pk−1)

(with verification of the second inequality, which does need (9) at one point,
again left to the reader).
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7 Proof of Lemma 4.3

This requires special treatment when k = 4; see the beginning of Section 7.2
for the reason for the split. In Sections 7.1 and 7.2 we set A′′ = {a : di(a) ≤
(1 + δ)np ∀i ≥ 3} ⊇ A′ and define B′′ similarly.

7.1 Proof for k ≥ 5

For reasons that will be explained as we proceed, we need somewhat different
arguments for large and small values of p.

Case 1: np(k−1)/2 ≥ log4 n. Let Cb = {c ∈ C ∩N(b) : d(b, c) ≤ np3/2} and

W (A) = {a : ∃b ∈ B′′,
∑

c∈Cb∩N(a)

w1(b, c) > ζ} ⊇ {a : ∃b, w
∗(a, b) > ζ}

(see (15) for ζ), and define W (B) similarly.

Remark. While it may seem more natural to define W (A), W (B) in terms of
w(a, b) or w∗(a, b), the present definition has the advantage of not depending
on ∇(A,B). We will see something similar in Case 2.

The point requiring most work here is

w.l.p. |W (A)|, |W (B)| < ϑnp(k−1)/2t3. (24)

Given this, the rest of the argument goes as follows. According to Lemma
3.1, (24) implies

w.l.p. |∇(W (A),W (B))| < ϑn2pk−1 (25)

(since, given the inequality in (24), |∇(W (A),W (B))| ∼ B(m, p) for some
m < ϑ2n2pk−1t6; note the inequalities in (24) and (25) depend on separate
sets of random edges). On the other hand, an inductive application of
Theorem 2.3(b) gives

w.l.p. w
∗(a, b) < 2Ψ(H{1,2}, (1 + δ)np) ∀a, b (26)

(using the fact that we are in Case 1 and noting that d(a) > (1 + δ)np
implies w

∗(a, b) = 0).

Finally, the combination of (25) and (26) bounds the number of type three
copies of H by ϑn2pk−1 · 2Ψ(H{1,2}, (1 + δ)np) < 4ϑΨ(H,n).

14



Proofs of the two assertions in (24) being similar, we just deal with
W (A). We first show

w.l.p. w1(b, c) < 2tnk−3peH−(3k−3)/2 =: γ ∀b ∈ B′′ and c ∈ Cb (27)

and
w.l.p. w1(b) < 4nk−2peH−(k−1) ∀b ∈ B′′. (28)

These will imply, via Lemma 3.3, that the events {a ∈ W (A)} are unlikely,
and then (24) will be an application of Lemma 3.2.

Each of (27) and (28) is given (inductively) by Theorem 2.3(b), with
small differences in arithmetic depending on d(v2) and d(v3): say we are in
(a),(b) or (c) according to whether (d(v2), d(v3)) is (k−1, k−1), (k−1, k−2)
or (k − 2, k − 2).

For (27) we first observe that, given ∇(B ∪ C) and c ∈ Cb, w1(b, c) is
stochastically dominated by X := X(H{1,2,3}, np

3/2) in (a) and (c), and by
the sum of ⌊1/p⌋ copies of X in (b). (For the latter assertion, let ℓ be the
index for which v3 6∼ vℓ and, recalling that b ∈ B′′, partition N(b) ∩ Vℓ =
V1∪ · · · ∪V⌊1/p⌋ with each block of size at most np3/2.) Theorem 2.3(b) thus
gives the upper bound

n2⌊1/p⌋ exp[−Ω(f(k − 3, np3/2t1/(k−3))] < pΩ(n2pk−1) (29)

on either

Pr(∃b ∈ B′′, c ∈ Cb : w1(b, c) > 2tΨ(H{1,2,3}, np
3/2))

(if we are in (a) or (c)) or

Pr(∃b ∈ B′′, c ∈ Cb : w1(b, c) > 2t⌊1/p⌋Ψ(H{1,2,3}, np
3/2))

(if we are in (b)), the inequality in (29) holding because we are in Case 1.
(Note that in (29) the ⌊1/p⌋ is needed only when we are “in (b),” and the
term involving t only when k = 5.)

To complete the proof of (27) it just remains to check that γ (recall this
is the right hand side of (27)) is an upper bound on 2tΨ(H{1,2,3}, np

3/2) if

we are in (a) or (c), and on 2t⌊1/p⌋Ψ(H{1,2,3}, np
3/2) if we are in (b).

The proof of (28) is similar. Here, because we are in Case 1, Theorem
2.3(b) gives the bound

n⌊1/p⌋ exp[−Ω(f(k − 2, (1 + δ)np)] < pΩ(n2pk−1)
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on Pr(∃b ∈ B′′
w1(b) > 2Ψ(H{1,2}, (1 + δ)np)) if we are in (a) or (b), and

on Pr(∃b ∈ B′′
w1(b) > 2⌊1/p⌋Ψ(H{1,2}, (1 + δ)np)) if we are in (c); and it’s

easy to check that 2Ψ(H{1,2}, (1 + δ)np) or 2⌊1/p⌋Ψ(H{1,2}, (1 + δ)np) (as

appropriate) is less than 4nk−2peH−(k−1).

Finally we return to (24). Fix (and condition on) any value of E(G) \
∇(A,C) satisfying the inequalities in (27) and (28). It is enough to show
that, under this conditioning and for any a,

Pr(a ∈ W (A)) < exp[−Ω(np(k−1)/2/t2)] =: q, (30)

since then Lemma 3.2 implies, using enq1/2 < 1 and the fact that the events
{a ∈ W (A)} are independent,

|W (A)| <∗ ϑnp(k−1)/2t3.

(The assertion enq1/2 < 1 (or enqc < 1) imposes the most stringent require-
ment on p for Case 1.)

For (30) we observe that (28) gives (for any a and b ∈ B′′)

E
∑

c∈Cb∩N(a)

w1(b, c) = p
∑

c∈Cb

w1(b, c) ≤ p w1(b) < 4nk−2peH−k+2 < ζ/2,

whence, using Lemma 3.3 with (27), we have

Pr(a ∈ W (A)) < Pr
(

∃b ∈ B′′
∑

{w1(b, c) : c ∈ Cb ∩N(a)} > ζ
)

< n exp[−Ω(ζ/γ)] < n exp[−Ω(np(k−1)/2/t2)]

< exp[−Ω(np(k−1)/2/t2)].

Case 2: np(k−1)/2 < log4 n. Recall that for very small p—in particular for
p in the present range—and H 6= Kk, Theorem 2.3 is contained in Lemma
2.5; we may thus assume H = Kk. Let H ′ = H − v1v2 and, writing w

′ for
wH′ , set

W (A) = {a : ∃b ∈ B′′,w′(a, b) > ζ} ⊇ {a : ∃b w∗(a, b) > ζ}, (31)

and define W (B) similarly. (We could also work directly with w(a, b) and
avoid the extra definitions; but the present treatment, which we will see
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again below, is more natural in that it allows us to ignore the essentially
irrelevant ∇(A,B).)

The argument here is similar to that for Case 1. We again show that
membership in W (A), W (B) is unlikely, leading to

w.l.p. |W (A)|, |W (B)| < log8 n, (32)

which, in view of Lemma 3.1, again gives

w.l.p. |∇(W (A),W (B))| < ϑn2pk−1. (33)

On the other hand we will show, by an argument somewhat different
from others seen here,

w.l.p. w
∗(a, b) < nk−2p(k−1

2
) ∀a, b. (34)

Combining this with (33) gives Lemma 4.3 (for the present case).

Proof of (32). Of course it’s enough to prove the assertion for W (A). We
first observe that

w.l.p. w1(b) < 2tΨ(H{1,2}, (1 + δ)np) < 4t log4k−8 n =: m ∀b ∈ B′′; (35)

as elsewhere, this is given by an inductive application of Theorem 2.3(b),
which says that, for any b ∈ B′′,

Pr(w1(b) > 2tΨ(H{1,2}, (1 + δ)np)) < exp[−Ω(f(k − 2, (1 + δ)npt1/(k−2)))]

< pΩ(n2pk−1).

(Note that for very small p the extra factor t in (35)—which did not appear
in (28)—is needed for the final inequality here.)

We now condition on E(G) \∇(A) and assume that, as in (35), w1(b) <
m ∀b ∈ B′′. Note that a ∈ W (A) means (at least) that there is some b ∈ B′′

with
w
′(a, b) ≥ 3k−2. (36)

For i ∈ {3, . . . , k} (and any b), let V ∗
i (b) be the set of vertices of Vi lying on

copies of H1 that contain b. Since

w
′(a, b) ≤∏k

i=3 |N(a) ∩ V ∗
i (b)|,

(36) at least requires |N(a)∩ (∪k
i=3V

∗
i (b))| ≥ 3(k−2); so the probability (for

a given a) that there is some b for which (36) holds is at most

nPr(B((k − 2)m, p) ≥ 3(k − 2)) < p−(k−1)/2+(1−o(1))3(k−2) < pk−1 =: q.
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But then, since (say) enq3/4 < 1, Lemma 3.2 gives (32).

Remark. Of course (34) is the counterpart of (26) of Case 1 (since H is now
Kk the two bounds differ only by small constant factors); but for very small
p the simple inductive derivation of (26) using Theorem 2.3(b) no longer
applies, since f(k − 2, (1 + δ)np) may be much smaller than f(k, n).

Proof of (34). We may assume b ∈ B′ as otherwise w
∗(a, b) = 0. For

i ∈ {3, . . . , k} let

V ∗
i (a, b) = {v ∈ Vi : some copy of H on a, b contains v}.

We will show that

w.l.p. |∇(V ∗
i (a, b), V ∗

j (a, b))| < n2pk−1 ∀i, j, a and b ∈ B′. (37)

That this gives (34) is essentially a special case of a theorem of N. Alon
[1], the precise statement used here (see the proof of Theorem 1.1 in [7])
being: an r-partite graph with at most ℓ edges between any two of its parts
contains at most ℓr/2 copies of Kr.

For the proof of (37) we fix a, b and i < j, and think of choosing edges
of G in the order: (i) ∇(b, V3∪ · · · ∪Vk); (ii) ∇(Vα, Vβ) for all 3 ≤ α < β ≤ k
except (α, β) = (i, j); (iii) ∇(a, Vi ∪ Vj); (iv) ∇(Vi, Vj). (The remaining
edges are irrelevant here.)

Let H ′′ = H1 − vivj. Since b ∈ B′, Lemma 2.5 gives (since we are in
Case 2)

wH′′(b) <∗ 2Ψ(H1,2 − vivj, (1 + δ)np) =: m. (38)

Let V ∗
i be the set of vertices of Vi contained in copies of H ′′ that contain b,

and define V ∗
j similarly.

If the bound in (38) holds, then each of V ∗
i , V

∗
j has size at most m <

p−1 logO(1) n; an application of Lemma 3.1 thus shows that w.l.p. each of
N(a) ∩ V ∗

i , N(a) ∩ V ∗
j (and thus also V ∗

i (a, b), V ∗
j (a, b)) has size at most

(say) p−1/4, and a second application gives (37).

7.2 Proof for k = 4

For k = 4, as in Case 2 above, we can’t simply invoke induction to obtain
(26), since f(2, (1 + δ)np) (≈ n2p3) is smaller than f(4, n). This is the main
reason a separate argument is needed for k = 4.
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Proof. In this section, for x, y ∈ G let d(x, y) = maxj≥3 dj(x, y). We con-
sider the possibilities H = K4 and H = K−

4 (K4 with an edge removed)
separately.

Case 1. H = K4. Now ab is heavy if w
∗(a, b) > 225n2p3/s. Here it will

be helpful to work with w rather than w
∗. We treat (heavy) ab’s with

w(a, b) > n2p3 and those with w(a, b) ∈ (225n2p3/s, n2p3] separately.

To bound the contribution of edges of the first type, set

A∗ = {a : ∃b ∈ B′′,w′(a, b) > n2p3} ⊇ {a : ∃b ∈ B′,w(a, b) > n2p3}

(where w
′ is as in the paragraph containing (31)), and define B∗ similarly.

We first show
w.l.p. |A∗|, |B∗| < np7/4. (39)

To see this (for A∗, say) we condition on the value of ∇(B,C ∪ V4) and
consider Pr(a ∈ A∗). Noting that for any a and b ∈ B′′,

Pr(w′(a, b) ≥ n2p3) ≤ Pr(d(a, b) > np5/4)+Pr(w′(a, b) ≥ n2p3|d(a, b) ≤ np5/4)

(where 5/4 is just a convenient value between 1 and 3/2), we have

Pr (a ∈ A∗) < n[2 Pr(B((1 + δ)np, p) > np5/4) + Pr(B(n2p5/2, p) > n2p3)]

≤ pΩ(np5/4) + pΩ(n2p3). (40)

Since (given ∇(B,C∪V4)) the events {a ∈ A∗} are independent, Lemma 3.2
now gives (39). (Note that when the second term dominates (40), Lemma
3.2 gives A∗ = ∅ w.l.p.)

On the other hand, again using Lemma 3.1, we have

Pr(∃a ∈ A, b ∈ B′ : w(a, b) > n2p3t) < n2 Pr(B((1 + δ)2n2p2, p) > n2p3t)

< pΩ(n2p3),

and combining this with (39) gives
∑

{w∗(a, b) : w(a, b) > n2p3} <∗ |A∗||B∗|n2p3t <∗ n4p6.5t (< ϑn4p6).

For ab of the second type (i.e. with w(a, b) ∈ (225n2p3/s, n2p3]), we
take J = 15np3/2/

√
s, set AJ = {a : ∃b ∈ B′′, d(a, b) > J}, and define BJ

similarly. Given ∇(B,C ∪ V4) the events {a ∈ AJ} are independent with,
for each a,

Pr(a ∈ AJ ) < 2nPr(B((1 + δ)np, p) > J) < 2np(1−o(1))J/2 =: q.
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(using e(1 + δ)np3/2+o(1) < J for the second inequality). Since enq1/2 < 1
(to see this, note J is always at least 15, and is nΩ(1) if p > n−2/3+Ω(1)),
Lemma 3.2 gives

|AJ | <∗
√
ϑn2p3/J.

Of course an identical discussion applies to |BJ |, so we have |AJ ||BJ | <∗

ϑsn2p3 and, by Lemma 3.1,

|∇(AJ , BJ)| <∗ ϑn2p3.

Thus, finally,

∑

{w∗(a, b) : ab heavy, w(a, b) ∈ (n2p3/s, n2p3]}
<∗ |∇(AJ , BJ)|n2p3 = ϑn4p6

Case 2: H = K−
4 . Recall that v3v4 is the missing edge and an edge ab is

heavy if w
∗(a, b) > 225Ψ(H,n, p)/(n2p3s) = 225n2p2/s. We proceed more

or less as in the second part of Case 1.
Set J = 15np/

√
s, AJ = {a : ∃b ∈ B′′, d(a, b) > J} and BJ = {b : ∃a ∈

A′′, d(a, b) > J}. Given ∇(B,C ∪ V4) the events {a ∈ AJ} are independent
with, for each a,

Pr(a ∈ AJ) ≤ 2nPr(B((1 + δ)np, p) > J) < 2npJ/2 < pJ/3 =: q

(using Lemma 3.1 and J > ep−1/2(1+δ)np2 for the second inequality). Since
(say) enq1/2 < 1, Lemma 3.2 gives

|AJ | <∗ n2p3/J,

and similarly for BJ . Since ab heavy at least requires a ∈ AJ , b ∈ BJ and
a ∈ A′ (and since a ∈ A′ implies w(a, b) < ((1 + δ)np)2), this says that the
number of type three copies of H is at most

|AJ ||BJ |((1 + δ)np)2 <∗ (n2p3/J)2((1 + δ)np)2 < ϑn4p5
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8 Proof of Lemma 4.4

As earlier, set H ′ = H − v1v2 and w
′ = wH′ . Let X ′ =

∑

a∈A,b∈B w
′(a, b).

Then X ′ = XH′ depends only on E(G) \ ∇(A,B). Thus

X ′ <∗ (1 + ϑ)Ψ(H ′, n) = (1 + ϑ)Ψ(H,n)/p, (41)

where the inequality is given by induction if d(v2) = k − 1 and by Lemma
2.4 if d(v2) = k − 2.

Then

Y :=
∑

a∈A,b∈B

min{w′(a, b), ζ}1{ab∈E(G)} ≥
∑

a∈A,b∈B

w
∗(a, b)1{w∗(a,b)≤ζ}.

In view of (41) it’s enough to show that under any conditioning on E(G) \
∇(A,B) for which X ′ < (1 + ϑ)Ψ(H,n)/p,

Pr(Y > (1 + 2ϑ)Ψ(H,n)) < exp[−Ωϑ(n2pk−1s)] (= exp[−Ωϑ(f(k, n, p))]).

But under any such conditioning (or any conditioning on E(G) \ ∇(A,B)),
the r.v.’s 1{ab∈E(G)} are independent; so, noting EY ≤ pX ′ < (1+ϑ)Ψ(H,n)
and using Lemma 3.3, we have

Pr (Y > (1 + 2ϑ)Ψ(H,n)) < exp[−Ωϑ(Ψ(H,n)/ζ)] = exp[−Ωϑ(n2pk−1s)].

9 Proof of Theorem 1.2

Recall here H = Kk. Set r = ⌈2EξH⌉ = ⌈2
(n
k

)

p(k
2
)⌉. Note that we only need

to prove Theorem 1.2 for small p, for simplicity say p < n−2/(k−1) log n,
since above this f(k, n, p) = n2pk−1 log(1/p) and the theorem is given by
the lower bound in (5). It will thus be enough to show

Proposition 9.1. For n−2/(k−1) ≤ p < n−2/(k−1) log n,

Pr(ξH = r) > exp[−O(r)]

Proof. (This is an easy generalization of the argument for k = 3 given in
[6].) The number of sets S of r vertex-disjoint copies of H in Kn is
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s :=
(n)rk
r!(k!)r

>

(

nk

rkk

)r

. (42)

For such an S, let QS and RS be the events {G contains all members of S}
and {S is the set of H’s of G}. We have Pr(QS) = pr(

k
2
) and will show (for

any S)
Pr(RS |QS) = exp[−O(r)], (43)

whence (using (42))

Pr(ξH = r) >
∑

S

Pr(QS) Pr(RS |QS) = spr(
k
2
) exp[−O(r)]

>

(

nkp(k
2
)

rkk

)r

exp[−O(r)] = exp[−O(r)].

For the proof of (43), fix S; let W be the union of the vertex sets of the
copies of H in S; and for i = 0, . . . , k, let T (i) be the set of H’s (in Kn)
having exactly i vertices outside W . We have

Pr(RS |QS) ≥ (1 − p)|T (0)|
k
∏

i=1

(

1 − p(i
2
)+(k−i)i

)|T (i)|
(44)

= exp[−O(r)].

Here the first inequality is given by Harris’ Inequality [8] (which for our
purposes says that for a product probability measure µ on {0, 1}E (with
E a finite set) and events Ai ⊆ {0, 1}E that are either all increasing or
all decreasing, µ(∩Ai) ≥ ∏

µ(Ai)), and for the second we can use, say,
|T (i)| < ni(rk)k−i for 0 ≤ i ≤ k. (We omit the easy arithmetic, just noting
that all factors but the last (that is, i = k) in (44) are actually much larger
than exp[−O(r)].)

10 Concluding Remarks

Of course the big question is, what is the true behavior of the probability
(1) for general H? We continue to use ξH for ξn,pH , and here confine ourselves
to η = 1; that is, we’re interested in Pr(ξH > 2EξH). As usual we don’t ask
for more than the order of magnitude of the exponent.
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One can show, mainly following the argument of Section 9, that for any
K ⊆ H

Pr (ξH ≥ 2EξH) > exp[−OH(Ψ(K,n, p))] (45)

(where, recall, Ψ(K,n, p) = nvKpeK ). As far as we can see, it could be that
the truth in (1) is always given by the largest of the lower bounds in (45)
and (5). For the latter we (finally) define

MH(n, p) =

{

n2p∆H if p ≥ n−1/∆H

minK⊆H(Ψ(K,n, p))1/α
∗

K if n−1/m
H ≤ p ≤ n−1/∆H

(46)

(where, as usual, α∗ is fractional independence number; see e.g. [11] or [4]).
This is not quite the same as the quantity M∗

H(n, p) used in [11], but, as
shown in their Theorem 1.5, the two agree up to a constant factor; so the
difference is irrelevant here.

Conjecture 10.1. For any H and p > n−1/mH ,

Pr (ξH ≥ 2EξH) = exp[−ΘH(min{ min
K⊆H,eK>0

Ψ(K,n, p),MH (n, p)t})].

(47)

(Recall t = log(1/p).) We remark without proof (it is not quite obvious
as far as we know) that, for a given H, the set of p for which the (outer)
minimum in (47) is MH(n, p)t is the interval [pK , 1], where K is a smallest
subgraph of H with mK = mH and pK is the unique p for which Ψ(K,n, p) =
MH(n, p) log(1/p).

Conjecture 10.1 gives a different perspective on the observation from [11,
Section 8.1] that H = K2 shows that the lower bound in (5) is not always
tight. In this case MH(n, p) = n2p for the full range of p above and, of
course, ξH is just Bin(

(n
2

)

, p); so the upper bound in (5) is the truth. But
in fact (45) shows (with a little thought) that the lower bound in (5) is not
tight for any H and sufficiently small p (> n−1/mH ), since for small enough
p one of the terms Ψ(K,n, p) in (47) is o(MH(n, p)t). What’s special about
K2 is that it is the only (connected) H for which the best lower bound is
never given by (5); that is, the minimum in (47) is never MH(n, p)t.

It also seems interesting to estimate

Pr(ξH ≥ γEξH) (48)

when γ = γ(n) = ω(1). The present results essentially do this for H = Kk

and “generic” p; precisely, Theorem 2.3(b) implies (using a mild variant of
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Proposition 2.1)

Pr(ξH > 2τΨ(H,n, p)) < exp[−Ω(f(k, nτ1/k, p))], (49)

which, for p in the range where f(k, nτ1/k, p) = n2τ2/kpk−1t, is (up to
the constant in the exponent) the probability of containing a clique of size
np(k−1)/2(2τ)1/k (provided this is not more than

(n
k

)

). Of course the trick
that gets Theorem 2.3(b) from Theorem 2.3(a) is general, so results on Con-
jecture 10.1 give corresponding upper bounds for (48); but these bounds will
not be tight in general, and at this writing we don’t have a good guess as
to the general truth in (48).
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York, 2000.

[11] S. Janson, K. Oleszkiewicz and A. Ruciński, Upper tails for subgraph
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