Rainbow Hamilton cycles in random graphs

Alan Frieze * Po-Shen Loh ${ }^{\dagger}$

Abstract

One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erdős-Rényi random graph $G_{n, p}$ is around $p \sim \frac{\log n+\log \log n}{n}$. Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3 -uniform hypergraph by connecting 3 -uniform hypergraphs to edge-colored graphs.

In this work, we consider that setting of edge-colored graphs, and prove a result which achieves the best possible first order constant. Specifically, when the edges of $G_{n, p}$ are randomly colored from a set of $(1+o(1)) n$ colors, with $p=\frac{(1+o(1)) \log n}{n}$, we show that one can almost always find a Hamilton cycle which has the further property that all edges are distinctly colored (rainbow).

1 Introduction

Hamilton cycles occupy a position of central importance in graph theory, and are the subject of countless results. In the context of random structures, much research has been done on many aspects of Hamiltonicity, in a variety of random structures. See, e.g., any of [3, 4, 5, 18, 23] concerning Erdős-Rényi random graphs and random regular graphs, any of [6, 14, 19, 20] regarding directed graphs, or any of the recent developments [9, 10, 11, 12] on uniform hypergraphs. In this paper we consider the existence of rainbow Hamilton cycles in edge-colored graphs. (A set S of edges is called rainbow if each edge of S has a different color.) There are two general types of results in this area: existence whp ${ }^{11}$ under random coloring and guaranteed existence under adversarial coloring.

When considering adversarial (worst-case) coloring, the guaranteed existence of a rainbow structure is called an Anti-Ramsey property. Erdős, Nešetřil, and Rödl [13], Hahn and Thomassen [17] and Albert, Frieze, and Reed [1] (correction in Rue [24]) considered colorings of the edges of the complete graph K_{n} where no color is used more than k times. It was shown in [1] that if $k \leq n / 64$, then there must be a multi-colored Hamilton cycle. Cooper and Frieze [7] proved a random graph threshold for this property to hold in almost every graph in the space studied.

There is also a history of work on random coloring (see, e.g., any of [7, 8, 15, 16]), and it has recently become apparent that this random setting may be of substantial utility. Indeed, a result of Janson and Wormald [16] on rainbow Hamilton cycles in randomly edge-colored random regular

[^0]graphs played a central role in the recent determination of the threshold for loose Hamiltonicity in random 3 -uniform hypergraphs by Frieze [10]. Roughly speaking, a hyperedge (triple of vertices) can be encoded by an ordinary edge (pair of vertices), together with a color. Hence, a random 3 -uniform hypergraph gives rise to a randomly edge-colored random graph. We will discuss this further in Section 2, when we use the reverse connection to realize one part of our new result.

Let us now focus on the random coloring situation, where we consider the following model. Let $G_{n, p, \kappa}$ denote a randomly colored random graph, constructed on the vertex set [n] by taking each edge independently with probability p, and then independently coloring it with a random color from the set $[\kappa]$. We are interested in conditions on n, p, κ which imply that $G_{n, p, \kappa}$ contains a rainbow Hamilton cycle whp. The starting point for our present work is the following theorem of Cooper and Frieze.
Theorem. (See [8], Theorem 1.1.) There exist constants K_{1} and K_{2} such that if $p>\frac{K_{1} \log n}{n}$ and $\kappa>K_{2} n$, then $G_{n, p, \kappa}$ contains a rainbow Hamilton cycle whp.
The aim of this paper is to substantially strengthen the above result by proving:
Theorem 1.1.
(a) There exists a constant K such that if $p>\frac{K \log n}{n}$, then for even $n, G_{n, p, n}$ contains a rainbow Hamilton cycle whp.
(b) If $p=\frac{(1+\epsilon) \log n}{n}$ and $\kappa=(1+\theta) n$, where $\epsilon, \theta>\frac{100}{\sqrt{\log \log n}}$, then $G_{n, p, \kappa}$ contains a rainbow Hamilton cycle whp.

To discuss the tightness of our main theorem, let us recall the threshold for Hamiltonicity in $G_{n, p}$, established by Komlós and Szemerédi [18]. We find that we must have $p>\frac{\log n+\log \log n+\omega(n)}{n}$ with $\omega(n) \rightarrow \infty$, or else the underlying uncolored $G_{n, p}$ will not even be Hamiltonian. We also need at least n colors to appear on the edges in order to have enough colors for a rainbow Hamilton cycle. Note that the earlier result came within a constant factor of both of these minimum requirements, while part (a) above achieves the absolute best possible constraint on the number of colors, while still staying within a constant factor of the minimally required number of edges (albeit only for even n).

Part (b) drives both constants down to be best possible up to first order, and for all values of n, regardless of parity. We permit our error terms ϵ and θ to decrease slowly, although we do not expect our constraints on them to be optimal. Our discussion above shows that the trivial lower bound for ϵ is around $\frac{\log \log n}{\log n}$. Then, if $p \sim \frac{\log n}{n}$, we need at least $n+\Omega\left(n^{1 / 2}\right)$ colors just to ensure that whp at least n distinct colors occur on the $m \sim \frac{1}{2} n \log n$ edges in the graph; hence, the trivial lower bound for θ is around $\frac{1}{\sqrt{n}}$. We leave further exploration to future work, and highlight a potential answer in our conclusion.

This paper is organized as follows. We begin by establishing part (a) of Theorem 1.1 in the next section. Section 3 outlines the proof of part (b), which is the main contribution of this paper. The proofs of the main steps follow in the section thereafter. We conclude in Section 5 with some remarks and open problems. The following (standard) asymptotic notation will be utilized extensively. For two functions $f(n)$ and $g(n)$, we write $f(n)=o(g(n)), g(n)=\omega(f(n))$, or $f(n) \ll g(n)$ if $\lim _{n \rightarrow \infty} f(n) / g(n)=0$, and $f(n)=O(g(n))$ or $g(n)=\Omega(f(n))$ if there exists a constant M such that $|f(n)| \leq M|g(n)|$ for all sufficiently large n. We also write $f(n)=\Theta(g(n))$ if both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$ are satisfied. All logarithms will be in base $e \approx 2.718$.

2 Colored graphs and 3-uniform hypergraphs

In this section we prove part (a) of our main theorem, and demonstrate the connection between rainbow Hamilton cycles in graphs and loose Hamilton cycles in 3 -uniform hypergraphs. Indeed, this will allow us to realize part (a) as essentially a reformulation of the following recent result of Frieze [10]. Let $H_{n, p ; 3}$ denote the random 3-uniform hypergraph where each potential hyperedge appears independently with probability p. In this object, a loose Hamilton cycle is a permutation of the vertices $\left(v_{1}, \ldots, v_{n}\right)$ such that $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}, \ldots,\left\{v_{n-1}, v_{n}, v_{1}\right\}$ all appear as hyperedges (n must be even).

Theorem 2.1. (See [10], Theorem 1.) There is an absolute constant K such that if $p>\frac{K \log n}{n^{2}}$, then for all n divisible by 4 , the random hypergraph $H_{n, p ; 3}$ on the vertex set $\left\{x_{1}, \ldots, x_{n / 2}, y_{1}, \ldots, y_{n / 2}\right\}$ contains a loose Hamilton cycle whp. Furthermore, one can find such a cycle of the special form $\left(x_{\sigma(1)}, y_{\tau(1)}, x_{\sigma(2)}, y_{\tau(2)}, \ldots, x_{\sigma(n / 2)}, y_{\tau(n / 2)}\right)$, for some permutations $\sigma, \tau \in S_{n / 2}$.

As mentioned in the introduction, this theorem was proven by connecting loose Hamilton cycles in random 3 -uniform hypergraphs with rainbow Hamilton cycles in randomly edge-colored random graphs, and applying a result of Janson and Wormald [16]. We will use the reverse connection to demonstrate the equivalence between Theorem 1.1(a) and Theorem 2.1.

Proof of Theorem 1.1(a). Let K be the constant in Theorem 2.1. We are given an even integer n, and a graph $G \sim G_{n, p}$ with $p>\frac{K \log n}{n}$ on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, whose edges are randomly colored from the set $\left\{c_{1}, \ldots, c_{n}\right\}$. Construct an auxiliary 3 -uniform hypergraph H with vertex set $\left\{v_{1}, \ldots v_{n}, c_{1}, \ldots, c_{n}\right\}$, by taking the hyperedge $\left\{v_{i}, v_{j}, c_{k}\right\}$ whenever the edge $v_{i} v_{j}$ appears in G, with color c_{k}. Note that every such hyperedge appears independently with probability $\frac{p}{n}>\frac{K \log n}{n^{2}}$, since $v_{i} v_{j}$ appears in G with probability p, and receives color c_{k} with probability $\frac{1}{n}$. Therefore, Theorem 2.1 implies that H has a loose Hamilton cycle whp, of the form $\left(v_{\sigma(1)}, c_{\tau(1)}, v_{\sigma(2)}, c_{\tau(2)}, \ldots, c_{\tau(n / 2)}\right)$. This corresponds to the Hamilton cycle $\left(v_{\sigma(1)}, \ldots, v_{\sigma(n / 2)}\right)$ in G, with edges colored $c_{\tau(1)}, \ldots, c_{\tau(n / 2)}$, hence rainbow.

3 Proof of Theorem 1.1(b): high level description

Let $\epsilon, \theta>\frac{100}{\sqrt{\log \log n}}$ be given. We will implicitly assume throughout (when convenient) that they are sufficiently small. Our proof proceeds in three phases, so our parameters come in threes. Let us arbitrarily partition the $\kappa=(1+\theta) n$ colors into three disjoint groups $C_{1} \cup C_{2} \cup C_{3}$, with sizes

$$
\left|C_{1}\right|=\theta_{1} n, \quad\left|C_{2}\right|=\left(1+\theta_{2}\right) n, \quad\left|C_{3}\right|=\theta_{3} n .
$$

We will analyze the random edge generation in three stages, so we define the probabilities

$$
p_{1}=\frac{\epsilon_{1} \log n}{2 n}, \quad p_{2}=\frac{\left(1+\epsilon_{2}\right) \log n}{2 n}, \quad p_{3}=\frac{\epsilon_{3} \log n}{2 n} .
$$

The ϵ 's and θ 's are defined by the relations

$$
\begin{equation*}
\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\frac{\epsilon}{3}, \quad \theta_{1}=\theta_{3}=\min \left\{\frac{\theta}{3}, \frac{\epsilon_{2}}{4}\right\}, \quad \theta_{2}=\theta-\theta_{1}-\theta_{3} . \tag{1}
\end{equation*}
$$

(We would have taken $\theta_{1}=\theta_{2}=\theta_{3}=\frac{\theta}{3}$, except that Lemma 4.9 requires $\theta_{1}+\theta_{3} \leq \frac{\epsilon_{2}}{2}$.)

3.1 Underlying digraph model

It is more convenient for our entire argument to work with directed graphs, as this will allow us to conserve independence. Recall that $D_{n, p}$ is the model where each of the $n(n-1)$ possible directed edges appears independently with probability p. We generate a random colored undirected graph via the following procedure. First, we independently generate three digraphs $D_{1}^{\circ}=D_{n, p_{1}}$, $D_{2}^{\circ}=D_{n, p_{2}}$, and $D_{3}^{\circ}=D_{n, p_{3}}$, and color all of the directed edges from the full set of colors.

We next use the D_{i}° to construct a colored undirected graph G, by taking the undirected edge $u v$ if and only if at least one of $\overrightarrow{u v}$ or $\overrightarrow{v u}$ appear among the D_{i}°. The colors of the undirected edges are inherited from the colors of the directed edges, in the priority order $D_{1}^{\circ}, D_{2}^{\circ}, D_{3}^{\circ}$. Specifically, if $\overrightarrow{u v}$ or $\overrightarrow{v u}$ appear already in D_{1}°, then $u v$ takes the color used in D_{1}° even if $\overrightarrow{u v}$ or $\overrightarrow{v u}$ appear again in D_{3}°, say. In the event that both $\overrightarrow{u v}$ and $\overrightarrow{v u}$ appear in D_{1}°, the color of $\overrightarrow{u v}$ is used for $u v$ with probability $1 / 2$, and the color of $\overrightarrow{v u}$ is used otherwise. Similarly, if neither of $\overrightarrow{u v}$ nor $\overrightarrow{v u}$ appear in D_{1}°, but $\overrightarrow{u v}$ appears in both D_{2}° and D_{3}°, the color used in D_{2}° takes precedence. It is clear that the resulting colored graph G has the same distribution as $G_{n, p, \kappa}$, with

$$
p=1-\left(1-p_{1}\right)^{2}\left(1-p_{2}\right)^{2}\left(1-p_{3}\right)^{2}=\left(1+\epsilon+O\left(\epsilon^{2}\right)\right) \frac{\log n}{n}
$$

3.2 Partitioning by color

In each of our three phases, we will use one group of edges and one group of colors. Since each D_{i}° contains edges colored from the entire set $C_{1} \cup C_{2} \cup C_{3}$, for each i we define $D_{i} \subset D_{i}^{\circ}$ to be the spanning subgraph consisting of all directed edges whose color is in C_{i}.

Our final undirected graph is generated by superimposing directed graphs and disregarding the directions. Consequently, we do not need to honor the directions when building Hamilton cycles. To account for this, we define three corresponding colored undirected graphs G_{1}, G_{2}, and G_{3}. These will be edge-disjoint, respecting priority.

The first, G_{1}, is constructed as follows. For each pair of vertices u, v with $\overrightarrow{u v} \in D_{1}$ but $\overrightarrow{v u} \notin D_{1}^{\circ}$, place $u v$ in G_{1} in the same color as $\overrightarrow{u v}$. If both $\overrightarrow{u v}$ and $\overrightarrow{v u}$ are in D_{1}, we still place the edge $u v$ in G_{1}, but randomly select either the color of $\overrightarrow{u v}$ or of $\overrightarrow{v u}$. However, if $\overrightarrow{u v} \in D_{1}$ but $\overrightarrow{v u} \in D_{1}^{\circ} \backslash D_{1}$, then $u v$ is only placed in G_{1} with probability $1 / 2$; if it is placed, it inherits the color of $\overrightarrow{u v}$. Note that this construction precisely captures all undirected edges arising from D_{1}°, using colors in C_{1}.

We are less careful with G_{2}, as our argument can afford to discard all edges that arise from multiply covered pairs. Specifically, we place $u v \in G_{2}$ if and only if $\overrightarrow{u v} \in D_{2} \backslash D_{1}^{\circ}$ and $\overrightarrow{v u} \notin D_{1}^{\circ} \cup D_{2}^{\circ}$. As the pair $\{u, v\}$ is now spanned by only one directed edge in D_{2}°, the undirected edge $u v$ inherits that unique color. We define G_{3} similarly, placing $u v \in G_{3}$ if and only if $\overrightarrow{u v} \in D_{3} \backslash\left(D_{1}^{\circ} \cup D_{2}^{\circ}\right)$ and $\overrightarrow{v u} \notin D_{1}^{\circ} \cup D_{2}^{\circ} \cup D_{3}^{\circ}$.

In this way, we create three edge-disjoint graphs G_{i}. By our observations in the previous section, we may now focus on finding an (undirected) rainbow Hamilton cycle in $G_{1} \cup G_{2} \cup G_{3}$. Importantly, note that in terms of generating colored undirected edges, the digraph D_{1}° has higher "priority" than D_{2}° or D_{3}°. So, for example, the generation of G_{1} is not affected by the presence or absence of edges from D_{2}° or D_{3}°.

3.3 Main steps

We generally prefer to work with G_{i} and D_{i} instead of D_{i}° because we are guaranteed that the edge colors lie in the corresponding C_{i}. This allows us to build rainbow segments in separate stages, without worrying that we use the same color twice. Let $d_{i}^{+}(v)$ denote the out-degree of v in D_{i}. We now define a set S of vertices that need special treatment. We first let

$$
S_{0}=S_{0,1} \cup S_{0,2} \cup S_{0,3}
$$

where

$$
\begin{align*}
& S_{0,1}=\left\{v: d_{1}^{+}(v) \leq \frac{\epsilon_{1} \theta_{1}}{20} \log n\right\} \tag{2}\\
& S_{0,2}=\left\{v: d_{2}^{+}(v) \leq \frac{1}{20} \log n\right\} \tag{3}\\
& S_{0,3}=\left\{v: d_{3}^{+}(v) \leq \frac{\epsilon_{3} \theta_{3}}{20} \log n\right\} . \tag{4}
\end{align*}
$$

Also, define $\gamma=\min \left\{\frac{1}{4}, \frac{1}{4} \epsilon_{1} \theta_{1}, \frac{1}{4} \epsilon_{3} \theta_{3}\right\}$, and note that the constraints on ϵ, θ in Theorem 1.1 imply the bound

$$
\begin{equation*}
\gamma>\frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{12} \cdot\left(\frac{100}{\sqrt{\log \log n}}\right)^{2}>\frac{1}{\log \log n} \tag{5}
\end{equation*}
$$

Lemma 3.1. The set S_{0} satisfies $\left|S_{0}\right| \leq \frac{1}{3} n^{1-\gamma} \boldsymbol{w h} \boldsymbol{p}$.
The vertices in S_{0} are delicate because they have low degree. We also need to deal with vertices having several neighbors in S_{0}. For this, we define a sequence of sets $S_{0}, S_{1}, \ldots, S_{t}$ in the following way. Having chosen S_{t}, if there is still a vertex $v \notin S_{t}$ with at least 4 out-neighbors in S_{t} (in any of the graphs D_{1}, D_{2}, or D_{3}), we let $S_{t+1}=S_{t} \cup\{v\}$ and continue. Otherwise we stop at some value $t=T$ and take $S=S_{T}$.

Lemma 3.2. With probability $1-o\left(n^{-1}\right)$, the set S contains at most $n^{1-\gamma}$ vertices.
To take care of the dangerous vertices in S, we find a collection of vertex disjoint paths $Q_{1}, Q_{2}, \ldots, Q_{s}, s=|S|$ such that (i) each path uses undirected edges in G_{2}, (ii) all colors which appear on these edges are distinct, (iii) all interior vertices of the paths are vertices of S, (iv) every vertex of S appears in this way, and (v) the endpoints of the paths are not in S. Let us say that these paths cover S.

Lemma 3.3. The graph G_{2} contains a collection $Q_{1}, Q_{2}, \ldots, Q_{s}$ of paths that cover $S \boldsymbol{w h} \boldsymbol{p}$.
The next step of our proof uses a random greedy algorithm to find a rainbow path of length close to n, avoiding all of the previously constructed Q_{i}.

Lemma 3.4. The graph G_{2} contains a rainbow path P of length $n^{\prime}=n-\frac{n}{\sqrt[3]{\log n}} \boldsymbol{w h} \boldsymbol{p}$. Furthermore, P is entirely disjoint from all of the Q_{i}, and all colors used in P and the Q_{i} are distinct and from C_{2}.

Let U be the vertices outside P. (Note that U contains all of the paths Q_{i}.) In order to link the vertices of U into P, we split P into short segments, and use the edges of G_{3} to splice U into the system of segments. We will later use the edges of G_{1} to link the segments back together into a rainbow Hamilton cycle, so care must be taken to conserve independence. The following lemma merges all vertices of U into the collection of segments, and prepares us for the final stage of the proof. Here, $d_{1}^{+}(v ; A)$ denotes the number of D_{1}-edges from v to a set A. Let

$$
\begin{equation*}
L=\max \left\{15 \cdot e^{\frac{40}{\epsilon_{3} \theta_{3}}}, \frac{7}{\theta_{1}}\right\} \tag{6}
\end{equation*}
$$

and note that our conditions on ϵ, θ in Theorem (1.1, together with (1), imply that $\epsilon_{3} \theta_{3}>\frac{1}{3} \cdot \frac{1}{12}$. $\left(\frac{100}{\sqrt{\log \log n}}\right)^{2}>\frac{277}{\log \log n}$, so we have

$$
\begin{equation*}
L<\max \left\{15 \cdot e^{\frac{40}{277} \log \log n}, 7 \cdot \frac{12 \sqrt{\log \log n}}{100}\right\}<\sqrt[6]{\log n} \tag{7}
\end{equation*}
$$

Lemma 3.5. With probability $1-o(1)$, the entire vertex set can be partitioned into segments I_{1}, \ldots, I_{r}, with $r \leq \frac{n}{L}$, such that the edges which appear in the segments all use different colors from $C_{2} \cup C_{3}$. The segment endpoints are further partitioned into $A \cup B$, with each segment having one endpoint in A and one in B, such that every $a \in A$ has $d_{1}^{+}(a ; B) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$, and every $b \in B$ has $d_{1}^{+}(b ; A) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$. All of the numeric values $d_{1}^{+}(a ; B)$ and $d_{1}^{+}(b ; A)$ have already been revealed, but the locations of the corresponding edges are still independent and uniform over B and A, respectively.

The final step links together the segments I_{1}, \ldots, I_{r} using distinctly-colored edges from G_{1}. For this, we create an auxiliary colored directed graph Γ, which has one vertex w_{k} for each interval I_{k}. There is a directed edge $\overrightarrow{w_{j} w_{k}} \in \Gamma$ if there is an edge $e \in G_{1}$ between the B-endpoint of I_{j} and the A-endpoint of I_{k}; it inherits the color of e. Since all colors of edges in Γ are from C_{1}, it therefore suffices to find a rainbow Hamilton directed cycle in Γ. We will find this by connecting Γ with a well-studied random directed graph model.

Definition 3.6. The d-in, d-out random directed graph model $D_{d-i n, d \text {-out }}$ is defined as follows. Each vertex independently chooses d out-neighbors and d in-neighbors uniformly at random, and all resulting directed edges are placed in the graph. Due to independence, it is possible that a vertex u selects v as an out-neighbor, and v also selects u as an in-neighbor. In that case, instead of placing two repeated edges $\overrightarrow{u v}$, place only one.

Instead of proving Hamiltonicity from scratch, we apply the following theorem of Cooper and Frieze.

Theorem 3.7. (See [6], Theorem 1.) The random graph $D_{2 \text {-in, } 2 \text {-out }}$ contains a directed Hamilton cycle whp.

This result does not take colors into account, however. Fortunately, in equation (6), we define L to be large enough to allow us to select a subset of G_{1}-edges which is itself already rainbow. The analysis of this procedure is the heart of the proof of the final step.

Lemma 3.8. The colored directed graph Γ contains a rainbow directed Hamilton cycle whp.

Since each directed edge of Γ corresponds to an undirected G_{1}-edge from a B-endpoint of an interval to an A-endpoint of another interval, a directed Hamilton cycle in Γ corresponds to a Hamilton cycle linking all of the intervals together. Lemma 3.8 establishes that it is possible to choose these linking edges as a rainbow set from C_{1}. The edges within the intervals were themselves colored from $C_{2} \cup C_{3}$, so the result is indeed a rainbow Hamilton cycle in the original graph, as desired.

4 Proofs of intermediate lemmas

In the remainder of this paper, we prove the lemmas stated in the previous section. Although the first lemma is fairly standard, we provide all details, and use the opportunity to formally state several other well-known results which we apply again later.

4.1 Proof of Lemma 3.1

Our first lemma controls the number of vertices whose degrees in D_{i} are too small. Recall from Section [3.1] that the D_{i}° are independently generated. Their edges are then independently colored, and the edges of D_{i}° which receive colors from C_{i} are collected into D_{i}. (Priorities only take effect when we form the G_{i} in Section [3.2,) Therefore, the out-degrees $d_{i}^{+}(v)$ of vertices v in D_{i} are distributed as

$$
\begin{aligned}
& d_{1}^{+}(v) \sim \operatorname{Bin}\left(n-1, p_{1} \cdot \frac{\theta_{1}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right) \geq \operatorname{Bin}\left(0.99 n, \frac{0.49 \epsilon_{1} \theta_{1} \log n}{n}\right) \\
& d_{2}^{+}(v) \sim \operatorname{Bin}\left(n-1, p_{2} \cdot \frac{1+\theta_{2}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right) \geq \operatorname{Bin}\left(0.99 n, \frac{0.49 \log n}{n}\right) \\
& d_{3}^{+}(v) \sim \operatorname{Bin}\left(n-1, p_{3} \cdot \frac{\theta_{3}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right) \geq \operatorname{Bin}\left(0.99 n, \frac{0.49 \epsilon_{3} \theta_{3} \log n}{n}\right) .
\end{aligned}
$$

Thus the expected size of S_{0} satisfies

$$
\mathbb{E}\left[\left|S_{0}\right|\right] \leq n\left(\rho_{1}+\rho_{2}+\rho_{3}\right),
$$

where

$$
\begin{aligned}
& \rho_{1}=\mathbb{P}\left[\operatorname{Bin}\left(0.99 n, \frac{0.49 \epsilon_{1} \theta_{1} \log n}{n}\right) \leq \frac{\epsilon_{1} \theta_{1} \log n}{20}\right] \\
& \rho_{2}=\mathbb{P}\left[\operatorname{Bin}\left(0.99 n, \frac{0.49 \log n}{n}\right) \leq \frac{\log n}{20}\right] \\
& \rho_{3}=\mathbb{P}\left[\operatorname{Bin}\left(0.99 n, \frac{0.49 \epsilon_{3} \theta_{3} \log n}{n}\right) \leq \frac{\epsilon_{3} \theta_{3} \log n}{20}\right] .
\end{aligned}
$$

We will repeatedly use the following case of the Chernoff lower tail bound, which we prove with an appropriate explicit constant.

Lemma 4.1. The following holds for all sufficiently large $m q$, where m is a positive integer and $0<q<1$ is a real number.

$$
\mathbb{P}\left[\operatorname{Bin}(m, q) \leq \frac{1}{9} m q\right]<e^{-0.533 m q}
$$

Proof. Calculation yields

$$
\mathbb{P}\left[\operatorname{Bin}(m, q) \leq \frac{1}{9} m q\right]=\sum_{k=0}^{m q / 9}\binom{m}{k} q^{k}(1-q)^{m-k}<\sum_{k=1}^{m q / 9}\left(\frac{e m q}{k}\right)^{k} e^{-\frac{8}{9} m q} .
$$

The function $\left(\frac{C}{k}\right)^{k}=\exp \{k(\log C-\log k)\}$ is increasing in k in the range $0<k<e C$. Thus

$$
\begin{aligned}
\mathbb{P}\left[\operatorname{Bin}(m, q) \leq \frac{1}{9} m q\right] & <\frac{m q}{9} \cdot\left(\frac{e m q}{m q / 9}\right)^{m q / 9} e^{-\frac{8}{9} m q} \\
& =\frac{m q}{9} \cdot(9 e)^{m q / 9} e^{-\frac{8}{9} m q} \\
& =e^{m q\left(\frac{1}{9} \log 9 e-\frac{8}{9}+o(1)\right)} \\
& <e^{-0.533 m q}
\end{aligned}
$$

as claimed.
Returning to the proof of Lemma [3.1, we observe that since $\frac{1}{20}<\frac{1}{9} \cdot 0.99 \cdot 0.49$, a direct application of Lemma 4.1 now gives

$$
\begin{aligned}
\rho_{2} & <\mathbb{P}\left[\operatorname{Bin}\left(0.99 n, \frac{0.49 \log n}{n}\right) \leq \frac{1}{9} \cdot 0.99 \cdot 0.49 \log n\right] \\
& \left.<e^{-0.533 \cdot 0.99 \cdot 0.49 \log n}\right] \\
& <n^{-0.258} .
\end{aligned}
$$

A similar argument establishes that $\rho_{1}<n^{-0.258 \epsilon_{1} \theta_{1}}$ and $\rho_{3}<n^{-0.258 \epsilon_{3} \theta_{3}}$. This proves that $\mathbb{E}\left[\left|S_{0}\right|\right]=$ $o\left(n^{1-\gamma}\right)$, where we recall our definition $\gamma=\min \left\{\frac{1}{4}, \frac{1}{4} \epsilon_{2} \theta_{2}, \frac{1}{4} \epsilon_{3} \theta_{3}\right\}$. We complete the proof of the lemma by showing that $\left|S_{0}\right|$ is concentrated around its mean. For this, we use the Hoeffding-Azuma martingale tail inequality applied to the vertex exposure martingale (see, e.g., [2]). Recall that a martingale is a sequence X_{0}, X_{1}, \ldots of random variables such that each conditional expectation $\mathbb{E}\left[X_{t+1} \mid X_{0}, \ldots, X_{t}\right]$ is precisely X_{t}.

Theorem 4.2. Let X_{0}, \ldots, X_{n} be a martingale, with bounded differences $\left|X_{i+1}-X_{i}\right| \leq C$. Then for any $\lambda \geq 0$,

$$
\mathbb{P}\left[X_{n} \geq X_{0}+\lambda\right] \leq \exp \left\{-\frac{\lambda^{2}}{2 C^{2} n}\right\}
$$

Here we consider $\left|S_{0}\right|$ to be a function of $Y_{1}, Y_{2}, \ldots, Y_{n}$ where Y_{k} denotes the set of edges $\overrightarrow{j k}, \overrightarrow{k j} \in D_{1}^{\circ} \cup D_{2}^{\circ} \cup D_{3}^{\circ}, j<k$. The sequence $X_{t}=\mathbb{E}\left[\left|S_{0}\right| \mid Y_{1}, \ldots, Y_{t}\right]$ is called the vertex-exposure martingale. There is a slight problem in that the worst-case Lipschitz value for changing a single Y_{k} can be too large, while the average case is good. There are various ways of dealing with this. We will make a small change in $D^{\circ}=D_{1}^{\circ} \cup D_{2}^{\circ} \cup D_{3}^{\circ}$. Let \hat{D}° be obtained from D° by reducing every degree below $5 \log n$. We do this in vertex order $v=1,2, \ldots, n$ and delete edges incident with v in descending numerical order. We can show that this usually has no effect on D°.

Lemma 4.3. With probability $1-o\left(n^{-1}\right)$, every vertex in $G_{n, p}$ with $p<\frac{1.1 \log n}{n}$ has degree at most $5 \log n$.

Proof. The probability that a single vertex has degree at least $5 \log n$ is

$$
\begin{aligned}
\mathbb{P}[\operatorname{Bin}(n-1, p) \geq 5 \log n] & \leq\binom{ n}{5 \log n}\left(\frac{1.1 \log n}{n}\right)^{5 \log n} \\
& \leq\left(\frac{e n}{5 \log n} \cdot \frac{1.1 \log n}{n}\right)^{5 \log n} \\
& =\left(\frac{1.1 e}{5}\right)^{5 \log n} \\
& =n^{-2.57}
\end{aligned}
$$

so a union bound over all vertices gives the result.
Therefore, $\mathbb{P}\left[\hat{D}^{\circ}=D^{\circ}\right]=1-o\left(n^{-1}\right)$, and so if we let $\hat{Z}=\left|\hat{S}_{0}\right|$ be the size of the corresponding set evaluated in \hat{D}°, we obtain $\mathbb{E}[\hat{Z}]=\mathbb{E}\left[\left|S_{0}\right|\right]+o(1)=o\left(n^{1-\gamma}\right)$. Furthermore, changing a Y_{k} can only change \hat{Z} by at most $15 \log n$. So, we have

$$
\mathbb{P}\left[\hat{Z}_{i} \geq \mathbb{E}\left[\hat{Z}_{i}\right]+\frac{1}{4} n^{1-\gamma}\right] \leq \exp \left\{-\frac{n^{2-2 \gamma} / 16}{2(15 \log n)^{2} n}\right\}<o\left(n^{-1}\right)
$$

completing the proof of Lemma 3.1.

4.2 Proof of Lemma 3.2

We use the following standard estimate to control the densities of small sets.
Lemma 4.4. With probability $1-o\left(n^{-1}\right)$, in $D_{n, p}$ with $p<\frac{\log n}{n}$, every set S of fewer than $\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n}$ vertices satisfies $e(S)<2|S|$. Here, $e(S)$ is the number of directed edges spanned by S.

Proof. Fix a positive integer $s<\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n}$, and consider sets of size s. We may assume that $s \geq 2$, because a single vertex cannot induce any edges. The expected number of sets S with $|S|=s$ and $e(S) \geq 2 s$ is at most

$$
\begin{aligned}
\binom{n}{s} \cdot\binom{s^{2}}{2 s}\left(\frac{\log n}{n}\right)^{2 s} & \leq\left(\frac{e n}{s}\right)^{s} \cdot\left(\frac{e s^{2}}{2 s}\right)^{2 s}\left(\frac{\log n}{n}\right)^{2 s} \\
& =\left(s \cdot \frac{e^{3} \log ^{2} n}{4 n}\right)^{s}
\end{aligned}
$$

It remains to show that when this bound is summed over all $2 \leq s<\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n}$, the result is still $o\left(n^{-1}\right)$. Indeed, for each $2 \leq s \leq 2 \log n$, the bound is at most $O\left(\frac{\log ^{6} n}{n^{2}}\right)$, so the total contribution from that part is only $O\left(\frac{\log ^{7} n}{n^{2}}\right)=o\left(n^{-1}\right)$. On the other hand, for each $2 \log n<s<\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n}$, the bound is at most

$$
\left(\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n} \cdot \frac{e^{3} \log ^{2} n}{4 n}\right)^{2 \log n}=\left(\frac{1}{e}\right)^{2 \log n}=n^{-2} .
$$

Thus the total contribution from $2 \log n<s<\frac{4}{e^{4}} \cdot \frac{n}{\log ^{2} n}$ is at most $o\left(n^{-1}\right)$, as desired.
We are now ready to bound the size of the set S which was created by repeatedly absorbing vertices with many neighbors in S_{0}.

Proof of Lemma 3.2. We actually prove a stronger statement, which we will need for Lemma 4.7. Suppose we have an initial S_{0} satisfying $\left|S_{0}\right|<\frac{1}{3} n^{1-\gamma}$, as ensured by Lemma 3.1. Consider a sequence $S_{0}^{\prime}, S_{1}^{\prime}, S_{2}^{\prime}, \ldots$ where S_{t+1}^{\prime} is obtained from S_{t}^{\prime} by adding a vertex $v \notin S_{t}^{\prime}$ for which $d_{i}^{+}\left(v ; S_{t}^{\prime}\right) \geq 3$ for some i. Note that when this process stops, the final set S^{\prime} will contain the set S which our definition obtained by adding vertices with degree at least 4 into previous S_{t}.

So, suppose for contradiction that this process continues for so long that some $\left|S_{t}^{\prime}\right|$ reaches $n^{1-\gamma}=o\left(\frac{n}{\log ^{2} n}\right)$. Note that $t \geq \frac{2}{3} n^{1-\gamma}$. Since each step introduces at least 3 edges, we must have $e\left(S_{t}\right) \geq 3 t \geq 2 n^{1-\gamma}=2\left|S_{t}\right|$. Yet by construction, $D_{1} \cup D_{2} \cup D_{3}$ is an instance of $D_{n, q}$ for some $q<\frac{\log n}{n}$, so this contradicts Lemma 4.4.

4.3 Proof of Lemma 3.3

In this section, we show that for each vertex $v \in S$, we can find a disjoint G_{2}-path $Q \ni v$ which starts and ends outside S. We also need all colors appearing on these edges to be different. Since we are working in a regime where degrees can be very small, we need to accommodate the most delicate vertices first. Specifically, let $S_{0,0}$ be the set of all vertices with $d_{2}(v) \leq \frac{1}{10} \log n$, where $d_{2}(v)$ is the degree of v in G_{2}. Although $S_{0,0}$ will typically not be entirely contained within $S_{0,2}$, we can show that it is still usually quite small.
Lemma 4.5. We have $\left|S_{0,0}\right|<n^{0.48} \boldsymbol{w h p}$.
Proof. By construction, $G_{2} \sim G_{n, q_{2}}$, where

$$
\begin{equation*}
q_{2}=2 p_{2}\left(1-p_{2}\right) \cdot \frac{1+\theta_{2}}{1+\theta_{1}+\theta_{2}+\theta_{3}} \cdot\left(1-p_{1}\right)^{2}, \tag{8}
\end{equation*}
$$

because the first factor is the probability that exactly one of $\overrightarrow{u v}$ or $\overrightarrow{v u}$ appears in D_{2}°, the second factor is the probability that it receives a color from C_{2}, and the third factor is the probability that neither $\overrightarrow{u v}$ nor $\overrightarrow{v u}$ appear in D_{1}°. Hence for a fixed vertex v, its relevant degree in G_{2} is distributed as

$$
d_{2}(v) \sim \operatorname{Bin}\left(n-1, q_{2}\right) \geq \operatorname{Bin}\left(0.99 n, \frac{0.99 \log n}{n}\right) .
$$

Since $\frac{1}{10}<\frac{1}{9} \cdot 0.99 \cdot 0.99$, Lemma 4.1 implies that

$$
\begin{align*}
\mathbb{P}\left[d_{2}(v) \leq \frac{1}{10} \log n\right] & <\mathbb{P}\left[\operatorname{Bin}\left(0.99 n, \frac{0.99 \log n}{n}\right) \leq \frac{1}{9} \cdot 0.99 \cdot 0.99 \log n\right] \\
& \left.<e^{-0.533 \cdot 0.99 \cdot 0.99 \log n}\right] \\
& <n^{-0.522} \tag{9}
\end{align*}
$$

Therefore, $\mathbb{E}\left[\left|S_{0,0}\right|\right]<n \cdot n^{-0.522}$, and Markov's inequality yields the desired result.
We have shown that vertices of $S_{0,0}$ are few in number. Our next result shows that they are also scattered far apart. This will help us when we construct the covering paths, by preventing paths from colliding.

Lemma 4.6. Let $\operatorname{dist}_{2}(v, w)$ denote the distance between v and w in G_{2}. Then, whp, every pair $v, w \in S_{0,0}$ satisfies $\operatorname{dist}_{2}(v, w) \geq 5$.

Proof. Recall that $G_{2} \sim G_{n, q_{2}}$ with q_{2} defined as in (8). Consider a fixed pair of vertices v, w. For a fixed sequence of $k \leq 4$ intermediate vertices $x_{1}, x_{2}, \ldots, x_{k}$, let us bound the probability q that v, w both have $d_{2} \leq \frac{1}{10} \log n$, and all the edges $v x_{1}, x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k} w$ appear in G_{2}. First expose the edges $v x_{1}, x_{1} x_{2}, \ldots, x_{k} w$, and then expose the edges between v and $[n] \backslash\left\{v, x_{1}, \ldots, x_{k}, w\right\}$, and between w and that set.

This gives the following bound on our probability q :

$$
\begin{equation*}
q \leq\left(\frac{1.01 \log n}{n}\right)^{k+1} \cdot \mathbb{P}\left[\operatorname{Bin}\left(n-2-k, \frac{0.99 \log n}{n}\right) \leq \frac{\log n}{10}\right]^{2} \tag{10}
\end{equation*}
$$

A calculation analogous to (9) bounds the Binomial probability by $n^{-0.52}$, so taking a union bound over all $O\left(n^{k}\right)$ choices for the x_{i}, for all $0 \leq k \leq 4$, we find that for fixed v, w, the probability that $\operatorname{dist}_{2}(v, w)<5$ is at most

$$
\sum_{k=0}^{4} O\left(n^{k}\right) \cdot\left(\frac{1.01 \log n}{n}\right)^{k+1} \cdot\left(n^{-0.52}\right)^{2}<n^{-2.04+o(1)}
$$

Therefore, a final union bound over the $O\left(n^{2}\right)$ choices for v, w completes the proof.
The previous result will help us cover vertices in $S_{0,0}$ with G_{2}-paths. However, the objective of this section is to cover all vertices of S. Although the analogue of Lemma 4.6 does not hold for S, it is still possible to prove that S is sparsely connected to the rest of the graph. Recall from (5) that $\gamma=\min \left\{\frac{1}{4}, \frac{1}{4} \epsilon_{1} \theta_{1}, \frac{1}{4} \epsilon_{3} \theta_{3}\right\}>\frac{1}{\log \log n}$.
Lemma 4.7. With respect to edges of G_{2}, every vertex v is adjacent to at most $\frac{2}{\gamma}$ vertices in S $\boldsymbol{w h} \boldsymbol{p}$. (This applies whether or not v itself is in S.)

Proof. Fix a vertex v. Let S^{\prime} be the set obtained by constructing the analogous sequences to $S_{0,1}^{\prime}, S_{0,2}^{\prime}, S_{0,3}^{\prime}, S_{1}^{\prime}, \ldots$ on the graph induced by $[n] \backslash\{v\}$, where $S_{0, i}^{\prime}$ are defined as in (2)-(4), but the S_{t+1}^{\prime} are obtained by adding vertices with at least 3 (not 4) D_{i}-out-neighbors in S_{t}^{\prime}. Clearly, S^{\prime} contains $S \backslash\{v\}$, because the effect of ignoring v is compensated for by using 3 instead of 4 . The advantage of using S^{\prime} instead of S is that S^{\prime} can be generated without exposing any edges incident to v. As we will take a final union bound over the n choices of v, it therefore suffices to show that with probability $1-o\left(n^{-1}\right)$, the particular vertex v has at most $\frac{2}{\gamma}$ neighbors in S^{\prime}.

For this, we expose all edges of $D_{1}^{\circ} \cup D_{2}^{\circ} \cup D_{3}^{\circ}$ that are spanned by $[n] \backslash\{v\}$. Recall that our proof of Lemma 3.2 already absorbed vertices with 3 out-neighbors (instead of 4), so we have $\left|S^{\prime}\right| \leq n^{1-\gamma}$ with probability $1-o\left(n^{-1}\right)$. It remains to control the number of edges between v and S^{\prime}, so we now expose all edges of $D_{1}^{\circ} \cup D_{2}^{\circ} \cup D_{3}^{\circ}$. The G_{2}-edges there appear independently with probability
q_{2} as defined in (8), so the probability that at least $\frac{2}{\gamma}$ edges appear is at most

$$
\begin{align*}
\mathbb{P}\left[\operatorname{Bin}\left(n^{1-\gamma}, q_{2}\right) \geq \frac{2}{\gamma}\right] & \leq\binom{ n^{1-\gamma}}{2 / \gamma}\left(\frac{1.01 \log n}{n}\right)^{2 / \gamma} \\
& \leq\left(\frac{e \cdot n^{1-\gamma}}{2 / \gamma} \cdot \frac{1.01 \log n}{n}\right)^{2 / \gamma} \\
& <\left(\frac{2 \gamma \log n}{n^{\gamma}}\right)^{2 / \gamma} \\
& <\frac{(2 \log n)^{2 \log \log n}}{n^{2}}=o\left(n^{-1}\right) . \tag{11}
\end{align*}
$$

Taking a final union bound over all initial choices for v completes the proof.
We will cover each vertex $v \in S$ with a G_{2}-path by joining two G_{2}-paths of length up to to 2 , each originating from v. It is therefore convenient to extend the previous result by one further iteration.

Corollary 4.8. With respect to edges of G_{2}, every vertex v is within distance two of at most $\left(\frac{2}{\gamma}\right)^{2}$ vertices in S whp. (This applies whether or not v itself is in S.)

Proof. Fix a vertex v. Construct S^{\prime} in the same way as in the proof of Lemma 4.7, exposing only edges spanned by $[n] \backslash\{v\}$. Using only those exposed edges, let $T \subset[n] \backslash\{v\}$ be the set of all vertices in S^{\prime} or adjacent to S^{\prime} via edges from G_{2}. By Lemma 4.3, the maximum degree of $G_{2} \backslash\{v\}$ is at most $5 \log n$ with probability $1-o\left(n^{-1}\right)$, so $|T| \leq n^{1-\gamma} \cdot 5 \log n$. A similar calculation to (11) then shows that with probability $1-o\left(n^{-1}\right), v$ has at most $\frac{2}{\gamma}$ neighbors in T.

Taking a union bound over all v, and combining this with Lemma 4.7, we conclude that whp, every vertex has at most $\frac{2}{\gamma}$ neighbors in $S \cup N(S)$, and each of them has at most $\frac{2}{\gamma}$ neighbors in S. This implies the result.

We are now ready to start covering the vertices of S with disjoint rainbow G_{2}-paths. The most delicate vertices are those in $S_{0,0}$, because by definition all other vertices already have G_{2}-degree at least $\frac{1}{10} \log n$. Naturally, we take care of $S_{0,0}$ first.

Lemma 4.9. The colored graph G_{2} contains a rainbow collection $Q_{1}, Q_{2}, \ldots, Q_{s^{\prime}}$ of disjoint paths that cover $S \cap S_{0,0} \boldsymbol{w h p}$.

Proof. We condition on the high-probability events in Lemmas 4.5, 4.6, and 4.7, and use a greedy algorithm to cover each $v \in S \cap S_{0,0}$ with a path of length 2 , 3 , or 4 . Recall that $G_{2} \sim G_{n, q_{2}}$, where q_{2} was specified in (8). We can bound q_{2} by

$$
q_{2}>\left(1+\epsilon_{2}\right) \frac{\log n}{n}\left(1-\frac{\log n}{n}\right) \cdot\left(1-\theta_{1}-\theta_{3}\right) \cdot\left(1-\frac{\log n}{n}\right)^{2} .
$$

Since equation (11) ensures that $\theta_{1}+\theta_{3} \leq \frac{\epsilon_{2}}{2}$, and our conditions on Theorem 1.1 force $\epsilon_{2}>$ $\frac{1}{3} \cdot \frac{100}{\sqrt{\log \log n}} \gg \frac{\log \log n}{\log n}$, the minimum degree in G_{2} is at least two whp. Condition on this as well.

Now consider a vertex $v \in S \cap S_{0,0}$, and let x_{1} and x_{2} be two of its neighbors. If both x_{i} are already outside S, then we use $x_{1} v x_{2}$ to cover v. Otherwise, suppose that x_{1} is still in S. Since we
conditioned on vertices in $S_{0,0}$ being separated by distances of at least 5 (Lemma4.6), x_{1} cannot be in $S_{0,0}$, so it has at least $\frac{1}{10} \log n G_{2}$-neighbors. These cannot all be in S, because we conditioned on the fact that every vertex has fewer than $\frac{2}{\gamma}<2 \log \log n$ neighbors in S (Lemma 4.7). So, we can pick one, say y_{1}, such that $y_{1} x_{1} v$ is a path from outside S to v. A similar argument allows us to continue the path from v to a vertex outside S in at most two steps. Therefore, there is a collection of paths of length $2-4$ covering each vertex in $S \cap S_{0,0}$. They are all disjoint, since we conditioned on vertices of $S_{0,0}$ being separated by distances of at least 5 .

At this point, we have exposed all G_{2}-edges spanned by S and its neighbors, but the only thing we have revealed about their colors is that they are all in C_{2}. Now expose the precise colors on all edges of these paths. Since we conditioned on $\left|S_{0,0}\right|<n^{0.48}$ (Lemma 4.5), the total number of edges involved is at most $4 \cdot n^{0.48}<n^{0.49}$. The number of colors in C_{2} is $\left(1+\theta_{2}\right) n$, so by a simple union bound the probability that some pair of edges receives the same color in C_{2} is at most

$$
\binom{n^{0.49}}{2} \frac{1}{\left(1+\theta_{2}\right) n}=o(1) .
$$

Therefore, the covering paths form a rainbow set whp, as desired.
We have now covered the most dangerous vertices of S. The remainder of this section provides our argument which covers all other vertices in S.

Proof of Lemma 3.3, Condition on the high-probability events of Lemmas 3.2, 4.7, 4.9, and Corollary 4.8, We have already covered all vertices in $S \cap S_{0,0}$ with disjoint rainbow paths of lengths up to four (Lemma 4.9). We cover the rest of the vertices in $S \backslash S_{0,0}$ with paths of length two, using a simple iterative greedy algorithm. Indeed, suppose that we are to cover a given vertex $v \in S \backslash S_{0,0}$. Since it is not in $S_{0,0}$, it has G_{2}-degree at least $\frac{1}{10} \log n$, and at most $\frac{2}{\gamma}$ of these neighbors can be within S (Lemma 4.7).

Furthermore, we can show that at most $2\left(\frac{2}{\gamma}\right)^{2}$ of v 's neighbors outside S can already have been used by covering paths. Indeed, for each neighbor $w \notin S$ of v which was used by a previous covering path, we could identify a vertex $x \in S$ adjacent to w which was part of that covering path. Importantly, x is within distance two of v, so the collection of all x obtainable in this way is of size at most $\left(\frac{2}{\gamma}\right)^{2}$, as we conditioned on Corollary 4.8. Since every covering path uses exactly two vertices outside S, the total number of such w is at most $2\left(\frac{2}{\gamma}\right)^{2}$. Putting everything together, we conclude that the number of usable G_{2}-edges emanating from v is at least

$$
\frac{1}{10} \log n-\frac{2}{\gamma}-2\left(\frac{2}{\gamma}\right)^{2}>\frac{1}{11} \log n
$$

Expose the colors (necessarily from C_{2}) which appear on these G_{2}-edges. Of the total of $\left(1+\theta_{2}\right) n$ available, we only need to avoid at most $4|S|$ which have already been used on previous covering paths. Since we conditioned on $|S| \leq n^{1-\gamma}$ (Lemma (3.2), this is at most $4 n^{1-\gamma}$ colors to avoid. We only need to have two new colors to appear among this collection in order to add a new rainbow path of length two covering v. Taking another union bound, we find that the probability that at most one new color appears is at most

$$
\left(1+\theta_{2}\right) n \cdot\left(\frac{4 n^{1-\gamma}+1}{\left(1+\theta_{2}\right) n}\right)^{\frac{1}{11} \log n}=o\left(n^{-1}\right)
$$

Here, the first factor of $\left(1+\theta_{2}\right) n$ corresponds to the number of ways to choose the new color to add (or none at all). Since we only run our algorithm for $o(n)$ iterations (once per vertex in $S \backslash S_{0,0}$), we conclude that whp we can cover all vertices of S with disjoint rainbow G_{2}-paths.

4.4 Proof of Lemma 3.4

In this section, we construct a rainbow G_{2}-path which contains most of the vertices of the graph, but avoids all covering paths from the previous section. In order to carefully track the independence and exposure of edges, recall from Section 3.2 that G_{2} is deterministically constructed from the random directed graphs $D_{1}^{\circ}, D_{2}^{\circ}$, and D_{3}°. Let us consider the generation of the D_{i}° to be as follows. The probability that the directed edge $\overrightarrow{v w}$ appears in D_{1} is $p_{1} \cdot \frac{\theta_{1}}{1+\theta_{1}+\theta_{2}+\theta_{3}}$, so we expose each D_{1}-out-degree $d_{1}^{+}(v)$ by independently sampling from the $\operatorname{Bin}\left(n-1, p_{1} \cdot \frac{\theta_{1}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right)$ distribution. Importantly, we do not reveal the locations of the out-neighbors. Similarly, for D_{2} and D_{3}, we expose all out-degrees $d_{2}^{+}(v)$ and $d_{3}^{+}(v)$, each sampled from the appropriate Binomial distribution. By Lemma 4.3, all $d_{i}^{+}(v) \leq 5 \log n \mathbf{w h p}$; we condition on this.

Note that from this information, we can later fully generate (say) D_{1} and D_{1}° as follows. At each vertex v, we independently choose $d_{1}^{+}(v)$ out-neighbors uniformly at random. This will determine all D_{1}-edges. Next, for every edge which is not part of D_{1}, independently sample it to be part of $D_{1}^{\circ} \backslash D_{1}$ with probability $p_{1}\left(1-\frac{\theta_{1}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right)$. This will determine all D_{1}° edges, and a similar system will determine all edges of D_{2}° and D_{3}°.

Returning to the situation where only the $d_{i}^{+}(v)$ have been exposed, we then construct the $S_{0, i}$ by collecting all vertices whose $d_{i}^{+}(v)$ are too small, and build the sequence $S_{0}, S_{1}, S_{2}, \ldots, S_{t}$. In each iteration of that process, we go over all vertices which are not yet in the current S_{t}. At each v, we expose all D_{i}-edges incident to S_{t}. For this section, we will only care about the D_{2}-out-edges from $v \notin S$ (initially counted by $d_{2}^{+}(v)$) that are not consumed in this process. Fortunately, at each exposure stage, there is a clear distribution on the number of these out-edges that are consumed toward S_{t}, and this will only affect the number, not the location, of the out-edges which are not consumed.

Therefore, after this procedure terminates, we will have a final set S, and the set of revealed (directed) edges is precisely those edges spanned by S, together with all those between S and $V_{1}=[n] \backslash S$. This set of revealed edges is exactly what is required to construct the covering paths Q_{1}, \ldots, Q_{s} in Lemma 3.3, Within V_{1}, the precise locations of the edges are not yet revealed. Instead, for each vertex $v \in V_{1}$, there is now a number $d_{2}^{*}(v)$, corresponding to the number of D_{2}-out-edges from v to vertices outside S.

We now make two crucial observations. First, the distributions of where these endpoints lie are still independent and uniform over V_{1}. Second, every $d_{2}^{*}(v) \leq 5 \log n$ and $d_{2}^{*}(v) \geq \frac{1}{20} \log n-3>$ $\frac{1}{21} \log n$, because if there were 4 out-edges from v to S, then v should have been absorbed into S during the process.

This abundance of independence makes it easy to analyze a simple method for finding a long path, based on a greedy algorithm with backtracking. (This procedure is similar to that used in [22] by Fernandez de la Vega.) Indeed, the most straightforward attempt would be to start building a path, and at each iteration expose the out-edges of the final endpoint, as well as their colors. If there is an option which keeps the path rainbow, we would follow that edge, and repeat. If not, then we should backtrack to the latest vertex in the path which still has an option for extension.

We formalize this in the following algorithm. Particularly dangerous vertices will be coded by the color red (not related to the colors of the edges in the $G_{n, p, \kappa}$). Let $V_{2} \subset V_{1}$ be the set of all vertices which are not involved in the covering paths Q_{i}. We will find a long G_{2}-path within V_{2} which avoids all of the covering paths.

Algorithm.

1. Initially, let all vertices of V_{2} be uncolored, and select an arbitrary vertex $v \in V_{2}$ to use as the initial path $P_{0}=\{v\}$. Let $U_{0}=V_{2} \backslash\{v\}$. This is the set of "untouched" vertices. Let $R_{0}=\emptyset$. This will count the "red" vertices.
2. Now suppose we are at time t. If $\left|U_{t}\right|<\frac{n}{2 \sqrt[3]{\log n}}$, terminate the algorithm.
3. If the final endpoint v of P_{t} is not red, then expose the first $\frac{1}{2} d_{2}^{*}(v)$ of v 's D_{2}-out-neighbors. If none of them lies in U_{t}, via an edge color not yet used by P_{t} or any of the covering paths Q_{i}, then color v red, setting $U_{t+1}=U_{t}, P_{t+1}=P_{t}$, and $R_{t+1}=R_{t} \cup\{v\}$.
Otherwise, arbitrarily choose one of the suitable out-neighbors $w \in U_{t}$. Set $U_{t+1}=U_{t} \backslash\{w\}$. Expose whether $\overrightarrow{v w} \in D_{1}^{\circ}, \overrightarrow{w v} \in D_{1}^{\circ}$, or $\overrightarrow{w v} \in D_{2}^{\circ}$. If none of those three directed edges are present, then add w to the path, setting $P_{t+1}=P_{t} \cup\{w\}$ and $R_{t+1}=R_{t}$. Otherwise, color both v and w red, and set $P_{t+1}=P_{t}$ and $R_{t+1}=R_{t} \cup\{v, w\}$.
4. If the final endpoint v of P_{t} is red, then expose the second $\frac{1}{2} d_{2}^{*}(v)$ of v 's D_{2}-out-neighbors. First suppose that none of them lies in U_{t}, via an edge color not yet used by P_{t} or any of the covering paths Q_{i}. In this case, find the last vertex v^{\prime} of P_{t} which is not red, color it red, and make it the new terminus of the path. That is, set $U_{t+1}=U_{t}$, let P_{t+1} be P_{t} up to v^{\prime}, and set $R_{t+1}=R_{t} \cup\left\{v^{\prime}\right\}$. If v^{\prime} did not exist (i.e., all vertices of P_{t} were already red), then instead let v^{\prime} be an arbitrary vertex of U_{t} and restart the path, setting $P_{t+1}=\left\{v^{\prime}\right\}$, $R_{t+1}=R_{t}, U_{t+1}=U_{t} \backslash\left\{v^{\prime}\right\}$.
On the other hand, if v has a suitable out-neighbor $w \in U_{t}$, then set $U_{t+1}=U_{t} \backslash\{w\}$. Expose whether $\overrightarrow{v w} \in D_{1}^{\circ}, \overrightarrow{w b} \in D_{1}^{\circ}$, or $\overrightarrow{w b} \in D_{2}^{\circ}$. If none of those three directed edges are present, then add w to the path, setting $P_{t+1}=P_{t} \cup\{w\}$ and $R_{t+1}=R_{t}$. Otherwise, color w red, find the last vertex v^{\prime} of P_{t} which is not red, and follow the remainder of the first paragraph of this step.

The key observation is that the final path P_{T} contains every non-red vertex which lies in $V_{2} \backslash U_{T}$. Since Lemmas 3.2 and 3.3 imply that $\left|V_{2}\right| \geq n-3|S| \geq n-3 n^{1-\gamma}$, and we run until $U_{T}<\frac{n}{2 \sqrt[3]{\log n}}$, Lemma 3.4 therefore follows from the following bound.

Lemma 4.10. The final number of red vertices is at most $n \cdot e^{-\frac{1}{300} \sqrt[3]{\log n}} \boldsymbol{w h p}$.
Proof. The color red is applied in only two situations. The first is when we expose whether any of $\overrightarrow{v w} \in D_{1}^{\circ}, \overrightarrow{w v} \in D_{1}^{\circ}$, or $\overrightarrow{w v} \in D_{2}^{\circ}$ hold. To expose whether $\overrightarrow{v w} \in D_{1}^{\circ}$, we reveal whether $\overrightarrow{v w} \in D_{1}$, using the previously exposed value of $d_{1}^{*}(v)$, which we already conditioned on being at most $5 \log n$. Since v 's D_{1}-out-neighbors are uniform, the probability that $\overrightarrow{v w} \in D_{1}$ is at most $\frac{5 \log n}{(1-o(1)) n}$. If it is not in D_{1}, the probability that it is in $D_{1}^{\circ} \backslash D_{1}$ is bounded by $\frac{\log n}{n}$ by the description at the beginning of Section 4.4. The analysis for the other two cases are similar, so a union bound gives
that the chance that any of $\overrightarrow{v w} \in D_{1}^{\circ}, \overrightarrow{w v} \in D_{1}^{\circ}$, or $\overrightarrow{w v} \in D_{2}^{\circ}$ hold is at most $3 \cdot \frac{7 \log n}{n}$. Note that this occurs at most n times, because each instance reduces the size of U_{t} by 1 . Hence the expected number of red vertices of this type is at $\operatorname{most} O(\log n)$, which is of much smaller order than $n e^{-\Theta(\sqrt[3]{\log n})}$.

The other situation in which red is applied comes immediately after the failed exposure of some $k=\frac{1}{2} d_{2}^{*}(v)>\frac{1}{42} \log n D_{2}$-out-neighbors, in either of Steps 3 or 4. Failure means that all k of them either fell outside U_{t}, or had edge colors already used in P_{t} or some covering path Q_{i}. Step 2 controls $\left|U_{t}\right| \geq \frac{n}{2 \sqrt[3]{\log n}}$, and the total number of colors used in P_{t} or any covering path Q_{i} is at most $n-\left|U_{t}\right|$, out of the $\left(1+\theta_{2}\right) n$ available. Further note that because of our order of exposure, there is a set T of size at most $3 \log n$ such that v 's D_{2}-out-neighbors are uniformly distributed over $V_{1} \backslash T$. This is because we have exposed whether $\overrightarrow{v u}$ was a D_{2}-edge, for the predecessor u of v along P_{t}, and we may also have already exposed the first half of v 's D_{2}-out-neighbors in a prior round, which could consume up to $\frac{1}{2} \cdot 5 \log n$ vertices. Therefore, the chance that a given out-neighbor exposure is successful (i.e., lands inside U_{t}, via one of the $\geq\left|U_{t}\right|$ unused colors), is at least

$$
\frac{\left|U_{t} \backslash T\right|}{\left|V_{1} \backslash T\right|} \cdot \frac{\left|U_{t}\right|}{\left(1+\theta_{2}\right) n} \geq\left(\frac{n}{2 \sqrt[3]{\log n}} \cdot \frac{1}{(1-o(1)) n}\right) \cdot\left(\frac{n}{2 \sqrt[3]{\log n}} \cdot \frac{1}{\left(1+\theta_{2}\right) n}\right)>\frac{1}{5(\log n)^{2 / 3}}
$$

We conclude that the chance that all $k \geq \frac{1}{42} \log n$ fail is at most

$$
(1+o(1))\left(1-\frac{1}{5(\log n)^{2 / 3}}\right)^{\frac{1}{42 \log n}}<e^{-\frac{1}{210} \sqrt[3]{\log n}}
$$

Since we will not perform this experiment more than twice for each of the n vertices, linearity of expectation and Markov's inequality imply that whp, the final total number of red vertices is at most $n \cdot e^{-\frac{1}{300} \sqrt[3]{\log n}}$, as desired.

4.5 Proof of Lemma 3.5

At this point, we have a rainbow G_{2}-path P of length $n^{\prime} \geq n-\frac{n}{\sqrt[3]{\log n}}$, which is disjoint from the paths Q_{i} which cover S. Recall from (6) and (77) that we defined $L=\max \left\{15 e^{40 /\left(\epsilon_{3} \theta_{3}\right)}, \frac{7}{\theta_{1}}\right\}<\sqrt[6]{\log n}$. Split P into $r=\frac{n^{\prime}}{L}$ segments of length L, as in Figure 1. If n^{\prime} is not divisible by L, we may discard the remainder of P, because $L<\sqrt[6]{\log n}$.

Partition the $2 r$ endpoints into two sets $A_{1} \cup B_{1}$ so that each segment has one endpoint in each set, but there are no vertices $a \in A_{1}$ and $b \in B_{1}$ which are consecutive along P. By possibly discarding the final interval (which will only cost an additional $L<\sqrt[6]{\log n}$), we may ensure that the initial and final endpoints are both in A_{1}.

The reason for our unusual partition is as follows. In our construction thus far, we already needed to expose the locations of some D_{1}°-edges, since they had priority over the D_{2}°. In certain

Figure 1: The long path P, divided into consecutive intervals of length L. Endpoints of successive intervals are adjacent via original edges of P. The set of interval endpoints has been partitioned into $A_{1} \cup B_{1}$. Note that endpoints which are adjacent via an edge of P are always assigned to the same set.
locations, we have revealed that there are no D_{1}°-edges. In particular, between every consecutive pair of vertices u, v on the path P, we found a D_{2}-edge, and confirmed the absence of any D_{1}°-edges.

Fortunately, our construction did not expose any D_{1}°-edges between non-consecutive vertices of the path P. In particular, if we now wished, for any vertex $a \in A_{1}$, we could expose the number N of its D_{1}-out-neighbors that lie in B_{1}; then, the distribution of these N out-neighbors would be uniform over B_{1}. This uniformity is crucial, and would not hold, for example, if some vertex of B_{1} were consecutive with a along P.

The proof of Lemma 3.5 breaks into the following steps. Recall that $d_{1}^{+}(v ; T)$ denotes the number of D_{1}-edges from a vertex v to a subset T of vertices. Say that v is T-good if $d_{1}^{+}(v ; T) \geq \frac{\epsilon_{1} \theta_{1}}{180 L} \log n$; call it T-bad otherwise.

Step 1. For every vertex $v \in P \backslash B_{1}$, expose the value of $d_{1}^{+}\left(v ; B_{1}\right)$. We show that whp, the initial and final endpoints of P are B_{1}-good, and at most $n \cdot e^{-\sqrt{\log n}}$ vertices of P are B_{1}-bad.

Step 2. Absorb all remaining vertices and covering paths into the system of segments, using $G_{3^{-}}$ edges that are aligned with B_{1}-good vertices. (See Figure 2) This removes some segment endpoints, while adding other new endpoints. Let $A_{2} \cup B_{2}$ be the new partition of endpoints. Crucially, $B_{2}=B_{1}$, while $\left|A_{2}\right|=\left|A_{1}\right|$ by losing up to $\frac{2 n}{\sqrt[3]{\log n}}$ vertices, and then adding back the same number. Importantly, every new vertex in $A_{2} \backslash A_{1}$ will be B_{1}-good.

Step 3. The system of segments can be grouped into several blocks of consecutive segments, in the sense that between successive segments in the same block, there is an original edge of P. (See Figure 31) Also, the initial and final endpoints of each block are always of type A, and are all B_{1}-good.

Step 4. For every vertex $b \in B_{2}$, expose the value of $d_{1}^{+}\left(b ; A_{2}\right)$. We show that whp, at most $n \cdot e^{-\sqrt{\log n}}$ vertices of B_{2} are A_{2}-bad.

Step 5. For each consecutive pair of segments along the same block (from Step 3) which has either an A_{2}-endpoint which is B_{1}-bad or a B_{2}-endpoint which is A_{2}-bad, merge them, together with a neighboring segment in order to maintain parity between A 's and B 's. (See Figure 44) Let $A_{3} \cup B_{3}$ be the final partition of segment endpoints after the merging. We show that whp, all $a \in A_{3}$ have $d_{1}^{+}\left(a ; B_{3}\right) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$, and all $b \in B_{3}$ have $d_{1}^{+}\left(b ; A_{3}\right) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$. Furthermore, if we were to expose the D_{1}-edges between A_{3} and B_{3}, then each vertex $a \in A_{3}$ would independently sample $d_{1}^{+}\left(a ; B_{3}\right)$ uniformly random neighbors in B_{3}, and similarly for $b \in B_{3}$.

This will complete the proof because the final number of segments is $\left|A_{3}\right| \leq\left|A_{2}\right|=\left|A_{1}\right| \leq \frac{n}{L}$.

4.5.1 Step 1

By construction, $\left|B_{1}\right|=(1-o(1)) \frac{n}{L}$. Now consider an arbitrary vertex $v \in P \backslash B_{1}$. We have only exposed the numeric value of $d_{1}^{*}(v)$ thus far in our construction, and not where the D_{1}-out-neighbors are. So let us now expose the numeric value of $d_{1}^{+}\left(v ; B_{1}\right)$, but again, not precisely where the outendpoints are. As we observed in the beginning of Section 4.4, we have $d_{1}^{*}(v) \geq \frac{\epsilon_{1} \theta_{1}}{20} \log n-3$. Our work in the previous section consumes up to one D_{1}-out-edge at each vertex $v \in P$, when we reveal whether $\overrightarrow{v w} \in D_{1}^{\circ}$ in the third step of the algorithm. Therefore, $d_{1}^{+}\left(v ; B_{1}\right)$ stochastically dominates

Figure 2: A covering path of S is absorbed into the system of intervals using G_{3}-edges. Note that the resulting endpoint partition still has one A-endpoint and one B-endpoint in every interval. Importantly, the direction of the splicing is such that all new endpoints are of type- A, as indicated by the A_{2}-vertices. This is why we continue the new interval rightward, through to the next B-endpoint.

Figure 3: Evolution of block partition during absorption. Each horizontal row represents an original block, within which the successive segments have their endpoints connected by edges of the original path P. The vertical gray path from x to y represents the absorption of a new vertex into the collection of segments, involving two different blocks. This operation cuts the two edges between x, y and their adjacent A_{2}-vertices, and adds back the P-edge marked by the asterisk. Afterward, the segments can be re-partitioned into new blocks (see the gray dotted lines), with all initial and final endpoints in each block of type- A, and B_{1}-good.

Figure 4: Original edges of P are used to merge consecutive intervals in the same block, so that a bad endpoint can be eliminated.
$\operatorname{Bin}\left(\frac{\epsilon_{1} \theta_{1}}{20} \log n-4,(1-o(1)) \frac{1}{L}\right)$. Hence we can use Lemma 4.1 to bound that the probability that $d_{1}^{+}\left(v ; B_{1}\right)$ is too small.

$$
\begin{aligned}
\mathbb{P}\left[d_{1}^{+}\left(v ; B_{1}\right)<\frac{1}{9} \cdot \frac{1}{L} \cdot \frac{\epsilon_{1} \theta_{1}}{20} \log n\right] & <e^{-0.533 \cdot \frac{1}{L} \cdot \frac{\epsilon_{1} \theta_{1}}{20} \log n} \\
\mathbb{P}\left[d_{1}^{+}\left(v ; B_{1}\right)<\frac{\epsilon_{1} \theta_{1}}{180 L} \log n\right] & =o\left(e^{-\frac{\epsilon_{1} \theta_{1}}{40 L} \log n}\right) \\
& =o\left(e^{-\sqrt{\log n}}\right)
\end{aligned}
$$

since $\epsilon_{1}, \theta_{1}=\Omega\left(\frac{1}{\sqrt{\log \log n}}\right)$ and $L<\sqrt[6]{\log n}$. The expected number of such vertices in P is at most n times this probability. Applying Markov's inequality, we conclude that whp, the number of B_{1}-bad vertices in P is at most $n \cdot e^{-\sqrt{\log n}}$. This also shows that the initial and final endpoints of P are B_{1}-good whp.

4.5.2 Step 2

At this point, our entire vertex set is partitioned as follows. We have a collection of rainbow intervals I_{1}, \ldots, I_{r}, each of length exactly L. These already consume at least $n-\frac{n}{\sqrt[3]{\log n}}$ vertices. Since we discarded the remainder of P, as well as possibly the final interval, we have $r \geq \frac{1}{L}\left(n-\frac{n}{\sqrt[3]{\log n}}\right)-2$. A separate collection of rainbow paths Q_{1}, \ldots, Q_{s} covers all vertices of S. There are also some remaining vertices. In this section, we will use G_{3}-edges to absorb the latter two classes into the rainbow intervals.

Since we will not use any further G_{2}-edges, but edges from D_{2}° take precedence over those from D_{3}, we also now expose all edges in D_{2}°. Lemma 4.3 ensures that whp, no vertex is incident to more than $5 \log n$ edges of D_{2}°. Condition on this outcome. Note that by construction, we have not exposed the locations of any D_{3}°-edges between vertices outside S, although vertices outside S may have up to three exposed D_{3}-neighbors located in S.

We now use a simple greedy algorithm to absorb all residual paths and vertices into our collection of intervals. In each step, we find a pair of G_{3}-edges linking either a new Q_{i} or a new vertex to two distinct intervals I_{x} and I_{y}, using two new colors from C_{3}. We will ensure that throughout the process, all intervals I_{w} used in this way are separated by at least one full interval I_{z} along P.

The specific procedure is as follows. Suppose we have already linked in t paths or vertices, and are considering the next path or vertex to link in. Suppose it is a path Q_{i} (the vertex case can be treated in an analogous way). Let u, v be the endpoints of Q_{i}. We need to find vertices x, y in distinct intervals I_{x} and I_{y} such that (i) according to P, I_{x} and I_{y} are separated by at least one full interval from each other, and from all I_{z} previously used in this stage, (ii) x and y are separated from the endpoints of I_{x} and I_{y} by at least two edges of P, and (iii) if $x^{\prime} \in I_{x}$ is the vertex adjacent to x in the direction of the B_{1}-endpoint of I_{x}, and $y^{\prime} \in I_{y}$ is the vertex adjacent to y in the direction of the B_{1}-endpoint of I_{y}, then both x^{\prime} and y^{\prime} are B_{1}-good. We choose the direction of the B_{1}-endpoint because x^{\prime} and y^{\prime} will become the new A_{2}-endpoints of shortened intervals; see Figure 2 for an illustration.

So, let F be the set of vertices in the intervals which fail properties (ii) or (iii). By Step 1, the dominant term arises from the endpoints because $n \cdot e^{-\sqrt{\log n}} \ll \frac{n}{\sqrt[6]{\log n}}<\frac{n}{L}$, so $|F|<\frac{5 n}{L}$. Also let T be the set of vertices contained in intervals that are at least one full interval away from any
intervals which have previously been touched by this algorithm. Since we observed at the beginning of this section that the total number of intervals was at least $\frac{1}{L}\left(n-\frac{n}{\sqrt[3]{\log n}}\right)-2$, we have

$$
|T| \geq\left(\frac{1}{L}\left(n-\frac{n}{\sqrt[3]{\log n}}\right)-2-3 \cdot(2 t)\right) L \geq n-\frac{8 L n}{\sqrt[3]{\log n}} \geq n-\frac{8 n}{L}
$$

since $t \leq \frac{n}{\sqrt[3]{\log n}}$ and $L<\sqrt[6]{\log n}$. Let us now find a newly-colored G_{3}-edge from u to a vertex of $T \backslash F$. Note that the number of vertices outside $T \backslash F$ is at most $\frac{13 n}{L}$.

We have not yet exposed the specific locations of the D_{3}-neighbors of u, but only know (since $u \notin S)$ that $d_{3}^{+}(u) \geq \frac{\epsilon_{3} \theta_{3}}{20} \log n$, and up to three of those D_{3}-out-neighbors lie within S. Consider what happens when we expose the location w of one of u 's D_{3}-out-neighbors which is outside S. This will produce a useful G_{3}-edge $u w$ if (i) w lands in $T \backslash B$, (ii) neither $\overrightarrow{u w}$ or $\overrightarrow{w u}$ appeared in D_{1}° or D_{2}°, (iii) $\overrightarrow{w u}$ does not appear in D_{3}°, and (iv) the color of the edge is new.

Let us bound the probability that w fails any of these properties. We may consider (i)-(iii) together, since we showed that at most $\frac{13 n}{L}$ vertices were outside $T \backslash B$, and we conditioned on u being incident to at most $5 \log n$ edges of D_{2}°. After sampling the location of w, we expose whether $\overrightarrow{u w}$ or $\overrightarrow{w u}$ appear in D_{1}°; by the same argument as used in Lemma 4.10, the probability of each is at most $\frac{7 \log n}{n}=o\left(\frac{1}{L}\right)$. So, the probability of failing either (i) or (ii) is at most $\frac{14}{L}$. We conditioned at the beginning of Section 4.4 on $d_{3}^{+}(w) \leq 5 \log n$, so when we expose whether $\overrightarrow{w u}$ is in D_{3}°, we again fail only with probability at most $\frac{7 \log n}{n}=o\left(\frac{1}{L}\right)$. Finally, when we expose the color of the new edge, we know that it will be in C_{3}, so the probability that it is a previously used color is at most

$$
(2 t) \cdot \frac{1}{\theta_{3} n}<\frac{2 n}{\sqrt[3]{\log n}} \cdot \frac{1}{\theta_{3} n}=\frac{2}{\theta_{3} \sqrt[3]{\log n}}=o\left(\frac{1}{L}\right)
$$

Therefore, the probability that all of the $\geq \frac{\epsilon_{3} \theta_{3}}{20} \log n-3 D_{3}$-out-edges of u fail is at most

$$
\left(\frac{15}{L}\right)^{\frac{\epsilon_{3} \theta_{3}}{20} \log n-3}=\left(\frac{L}{15}\right)^{3} n^{-\frac{\epsilon_{3} \theta_{3}}{20} \log \frac{L}{15}} \leq\left(\frac{L}{15}\right)^{3} n^{-2},
$$

where we used the definition of L in (6) for the final bound. A similar calculation works for v, and for the separate case when we incorporate a new vertex into the intervals. Therefore, taking a union bound over the $o(n)$ iterations in linking vertices and paths, we conclude that our procedure completes successfully whp.

4.5.3 Step 3

Step 1 established that whp, the initial and final vertices of the long path P are both B_{1}-good, so the original system of segments can be arranged as a single block, with successive intervals linked by edges of P. We now prove by induction that after the absorption of each path or vertex in Step 2 , the collection of segments can be re-partitioned into blocks of segments, such that within each block, consecutive segments have their endpoints linked via P, and the initial and final endpoints in each block are of type- A, and B_{1}-good.

There are two cases, depending on whether the absorption involves two segments in the same block (as in Figure 2), or in different blocks (as in Figure (3). If the segments are in the same block, then we can easily divide that block into two blocks satisfying the condition. Indeed, in Figure 2,
one of the new blocks is the string of segments between the vertices indicated by A_{2} in the diagram, and the other new block is the complement. This works because within each of the two new blocks, every edge between successive segments was an edge between successive segments of the original block, hence in P. Also, of the four initial/final endpoints among the two new blocks, two of them were the initial/final endpoints of the original block, and the other two were identified as B_{1}-good vertices, now in A_{2}. Therefore, the new block partition satisfies the requirements.

On the other hand, if the absorption involves two segments from different blocks, then one can re-partition the two blocks into three new blocks, as illustrated in Figure 3. A similar analysis to above then completes the argument.

4.5.4 \quad Step 4

We have not yet revealed anything about the D_{1}-out-neighbors of any vertices in $B_{2}=B_{1}$; the only thing we know is that they had $d_{1}^{+} \geq \frac{\epsilon_{1} \theta_{1}}{20} \log n$. For each vertex $b \in B_{1}$, let us now expose the numeric value of $d_{1}^{+}\left(b ; A_{2}\right)$, but again, not precisely where the out-endpoints are. Since our absorption procedure maintained $\left|A_{2}\right|=\left|A_{1}\right|=(1-o(1)) \frac{n}{L}$, the same argument that we used for Step 1 now establishes Step 4.

4.5.5 Step 5

By Steps 1 and 4, the total number of merges which occur in Step 5 is at most $O\left(n \cdot e^{-\sqrt{\log n}}\right)$. Since $B_{3} \subset B_{2}=B_{1}$ and $A_{3} \subset A_{2}$, for every $a \in A_{3}$ we can independently sample $d_{1}^{+}\left(a ; B_{3}\right)$ using only the value of $d_{1}^{+}\left(a ; B_{1}\right)$. Indeed, since $a \in A_{3}$ was B_{1}-good, it had $d_{1}^{+}\left(a ; B_{1}\right) \geq \frac{\epsilon_{1} \theta_{1}}{180 L} \log n$. We will only have $d_{1}^{+}\left(a ; B_{3}\right)<\frac{\epsilon_{1} \theta_{1}}{200 L} \log n$ if at least $\frac{\epsilon_{1} \theta_{1}}{180 L} \log n-\frac{\epsilon_{1} \theta_{1}}{200 L} \log n=\frac{\epsilon_{1} \theta_{1}}{1800 L} \log n$ of those out-neighbors land in $B_{1} \backslash B_{3}$ as opposed to B_{3}. Let

$$
q=\frac{\left|B_{1} \backslash B_{3}\right|}{\left|B_{1}\right|}=O\left(\frac{n \cdot e^{-\sqrt{\log n}}}{n / L}\right)=e^{-(1-o(1)) \sqrt{\log n}} .
$$

Note that

$$
\begin{aligned}
\mathbb{P}\left[\operatorname{Bin}\left(\frac{\epsilon_{1} \theta_{1}}{180 L} \log n, q\right) \geq \frac{\epsilon_{1} \theta_{1}}{1800 L} \log n\right] & \leq\binom{\frac{\epsilon_{1} \theta_{1}}{180 L} \log n}{\frac{\epsilon_{1} \theta_{1}}{1800 L} \log n} q^{\frac{\epsilon_{1} \theta_{1}}{1800 L} \log n} \\
& \leq(10 e q)^{\frac{\epsilon_{1} \theta_{1}}{1800 L} \log n} \\
& =e^{-(1-o(1)) \sqrt{\log n} \cdot \frac{\epsilon_{1} \theta_{1}}{1800 L} \log n} \\
& <e^{-\Omega\left((\log n)^{4 / 3} / \log \log n\right)} \\
& =o\left(n^{-1}\right)
\end{aligned}
$$

Therefore, a final union bound establishes that whp, every $a \in A_{3}$ has $d_{1}^{+}\left(a ; B_{3}\right) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$.
A similar argument establishes the bound for $d_{1}^{+}\left(b ; A_{3}\right)$, for $b \in B_{3}$, because we had $A_{3} \subset A_{2}$, and had only previously exposed the value of $d_{1}^{+}\left(b ; A_{2}\right)$. The last claim in Step 5 is clear from our order of exposure.

4.6 Proof of Lemma 3.8

In this final stage of the proof, we use G_{1} to link together the endpoints of the system of segments I_{1}, \ldots, I_{r} created by Lemma 3.5. As described in the overview (Section 3.3), we construct an auxiliary directed graph Γ. Importantly, no D_{1}°-edges have been revealed between the endpoint sets A and B, so we may now specify a model for the random r-vertex digraph Γ.

Indeed, consider a vertex $w_{k} \in \Gamma, 1 \leq k \leq r$, and let a, b be the A - and B-endpoints of the corresponding interval I_{k}. We first generate a set E_{1} of Γ-edges by sending exactly $d_{1}^{+}(b ; A)$ directed edges out of w_{k}, and exactly $d_{1}^{+}(a ; B)$ directed edges in to w_{k}. This is analogous to the d-in, d-out model, except that not all degrees are equal. Some directed edges will be generated twice; let F_{1} be that subset, but keep only one copy in E_{1}. Color every edge of E_{1} independently from C_{1}. Finally, generate a random subset $F_{2} \subset E_{1} \backslash F_{1}$ by independently sampling each edge of $E_{1} \backslash F_{1}$ with probability $\frac{1}{2} p_{1} \cdot\left(\frac{\theta_{1}}{1+\theta_{1}+\theta_{2}+\theta_{3}}\right)$. Let $E_{1} \backslash F_{2}$ be the final edge set of Γ.

The reason for the removal of F_{2} is that some of the initially-generated edges of Γ will find conflicts once D_{1}° is generated. Indeed, every edge $\overrightarrow{w_{j} w_{k}}$ that we have placed in Γ corresponds to an edge $\overrightarrow{b a} \in D_{1}$ or $\overrightarrow{a b} \in D_{1}$ (or both), for some $b \in B, a \in A$. When both do not occur, and only $\overrightarrow{b a} \in D_{1}$ (say), then we need to expose whether $\overrightarrow{a b} \in D_{1}^{\circ} \backslash D_{1}$; if it is in $D_{1}^{\circ} \backslash D_{1}$, it removes $\overrightarrow{w_{j} w_{k}}$ from Γ with probability $1 / 2$.

To simplify notation, let $\delta^{+}\left(w_{k}\right)$ and $\delta^{-}\left(w_{k}\right)$ be the numbers of out- and in-edges that are generated at w_{k} to build the initial edge set E_{1}. They correspond to $d_{1}^{+}(b ; A)$ and $d_{1}^{+}(a ; B)$ above, and have therefore been revealed by our previous exposures. Importantly, we have the bounds

$$
\frac{\epsilon_{1} \theta_{1}}{200 L} \log n \leq \delta^{ \pm}\left(w_{k}\right) \leq 5 \log n
$$

It is more convenient to restrict our attention to a smaller subset $E_{2} \subset E_{1}$ which is itself already rainbow; then, every ordinary directed Hamilton cycle will automatically be rainbow. For this, we expose at every vertex w_{k} what the colors of the $\delta^{+}\left(w_{k}\right)$ out-edges and $\delta^{-}\left(w_{k}\right)$ in-edges will be, but not their locations.

Lemma 4.11. Suppose that $\delta^{ \pm}\left(w_{k}\right) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$ for all $1 \leq k \leq r$. Then $\boldsymbol{w h} \boldsymbol{p}$, it is possible to select 3 out-edges and 3 in-edges from each w_{k} so that all $6 r$ selected colors are distinct.
Proof. Construct an auxiliary bipartite graph H with vertex partition $W \cup C_{1}$, where $W=$ $\left\{w_{1}^{+}, w_{1}^{-}, \ldots, w_{r}^{+}, w_{r}^{-}\right\}$. Place an edge between w_{k}^{+}and c if one of w_{k} 's $\delta^{+}\left(w_{k}\right)$ out-edges has color c. Edges between w_{k}^{-}and c are defined with respect to w_{k} 's in-edge colors. The desired result is a perfect 1-to-3 matching in H. For this, we apply the 1-to-3 version of Hall's theorem: we must show that for every $X \subset W$, we have $|N(X)| \geq 3|X|$, where $N(X)$ is the union of the H-neighborhoods of all vertices of X.

This follows from a standard union bound. Indeed, fix an integer $1 \leq x \leq 2 r$, and consider an arbitrary pair of subsets $X \subset W$ and $Y \subset C$, with $|X|=x$ and $|Y|=3 x$. The probability that $N(X) \subset Y($ in $H)$ is at most

$$
\left[\left(\frac{3 x}{\theta_{1} n}\right)^{\frac{\epsilon_{1} \theta_{1}}{200 L} \log n}\right]^{x} .
$$

The innermost term is the probability that a random color from C_{1} is in Y. The exponents come from the fact that each vertex of $w_{k} \in X$ samples at least $\delta^{ \pm}\left(w_{k}\right) \geq \frac{\epsilon_{1} \theta_{1}}{200 L} \log n$ colors for its outand in-neighbors.

Multiplying this bound by the number of ways there are to select X and Y, and using $r \leq \frac{n}{L}$, we find that the probability of failure for a fixed x is at most

$$
\begin{aligned}
\binom{2 r}{x}\binom{\theta_{1} n}{3 x}\left[\left(\frac{3 x}{\theta_{1} n}\right)^{\frac{\epsilon_{1} \theta_{1}}{200 L} \log n}\right]^{x} & \leq\left(\frac{2 e r}{x}\right)^{x}\left(\frac{\theta_{1} n}{3 x}\right)^{3 x}\left[\left(\frac{3 x}{\theta_{1} n}\right)^{\frac{\epsilon_{1} \theta_{1}}{200 L} \log n}\right]^{x} \\
& =\left[\left(\frac{2 e n}{L x}\right)\left(\frac{\theta_{1} n}{3 x}\right)^{3}\left(\frac{3 x}{\theta_{1} n}\right)^{\frac{\epsilon_{1} \theta_{1}}{200 L} \log n}\right]^{x}
\end{aligned}
$$

We will sum this over all $1 \leq x \leq 2 r$. The outer exponent allows us to bound this by a decreasing geometric series, so it suffices to show that the interior of the square bracket is uniformly $o(1)$ for all $1 \leq x \leq 2 r$. Indeed, observe that the exponent of x inside the bracket is $\frac{\epsilon_{1} \theta_{1}}{200 L} \log n-4>0$, so it is maximized at $x=2 r \leq \frac{2 n}{L}$. Yet

$$
\left(\frac{2 e n}{L(2 n / L)}\right)\left(\frac{\theta_{1} n}{3(2 n / L)}\right)^{3}\left(\frac{3(2 n / L)}{\theta_{1} n}\right)^{\frac{\epsilon_{1} \theta_{1}}{20 L L} \log n}=(e)\left(\frac{6}{\theta_{1} L}\right)^{\frac{\epsilon_{1} \theta_{1}}{200 L} \log n-3}
$$

Since (6) ensures that $L \geq \frac{7}{\theta_{1}}$, we have $\frac{6}{\theta_{1} L} \leq \frac{6}{7}$. Yet the exponent $\frac{\epsilon_{1} \theta_{1}}{200 L} \log n-3$ tends to infinity as n grows, so we indeed obtain a uniform upper bound of $o(1)$ for all $1 \leq x \leq 2 r$. Therefore, whp, every subset $X \subset W$ has $|N(X)|>3|X|$, and the 1-to-3 version of Hall's theorem establishes the desired result.

Recall from the beginning of this section that the final edge set of Γ is $E_{1} \backslash F_{2}$. Let E_{2} be the set of $6 r$ edges selected by Lemma 4.11. This corresponds to a copy of $D_{3 \text {-in,3-out }}$. Unfortunately, in our model we still need to expose the locations of the remaining $\delta^{ \pm}\left(w_{k}\right)-3$ remaining in- and out-edges at every vertex w_{k}. It is possible that an edge of E_{2} may be generated again in this stage. That edge would then have $1 / 2$ probability of receiving the color of the new copy, which would not be in our specially constructed rainbow set. To account for this, let E_{3} be the set of edges generated by exposing these remaining in- and out-edges, so that $E_{2} \cup E_{3}=E_{1}$. It suffices to find a directed Hamilton cycle in $E_{2} \backslash\left(E_{3} \cup F_{2}\right)$.

It is not convenient to work directly with E_{3} or F_{2}, because they depend on the result of E_{2}. Let F_{3} be the random directed graph $D_{r, q}$ defined by sampling each edge with probability $q=\frac{130 L \log n}{n}$, and generated independently of E_{2}. Fortunately, we can control F_{3} instead.

Lemma 4.12. There is a coupling of the probability space such that $E_{3} \cup F_{2} \subset F_{3} \boldsymbol{w h} \boldsymbol{p}$.
Proof. The set F_{2} is a random subset of $E_{1} \backslash F_{1}$ obtained by independently sampling each edge with a probability of at most $\frac{\log n}{n}$, so it is clearly contained in a copy of $D_{r, \frac{\log n}{n}}$ that is generated independently of E_{2}. Next, although E_{3} is exposed after E_{2}, it is still contained in a copy of $D_{(6 \log n)-\mathrm{in},(6 \log n) \text {-out }}$ that is generated independently of E_{2}. Indeed, at a vertex w_{k}, we generate E_{3} by exposing $\delta^{ \pm}\left(w_{k}\right)-3$ new out- and in-edges, but $\delta^{ \pm}\left(w_{k}\right) \leq 5 \log n$.

We observe a standard coupling which realizes $D_{(6 \log n)-\mathrm{in},(6 \log n) \text {-out }}$ as a subgraph of $D_{r, \frac{120 \log n}{r}}$ whp. For this, consider the following system for generating a random directed graph. For every ordered pair of vertices (u, v), generate two independent Bernoulli random variables $I_{u, v}^{+}$and $I_{u, v}^{-}$, each with probability parameter $\frac{60 \log n}{r}$. Create the directed edge $\overrightarrow{u v}$, if and only if at least one of
$I_{u, v}^{+}$or $I_{v, u}^{-}$took the value 1 . This is clearly contained in $D_{r, q}$. For each vertex u, let $D^{+}(u)$ be the number of other vertices v for which $I_{u, v}^{+}=1$, and let $D^{-}(u)$ be the number of $I_{u, v}^{-}=1$. These are all distributed as $\operatorname{Bin}\left(r-1, \frac{60 \log n}{r}\right)$. Lemma 4.1 establishes that for fixed u, the probability that $D^{+}(u)<6 \log n$ is at most $e^{-0.533 \cdot(60-o(1)) \log n}$, and similarly for $D^{-}(u)$. Therefore, a union bound establishes that whp, all $D^{+}(u), D^{-}(u) \geq 6 \log n$. Conditioning on the values of $D^{+}(u)$ and $D^{-}(u)$, we see that when the indicators are revealed, this indeed contains $D_{(6 \log n) \text {-in,(}(6 \log n) \text {-out. }}$. The result then follows by recalling that $r=(1-o(1)) \frac{n}{L}$, and taking the union of $D_{r, \frac{120 L \log n}{n}}$ with another independent $D_{r, \frac{\log n}{n}}$ to cover F_{2}.

We are now ready to finish the final lemma in our proof of Theorem 1.1.
Proof of Lemma 3.3. We have established that it suffices to find an ordinary directed Hamilton cycle in $E_{2} \backslash F_{3}$, without regard to color. Conveniently, F_{3} is now independent of $E_{2} \sim D_{3 \text {-in,3-out }}$. This independence allows us to first expose how many of the 3 -in, 3 -out edges at each vertex will be in F_{3}, and then only expose the locations of those that are not in F_{3}. At each vertex u, the probability that more than one of the 6 in- or out-edges is in F_{3} is at most

$$
\binom{6}{2}\left(\frac{130 L \log n}{n}\right)^{2}=o\left(n^{-1}\right)
$$

so a union bound establishes that whp, $E_{2} \backslash F_{3}$ contains a copy of $D_{2 \text {-in,2-out. }}$. This is known to be Hamiltonian whp by Theorem 3.7 from Section 3.3, so our proof is complete.

5 Concluding remarks

Our main contribution, part (b) of Theorem 1.1, sharpens the earlier result of Cooper and Frieze [8] to achieve optimal first-order asymptotics. As we mentioned in the introduction, we suspect that our result can be further sharpened within the $o(1)$ term. We do not push to optimize our bounds on ϵ, θ because it is not clear that incremental improvements upon our current approach will be sufficiently interesting. Instead, we would be more interested in determining whether one can extend the celebrated "hitting time" result of Bollobás [4, which states that one can typically find a Hamilton cycle in the random graph process as soon as the minimum degree reaches two.

Question 5.1. Consider the edge-colored random graph process in which $e_{1}, e_{2}, \ldots, e_{N}, N=\binom{n}{2}$ is a random permutation of the edges of K_{n}. The graph G_{m} is defined as $\left([n],\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}\right)$. Let each edge receive a random color from a set C of size at least n. Then whp, the first time that a rainbow Hamilton cycle appears is precisely the same as the first time that the minimum degree of G_{m} is at least two and at least n colors have appeared.

Although this may be out of reach at the moment, another natural challenge is to settle the problem in either the case when the number of edges is just sufficient for an ordinary Hamilton cycle, or in the case when the number of colors is, say, exactly n. Part (a) of our theorem answered the latter question when n was even. We believe that it is probably also true when n is odd. It would be nice to prove that extension, either directly or by reducing the divisibility condition in Theorem 2.1.

References

[1] M. Albert, A.M. Frieze and B. Reed, Multicoloured Hamilton cycles, Electronic Journal of Combinatorics 2 (1995), R10.
[2] N. Alon and J. Spencer, The Probabilistic Method, 3rd ed., Wiley, New York, 2007.
[3] B. Bollobás, Random Graphs, 2nd ed., Cambridge University Press, 2001.
[4] B. Bollobás, The evolution of sparse graphs, in: Graph Theory and Combinatorics, Proc. Cambridge Combinatorial Conf. in honour of Paul Erdős (B. Bollobás, ed.), Academic Press, 1984, 35-57.
[5] B. Bollobás and A. Frieze, On matchings and Hamiltonian cycles in random graphs, in: Random Graphs '83 (Poznan, 1983), North-Holland Math. Stud., 118, North-Holland, Amsterdam (1985), 23-46.
[6] C. Cooper and A.M. Frieze, Hamilton cycles in random graphs and directed graphs, Random Structures and Algorithms 16 (2000), 369-401.
[7] C. Cooper and A.M. Frieze, Multicoloured Hamilton cycles in random graphs: an anti-Ramsey threshold, Electronic Journal of Combinatorics 2 (1995), R19.
[8] C. Cooper and A.M. Frieze, Multi-coloured Hamilton cycles in random edge-coloured graphs, Combinatorics, Probability and Computing 11 (2002), 129-134.
[9] A. Dudek and A.M. Frieze, Loose Hamilton cycles in random k-uniform hypergraphs, submitted.
[10] A.M. Frieze, Loose Hamilton cycles in random 3-uniform hypergraphs, Electronic Journal of Combinatorics 17 (2010), N28.
[11] A.M. Frieze and M. Krivelevich, Packing Hamilton cycles in random and pseudo-random hypergraphs, submitted.
[12] A.M. Frieze, M. Krivelevich, and P. Loh, Packing tight Hamilton cycles in 3-uniform hypergraphs, Random Structures and Algorithms, to appear.
[13] P. Erdős, J. Nešetřil, and V. Rödl, Some problems related to partitions of edges of a graph, in: Graphs and Other Combinatorial Topics, Teubner, Leipzig (1983), 54-63.
[14] A.M. Frieze, An algorithm for finding Hamilton cycles in random digraphs, Journal of Algorithms 9 (1988), 181-204.
[15] A.M. Frieze and B. D. McKay, Multicoloured trees in random graphs, Random Structures and Algorithms 5 (1994), 45-56.
[16] S. Janson and N. Wormald, Rainbow Hamilton cycles in random regular graphs, Random Structures Algorithms 30 (2007), 35-49.
[17] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers, and an edge colouring conjecture, Discrete Mathematics. 62 (1986), 29-33.
[18] J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph, Discrete Mathematics 43 (1983), 55-63.
[19] C.J.H. McDiarmid, General percolation and random graphs, Adv. Appl. Probab. 13 (1981), 40-60.
[20] C.J.H. McDiarmid, General first-passage percolation, Adv. Appl. Probab. 15 (1983), 149-161.
[21] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with degree $o\left(n^{1 / 2}\right)$, Combinatorica 11 (1991), 369-382.
[22] W. Fernandez de la Vega, Long paths in random graphs, Studia Math. Sci. Hungar. (1979), 335-340.
[23] R.W. Robinson and N.C. Wormald, Almost all regular graphs are Hamiltonian, Random Structures and Algorithms 5 (1994), 363-374.
[24] R. Rue, Comment on [1. Electronic Journal of Combinatorics 2 (1995).

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, email: alan@random.math.cmu.edu. Research supported in part by NSF award DMS-0753472.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, e-mail: ploh@cmu.edu.
 ${ }^{1}$ A sequence of events \mathcal{E}_{n} is said to occur with high probability (whp) if $\lim _{n \rightarrow \infty} \operatorname{Pr} \mathcal{E}_{n}=1$.

