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Abstract

The notion of recoverable value was advocated in work of Feige, Im-
morlica, Mirrokni and Nazerzadeh [Approx 2009] as a measure of qual-
ity for approximation algorithms. There this concept was applied to fa-
cility location problems. In the current work we apply a similar frame-
work to the maximum independent set problem (MIS). We say that an
approximation algorithm has recoverable value ρ, if for every graph it
recovers an independent set of size at least maxI

∑
v∈I

min[1, ρ/(d(v)+
1)], where d(v) is the degree of vertex v, and I ranges over all indepen-
dent sets in G. Hence, in a sense, from every vertex v in the maximum
independent set the algorithm recovers a value of at least ρ/(dv + 1)
towards the solution. This quality measure is most effective in graphs
in which the maximum independent set is composed of low degree ver-
tices. It easily follows from known results that some simple algorithms
for MIS ensure ρ ≥ 1. We design a new randomized algorithm for
MIS that ensures an expected recoverable value of at least ρ ≥ 7/3.
In addition, we show that approximating MIS in graphs with a given
k-coloring within a ratio larger than 2/k is unique games hard. This
rules out a natural approach for obtaining ρ ≥ 2.

1 Introduction

The notion of recoverable value was advocated in work of Feige, Immor-
lica, Mirrokni and Nazerzadeh [5] as a measure of quality for approximation
algorithms. This notion leads to greater expressive power for stating the
guarantees of approximation algorithms (compared to the standard notion
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of approximation ratio), by this leading to greater differentiation among the
performance guarantees of different algorithms. The hope is that this con-
cept will lead to the design of new algorithms with superior performance
with respect to the recoverable value measure (regardless of whether the
classic approximation ratio differs from that of existing algorithms), and
moreover, that these algorithms will have better performance in practice (at
least in some interesting special cases).

In [5], the term PASS approximation (where PASS is an acronym for
PArameterized by the Signature of the Solution) was used in order to cap-
ture the two main features that we wish the recoverable value to have. One
feature is that the recoverable value is expressed in terms of properties of
the (unknown) solution, rather than of the input instance. The other is that
the property of the solution that it refers to is not some aggregate property
(such as average degree), but rather some signature in which the contribu-
tion of each individual component of the solution is considered separately.
Rather than try to present general principles here, let us focus on the prob-
lem studied in the current paper, that of maximum independent set, and
specialize the notion of recoverable value to this problem.

We use the following notation. All graphs in this work are undirected.
The degree d(v) of vertex v is the number of neighbors of v. The set of
neighbors of v is N(v). The average degree of a graph is denoted by davg ,
and davg(U) =

1
|U |

∑
v∈U d(v) denotes the average over degrees of vertices in

a set U . An independent set in a graph is a set of vertices I such that every
two vertices in I are non-neighbors. We shall refer to the problem of find-
ing an independent set of maximum cardinality as MIS. The independence
ratio of G = (V,E) is α(G) = |Imax|/|V |, where |Imax| is the size of a max-
imum independent set I. In the maximum weight independent set problem
MWIS, every vertex v has a nonnegative weight wv and the goal is to find
an independent set of maximum weight.

We now present our notion of recoverable value for MIS. For an indepen-
dent set I, we define its signature to be the sequence of degrees of vertices
in I. The value that we shall want to recover from each vertex of I de-
pends on its degree. With every degree d we associate a recoverable value of
0 ≤ ρd ≤ 1, and wish our approximation algorithms to find an independent
set of size at least

∑
v∈I ρd(v). The independent set I is not known to the

algorithm – it is only used in analyzing its performance measure. Hence this
performance guarantee holds simultaneously with respect to all independent
sets in the graph, including the independent set I that happens to maximizes
the expression

∑
v∈I ρd(v) (this I might not be the maximum independent set

in the graph). The notion of recoverable value easily generalizes to MWIS,
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by multiplying each term by w(v). For randomized algorithms, one consid-
ers the expected size (or weight for MWIS) of the independent set that they
return.

Intuitively, the smaller the degree of v the more likely algorithms are to
place v in an independent set (because v excludes a smaller number of other
vertices), and hence the higher we would like its recoverable value to be.
Hence it is natural for ρd to be a non-increasing function of d. We find it
convenient to introduce a parameter ρ (that we shall attempt to maximize
later) and to consider the function ρd = min[1, ρ/(d + 1)]. (Not allowing
the recoverable value to exceed 1 is necessary, as we cannot find a solution
larger than the optimal solution.) For graphs of minimum degree at least
ρ−1, such approximation algorithms need to find an independent set of size
at least

∑
v∈I ρ/(d(v) + 1).

We refer to ρ in the expression min[1, ρ/(d(v)+1)] as the canonical recov-
erable value (though we sometimes omit the word canonical for brevity). For
comparison with some previously published algorithms, it is useful to note
that for every set U of vertices,

∑
v∈U 1/(dv + 1) ≥ |U |/(davg(U) + 1) (with

equality only if all vertices in U have the same degree). Hence for a given
value of ρ, our notion of recoverable value that is based on the signature of
I (its degree sequence) is more demanding than had we only considered the
average degree of vertices in I.

1.1 Our results

It is not hard to see that some known algorithms achieve a canonical recov-
erable value ρ ≥ 1. We show (see Proposition 16 in the appendix) that they
do not achieve a value of ρ bounded away from 1.

One can readily observe that ρ0 = ρ1 = 1. We use a procedure that we
call 2-elimination to that that for MIS one may enforce ρ2 = 1 as well.

Thereafter, we design relatively simple new algorithms that achieve a
recoverable value of ρ ≥ 2 for MWIS and ρ ≥ 7/3 for MIS. It is NP-hard
to achieve ρ = 4, as this will imply exact solution of MIS in 3-regular
graphs, a problem that is NP-hard and APX-hard [3]. However, in graphs
in which the minimum degree δ is large we provide an algorithm achieving
ρ ≥ Ω(log δ/ log log δ) for MWIS.

Our investigations of the best recoverable value achievable by our ap-
proaches also lead us to consider MIS in k-colored graphs (graphs for which a
k-coloring is given). For this problem a 2/k approximation ratio is known [12],
and we show that improving it would refute the unique games conjecture.
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Our proofs in some cases provide simple alternatives to previously pub-
lished related results.

1.2 Related work

The strong inapproximability results for MIS [11] justify searching other
measures of performance guarantees, and the notion of recoverable value is
one such candidate. It considers degrees of vertices, and hence it is instruc-
tive to recall known approximation algorithms for MIS and MWIS and how
their performance depends on the degree sequence of the graph.

Random permutation. Choosing a permutation uniformly at random
and taking all vertices that appear prior to their neighbors in the order
induced by the permutation produces an independent set whose expected
weight is at least

∑
v∈V

wv
d(v)+1 (see [1], for example). This guarantees a

recoverable value of ρ ≥ 1.
Greedy. For MIS, iteratively picking a minimum degree vertex, adding

it to an independent set I and deleting the vertex and its neighbors from the
graph is guaranteed to find an independent set of size at least

∑
v∈V

1
d(v)+1

[6, 16]. Halldorsson and Radhakrishnan [10] showed that this greedy algo-

rithm produces an independent set of size at least |V | 1+α2

davg+1+α (where α de-

notes the fraction of vertices in the maximum independent set). For MWIS,
weighted greedy that iteratively picks a vertex v with minimum wv/(dv + 1)
is guaranteed to find an independent set of size at least

∑
v∈V

wv
d(v)+1 [15].

LP. An integer programming formulation of MWIS is:
maximize

∑
i∈V wixi

subject to
xi + xj ≤ 1 for every edge (i, j).
xi ∈ {0, 1} for every vertex i.
Consider the LP relaxation of this program where each xi ∈ [0, 1]. A

well known result due to Nemhauser and Trotter [14] asserts that there is
an optimal solution for the relaxation such that for every i, xi ∈ {0, 12 , 1}.
Moreover, such an optimal solution can be found in polynomial time.

LP+greedy. Consider the following algorithm. Find an optimal half
integral solution to the LP, discard all the vertices assigned 0, keep all the
vertices assigned 1, and run the greedy algorithm on the graph induced by
all vertices that are assigned 1/2. This algorithm was analyzed for connected
graphs. Hochbaum [12] proved an approximation ratio of 2

davg+1 , and Hall-

dorsson and Radhakrishnan [10] (based on their improved analysis of the
greedy algorithm) proved an approximation ratio of 5

2davg+3 .
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SDP. Using semidefinite programming Halldorsson [9] provided approx-

imation ratios of Ω(
log davg

davg log log davg
) for MIS, and Ω( log δ

δ log log δ ) for MWIS on

δ-inductive (a.k.a. δ-degenerate) graphs (in some permutation over the ver-
tices δ is the maximum backward degree).

Local Search. In graphs of degree bounded by ∆, algorithms based
on local search were shown to achieve an approximation ratio of roughly
5/(∆ + 3), with some distinction between the cases of odd and even ∆
(see [3, 4]). We remark that in the special case of ∆-regular graphs, the
notion of recoverable value becomes equivalent to the traditional notion of
approximation ratio, and our results are not as strong in this case as those
achieved by local search. On the other hand, our algorithms are much faster
than the local search algorithms.

In terms of hardness results, Austrin, Khot and Safra [2] proved that ap-
proximating independent set in graphs of maximum degree ∆ within a ratio

larger than (log ∆)2

∆ is unique games hard. Recall that we present hardness
results for finding independent sets in graphs where a k-coloring is given.
They essentially match the 2/k bounds achieved by known approximation
algorithms [12]. We are not aware of previous published hardness results
for this problem, but there are some results for related problems on hyper-
graphs [8], and hardness results for MIS in graphs with bounded chromatic
number but when no coloring is given [7].

1.3 Our techniques

Vertices of very low degree receive special treatment. For MIS we show
that a certain 2-elimination technique implies ρ2 = 1. (See Section 2 for
subtleties involved in the statement of this result.)

Thereafter, following a recipe suggested in [5] (though there the problem
considered was different, facility location), we present an algorithm based
on a so called recoverable value LP (see Theorem 2). This gives recoverable
value of ρ = 2 for MWIS. For MIS we improve over this bound by using
a new combination of some of the algorithms presented in Section 1.2. (A
new combination is indeed needed, as we also provide examples showing that
plain use of these algorithms does not even achieve ρ bounded away from 1.)

Given a graph G, choose a random permutation π on the vertices. We
say that vertex v is in layer Li with respect to π if exactly i−1 of v’s neigh-
bors appear before v in π. For k ≥ 1, let Gk be the subgraph of G induced
on the vertices of the first i layers. The random permutation algorithm re-
ferred to in Section 1.2 simply returns G1 which is an independent set. Our
new algorithms will instead consider Gk with small value of k (depending
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on the context, we shall take k ∈ {2, 3, δ+1}, where δ denotes the minimum
degree), and on Gk run some algorithm from Section 1.2. The advantage
of our approach (in the context of recoverable value) is that low degree ver-
tices are more likely to end up in Gk. Moreover, Gk (for small values of
k) has special structure that makes finding large independent sets easier.
For example, it turns out that Gk is k-colorable. This suffices for obtaining
a recoverable value of ρ = 2 (for MWIS on the original G), but does not
guarantee anything better (by our new hardness of approximation results
for approximating MIS in k-colored graphs). The fact that Gk is (k − 1)-
inductive allows us to obtain a recoverable value of ρ = Ω(log δ/ log log δ)
(which improves over ρ = 2 when δ is large). Our unconditional improve-
ment over ρ = 2 uses G3 and applies only to MIS. For G3 we consider its
average degree, which is no longer a deterministic property but rather a func-
tion of several random variables (number of vertices in each layer). After
showing that the 5

2davg+3 approximation ratio of [10] extends to disconnected

graphs (see Theorem 4), we show that the random variables can safely be
replaced by their expectations (which are deterministic quantities), by this
considerably simplifying the analysis. It was previously known that work-
ing with expectations often simplifies the analysis of randomized algorithms
(through the use of linearity of the expectation), but the reason why it ap-
plies in our context is more delicate than usual, and may have applications
also elsewhere. This leads to a canonical recoverable value ρ ≥ 15/7. There-
after we improve to ρ ≥ 7/3 by designing a new approximation algorithm
for MIS in graphs of small average degree.

2 Handling low degree vertices

It is instructive to consider separately ρd for 0 ≤ d ≤ 3.
For isolated vertices, ρ0 = 1 both for MIS and for MWIS, as they can be

included in the optimal solution without changing the degree of any other
vertex. Note an important point here. Our notion of recoverable value
treats every vertex of I separately. Hence we can remove isolated vertices
without effecting the remaining vertices in I. This might not have been so
simple had we consider aggregate properties such as the average degree of
vertices in I. Removing an isolated vertex increases the average degree for
the remaining vertices.

Likewise, ρ1 = 1. For MIS this follows because every vertex of degree 1
can be included in the independent set, and its neighbor removed. At most
one of these two vertices is in any independent set. For other vertices in I,
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this process can only lower their degrees, and hence their recoverable value
does not decrease (since ρd is non-increasing). For MWIS the argument
is slightly more delicate. Let u be a vertex of degree 1 and let v be its
neighbor. If wu ≥ wv then the same argument as in the unweighted case
works. However, if wu < wv one should remove u from G, and reduce the
weight of v to wv − wu, thus obtaining a new graph G′. Any independent
set I ′ in G′ can be extended to an independent set I in G whose value is
higher by wv. If v ∈ I ′, simply increase the weight of v back to its original
value. If v 6∈ I ′, then include u in I. As the transformation from G to G′

only removed u and did not increase the degree of any remaining vertex,
monotonicity of ρd implies that the recoverable of degree 1 vertices is 1.

The above arguments also imply that we can remove recursively vertices
of degree at most 1 with no harm to the recoverable value. Hence we may
assume that all graphs have minimum degree at least 2.

We show that for MIS essentially ρ2 = 1 (see Theorem 1 for an exact
statement). Consider a graph G of minimum degree 2. Let u be a vertex
of degree 2, and let v and w be its neighbors. We now describe a process
that we call 2-elimination. If there is an edge (v,w) we can safely add u to
the independent set (and remove vertices v and w) because at most one of
u, v, w is in any independent set, and u can replace any of v and w in an
independent set. Hence it remains to deal with the case that v and w are
not neighbors of each other. In this case, remove u from G, merge v and w
to become a new vertex u′ whose neighbors are the original neighbors of v
and w (except for u that was removed from the graph). This gives a new
graph G′. Any independent set I ′ in G′ can be extended to an independent
set I in G whose size is larger by 1. If u′ ∈ I ′, replace it by v and w. If
u′ 6∈ I ′, then include u in I.

Now let us analyze how the recoverable value changes when transforming
from G to G′. We assume here canonical recoverable values. Without loss
of generality, either u ∈ I or both v and w are in I. In G′, we take an
independent set I ′ that is induced by I in a natural way (if u ∈ I than u is
simply lost, if v,w ∈ I then u′ ∈ I ′). Note that |I| = |I ′|−1, hence we would
like to show that their recoverable values differ by at most 1. If u ∈ I then
I ′ differs from I by the recoverable value of u which is indeed at most 1. If
v,w ∈ I, then the recoverable values of G and G′ differ by

min[1,
ρ

dv + 1
] + min[1,

ρ

dw + 1
]−min[1,

ρ

du′ + 1
] (1)

Using the facts that dv, dw ≥ 2 and du′ ≤ dv + dw − 2 the value of
(1) is at most 1 whenever ρ ≤ 10/3 (the worst choice of parameters being
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dv = dw = 3 and du′ = 4). Hence if one considers canonical recoverable
values, then if ρ ≥ 3 this implies (by definition) that ρ2 = 1, and if ρ ≤ 10/3
then 2-elimination achieves ρ2 = 1 (without affecting ρ for vertices of degrees
larger than 2).

The above discussion establishes:

Theorem 1 When using canonical recoverable values for MIS then regard-
less of the value of ρ one may assume that ρ0 = ρ1 = ρ2 = 1.

Theorem 1 cannot be extended to ρ3. Moreover, there is some fixed ǫ > 0
such that ρ3 ≤ 1− ǫ. This follows from the fact that approximating MIS in
3-regular graphs in APX-hard [3].

3 Algorithms for MWIS

In this section we assume that G = (V,E) has been preprocessed to include
all isolated vertices in the output independent set. This allows us to simplify
notation from min[1, ρ/(d(v) + 1)] to ρ/(d(v) + 1).

Theorem 2 Let G = (V,E) be a weighted graph without isolated vertices.
There is a polynomial time algorithm for MWIS achieving a recoverable
value of ρ = 2. Namely, the output of the algorithm is an independent set
of weight at least

∑
v∈I

2wv
d(v)+1 .

Proof. We present two different polynomial time algorithms that achieve
the desired bounds. One is based on linear programming. The other is much
faster, but randomized.
LP algorithm. Consider the following recoverable value LP (the RV LP).
xi is a variable that indicates whether vertex i is in the independent set.

maximize
∑

i∈V
wi

d(i)+1xi
subject to
xi + xj ≤ 1 for every edge (i, j).
0 ≤ xi ≤ 1 for every vertex i.
The indicator vector of any independent set I is a feasible solution to

the recoverable value LP. Moreover, the value of the LP then would be the
recoverable value with respect to I (up to a scaling factor of ρ). Hence the
optimal value of the LP is at least the desired recoverable value with respect
to best independent set I (scaled by 1/ρ). Treating wi

d(i)+1 as a weight of

vertex i, the results of [14] imply that this LP has a half-integral optimal
solution, and moreover that such a solution can be found in polynomial time.
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Include in the independent set all vertices with xi = 1 (getting credit wi

which is at least twice the credit wi/(d(i) + 1) that the LP got for them),
and discard all vertices of xi = 0 (the LP got no credit for them). Let
G1/2 be the weighted graph induced on all vertices assigned 1/2. Running
weighted greedy on this graph ensures a solution of value

∑
i∈V1/2

wi/(di+1),

whereas the LP (by having xi = 1/2) got only half this credit. Hence after
the rounding we obtain an integral solution of value at least twice that of
the RV LP, implying ρ ≥ 2.
A fast randomized algorithm. Choose a random permutation and con-
sider G2 as in Section 1.3. This graph is a forest (can be verified by orienting
edges towards earlier vertices in the permutation). As every vertex v within
I belongs to G2 with probability 2

d(v)+1 , the expected weight of an indepen-

dent set within G2 is at least
∑

v∈I
2wv

d(v)+1 . MWIS can be found in forests
in linear time, proving Theorem 2. �

The bounds
∑

v∈V
wv

d(v)+1 (achieved by the random permutation algo-

rithm of Section 1.2) and maxI
∑

v∈I 2wv/(d(v) + 1) of Theorem 2 are in-
comparable. Nevertheless, it is not hard to see that both algorithms of
Theorem 2 ensure not only the bound maxI

∑
v∈I 2wv/(d(v) + 1) claimed

in the statement of the theorem, but also the bound
∑

v∈V
wv

d(v)+1 . For the

LP algorithm this is attained by the feasible solution that assigns 1/2 to all
variables. For the fast randomized algorithm this follows because returning
the first layer is a legitimate output for it.

We now improve the recoverable value in the special case when the min-
imum degree δ in the input graph is sufficiently high.

Theorem 3 Let G = (V,E) be a weighted graph with minimum degree δ.
There is a polynomial time algorithm for MWIS achieving a recoverable value
of ρ = Ω(log δ/ log log δ).

Proof. Choose a random permutation and consider Gδ+1 as defined in
Section 1.3. This graph is a δ-inductive (orienting edges towards earlier
vertices in the permutation, no vertex has outdegree larger than δ). As
every vertex v within I belongs to Gδ+1 with probability δ+1

d(v)+1 (here we

used the assumption that d(v) ≥ δ), the expected weight of an independent

set within Gδ+1 is at least
∑

v∈I
wv(δ+1)
d(v)+1 . Run the SDP algorithm from [9]

with approximation ratio Ω( log δ
δ log log δ ) (on δ-inductive graphs) to obtain a

recoverable value with ρ = Ω(log δ/ log log δ). �
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4 Algorithms for MIS

Here we show that for unweighted graphs there are randomized algorithms
achieving a recoverable value of ρ strictly larger than 2. (The value of ρ
will be further improved in Section 5, by extending the principles developed
in the current section.) As in Section 2, we wish to simplify notation from
min[1, ρ/(d(v) + 1)] to ρ/(d(v) + 1). This requires that the input graph
G = (V,E) has no vertices of degree less than 2. This can be assumed
without loss of generality (see Section 2).

The basic idea of our algorithm is as follows. Pick a random permutation
over the vertices and consider the graph G3 induced on layers L1 ∪L2 ∪L3.
The expected size of I ∩ G3 is now

∑
v∈I

3
d(v)+1 (Here we use the fact that

the minimum degree in G is 2). One would expect all three layers L1,L2

and L3 to be of equal size. Moreover, every vertex in L1 contributes no edge
to G3, every vertex in L2 contributes at most one edge to G3, and every
vertex in L3 contributes at most two edges to G3. Hence one would expect
the average degree of G3 to be at most 2. Recall that the algorithm of
[10] (LP+greedy) obtains an approximation ratio of 5

2davg+3 (on connected

graphs). Hence, applying this algorithm to G3 (and using the bounds of [10]
even though G3 need not be connected), one may hope to attain recoverable
value of 15

7

∑
v∈I

1
d(v)+1 .

Summarizing, we have algorithm PLG (Permute, LP, Greedy).

1. Pick a random permutation over the vertices and consider the graph
G3 induced on layers L1 ∪ L2 ∪ L3.

2. Find a half-integral solution to the LP for MIS on G3. Put the ver-
tices with value 1 in the independent set and remove the vertices with
value 0.

3. Run the greedy algorithm on the subgraph induced on the vertices
that remain from G3.

The above argument of why PLG achieves a value of ρ = 15/7 had two
gaps in it. One relates to the assumption that G3 is connected (which might
not hold), and the other to the assumption that sizes of layers are equal to
their expectations. We shall deal with each one of them separately.

As noted, the approximation ratio of 5
2davg+3 of the algorithm of [10]

assumes that the graph is connected. Indeed, trying to use this expression
with davg < 1 (which may well be the case for graphs with isolated vertices),
one obtains approximation ratios better than 1 which of course cannot be
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true. Nevertheless, when the average degree is at least 2, the following the-
orem shows that the bound of 5

2davg+3 does apply, regardless of whether the
graph is connected or not. Observe that all connected graphs are captured
by the theorem (either they are trees and then greedy solves them optimally,
or their average degree is at least 2), and hence our proof can also replace
the one given in [10] for connected graphs.

Theorem 4 If G is a graph of average degree at least 2 then MIS can be
approximated within ratio of 5

2davg+3 .

Proof. Recall that by the results of [10], the approximation ratio of the
greedy algorithm on graphs with average degree davg and independence ratio

α is f(α) = 1+α2

(davg+1+α)α . This ratio as a function of α is decreasing in the

range (0, 1/2]. For α = 1/2 we obtain the desired approximation ratio of
5

2davg+3 . Hence to prove Theorem 4 it suffices to show that we can assume

that α(G) ≤ 1/2.
Consider an optimal half integral solution to the standard LP relaxation

of the MIS problem (as implied by [14]). Let ONE denote the set of variables
receiving 1, ZERO the set of variables receiving 0, and HALF the set of
variables receiving 1/2. Let H be the subgraph induced on the vertices
whose corresponding variables are in HALF . The independence ratio of
H is at most 1/2, as desired. Necessarily |ONE| ≥ |ZERO| (otherwise
they would both be in HALF ). Remove ONE and ZERO and all edges
connected to them (and thus only H is left), and add instead |ONE| isolated
edges (one edge for each vertex of ONE), thus obtaining a new graph G′.
Observe that the size of the maximum independent set does not change, but
α(G′) ≤ 1/2 as desired. It remains to analyze the average degree of G′. In
the removal phase |ONE|+ |ZERO| vertices and at least |ZERO| edges are
removed (every vertex in ZERO has an edge to ONE, otherwise it could
be moved to HALF ). Thereafter 2|ONE| vertices and |ONE| edges are
added. Hence altogether exactly |ONE| − |ZERO| vertices and at most
|ONE| − |ZERO| edges are added. If the average degree of G is at least 2,
the average degree of G′ cannot be larger than that of G.

Summarizing, we have shown how to transform G into a new graph G′

for which α(G′) ≤ 1/2, the average degree of G′ is at most that of G, and the
maximum independent sets in G and G′ have the same size. Applying greedy
to G′ is the same as taking ONE into the solution and applying greedy only
on H, which is precisely the algorithm of [10]. By the properties of G′, the
approximation ratio is at least as desired by Theorem 4. �
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Apparently, the result of Theorem 4 can be extended also to davg ≥
3/2 (Halldorsson, private communication), though this is not needed in our
paper.

Now let us deal with the issue of expectations. Let us first explain the
problem. We have various information about expectations. Namely, E[|I ∩
V (G3)|] =

∑
v∈I 3/(d(v) + 1), and E[|L1|] = E[|L2|] = E[|L3|]. Moreover,

the number of edges in G3 is at most 2|L3|+ |L1|. If things behave exactly
as expectation the average degree of G3 is at most 2, Theorem 4 applies and
we get an approximation ratio of 5

7

∑
v∈I 3/(d(v) + 1) as desired. However,

there is also variability in the above random variables, and it can be quite
large. (The complete bipartite graph K3,d illustrates this variability.) With
some probability the average degree in G3 may be larger than 2, and with
some probability smaller. Hence the approximation ratio on G3 is a random
variable. Moreover, when the average degree ofG3 is too small, the bounds of
Theorem 4 no longer hold. Moreover, the size of the maximum independent
set in G3 might be correlated with the average degree in complicated ways.

We present here a very simple way to handle all the above complications.

Theorem 5 The expected size the independent set found by algorithm PLG
is at least 15

7

∑
v∈I

1
d(v)+1 , where I is any independent set in G.

Proof. Our proof uses two important facts. One is that Theorem 4 applies
also to disconnected graphs. The other (which the reader may verify) is that
algorithm PLG when run on a disconnected graph gives the same outcome
(or more formally, the same probability distribution on outcomes) as that
when PLG is run on each connected component separately.

Let ǫ > 0 be any desired level of accuracy with which we want to estimate
the performance guarantee of PLG. Let G be an arbitrary graph on which
we run PLG, let n be the number of its vertices, and let I be an independent
set in G. As a thought experiment, make N disjoint copies of G, where N
is chosen to be sufficiently large as a function of ǫ and n. Call the resulting
graph on nN vertices GN , and let IN be the independent set composed
from the N copies of I. Run PLG on GN . With respect to PLG, the
random variables L1, L2, L3, and IN ∩G3 are all concentrated around their
expectation within relative errors that are o(ǫ) (by our large choice of N
and the fact that these random variables are each a sum of N bounded and
independent random variables, one for each copy of G). Hence on GN , with
probability that can be made (1− ǫ/2) PLG finds an independent set of size
at least (1− ǫ/2)157

∑
v∈IN

1
d(v)+1 . Hence in expectation, per copy of G, the

size of the independent set found is at least (1− ǫ)157
∑

v∈IN
1

d(v)+1 . Letting
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ǫ tend to 0 Theorem 5 is proved. �

5 Improved recoverable values for MIS

The main point of Theorem 5 is that algorithm PLG has a recoverable value
with ρ strictly larger than 2. This value is at least 15/7 (as the theorem
shows) and at most 3 (for example, on the complete bipartite graph K3,n−3),
and it would be interesting to narrow this gap. In this section we use the
notion of 2-elimination from Section 2 do design variations on algorithm
PLG for which we prove a value of ρ strictly larger than 15/7.

Section 2 shows that for ρ ≤ 10/3, by repeatedly applying 2-elimination
as long as possible, we may assume that G has minimum degree 3. This
allows us to replace G3 by G4 in algorithm PLG, capturing a higher fraction
of vertices of I. (In contrast, if there are vertices of degree 2 in I, their
fraction in G3 is already 1 and cannot increase in G4.) This gain is offset to
some extent by the higher average degree of G4 compared to G3, which gives
a poorer guarantee in the approximation ratio 5

2davg+3 of Theorem 4. Still,

we get a recoverable value of ρ ≥ 4 5
2·3+3 = 20/9. More specifically, for the

original I in G, vertices of degree at most 2 contribute 1 to the recoverable
value, and vertices of degree at least 3 contribute at least 20/9(dv + 1).

Corollary 6 A canonical recoverable value ρ = 20/9 is achievable for MIS.

We can further improve the recoverable value by improving over the
performance guarantees of Theorem 4 (which are based on those of [10])
for graphs of a given average degree. We use 2-elimination to do so for the
special case of davg = 2, which captures the graph G3.

Theorem 7 On graphs with average degree 2 (or less), MIS can be approx-
imated within a ratio of 7/9.

Proof. Let G = (V,E) be a graph of average degree 2. We shall have
a sequence of partitions of V into V1 and V2, and consider the graphs H1

induced on V1 and H2 induced on V2. Initially, V1 = V and V2 = ∅. Move
vertices from V1 to V2 by iteratively using any of the following simplifications
(as long as they are applicable to the current graph H1).

0-elimination: move isolated vertices from V1 to V2.
1-elimination: move vertices u of degree 1 and their neighbors from V1

to V2. That is, if (u, v) is an edge in H1 and u has degree 1 in H1, move
both u and v to V2 (and hence the edge (u, v) to H2).
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2-elimination: Consider a vertex v1 of degree 2 in H1, incident to
v2, v3 ∈ V1. If v2, v3 are neighbors, move all three vertices to V2 (inducing
a triangle in H2). Otherwise move v1 and v2 to V2 (v2 is chosen arbitrarily,
v3 would do just as well), leave v3 in V1, but change G (and hence also the
induced graphs H1 and H2) by connecting v3 to those neighbors of v2 that
are still in V1, and disconnecting v2 from these neighbors. Observed that
the edge (v1, v2) is now in H2.

NT (for Nemhauser-Trotter): Run the LP for MIS on H1 and find a
half integral optimal solution (as in [14]). If there are vertices with integer
values (0 or 1), move them from V1 to V2.

Before continuing to describe our algorithm, let us present some conse-
quences of the simplifications.

Lemma 8 H2 has a maximum independent set I2 such that there is no
edge between I2 and V1. Moreover, such an independent set can be found in
polynomial time.

Proof. The proof is by induction on the number of simplification steps.
The base case is when H2 is the empty graph, and then the lemma trivially
holds. Given that the lemma holds for H2, let H ′

2 be the graph after one
additional simplification step. The inductive hypothesis implies that in H2

one finds a maximum independent set with no neighbors in V1, and hence
no edges to those vertices newly added to H ′

2. Hence it remains to show
that in the subgraph induced on those vertices newly added to H ′

2 one can
find a maximum independent set not connected to any vertex of the new
V1. For a 0-elimination, take the new vertex, for a 1-elimination take the
vertex u of degree 1, for a 2-elimination in which a triangle was moved
take v1, in a 2-elimination in which an edge (v1, v2) was moved (and other
neighbors of v2 were transferred to v3) take v2, and for NT take those vertices
of value 1. (These 1-vertices cannot have neighbors in the new V2 since
vertices there had fractional value 1/2. Moreover, the 1-vertices form a
maximum independent set on the subgraph induced on vertices of value 0
and 1. Otherwise, there is a set of vertices of value 0 with fewer neighbors of
value 1, but then the value of the LP could be raised by changing all these
values to 1/2.) �

Let G′ be the graph obtained from G by using the above simplifications.
Observe that G′ might not be equal to G because 2-elimination moves end-
points of edges from one vertex to another. Nevertheless:
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Lemma 9 Given any independent set I ′ in G′ one can find in polynomial
time an independent set I of equal size in G, and vice versa.

Proof. The only simplification step that makes G′ different from G is a
2-elimination step in which the neighbors v2, v3 of v1 do not share an edge.
Consider G with the partition V1, V2 just before the 2-elimination occurs and
G′ with the partition V ′

1 , V
′
2 immediately after the elimination took place.

Let I be an independent set in G. If I contains no vertex from v1, v2, v3,
then I is independent also in G′. If I contains one vertex from v1, v2, v3, put
v2 in I ′. Lemma 8 implies that we may assume that I ∩ V2 has no edges to
v2, and hence I ′ is indeed an independent set. If I contains two vertices from
v1, v2, v3, then they must be v2 and v3, and then I is also an independent
set in G′. Observe that I cannot contain all three v1, v2, v3. Conversely, let
I ′ be an independent set in G′. If I ′ contains no vertex from v1, v2, v3, then
I ′ is independent also in G. If I ′ contains one vertex from v1, v2, v3, put v1
in I. Lemma 8 implies that we may assume that I ′ ∩V2 has no edges to v1,
and hence I is indeed an independent set. If I ′ contains two vertices from
v1, v2, v3, then they must be v2 and v3, and then I ′ is also an independent
set in G. Observe that I ′ cannot contain all three v1, v2, v3. �

When none of the above simplifications are applicable, do the following:

1. Run the greedy algorithm to find an independent set I1 in H1.

2. In H2 find a maximum independent set I2 ⊂ V2 with no edges to I1,
as in Lemma 8.

3. Use Lemma 9 to output an independent set in G of size |I1|+ |I2|.

The above lemmas imply that the algorithm can be run in polynomial
time. We now analyse the size of the independent set that it finds.

When all simplification steps end, let n1 and cn1 denote the number of
vertices and edge in H1. Observe that c ≥ 3

2 because the minimum degree
in H1 is 3. Let α be the independence ratio of H1, and observe that α ≤ 1/2
(otherwise NT could have been applied). The number of vertices in H2 is
n−n1. Since G contains n edges and our simplifications do not increase the
number of edges, the number of edges in H2 is at most n − cn1. As every
graph G = (V,E) has an independent set of size at least |V | − |E| it follows
that the size of an independent set in H2 is at least (c − 1)n1. Since the
average degree in H1 is 2c the greedy algorithm finds in H1 an independent
set of size 1+α2

2c+1+αn1. It follows that the approximation ratio of our algorithm
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is at least
c−1+ 1+α2

2c+1+α

c−1+α . For c ≥ 3/2 and 0 ≤ α ≤ 1/2 Lemma 10 implies that
the aforementioned expression is at least 7/9, proving Theorem 7. �

Lemma 10 Let (x, y) ∈ [3/2,∞) × [0, 1/2]. Then

f(x, y) = 2x2+y2−x+xy−y
2x+y2−x+3xy−1

≥ 7
9 .

Proof.
2x2+y2−x+xy−y
2x+y2−x+3xy−1 = 1 + 1−y−2xy

2x+y2−x+3xy−1 . Thus it suffice to prove that

for x and y in the above ranges 1−y−2xy
2x+y2−x+3xy−1 ≥ −2

9 or 4x2 + 2y2 − 2x −

12xy − 9y + 7 ≥ 0. Let g(x, y) = 4x2 + 2y2 − 2x − 12xy − 9y + 7. Clearly
∂g(x,y)

∂x = 8x − 2 − 12y > 0 for such x, y and ∂g(x,y)
∂y = 4y − 2x − 9 < 0 for

such x, y. Hence g(x, y) ≥ g(3/2, 1/2) = 0. As desired. �

Replacing the algorithm of Theorem 4 by the algorithm of Theorem 7 in
algorithm PLG we obtain:

Theorem 11 A canonical recoverable value ρ = 7/3 is achievable for MIS.

6 MIS in k-colored graphs

In analyzing algorithm PLG we only used the fact that G3 has small average
degree. However, G3 has other structural properties as well. It is 3-colorable,
and furthermore, the 3-coloring can be found efficiently (e.g., by coloring
the vertices of G3 inductively in the order in which they appear in the
permutation that generated G3). We use the term k-colored graph to denote
a graph with a given k-coloring. The following proposition is known [12].

Proposition 12 MIS on k-colored graphs can be approximated within 2/k.

Proof. We present two proofs.
1) Consider all possible pairs of color classes. At least one such pair contains
at least 2/k fraction of opt. Each such pair is a bipartite graph on which
MIS can be solved exactly.
2) Use an LP for MIS which by its half integrality and standard rounding
techniques allows us to assume that opt is at most half the graph. Thereafter,
the largest color class provides at least a 2/k approximation. �

One may hope that Proposition 12 can be improved, for example, by
combining the two different proofs given to it. If so, this would give an
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approximation ratio better than 2/3 for G3, hence potentially replacing or
even surpassing the 5/7 bound that we used for G3 based on Theorem 4.

We show that Proposition 12 is nearly tight, unless vertex cover can
be approximated within a ratio better than 2. (In particular, this implies
UGC-hardness, since hardness of unique games is a stronger assumption
than inapproximability of VC beyond a ratio of 2, see [13].)

Let G be an n-vertex graph in which one wants to approximate VC
within a ratio better than 2. As is well known (e.g., [10]), this is the same as
distinguishing for some ǫ > 0 whether α(G), the size of MIS in G, satisfies
α(G) ≥ (1/2 − ǫ)n) or α(G) ≤ ǫn.

For k > 2 construct from G a k-colored graph G′ as follows. For every
vertex v ∈ G, the graph G′ contains k copies v1, . . . vk. All vertices with
the same index i form an independent set (hence a color class). Between
any two distinct color classes other than class k, place a bipartite graph
mimicking the edge pattern of G, connecting vertex vi with vertex uj (where
k 6= j 6= i 6= k) if (v, u) (or (u, v)) is an edge in G. Each vertex vk of the
kth class is connected only to its own copies vi in the other classes. Hence
the bipartite graph between class k and any other class is simply a perfect
matching.

Lemma 13 In the reduction above, α(G′) = n+ (k − 2)α(G).

This gives a gap of n+O(ǫkn)
kn/2−O(ǫkn) = (1 + o(1)) 2k between no and yes in-

stances.
To prove Lemma 13, we shall use the following lemma.

Lemma 14 There is a MIS I ′ in G′ such that for every vertex v ∈ G, either
vi ∈ I ′ for all i 6= k, or vk ∈ I ′.

Proof. Consider an arbitrary independent set I ′ in G′. If either no copy or
only one copy of v is in I ′, then without loss of size of I ′ we may take this
to be vk. If at least two copies of v are in I ′, then neither one of them can
be vk. But then, we can add all other vi with i 6= k to I ′, since none of them
can be a neighbor of a vertex already in I ′. �

Lemma 14 implies that all vertices v ∈ G for which vk 6∈ I ′ form an
independent set in G. Lemma 13 easily follows. Applying 13 and [13] we
immediately obtain:

Theorem 15 Let k be an integer greater than 2. Assume that for every
ǫ > 0 it is NP-hard to distinguish between graphs with independent set of
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size at least (12 − ǫ)n to graphs with independent sets of size at most ǫn.
Then, for arbitrary δ > 0 it is NP-hard to approximate MIS on k-colored
graphs within a factor larger than 2

k + δ. In particular, approximating MIS
on k-colored graphs within a factor larger than 2

k + δ is unique-games hard.

Recall that a vertex cover is the complement of an independent set.
For k-colored graphs, vertex cover can be approximated within 2 − 2/k.
Theorem 15 implies (under the assumptions of the theorem) that this is
best possible, up to low order terms.

Note that G′ constructed in the proof of Theorem 15 has additional
structural properties beyond being k-colorable (many symmetries and an
especially simple pattern of connections with color class k). This excludes
better than 2/k approximation ratios even on more restricted families of
graphs than those with a k-coloring. One such family is that of graphs com-
posed of one part that is a tree, another that is an independent set, and
edges between these two parts. These graphs are 3-colorable, but in addi-
tion, the pattern of edges between two of the color classes is very simple.
Our proof implies that approximating MIS within a ratio better than 2/3 is
hard on these graphs. Such graphs actually arise in a variation of the algo-
rithm PLG, if instead of the first three layers one takes the first two layers,
forming the part that is a tree, and the first layer in the reverse order of
the permutation, forming the part that is an independent set. Note however
that the graph Gk used in algorithm PLG is k-colorable due to a structural
property of being (k−1)-degenerate, whereas the graphG′ constructed in the
proof of Theorem 15 is not necessarily (k−1)-degenerate. MIS is APX-hard
even on 2-degenerate graphs (this can be proved by removing one vertex
from a 3-regular graphs), but it appears possible to obtain algorithms that
approximate MIS on such graphs within a ratio better than 2/3. This may
potentially lead to higher recoverable values than those shown in this work.

7 Discussion

We presented algorithms that achieve a recoverable value with ρ = 2 for
MWIS and ρ = 7/3 > 2 for MIS. We also showed that previous algorithms
(such as greedy and greedy+LP) fail to achieve a recoverable value with
ρ bounded away from 1. Finally, we proved a hardness of approximation
result for MIS on graphs with a given k-coloring. Some questions remain
open, most notably, how much higher can ρ be pushed (recall that it cannot
reach 4), and whether there truly is a gap between MIS and MWIS with
respect to recoverable value.
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Let us provide some comments on our permutation based algorithms.
They are not guaranteed to produce a maximal independent set. After
running them it may well be that there remain vertices in G (rather than
in Gk) not connected to the independent set that they find. This forms a
residual graph. Hence if one wants to run our permutation based algorithms
in practice, one can improve their performance by extracting an independent
set also from the residual graph. We have not attempted to analyze the effect
of this on the recoverable value.

The notion of recoverable value and the associated algorithms are most
effective for graphs in which the vertices in the maximum independent set
have small degree compared to the average degree in the graph. For some
other classes of graphs (notably, regular graphs [3, 4]) our performance guar-
antees are poorer than those given by other algorithms.
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A Some negative examples

We show that LP+greedy (mentioned in Section 1.2) does not meet the
performance guarantees of Theorem 2.

Proposition 16 For arbitrarily large integers k, d there are graphs such
that neither greedy nor LP+greedy find an independent set of size k + 1
whereas the recoverable value is at least ρkd

d+1 . Hence they cannot guarantee
a recoverable value with ρ bounded away from 1.

Proof. Consider the following example. There are three layers. The first
layer consists of k vertices, each with d distinct neighbors in the second
layer. Every one of the dk second layer vertices has d− 1 distinct neighbors
in the third layer. All dk(d−1) vertices of the third layer form a clique. The
second layer is an independent set with dk vertices and recoverable value of
dk ρ

d+1 . A greedy algorithm might choose the k vertices in the first layer and
a clique vertex for a value of k+1. This applies also to greedy+LP because
the optimal half integral solution (to the standard LP, not the recoverable
value LP) of this instance will assign 1/2 to all vertices, provided that d and
k are large enough. (No third layer vertex will be assigned the value 1 since
then all third layer vertices must be assigned 0. No second layer vertex will
be assigned 1 because this forces d − 1 distinct third layer vertices to be
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assigned 0 rather than 1/2. No first layer vertex will be assigned 1 because
this forces d distinct second layer vertices to be assigned 0 rather than 1/2.)
�

We remark that the example in Proposition 16 (and also simpler exam-
ples suffice) shows that the fast algorithm of Theorem 2 does not offer an
expected value of ρ bounded away from 2. The expected number of vertices
in the first two layers can be easily seen to be less than 2(k + 1) (by using
linearity of expectation to sum over individual vertices), and hence the ex-
pected size of the independent set found will not exceed 2(k + 1) (which by
increasing d and k can be made to imply ρ arbitrarily close to 2).

The following graph shows that the RV LP together with our round-
ing procedure cannot give a value of ρ > 2 for MWIS. Consider a graph
composed of clique of size k connected via a complete bipartite graph to an
independent set of size k. Vertices of the clique have weight 2k/(k + 1) and
other vertices have weight 1. The weight of maximum weight independent
set is k and its recoverable value is ρk/(k + 1). The RV LP has an optimal
solution that assigns value 1/2 to all vertices. Thereafter, weighted greedy
may choose a clique vertex in its first step, thus discarding all other vertices
and finding a solution of weight 2k/(k + 1). Hence ρ = 2.
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