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Abstract

We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random

graph G = G
δ≥3
n,m. In this model G is drawn uniformly from graphs with vertex set [n], m edges and

minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently

large then our algorithm runs in O(n1+o(1)) time and succeeds w.h.p.

1 Introduction

The threshold for the existence of Hamilton cycles in random graphs has been known very precisely for

some time, Komlós and Szemerédi [15], Bollobás [4], Ajtai, Komlós and Szemerédi [1]. Computationally,

the Hamilton cycle problem is one of the original NP-complete problems described in the paper of Karp

[13]. On the other hand Angluin and Valiant [2] were the first to show that the Hamilton cycle problem

could be solved efficiently on random graphs. The algorithm in [2] is randomised and very fast, O(n log2 n)

time, but requires Kn logn random edges for sufficiently large K > 0. Bollobás, Fenner and Frieze [7] gave

a deterministic polynomial time algorithm that works w.h.p. at the exact threshold for Hamiltonicity, it is

shown to run in O(n3+o(1)) time.

The challenge therefore is to find efficent algorithms for graphs with a linear number of edges. Here we have

to make some extra assumptions because a random graph with cn edges is very unlikely to be Hamiltonian.

It will have isolated vertices. It is natural therefore to consider models of random graphs with a linear

number of edges and minimum degree δ at least two. In fact minimum degree three is required to avoid the

event of having three vertices of degree two having a common neighbor. For example, in the case of random

r-regular graphs, r = O(1) ≥ 3, Robinoson and Wormald [17], [18] settled the existence question and Frieze,

Jerrum, Molloy, Robinson and Wormald [11] gave a polynomial time algorithm for finding a Hamilton cycle.

The running time of this algorithm was not given explicitly, but it is certainly Ω(n3).

We will work on a model where the assumption is that δ ≥ 3 as opposed to all vertices having degree exactly

three. It is tempting to think that existence results for the regualr case r = 3 will help. Unfortunately, this

is not true. The random graph Gδ≥3
n,m is uniformly sampled from the set Gδ≥3

n,m of graphs with vertex set [n],

m edges and minimum degree at least three.

Frieze, [9] gave an O(n3+o(1)) time algorithm for finding large cycles in sparse random graphs and this can

be adapted to find Hamilton cycles in Gδ≥3
n,cn in this time for sufficiently large c. The paper [10] gives an
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algorithm that reduces this to n1.5+o(1) for sufficiently large c. The main aim of this paper is to construct

an almost linear time algorithm for this model.

Theorem 1.1. If c is sufficiently large then our algorithm finds a Hamilton cycle in Gδ≥3
n,m, m = cn, and

runs in O(n1+o(1)) time and succeeds w.h.p.

Remark 1.1. The no(1) term here is (log n)O(log logn) which is tantalisingly close to best possible(?) logO(1) n.

2 Outline of the paper

The paper [8] gave an efficient algorithm for finding the maximum matching in a sparse random graph. Its

approach was to (i) use the simple greedy algorithm of Karp and Sipser [14] and then (ii) augment it to a

maximum matching using alternating paths. In this paper we replace the Karp-Sipser algorithm with the

algorithm 2greedy that w.h.p. finds a 2-matching in G = Gδ≥3
n,m with O(log n) components and we replace

alternating paths with extensions and rotations. (A 2-matching is a spanning subgraph of maximum degree

at most two).

In Section 3 we will describe our algorithm. We will describe it in two subsections. We will describe 2greedy

for finding a good 2-matchingM in detail in Section 3.1. In section 3.2 we will describe an algorithm extend-

rotate that uses extensions and rotations to convert M into a Hamilton cycle. In Section 4 we discuss some

“residual randomness” left over by 2greedy. In Section 5 we prove some structural properties of Gδ≥3
n,m. In

Section 6 we prove some properties relating the output of 2greedy to the execution of extend-rotate.

In Section 7 we do a final calculation to finsih the proof. In Section 8 we point to our difiiculties in proving

n logO(1) n and in Section 9 we make some final remarks.

3 Algorithm

As already stated, there are two phases to the algorithm. First we find a good 2-matching M and then we

convert it to a Hamilton cycle. We look first at how we find M .

3.1 Algorithm 2greedy

We greedily and randomly choose edges to add to M . Edges of M are deleted from the graph. We let

b(v) ∈ {0, 1, 2} denote the degree of v in M . Once b(v) = 2 its incident edges are no longer considered

for selection. The vertex itself is deleted from the graph. Thus the graph from which we select edges will

shrink as the algorithm progresses. We will use Γ to denote the current subgraph from which edges are to

be selected. When there are vertices v of degree 2 − b(v) (or less) in Γ, we take care to choose an edge

incident with such a vertex. Our observation being that there is a maximum cardinality 2-matching of Γ

that contains such an edge.

If every vertex v of Γ had degree at least 3 − b(v) then we choose an edge randomly from edges that are

incident with vertices v that have b(v) = 0. In this way, we quickly arrive at a stage where every vertex of Γ

has b(v) = 1. At this point we use the algorithm of [8] to find a (near) perfect matching M∗, which we add

to M as our final 2-matching.

We describe 2greedy in enough detail to make some of its claimed properties meaningful.

We let

• µ be the number of edges in Γ,

• Yk = {v ∈ [n] : dΓ(v) = k and b(v) = 0}, k = 0, 1, 2,
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• Zk = {v ∈ [n] : dΓ(v) = k and b(v) = 1}, k = 0, 1,

• Y = {v ∈ [n] : dΓ(v) ≥ 3 and b(v) = 0},

• Z = {v ∈ [n] : dΓ(v) ≥ 2 and b(v) = 1},

• M is the set of edges in the current 2-matching.

Note that V (Γ) = [n] \ (Y0 ∪ Z0) and that b(v) ∈ {0, 1} for v ∈ V (Γ).

We will assume that the input to our algorithm is an ordered sequence σm = (e1, e2, . . . , em) where m = cn.

Here Em = {e1, e2, . . . , em} are the edges of Gδ≥3
n,m and σm is a random ordering of Em. Once these orderings

are given, the vertices and edges are processed in a deterministic fashion. Thus for example, if 2greedy

requires a random edge with some property, then it is required to take the first available edge in the given

ordering.

We now give details of the steps of

Algorithm 2greedy:

Step 1(a) Y1 6= ∅
Choose v ∈ Y1. We choose v by finding the first edge in the ordering σ that contains a member of Y1.

Suppose that its neighbour in Γ is w. We delete the edge (v, w) from Γ add (v, w) to M and move v

to Z0.

(i) If w is currently in Y then move it to Z. If it is currently in Y1 then move it to Z0. If it is

currently in Y2 then move it to Z1. Call this re-assigning w.

(ii) If b(w) = 1 then we move w to Z0 and make the requisite changes due to the loss of other edges

incident with w. Call this tidying up.

Step 1(b): Y1 = ∅ and Y2 6= ∅
Choose v ∈ Y2. We choose v by finding the first edge in the ordering σ that contains a member of Y2.

Suppose that its neighbours in Γ are w1, w2.

We choose one of the neighbors at random, say w1. We move v to Z1. We delete the edge (v, w1) from

Γ and place it into M . In addition,

(i) If b(w1) = 0 then put b(w1) = 1 and add the edge (v, w1) to M . Re-assign w1.

(ii) If b(w1) = 1 then we delete w1 from Γ. Tidy up.

Step 1(c): Y2 = ∅ and Z1 6= ∅
Choose v ∈ Z1. We choose v by finding the first edge in the ordering σ that contains a member of Z1.

Let u be the other endpoint of the path P of M that contains v. Let w be the unique neighbour of v

in Γ. We delete v from Γ and add the edge (v, w) to M . In addition there are two cases.

(1) If b(w) = 0 then we re-assign w.

(2) If b(w) = 1 then we delete vertex w and tidy up.

Step 2: Y1 = Y2 = Z1 = ∅ and Y 6= ∅
Choose the first edge (v, w) ∈ E(Γ) in the order σm incident with a vertex v ∈ Y . We delete the edge

(v, w) from Γ and add it to M . We move v from Y to Z. There are two cases.

(i) If b(w) = 0 then move w from Y to Z.

(ii) If b(w) = 1 then we delete vertex w and tidy up.
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Step 3: Y1 = Y2 = Z1 = Y = ∅
At this point Γ will be distributed as Gδ≥2

ν,µ for some ν, µ where µ = O(ν). As such, it contains a (near)

perfect matching M∗ [12] and it can be found in O(ν) expected time [8]. This step comprises

Step 3a Apply the Karp-Sipser algorithm to Γ. W.h.p. this results in the construction of a matching M∗
1

that covers all but Õ(ν1/5) vertices U = {u1, u2, . . . , uℓ}.
Step 3b Now find augmenting paths from u2i−1 to u2i for i ≤ ℓ/2. This produces the matching M∗.

The output of 2greedy is set of edges M ←M ∪M∗.

3.2 Extension-Rotation Algorithm

We now describe an algorithm, extend-rotate that w.h.p. converts M into a Hamilton cycle. The main

idea is that of a rotation. Given a path P = (u1, u2, . . . , uk) and an edge e = (uk, ui) where i ≤ k− 2 we say

that the path P ′ = (u1, . . . , ui, uk, uk−1, . . . , ui+1) is obtained from P by a rotation. u1 is the fixed endpoint

of this rotation. We say that e is the inserted edge.

Given a path P with endpoints a, b we define a restricted rotation search RRS(ν) as follows: Suppose that

we have a path P with endpoints a, b. We start by doing a sequence of rotations with a as the fixed endpoint.

Furthermore

R1 We do these rotations in “breadth first manner”, described in detail in Section 6.

R2 We stop this process when we have either (i) created ν endpoints or (ii) we have found a path Q with

an endpoint that has a neighbor w outside of Q. The path Q + w will be longer than P . We say that

we have found an extension.

Let END(a) be the set of endpoints, other than a, produced by this procedure. Assuming that we did not

find an extension and having constructed END(a), we take each x ∈ END(a) in turn and starting with the

path Px that we have found from a to x, we carry out R1,R2 above with x as the fixed endpoint and either

find an extension or create a set of ν paths with x as one endpoint and the other endpoints comprising a set

END(x) of size ν.

Algorithm extend-rotate

Step ER1 Let K1,K2, . . . ,Kr be the components of M where |K1| = max {|Kj| : j ∈ [r]}. If K1 is a path

then we let P0 = K1, otherwise we let P0 = K1 \ {e} where e is any edge of K1.

Step ER2 Let P be the component of the current 2-matching M that contains P0. If P is not a cycle, go

directly to ER3. If P is a Hamilton cycle we are done. Otherwise there is a vertex u ∈ P and

a vertex v /∈ P such that f = (u, v) is an edge of G, assuming that G is connected, see Lemma

6.3. Let Q be the component containing v. By deleting an edge of P incident to u and (possibly)

and edge of Q incident with v and adding f we create a new path of length at least |P |+ 1 with

vertex set equal to V (P ) ∪ V (Q). Rename this path P .

Step ER3 Carry out RSS(ν) until either an extension is found or we have constructed ν endpoint sets.

Case a: We find an extension. Suppose that we construct a path Q with endpoints x, y such

that y has a neighbour z /∈ Q.

(i) If z lies in a cycle C then let R be a path obtained from C by deleting one of the edges

of C incident with z. Let now P = x,Q, y, z, R and go to Step ER2.

(ii) If z = uj lies on a path R = (u1, u2, . . . , uk) where the numbering is chosen so that

j ≥ k/2 then we let P = x,Q, y, z, uj−1, . . . , u1 and go to Step ER2.
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Case b: If there is no extension then we search for an edge f = (p, q) such that p ∈ END(a) and

q ∈ END(p). If there is no such edge then the algorithm fails. If there is such an edge we

let Q be the corresponding path from p to q. We replace P in our 2-matching by the cycle

Q+ f and go to ER2.

3.3 Execution Time of the algorithm

The expected running time of 2greedy is O(n) and w.h.p. it completes in O(n) time with a 2-matching M

with at most K1 logn components for some constant K1 > 0. This follows from the results of [8] and [10].

To bound the execution time of extend-rotate we first observe that it follows from [2] that RSS(ν) can

be carried out in O(ν2 logn) time. We will take

ν = n1/2+O(ε)

where

ε =
K(log logn)2

logn
(1)

where K is a sufficiently large positive constant and that c is sufficiently large.

We now bound the number of executions of RSS(ν). Each time we execute Step ER3, we either reduce the

number of components by one or we halve the size of one of the components not on the current path. So if

the component sizes of M0 are n1, n2, . . . , nκ then the number of executions of Step ER3 can be bounded by

κ+

κ
∑

i=1

log2 ni = O(log2 n).

So the total execution time is w.h.p. of order

n+ (n1/2+O(ε))2 log2 n = O(n1+O(ε)).

This clearly suffices for Theorem 1.1.

We will now turn to discuss the probability that our algorithm succeeds after we have described 2greedy.

We remind the reader that the analysis assumes that c is sufficently large.

4 Residual Randomness

Let G be a graph with an ordering of its edges and consider a run of 2GREEDYon that graph. At every

point of time each vertex is in one of the sets Y0, Z0, Y1, Y2, Z1, Y and Z as defined above.

We let the set of vertices that were removed from the graph while in Z be denoted by R. We call them

“regular vertices”. These vertices are removed from Γ in the execution of a Step 1 or Step 2 of 2greedy

and they are internal vertices of paths of M at the start of Step 3.

For a vertex v let tv be the time at which 2greedy deletes v from Γ. Vertices w that are not deleted before

the start of Step 3 are given tw =∞. A vertex is early if tv ≤ n1−ε and late otherwise. An edge ei is punctual

if i ≤ (1 − α)m and tardy otherwise, where α is a small positive constant.

When a vertex v ∈ R gets matching degree two we take the incident non-matching edge e with the lowest

index in σ to be its Z-witness. The fact that v ∈ Z just before this happens implies that e exists. We let W

denote the set of Z-witnesses. We next defne two sets R0 and Λ0:

We let

R0 = {v ∈ R : v is early and the Z-witness of v is punctual} .
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and

Λ0 = {v : v has degree at least 4 in Γn1−ε } .
We may now state and prove the main lemma of this section.

Lemma 4.1. In what follows R0,Λ0 are defined with respect to G and an ordreing of its edges. Let e = {x, y}
be a tardy edge of G where x ∈ R0 and y ∈ Λ0. Let G

′ be the graph obtained from G by deleting e. Assume that

running 2greedy on G up until Step 3 gives a 2-matching M and a witness set W and running 2greedy

on G′ up until Step 3 gives M ′ and W ′. Then M = M ′ and W = W ′.

Proof We claim that up to time tx, 2greedy will delete the same vertices and edges from Γt and Γ′
t and

then delete x from both. After this the two graphs will coincide and we are done. We do this by induction

on t. This is clearly true for t = 0 and assume that Γt and Γ′
t differ only in e and t < tx. Note that the

induction hypothesis implies that the sets Y0, Y1, . . . , Z are the same in Γt,Γ
′
t. This is because deleting edge

e does not affect x’s status, because e is after the Z-witness of x in the order σ. It does not affect y’s status,

because the degree of y will be at least 3 after the deletion.

Because the sets Y0, Y1, . . . , Z are unchanged, the choice of step is the same in Γt and Γ′
t. The difference

between the two graphs only affects the degrees of x and y and by construction, this is never enough to

change a choice of edge. �

Remark 4.1. Suppose that ei = (v, w) and that (i) v ∈ R0, (ii) w ∈ Λ0 and (iii) ei is tardy. Then replacing

ei by (v′, w′) such that (i) v′ ∈ R0 and (ii) w′ ∈ Λ0 results in the the same output M,W .

The net effect of this is that if we condition on all edges except for the tardy edges between R0 and Λ0 then

the unconditioned tardy R0 : Λ0 edges are random. This is what we mean by there being residual randomness.

5 Degree Sequence of Gδ≥3
n,m

The degrees of the vertices in G are distributed as truncated Poisson random variables Po(λ;≥ 3), see for

example [3]. More precisely we can generate the degree sequence by taking random variables Z1, Z2, . . . , Zn

where

P(Zi = k) =
λk

k!f3(λ)
for i = 1, 2, . . . , n and k ≥ 3, (2)

where fj(λ) = eλ −∑j−1
k=0

λk

k! for j ≥ 1.

Then we condition on Z1 + Z2 + · · ·Zn = 2m. The resulting Z1, Z2, . . . , Zn can be taken to have the same

distribution as the degrees of G. This follows from Lemma 4 of [3]. If we choose λ so that

E(Po(λ;≥ 3)) =
2m

n
or

λf2(λ)

f3(λ)
=

2m

n

then the conditional probability, P(Z1+Z2+ · · ·Zν = 2m) = Ω(1/
√
n) and so we will have to pay a factor of

O(
√
n) for removing the conditioning i.e. to use the simple inequality P(A | B) ≤ P(A)/P(B). (This factor

O(n1/2) can be removed but it will not be necessary to do this here).

The maximum degree ∆ in G is less than logn q.s.1 and equation (7) of [3] enables us to claim that that if

νk, 2 ≤ k ≤ log n is the number of vertices of degree k then q.s.

∣

∣

∣

∣

νk −
nλke−λ

k!f3(λ)

∣

∣

∣

∣

≤ K1

(

1 +
√

nλke−λ/(k!f3(λ))

)

log n, 2 ≤ k ≤ logn. (3)

for some constant K1 > 0.

1A sequence of events, En occurs quite surely (q.s.) if P(¬En) = o(n−C) for any C > 0.
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In particular, this implies that if the degrees of the vertices in G are d1, d2, . . . , dn then q.s.

n
∑

i=1

di(di − 1) = O(n). (4)

Given the degree sequence we make our computations in the configuration model, see Bollobás [5]. Let

d = (d1, d2, . . . , dn) be a sequence of non-negative integers with 2m = cn. Let W = [2cn] be our set of points

and let Wi = [d1 + · · ·+ di−1 + 1, d1 + · · ·+ di], i ∈ [n], partition W . The function φ : W → [n] is defined

by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into m = cn pairs) we obtain a (multi-)graph GF

with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a pairing F uniformly at random

from among all possible pairings of the points of W produces a random (multi-)graph GF .

This model is valuable because of the following easily proven fact: Suppose G ∈ Gn,d, the set of (simple)

graphs with vertex set [n] and degree sequence d. Then

P(GF = G | GF is simple) =
1

|Gn,d|
.

It follows that if G is chosen randomly from Gn,d, then for any graph property P

P(G ∈ P) ≤ P(GF ∈ P)
P(GF is simple)

. (5)

Furthermore, applying Lemmas 4.4 and 4.5 of McKay [16] we see that if the degree sequence of G satisfies

(4) then P(GF is simple) = Ω(1). In which case the configuration model can substitute for Gn,d (and hence

Gδ≥3
n,m) in dealing with events of probability o(n−1/2).

Lemma 5.1. W.h.p.

(a) Gδ≥3
n,m contains no set S ⊆ [n], 3 ≤ s = |S| ≤ s0 = 1

5 logc n such that S contains at least s+ 1 edges.

(b) Let W1 denote the set of vertices v that are within distance ℓ0 = 2 log logn of a cycle of length at most

2ℓ0 in Gδ≥3
n,m. Then w.h.p. |W1| ≤ n1/2 log4ℓ0 n.

(c) W.h.p. there does not exist a connected subset of Kc logn ≤ s ≤ n3/5 vertices that contain s/10 vertices

of degree at most 30. Here Kc is some sufficiently large constant.

Proof (a) The expected number of sets S containing |S|+ 1 edges can be bounded by

O(n1/2)

s0
∑

s=3

∑

|S|=s

∑

D≥3s

∑

d1+···+ds=D
d1,...,ds≥3

s
∏

i=1

λdi

f3(λ)di!

(

D

s+ 1

)(

D

cn− 2s

)s+1

≤ (6)

O(n1/2)

s0
∑

s=3

∑

|S|=s

∑

D≥3s

(

De

s+ 1

)s+1(
D

cn

)s+1
λDsD

D!f3(λ)s
. (7)

Explanation: For (6) we choose a set of size s with vertices of degree d1, d2, . . . , ds ≥ 3 and d1+· · ·+ds = D.

The term
∏s

i=1
λdi

f3(λ)di!
(modulo O(n1/2)) accounts for the probability of these degrees. We then choose s+1

configuration points and approximate the probablity that they are all paired with other points associated

with s by
(

D
cn−2s

)s+1

. We use
∑

d1+···+ds=D

∏s
i=1

1
di!

= sD

D! to get (7).

Continuing we observe that (D/cs)2s+2 ≤
(

1 + 3
c

)D
for D ≥ 3s. Thisis clearly true for D ≤ cs and follows

by induction on D ≥ cs. Therefore,

∑

D≥3s

D2s+2λDsD

D!
≤ (cs)2s+2e(λ+3)s.

7



Plugging this into (7) we get a bound of

O(n1/2)

s0
∑

s=3

∑

|S|=s

ces2

n

(

ces2eλ+3

n(s+ 1)f3(λ)

)s

≤O
(

cs2

n1/2

) s0
∑

s=3

(ne

s

)s
(

ces2eλ+3

n(s+ 1)f3(λ)

)s

≤O
(

cs2

n1/2

) s0
∑

s=3

(

ceλ+3

f3(λ)

)s

≤O
(

cs2

n1/2

) s0
∑

s=3

(2ce3)s

=o(1).

(b)

E(|W1|) ≤ O(n1/2)
∑

k≤ℓ0,ℓ≤2ℓ0

(

n

k + ℓ

)

kℓ

(

∆2n

2m− 6ℓ0

)k+ℓ

≤ 2n1/2ℓ20 log
3ℓ0 n.

(We remind the reader that it is possible to remove the O(n1/2) factor here. This would be worth doing if

we could reduce ε to O(log logn/ logn). This should become apparant in the proof of Lemma 6.8, equation

(31)).

Part (b) follows from the Markov inequality.

(c) For a fixed s, the probability such a set exists can be bounded by

O(n1/2)
∑

|S|=s

(

s

s/10

)

∑

D≥3s

∑

d1+···+ds=D
3≤di, i∈[s]

di≤30, i∈[s/10]

s
∏

i=1

λdi

di!f3(λ)

(

D

s− 1

)(

D

cn

)s−1

.

Explanation: We choose a set S and we let the degrees in S be d1, d2, . . . , ds where D is the total degree.

Since the induced subgraph is connected, it must contain a spanning tree. We weaken this to it must contain

s− 1 edges.
(

D
s−1

)

enumerates the lower numbered point of the edges and then Ds−1 enumerates the other

possible endpoints and then
(

1
cn−2s

)s−1

= 1+o(1)
(cn)s−1 bounds the probability the selected pairs exist.

We bound this by

O(n1/2)

(

n

s

)(

s

s/10

)

∑

D≥3s

(

D

s

)(

D

cn

)s−1

f3(λ)
−s[xD]

(

30
∑

i=3

λixi

i!

)s/10

f3(λx)
9s/10

≤ O(n3/2)
(e

s

)s

(10e)s/10
∑

D≥3s

(

De

s

)s(
D

c

)s−1
1

f3(λ)s(1 + ξ)D

(

30
∑

i=3

λi(1 + ξ)i

i!

)s/10

f3(λ(1 + ξ))9s/10

for any positive ξ.

Now if λ is large then f3(λ) ≥ eλ/2. Also, f3(λ(1 + ξ)) ≤ eλ(1+ξ). Furthermore,

30
∑

i=3

λi(1 + ξ)i

i!
≤ 2

λ30e30ξ

30!
≤ 2

(

λe1+ξ

30

)30

.

We will take ξ to be small but fixed. Then the bound becomes

O(n3/2)(10e)s/10
(

e2

cs2

)s
2s/10e9λξs/10

eλs/10

(

2

(

λe1+ξ

30

)30
)s/10

∑

D≥3s

D2s−1

(1 + ξ)D
.
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We observe that if uD = D2s

(1+ξ)D then uD+1/uD ≤ 1+3/D
1+ξ for D ≥ 9. So,

∑

D≥3s

D2s−1

(1 + ξ)D
≤ (3s)2s

∑

D≥3s

1

(1 + ξ)D

D
∏

i=3s

i+ 3

i
≤ (3s)2s

∑

D≥3s

(D + 3)3

(3s)3(1 + ξ)D
≤ (3s)2s

ξ
.

For the last inequality we use the fact that s is large and then D3 ≪ (1 + ξ)D.

Continuing, we get a bound of

≤ O(n3/2)(10e)s/10
(

e2

cs2

)s
2s/10e9λξs/10

eλs/10

(

2

(

λe1+ξ

30

)30
)s/10

(3s)2s

= O(n3/2)

(

9(40e)1/10e2

ceλ(1−9ξ)/10

(

λe1+ξ

30

)5
)s

= o(1)

if we take ξ = 1/10 and c and hence λ sufficiently large.

�

6 Finding a Hamilton cycle

We assume that we have a path P with endpoints a, b and we do rotations with a as the fixed endpoint to

try to find an extension. In the next section we show that if no extensions are found, then w.h.p. we create

sufficient endpoints other than b on paths of length equal to P . Throughout this description, we will assume

that no extension is found i.e. all neighbors of endpoints turn out to be vertices of P . We associate the

search with something similar to an alternating tree of matching theory.

6.1 Tree Growth

In this section we describe our search for a longer path than P using extend-rotate in terms of growing a

tree structure, where each vertex determines a new long path. We expose what happens w.h.p. if we fail to

find an extension. Let A0 = {b} and let B0 be the set of neighbors of b on P , excluding b’s path neighbor.

We now define the sets Ai, Bi, i = 1, . . . , and Ci =
⋃

j≤i(Aj ∪ Bj). Here every vertex v in Ai will be the

endpoint of a path of the same length as P . It will be obtained from P by exactly i rotations with a as the

fixed endpoint. Fix i ≥ 0 and let Ai = {v1, v2, . . . , vk}. We build Ai+1, Bi+1 by examining v1, v2, . . . , vk in

this order. Initially Ai+1 = Bi+1 = ∅ and we will add vertices as we process the vertices of Ai. Fix v = vj .

We have a path Pv with endpoints a, v. We consider two cases:

Case 1: |Ci| ≤ L0 =
1
20 logc n.

Let Nv = {u1, u2, . . . , ud} be the neighbors of v, excluding its neighbor on Pv. We also exclude from Nv

those neighbors already in Bi+1 (as defined so far). Let wl be the neighbor of ul on Pv that lies between ul

and v for l = 1, 2, . . . , d. Let N ′
v = {w1, w2, . . . , wd}. We exclude from N ′

v those vertices already in Ai+1 (as

defined so far). We add Nv to Bi+1 and N ′
v to Ai+1 and we add edges (v, uj) and (uj , wj) to T . The edge

(uj , wj) will be called a lost edge. Furthermore, we define Pwj = Pv + (v, uj) − (uj , wj) and observe that

Pwj has endpoints b, wj .

Case 2: |Ci| > L0.

Now let Nv = {u1, u2, . . . , ud} be its neighbors as above. We now exclude from Nv those neighbors already

in Ci+1 (as defined so far) as well as those uj for which wj ∈ Ci+1. We define N ′
v and update Ai+1, Bi+1, T

with this restricted Nv.

9



We define the subgraph T = T (P, b, k) as follows: It has vertex set Ck plus the edges of the form (v, uj)

and (uj , wj) used above. T suggests a tree. It is usually a tree, but in rare cases it may be unicyclic. This

follows from Lemma 5.1. When this happens, some v ∈ Ai (Case 1) has a neighbor in Bj , j ≤ i.

We see from this that w.h.p. T defined prior to the lemma has at most one cycle. By construction, cycles

of T are contained in the first i0 levels. If there are two cycles inside the first i0 levels then there is a set S

(consisting of the two cycles plus a path joining them) with at most 4i0 vertices and at least |S|+ 1 edges.

We argue next that w.h.p. T can be assumed to grow to a certain size and we can control its rate of growth.

Lemma 6.1. Let β be some small fixed positive constant. If c is sufficiently large, then for all paths P and

endpoints b such that extension does not occur, w.h.p.

(a) There exists k such that |Ck| ≥ L0 = 1
15 logc n.

(b) If L0 ≤ |Ck| ≤ n.6 then |Ak+1| ∈ [2(1−β)c|Ck|, 2(1+β)c|Ck|], even if only punctual edges are used once

|Ak| reaches size at least nε.

(c) There exists k0 = O(logc n) such that |Ak0
| ∈ [(2c(1 + β))−1n1/2+5ε, 2c(1 + β)n1/2+5ε].

(d) Let k1 = k0 − ℓ0 where ℓ0 = 2 log logn and let x ∈ Ak1
. Let S be the set of descendants of x in Ak0

and

let s = |S|. Let S0 = {y ∈ S : d(y) ≥ 30} and let s0 = |S0|. Then, where W1 is as in Lemma 5.1,

(i) x /∈W1 and s ≥ (2c(1− β))k0−k1/4 implies that s0 ≥ 99s/100.

(ii) s ≤ (2c(1 + β))k0−k1 logn.

Proof (a) Lemma 2.1 of [12] proves the following: Suppose that S is the set of endpoints that can be

produced by considering all possible sequences of rotations starting with some fixed path P and keeping one

endpoint fixed. Let T be the set of external neighbors of S. Here S ∩ T = ∅. Then |T | ≤ 2|S| and S ∪ T

conmtains strictly more than |S ∪ T | edges. The assumption here is that the graph involved has minimum

degree at least three. It follows from Lemma 5.1 that |S| ≥ 1
15 logc n. As a final check, if |Ck| never reached

L0 then it would have explored all possible sets of endpoints i.e. the breadth first search is no restriction.

(b) If the condition in (b) fails then the following structure appears: Let δ = 1 if T is not a tree and 0

otherwise. Let EV EN(T ) =
⋃k

i=0 Ai and ODD(T ) =
⋃k

i=0 Bi where k is the number of iterations involved

in the construction of T . Then with |EV EN(T )| = l and |N(EV EN(T ))| = r we have (i) 2(l− 1)+ δ edges

of T connecting EVEN(T) to Odd(T) (ii) r − l + 1 edges connecting EVEN(T) to N(EVEN(T)) \ Odd(T)

and (iii) none of the l(n− r − l) edges between EVEN(T) and V \N(EVEN(T)) are present.

Assume first that T is actually a tree and that l ≤ nε so that the edges of T need not be punctual.

Given the vertices of T and N(EV EN(T )), the probability of the existence of a T with L0 ≤ l ≤ n.6 and

r ≤ (1 − β)cl can be bounded by

O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
∑

di≥3, i∈[r+l−1]
∑l

i=1
di=r+l−1

(

l
∏

i=1

λdidi!

di!f3(λ)

2l−1
∏

i=l+1

λdidi(di − 1)

di!f3(λ)

r+l−1
∏

i=2l

λdidi
di!f3(λ)

)

(8)

Explanation: The probability that an edge exists between vertices u and v of degrees du and dv, given

the existence of other edges in T , is at most
d′

ud
′

v

2m−2(l+r)+3 where d′u = du less the number of edges already

assumed to be incident with u. Hence, given the degree sequence, the probability that T exists is at most

(

1

2m− 2(l + r)

)l+r−1 l
∏

i=1

di!

2l−1
∏

i=l+1

di(di − 1)

r+l−1
∏

i=2l

di.
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(We dropped the +3 in 2m− 2(l + r) + 3).

Here the first product corresponds to EV EN(T ), the second product corresponds to ODD(T ) and the final

product corresponds to neighbours of T (not in T ).

We will implicitly use the fact that if c is sufficiently large, then so is λ.

We now simplify the expression (8) obtained for the probability to

O(
√
n)

(

1

2m− 2(l + r)

)l+r−1

×

λ2r+2l−3

f3(λ)r+l−1

∑

∑l
i=1

di=r+l−1





∑

di≥3, i∈[r+l−1]

2l−1
∏

i=l+1

λdi−2

(di − 2)!

r+l−1
∏

i=2l

λdi−1

(di − 1)!





≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1

×

λ2r+2l−3

f3(λ)r+l−1

∑

∑l
i=1

di=r+l−1
di≥3,i∈[l]









2l−1
∏

i=l+1

∑

di≥3

λdi−2

(di − 2)!









r+l−1
∏

i=2l

∑

di≥3

λdi−1

(di − 1)!









≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
λ2r+2l−3

f3(λ)r+l−1

(

r

l

)

f1(λ)
l−1 f2(λ)

r−l (9)

≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
λ2r+2l−3

f3(λ)r+l−1

(er

l

)l

f1(λ)
l−1 f2(λ)

r−l

= O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
(er

l

)l (2cλ)r

λf2(λ)

(

2cλf1(λ)

f2(λ)2

)l−1

(10)

using
λf2(λ)

f3(λ)
= 2c

≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
2e(1− β)c(2cλ)r

λf2(λ)

(

4(1− β)ec2λf1(λ)

f2(λ)2

)l−1

using r/l ≤ 2(1− β)c (11)

≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1
2e(1− β)c(2cλ)r

λf2(λ)

(

4(1− β2)ec2λ

f2(λ)

)l−1

using
f1(λ)

f2(λ)
< 1 + β

≤ O(
√
n)

(

1

2cn

)l+r−1

e3(l+r)2/2cn(2cλ)r
(

4ec2λ

f2(λ)

)l−1

using m = cn

= O(
√
n)

(

1

n

)l+r−1

eo(l) λr

(

2ecλ

f2(λ)

)l−1

(12)

since r = O(l).

We now count the number of such configurations. We begin by choosing EVEN(T) and the root vertex of

the tree in at most n
(

n
l−1

)

ways. We make the following observation about T . The contraction of the lost

edges of the tree yields a unique tree on l vertices. We note, by Cayley’s formula, that the number of trees

that could be formed using l vertices is ll−2. Reversing this contraction, we now choose the sequence of l

vertices, Odd(T), that connect up vertices in EVEN(T) in (n − l)(n− l − 1)...(n− 2l + 1) = (n− l)l ways.

We pick the remaining r − l vertices from the remaining n− 2l vertices in
(

n−2l
r−l

)

ways. These r − l vertices

can connect to any of EVEN(T) in lr−l ways. Hence, the total number of choices for T is at most

(

n

l

)

ll−2(n− l)l

(

n− 2l

r − l

)

lr−l ≤ nr+ler
(

l

r − l

)r−l

. (13)
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Combining the bounds for probability and choices of T , we get an upper bound of

nr+ler
(

l

r − l

)r−l

O(
√
n)

(

1

n

)l+r−1

eo(l) λr

(

2ecλ

f2(λ)

)l−1

≤ O(n3/2) ·
(

eλl

r − l

)r−l(
4e2+o(1)cλ2

f2(λ)

)l−1

(14)

The expression
(

eλl
x

)x
is maximized at x = λl. Our assumptions imply that r ≤ 2(1− β)cl < λl. Hence, we

have the bound

O(n3/2) ·
(

eλl

2(1− β)cl

)2(1−β)cl(
30cλ2

f2(λ)

)l

≤ O(n3/2) ·
(

(

e

1− β

)2(1−β)c

· 120c
3

f2(λ)

)l

using λ < 2c

≤ O(n3/2) · e−βcl (15)

using

f2(λ) >
120c3e(2−β)c

(1− β)2(1−β)c

for c sufficently large.

We sum O(n3/2) · e−βcl over all r and l with L0 ≤ l ≤ n0.6 and l ≤ r ≤ (1− β)cl and we get the probability

to be at most

O(n7/2)e−βcL0 = o(1) (16)

for c sufficiently large.

We now consider the probability of the existence of a T having L0 ≤ l ≤ n0.6 and r ≥ 2(1 + β)cl. Note that

we can assume r ≤ l∆ ≤ l logn here.

The bound (10) remains valid. Replacing r by r + 1 multiplies this by a factor O(cn−1el/r) and so for this

bound we can just assume that r = 2(1 + β)cl. This changes the 1− β in (11) to 1 + β and we replace (12)

by

O(
√
n)

(

1

n

)l+r−1

eo(l) λr

(

2ec(1 + β)2λ

f2(λ)

)l−1

.

We re-use (13) and replace (14) by

O(n3/2) ·
(

eλl

r − l

)r−l(
4e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1

. (17)

Our assumptions imply that r = 2(1 + β)cl > λl. Hence, we have the bound

O(n3/2) ·
(

eλl

2(1 + β)cl

)2(1+β)cl(
30(1 + β)2cλ2

f2(λ)

)l

≤ O(n3/2) ·
(

(

e

2(1 + β)

)2(1+β)c

· 120(1 + β)2c3

f2(λ)

)l

using λ < c

≤ O(n3/2) · e−βcl

using

f2(λ) >
120(1 + β)2c3e(2+4β)c

(2(1 + β))2(1+β)c

for c sufficiently large.
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We sum O(n3/2) · e−βcl over all r and l with L0 ≤ l ≤ n0.6 and r ≥ 2(1 + β)cl and we get the probability to

be at most

O(n7/2)e−βcL0 = o(1) (18)

for c sufficiently large.

We next consider the case where l ≥ nε and we can only use O(nε) late edges. We will use (13), which is

still an upper bound and only modify (8). Let

b(d, d′, 1− α) =

(

d

d′

)

((1 − α)m)d′(αm)d−d′

(m)d
=

(

d

d′

)

(1− α)d
′

αd−d′

(

1 +O

(

log2 n

n

))

for d ≤ ∆ ≤ logn.

We replace (8) by

O(
√
n)

(

1

2m− 2(l+ r)

)l+r−1

×

∑

di≥3

∑

d′

i≤di, i∈[l]
∑l

i=1
d′

i=r+l−1

(

l
∏

i=1

λdid′i!

di!f3(λ)
b(di, d

′
i, 1− α)

2l−1
∏

i=l+1

λdidi(di − 1)

di!f3(λ)

r+l−1
∏

i=2l

λdidi
di!f3(λ)

(1− α)

)

(19)

= O(
√
n)

(

1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1 − α)2r−1

f3(λ)r+l−1
×

∑

di≥3

∑

d′

i≤di∑l
i=1

d′

i=r+l−1

l
∏

i=1

(λα)di−d′

i

(di − d′i)!









2l−1
∏

i=l+1

∑

di≥3

λdi−2

(di − 2)!









r+l−1
∏

i=2l

∑

di≥3

λdi−1

(di − 1)!









≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1 − α)2r−1

f3(λ)r+l−1
×

∑

d′

i≥1
∑l

i=1
d′

i=r+l−1





∑

κ≥0

(λα)k

k!





l



2l−1
∏

i=l

∑

di≥3

λdi−2

(di − 2)!









r+l−1
∏

i=2l

∑

di≥3

λdi−1

(di − 1)!





≤ O(
√
n)

(

1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1 − α)2r

f3(λ)r+l−1
×
(

r

l

)

eλαlf1(λ)
l−1f2(λ)

r−l. (20)

Explanation for (19): di is the degree of vertex i and for i ∈ [l], d′i is the “early“ degree. The factor

b(di, d
′
i, 1− α) is the probability that i has d′i neighbors.

Observe now that the expression in (20) is precisely

eλαl(1 − α)2r ≤ eα(λl−2r)

times the expression in (9). It follows that the probability bound (15) can be replaced by

O(n1/2) · e−βcl · eα(λl−2r) ≤ O(n1/2) · e−βcl/2.

We sum this over l, r to get the required conclusion.

The case r ≥ 2(1 + β)cl for l ≤ nε, using only punctual edges follows a fortiori from the previous analysis.

We finally consider the case where T is not a tree. When this happens, it will be because of a unique

(Lemma 5.1) edge introduced in Case 1. We can be handle this by multiplying our final estimates by

13



O(L2
0n

−1 log2 n). The factor O(L2
0) accounts for choosing a pair of vertices in T in Case 1 and O(n−1 log2 n)

bounds the probability of the existence of this edge, given previous edges.

Part (c) follows from (b).

(d) If we consider the growth of the sub-tree emanating from x then we can argue that it grows as fast as

described in (a) and (b). We just have to deal with the edges pointing into the part of T that has already

been constructed. We can argue as for (19) with α = o(1), since the chances of choosing an endpoint in T

is o(1) at each point.

If x /∈ W1 then the descendants Di of x at levels k0 + i grow at a rate of at least two (i.e. |Di+1| ≥ 2|Di|)
for O(log logn) steps until |Di| ≫ log n and after this will grow at a rate of al least 2c(1− β). In which case

the leaves of Tx, the sub-tree of T rooted at x, will constitute a fraction 1 − O(1/c) of the vertices of Tx.

The result now follows from Lemma 5.1(c).

If x ∈W1 then |Di| grows at a rate of at most 2c(1 + β) once it has reached size logn. �

Remark 6.1. It follows from this lemma that only O(n1/2+O(ε)) tardy edges are needed to build all of the

instances of Ak0
needed by extend-rotate. If one looks at Section 4.3.1 of [8] one sees, in conjunction

with equation (1) of that paper that the total running time of Step 3b of this paper is O(n.995+o(1)) and so

we can use this as a bound on the number of punctual edges examined by Step 3b. We can drastically reduce

this in the same way we did for building the trees in extend-rotate, but since we are only claiming our

result for c sufficiently large and ε ≪ .005, this is not necessary, since there will w.h.p. be Ω(n1−2ε) tardy

R0 : Λ0 edges, see Lemma 6.5 below. In other words, almost all of the tardy R0 : Λ0 edges are not using for

tree building.

The above lemma shows that Ak can be relied on to get large. Unfortunately, we need to do some more

analysis because we do not have full independence, having run 2greedy. Normally, one would only have

to show that END(a) is large for all relevant vertices a and this would be enough to show the existence

w.h.p. of an edge joining a to b ∈ END(a) for some a, b. We will have to restrict our attention to the case

where a ∈ R0 and b ∈ Λ0, see Remark 4.1. So first of all we will show that w.h.p. there are many a ∈ R0,

see Lemma 6.8. For this we need to show that every path we come across contains many consecutive triples

u, v, w ∈ R0. In which case, an inserted edge (x, v) produces a path with an endpoint in R0. We also need

to show that w.h.p. there are many b ∈ Λ0, see Lemma 6.7. We will also need to show that there are many

edges that can be (a, b), see Lemma 6.5.

For the Lemma 6.3 below we need some results from [10]. Let u = u(t) denote (y(t), z(t), µ(t)) and let

û = û(t) denote (ŷ(t), ẑ(t), µ̂(t)) where y(t) etc. denotes the value of y = |Y |, z = |Z|, µ = |E(Γ(t)| at time t

and ŷ(t) etc. denotes the deterministic value for the solution to the associated set of differential equations,

summarised in equation (152) of that paper:

dŷ

dt
= Â+ B̂ − Ĉ − 1;

dẑ

dt
= 2Ĉ − 2Â− 2B̂;

dµ̂

dt
= −1− D̂. (21)

where

Â =
ŷẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷλ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)
. (22)

and fj(x) = ex −∑j−1
i=0

xi

i! .

Lemma 7.1 of [10] proves that u(t) and û(t) are close w.h.p.:

Lemma 6.2.

||u(t) − û(t)||1 ≤ n8/9, for 1 ≤ t ≤ min
{

T0, T̂0

}

w.h.p..

Here T0 is a stopping time and T̂0 is a deterministic time such that w.h.p. Step 3 begins before min
{

T0, T̂0

}

.
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Note that ε≪ 1/9. Let

io = n3/4−ε and ρ = n1/4.

Equation (163) of [10] states that w.h.p.

|θξ(û(t)) −∆ξ| = O

(

ρ−1 log2 n+
||u(t)− û(t)||1

n

)

for ξ = a, b, c, 2. (23)

Here

θa = 0, θb = Â θc = Â+ B̂ and θ2 = 1− θa − θb − θc

and ∆ξ is the proportion of steps in [t, t+ ρ] that are Step 1ξ or Step 2, if ξ = 2.

Now if ẑ = o(n) µ̂ = Ω(n)and λ̂ = Ω(1) then we have from (22) that Â, B̂ = O(ẑ/n) and that θb =

O(ẑ/n), θc = O(ẑ/n), θ2 = 2− o(1). Then from (21) we see that ẑ grows at the rate 2− o(1) per time step,

so long as t = o(n) and hence ẑ = o(n).

It is shown in [10] that if c ≥ 10 then w.h.p. λ̂ = Ω(1) up until the (random) time when Step 3 begins. See

equation (190) of that paper. Furthermore, it follows from Lemma 6.2 that w.h.p.

X1 If t = γn1−ε for some constant γ then w.h.p. z(t) ∼ 2t.

X2 If t = γn1−ε for some constant γ then w.h.p. there will be O(n1−2ε) instances of Step 1 in [0, t].

X3 λ = Ω(1) up until the start of Step 3.

Lemma 6.3. W.h.p., all the paths in Steps 1 and 2 of extend-rotate contain at least n0 = Ω(n1−4ε/ logn)

pairs of consecutive edges (u, v), (v, w) such that u, v, w ∈ R0.

Proof First consider the steps in the range [0, i0ρ/4]. It follows from X1 that at the end of this period,

there will w.h.p. be at least i0ρ/3 vertices in Z. Consider the edge (v, w) of Step 2 at some time in [0, i0ρ/4].

The probability that w ∈ Z is certainly Ω(n−ε) and the probability it has a punctual Z-witness is 1−α−o(1).
This holds regardless of the previous history, once we condition on an event that happens w.h.p.

The probability that w ∈ Z is certainly O(n−ε∆) = O(n−ε logn). This implies that the number of times we

create a component of M containing more than two vertices is O(n1−2ε logn). Thus almost all components

of M at the end of the period [0.i0ρ/4] consist of isolated edges. Let us assume then that there are at

least A1n
1−ε such edges where in the following A1, A2, . . . , are positve constants. Let S1 denote this set of

components.

Now consider the steps in the range [i0ρ/4, i0ρ/2] and consider the edge (v, w) of Step 2. We have w ∈ V (S1)

with probability at least A2n
−ε. This is because w.h.p. the total degree of V (S1) will be Ω(n1−ε) and

the total degree of G is at most 2cn. The vertex w is early by construction. Also the Z-witness of w

will be punctual with probability at least 1 − α − O(n−ε). We next observe that with probability at least
(

1− Ω
(

∆
n

))n1−ε/4
= 1− o(1), this component will not be absorbed into a larger component in [i0ρ/4, i0ρ/2].

Thus, in expectation, at time i0ρ/2 there is a set of A3n
1−2ε components of M consisting of a path of length

two with its middle vertex in R0. A simple second moment calculation will show concentration around the

mean, for |S2|.
We can repeat this argument for the periods [i0ρ/2, 3i0ρ/4],[3i0ρ/4, i0ρ] to argue that by time n1−ε, M will

contain a set S3 of at least A4n
1−4ε components consisting of paths of length four in which the internal

vertices are all in R0.

We can argue that w.h.p. at least half of the components in S3 will have both end vertices of degree at most

3c. Denote these by S4. Indeed the number of edges incident with vertices of degree more than 3c is relatively

small. Indeed, the expected number of such edges is asymptotically equal to
∑

k≥3c
kλk

k!f3(λ)
≤ εc = (e/3)3c.

The number of such edges is concentrated around its mean. If we assume degrees are independent and less
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than logn then we can use Hoeffding’s Theorem and then correct by a factor O(n1/2) to condition on the

total degree. Given this, we see that w.h.p. at least 2(1− εc)
2/3 of the components of S3 will be created in

two executions of Step 2 with the degree v less than 3c.

Observe now that with probability at least
(

1− 6c
Ω(n)

)2cn

= Ω(1) a component C ∈ S3 will survive as a

component of M until the end of Step 2. Because |S3| is O(n1−ε), this is true regardless of which other

compponents in S3 survive. The Ω(n) in the denominator comes from the fact that w.h.p. Step 2 ends

with |Z| = Ω(n). Let S4 denote this set of components and note that w.h.p. there will be at least A5n
1−4ε

components in S4.

Step 3 of 2greedy adds a matching M∗∗ that is disjoint from the edges in the contraction of S3 to a

matching. This matching is independent of S3. This implies that w.h.p. any cycle (or possibly path) of

the union of M∗ and M∗∗ of length ℓ ≥ n8ε, contains at least A5ℓn
−4ε members of S4. Here we are using

concentration of the hypergeometric distribution i.e. sampling without replacement.

In extend-rotate we start with a path of length ℓ = Ω(n/ logn) and w.h.p. every path is generated by

deleting at most O(log2 n) edges. This completes the proof of the lemma. �

6.2 Batches

Let Γ(t) denote the graph Γ after t steps of 2greedy. Suppose that t1 < t2 ≤ n1−ε and that 2greedy

applies Step 2 at times t1, t2 and Step 1 at times t1 < t < t2. We consider the set of edges and vertices

removed from time t1 to time t2, i.e. the graph Γ(t1) \ Γ(t2) and call it a batch. Note that batches are

connected subgraphs since each edge/vertex removed is incident to some edge that is also removed.

We also claim that each batch w.h.p. is constructed within O(log2 n) steps and contains O(log3 n) vertices.

This follows from [10] as we now explain. Let ζ = y1 +2y2 + z1. Equations (67), (68), (69) of [10] show that

E[ζ′ − ζ | |v|] = −(1−Q)− o(1)

where

Q = Q(v) =
yz

4µ2

λ3

f3(λ)

λ2f0(λ)

f2(λ)
+

z2

4µ2

λ4f0(λ)

f2(λ)2
.

Lemma 6.2 of [10] shows that 1−Q = −Ω(1) if λ = Ω(1), and X3 is our justification for assuming this.

Thus the expected change in ζ is −Ω(1) when ζ > 0. We carry out Step 2 iff ζ = 0. Now ζ can change by at

most O(∆) = O(log n) and has a negative drift whenever it is positive. This implies that it must return to

zero within O(log2 n) steps. Another ∆ ≤ log n factor will allow at most logn edges to be removed in one

step. By making the hidden constant sufficently large, we can replace w.h.p. by with probability 1−O(n−10).

Lemma 6.4.

(a) W.h.p. there are at most n1−4ε vertices v ∈ G that are within distance ℓ0 = 2 log logn of 6 distinct

batches.

(b) W.h.p. no vertex has degree more than 4 in a single batch.

Proof

(a) We bound the probability of being within distance ℓ0 of s batches by

ρs =

n
∑

v=1

(

n1−ε

s

) s
∏

i=1

P(dist(v,Bi) ≤ ℓ0 | dist(v,Bj) ≤ ℓ0, 1 ≤ j < i).

Explanation: Here
(

n1−ε

s

)

is the number of choices for the start times of the batches

B1, B2, . . . , Bs.
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We claim that for each i, v,

P(dist(v,Bi) ≤ ℓ0 | dist(v,Bj) ≤ ℓ0, 1 ≤ j < i) = O

(

log2+ℓ0 n

n

)

. (24)

This gives

ρs ≤ exp
{

−(K − 2− o(1))(log logn)2s
}

.

and assuming K ≥ 13, this implies that the expected number of vertices within distance ℓ0 of 6 batches is

less than n1−5ε. The result now follows from the Markov inequality.

Proof of (24): Suppose that Bi is constructed at time ti. It is a subgraph of Γ(ti) and depends only on

this graph. We argue that

P(∃w ∈ Bi : dist(v, w) ≤ ℓ0 | dist(v,Bj) ≤ ℓ0, 1 ≤ j < i) ≤ O(n−10) + O

(

i log2+ℓ0 n

n

)

. (25)

Explanation: The O(n−10) term is the probability the batch Bi is large. The term O
(

i log2+ℓ0 n
n

)

in (25)

arises as follows. We can assume that |Nℓ(v)| ≤ ∆ℓ0 ≤ logℓ0 n, where Nℓ(v) is the set of vertices within

distance ℓ of v. Suppose as in [3] we expose the graph Γ at the same time that we run 2greedy. For us it

is convenient to work within the configuration model of Bollobás [5]. Assume that we have exposed Nℓ(v).

At the start of the construction of a batch we choose a random edge of the current graph. The probability

this edge lies in Nℓ0(w) is O(logℓ0 n/n). In the middle of the construction of a batch, one endpoint of an

edge is known and the the other endpoint is chosen randomly from the set of configuration points associated

with Γ(t). The probability this new endpoint lies in Nℓ0(v) is also O(logℓ0 n/n) and there are only O(log2 n)

steps in the creation of a batch.

(b) The probability that vertex v appears k + 3 times in a fixed batch can be bounded above by
(

O(log2 n)
k

) (

O
(

∆
n

))k
= O

(

logk+3 n
nk

)

. Indeed, if v has degree at least 3 at any time, then the probability its

degree in the current batch increases in any step is O
(

∆
n

)

. �

We now argue that there will be a sufficient number of tardy R0 : Λ0 edges.

Lemma 6.5. W.h.p. there will be Ω(n1−2ε) tardy R0 : Λ0 edges.

Proof We first consider the set F1 of tardy edges e = (u, v) such that (i) u appears at least twice in the

first n1−ε/10 edges and in at least 30 other punctual edges and (ii) vertex v has degree at least 30 and does

not appear in the first n1−ε/2 edges in σ. It is straightforward to show that q.s. we have |F1| = Θ(mn−2ε).

Suppose that u satisfies (i). It loses at most 24 edges (Lemma 6.4(a),(b)) before the second edge incident

with u is chosen and then u will be in R0. This is because u will be in Z just before this point and will then

be placed in R. and it will have at least six choices for a punctual Z-witness. We use the fact that almost

all of the first n1−ε steps are Step 2 to see that the edges incident with u occuring in the first n1−ε/10 steps

will indeed be selected before time n1−ε.

If v satisfies (ii) and loses at most 24 edges because of Step 1 in the first n1−ε steps then v will be in Λ0.

This is because it will have degree at least six in Γn1−ε . �

We now consider the probability that Ak0
contains many vertices that lie in Λ1 = Λ2 ∪ Λ3 where

Λ2 =
{

v : v appears in the first n1−ε/2 edges in σ
}

Λ3 =
{

v /∈ Λ2 : v loses 24 edges because of Step 1 in the first n1−ε steps
}

.

In the proof of Lemma 6.5 we used the fact that

if the degree of v is at least 30 and v /∈ Λ1 then v ∈ Λ0. (26)
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Lemma 6.6. W.h.p., every extension-rotation tree T has |Ak0
∩ Λ1| ≤ |Ak0

|/30.

Proof We first estimate |Ak0
∩ Λ2|. We go back to (17) and estimate, for fixed r, l,

P(∃T : |Ak0
∩ Λ2| ≥ l/100) ≤ O(n3/2) ·

(

eλl

r − l

)r−l(
4e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1 (
l

l/200

)(

n1−ε/2∆

m

)l/200

.

(27)

Explanation: We have taken the RHS of (17) and multiplied by a bound on the probability that there are

at least l/200 members of EV EN(T ) appearing in the first n1−ε/2 edges of σ. Note the the permutation σ

is independent of T and that w.h.p. we will have |Ak0
| ≥ l/2. This is because for most of the time, the tree

grow at a rate at least 2c(1− β). We use (17) and not (14) because we can only assume that r ≤ 2(1+ β)cl.

Thus,

P(∃T : |Ak0
∩ Λ2| ≥ l/100) ≤

O(n3/2) ·
(

eλl/(r−l) · 4e
2+o(1)(1 + β)2cλ2

f2(λ)
· (200e)1/200 ·

(

n1−ε/2 logn

cn

)1/200
)l

≤ n−εl/300. (28)

Now we are interested here in the case where l = n1/2+o(1) and so this is easily strong enough so that we

can apply the union bound over r, l.

We next estimate |Ak0
∩ Λ3|. We replace (27) by

P(∃T : |Ak0
∩ Λ3| ≥ l/100) ≤

O(n3/2) ·
(

eλl

r − l

)r−l(
4e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1(
l

l/200

)(

n1−ε

23l/200

)(

l logn

200m

)23l/200

. (29)

Explanation; We have taken the RHS of (17) and multiplied by a bound on the probability that there is

a set of leaves S of size l/200 such that at least 24l/200 times during the first n1−ε steps the vertex w, the

neighbor of the selected v, is in S. This is computed assuming that we have exposed the edges of T . Note

that we have that in at most l/200 times do we lose the edge of T incident with w ∈ S, explaining the factor
(

n1−ε

23l/200

)

.

Equation (28) is replaced by

P(∃T : |Ak0
∩ Λ3| ≥ l/100) ≤

O(n3/2 ·
(

eλl/(r−l) · 4e
2+o(1)(1 + β)2cλ2

f2(λ)
· (200e)1/200 ·

(

200en1−ε

23l

)23/200

·
(

l logn

200cn

)23/200
)l

≤ n−εl/20.

�

The next lemma puts a lower bound on |Λ0 ∩ Ak0
| (see Lemma 6.1).

Lemma 6.7. W.h.p. |Λ0 ∩ Ak0
| ≥ |Ak0

|/2.

Proof Let k1 = k0 − 2ℓ0 where ℓ0 = 2 log logn. and consider Ak1
= {a1, a2, . . . , ar}. Note that

r ≥ n1/2+5ε

2c(1 + β) logℓ0 n
.

Let si be the number of descendents of ai in Ak0
and let s′i be the number of early descendents of ai in

Ak0
∩ Λ1.
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Let s′′i be the number of descendents of ai in Ak0
that have degree at most 30. We observe from Lemma

6.1(b) that

|Ak0
| =

r
∑

i=1

si ≥ r(2c(1 − β))k0−k1 ≥ r loglog c n. (30)

Next let I =
{

i ∈ [r] : ai /∈ W1 and si ≥ (2c(1− β))k0−k1/4
}

(whereW1 is from Lemmas 5.1, 6.1) and observe

that
∑

i/∈I

si ≤ r(2c(1 − β))k0−k1/4 + n1/2 log4ℓ0+1 n(2c(1 + β))k0−k1 ≤ |Ak0
|/3. (31)

It follows from Lemma 6.1(d) that

s′′i ≤ si/5 for i ∈ I.

It follows from Lemma 6.6 that w.h.p.
r
∑

i=1

s′i ≤ |Ak0
|/30.

Now, after using (26), we see that

|Λ0 ∩ Ak0
| ≥

∑

i∈I

(si − s′′i )−
r
∑

i=1

s′i ≥
(

4

5
· 2
3
− 1

30

)

|Ak0
|.

�

We now consider going one iteration further and building Ak0+1.

Lemma 6.8. W.h.p. Ak0+1 contains at least Ω(n1/2+2ε) vertices of R0. Furthermore, we can find these R0

vertices by examining n1−3ε logn tardy R0 : Λ0 edges.

Proof Assume from Lemmas 6.1 and 6.7 that Ak0
contains at least n1 = n1/2+5ε

4c2(1+β) vertices in Λ0. Assume

also from Lemma 6.3 that all of the paths corresponding to Ak0
have n0 = Ω(n1−4ε/ logn) consecutive triples

u, v, w ∈ R0. If the middle vertex v is the neighbour of an endpoint, then it yields a new endpoint of Ak0+1

in R0. Then the expected number of rotations leading to an endpoint in R0 is at least

C1 × n1−3ε logn× n1/2+5ε

3c2(1 + β)
× n1−4ε

logn
× 1

n1−2ε × n
= Ω(n1/2+2ε)

for some constant C1 > 0.

We can claim a q.s. lower bound because almost all of the tardy R0 : Λ0 edges are unconditioned, see remark

6.1. �

7 Finishing the proof

We have argued that we only need to do ℓ1 = O(log2 n) extensions w.h.p. The tardy R0 : Λ0 edges are our

scarce resource of residual randomness. Remark 6.1 explains that we only need to use an o(1) proportion in

building trees up to the k0th level. We will only use the result of Lemma 6.8 for growing the first extension-

rotation tree of each of the O(log2 n) path extensions. Lemma 6.8 tells us that we only need to use an o(1)

fraction of the available R0 : Λ0 edges for producing many paths that have an R0 endpoint.

Consider a round of extend-rotate where we are trying to extend path P . We start with a path and then

we construct a BFS “tree”. After the first tree construction of each round, we construct Ak0
and create one

more level Ak0+1. From Lemma 6.8, we should obtain Ω(n1/2+2ε) paths with early endpoints. Now we grow

trees from each of these paths and try to close them using the set EL = {f1, f2, . . . , fM} of unused tardy
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R0 : Λ0 edges. We can examine these edges in σ order. The probability that the next edge fi fails to close a

path to a cycle is p = Ω(n1/2+2ε × n1/2+5ε × n−2). So the probability we fail is at most P(Bin(M,p) < ℓ1).

Now Mp = Ω(n5ε)≫ ℓ1 and so the Chernoff bounds imply that we succeed w.h.p.

As final thought, although we have proved that we can find a Hamilton cycle quickly, being very selective in

our choice of edges for certain purposes, the breadth first nature of our searches imply that we can proceed

in a more natural manner and use all edges available to us. In the worst-case we would have to use the

designated ones.

8 Why not ε = O

(

log logn
logn

)

?

In the proof of Lemma 6.1 we need to choose ℓ0 = 2 log logn so that 2ℓ0 ≫ L0 of that lemma. But then

in (24) we want nε ≫ logℓ0 n. With some work we could replace the bound logℓ0 n by O(c)ℓ0 which would

allow us to take ε = K log logn
logn . The catch here is that in this case we would need K to grow with c. This is

not satisfactory and so we content ourselves for now with (1).

9 Final Remarks

We have shown that a Hamilton cycle can w.h.p. be found in O(n1+o(1))) time. It should be possible

to replace no(1) by logO(1) n and we have explained the technical difiiculty in Section 8. We think that

O(n log2 n) should be possible. It should also be possible to apply the ideas here to speed up the known

algorithms for random regular graphs, or graphs with a fixed degree sequence.
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