
ar
X

iv
:1

30
8.

54
93

v3
  [

m
at

h.
PR

] 
 2

2 
Se

p 
20

14

LAW OF LARGE NUMBERS FOR THE SIR EPIDEMIC ON A RANDOM
GRAPH WITH GIVEN DEGREES

SVANTE JANSON, MALWINA LUCZAK, PETER WINDRIDGE

Abstract. We study the susceptible-infective-recovered (SIR) epidemic on a random graph
chosen uniformly subject to having given vertex degrees. In this model infective vertices
infect each of their susceptible neighbours, and recover, at a constant rate.

Suppose that initially there are only a few infective vertices. We prove there is a threshold
for a parameter involving the rates and vertex degrees below which only a small number of
infections occur. Above the threshold a large outbreak occurs with probability bounded away
from zero. Our main result is that, conditional on a large outbreak, the evolutions of certain
quantities of interest, such as the fraction of infective vertices, converge to deterministic
functions of time.

We also consider more general initial conditions for the epidemic, and derive criteria for
a simple vaccination strategy to be successful.

In contrast to earlier results for this model, our approach only requires basic regularity
conditions and a uniformly bounded second moment of the degree of a random vertex.

En route, we prove analogous results for the epidemic on the configuration model multi-
graph under much weaker conditions. Essentially, our main result requires only that the
initial values for our processes converge, i.e. it is the best possible.

1. Introduction

The Markovian SIR process is a simple model for a disease spreading around a finite
population in which each individual is either susceptible, infective or recovered. Individuals
are represented by vertices in a graph G with edges corresponding to potentially infectious
contacts. Infective vertices become recovered at rate ρ > 0 and infect each neighbour at rate
β > 0; those are the only possible transitions, i.e. recovered vertices never become infective.

The applicability, behaviour and tractability of the model depends heavily on how G is
chosen. In classical formulations G is the complete graph (see [14] for a historical account)
but gradually attention has shifted towards more realistic models where individuals may
vary in how many contacts they have.

Particular interest has focused on the case that G itself is random. Several families of
random graph have been considered, such as Erdős–Rényi G(n, p) graphs [33], those with
local household structure [5] and other forms of clustering [11], see the recent survey [20].

The present paper concerns SIR epidemics on random graphs with a given degree sequence.
These random graphs are commonly used to model the internet, scientific collaboration
networks and sexual contact networks [35; 34; 4] (and the references therein). Random
graphs with given degree sequence are normally constructed via the configuration model,
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introduced by Bollobás, see [9]. In recent years, various properties of these graphs have
been studied, such as the appearance and size of a giant component [31; 32; 26], as well
as the near-critical behaviour [29; 27]. Other quantities investigated include the size of the
k-core [24; 25; 40], diameter [18], chromatic number [19] and matching number [7].

There have been a number of studies of SIR epidemics on random graphs with a given
degree sequence. A set of non-linear ordinary differential equations summarising the time
evolution of the epidemic were obtained heuristically by Volz [41]. Another non-rigorous
derivation of these equations is given in [30].

Decreusefond et al. [16] study a measure-valued process describing the degrees of suscep-
tible individuals and the number of edges between different types of vertices. They prove
that, as the population size grows to infinity, the measure-valued process converges to a de-
terministic limit, from which the Volz equations may be derived as a corollary. The results
in [16] are proven under the conditions that the fifth moment of the degree of a random
vertex is uniformly bounded, and that, asymptotically, the proportion of vertices infective
at time zero is positive.

Bohman and Picollelli [8] study the SIR process dynamics on the configuration model with
bounded vertex degrees, starting from a single infective. They use a multitype branching
process approximation for both the early and final stages of the epidemic. The middle phase
of the epidemic, while there are at least a moderate number of infectives, is analysed using
Wormald’s differential equations method.

Barbour and Reinert [6] use multitype branching process approximations to prove results
approximating the entire course of an SIR epidemic within a more general non-Markovian
framework, allowing degree dependent infection and recovery time distributions. A result
for graphs with a given degree sequence with bounded vertex degrees follows as a corollary.

See also [13] for the SIS epidemic process on a random graph with given degrees, which
exhibits very different behaviour compared to the SIR epidemic studied here.

Our contribution. In this paper we analyse the SIR epidemic on graphs with a given
degree sequence for an arbitrary number of initially infective vertices, assuming only basic
regularity conditions and uniform boundedness of the second moment of the degree distri-
bution. This contrasts with the earlier works mentioned above, which require either uniform
boundedness of the fifth moment [16], or uniformly bounded degrees [8; 6]. In our proof
we study the configuration model epidemic under the weaker condition that the degree of a
randomly chosen susceptible vertex is uniformly integrable. This is the best possible con-
dition for a ‘law of large numbers’ result in the spirit of [41; 30; 16; 8], since it amounts
to convergence of the average number of susceptible contacts at the epidemic’s epoch; see
Remark 2.2. Our approach extends techniques of [24; 26] and leads to fairly simple proofs.

The rest of the paper is laid out as follows. In Section 2, we define the model and notation,
and state our assumptions and results. In Section 3 we consider a time-changed version of
the epidemic, as a tool to be used in our proofs. In Section 4, we prove our results for
multigraphs with a given degree sequence defined by the configuration model. In Section 5,
we study more carefully the probability of a large outbreak and the size of a small outbreak,
obtaining more detailed forms of statements in Theorem 2.9(i) and (ii)(c). In Section 6,
we transfer the results from multigraphs to simple graphs with a given degree sequence.
In Section 7 we discuss briefly what happens when the second moment of the degree of a
random vertex is not uniformly bounded. Section 8 contains a few remarks on the random
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time shift used in our proof. Appendix A contains a technical lemma on the time change in
Section 3. Appendix B is a summary of the main notation used in the paper.
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2. Model, notation, assumptions and results

For n ∈ N and a sequence (di)
n
1 of non-negative integers, let G = G(n, (di)

n
1 ) be a simple

graph (i.e. with no loops or double edges) on n vertices, chosen uniformly at random from
among all graphs with degree sequence (di)

n
1 . (We tacitly assume that there is some such

graph, so
∑n

i=1 di must be even, at least.)
Given the graph G, the SIR epidemic evolves as a continuous-time Markov chain. At any

time, each vertex is either susceptible, infected or recovered. Each infective vertex recovers
at rate ρ > 0 and also infects each susceptible neighbour at rate β > 0.

We assume that there are initially nS, nI, and nR susceptible, infective and recovered
vertices, respectively. Further, we assume that, for each k > 0, there are respectively nS,k,
nI,k and nR,k of these vertices with degree k. Thus, nS + nI + nR = n and nS =

∑∞

k=0 nS,k,
nI =

∑∞

k=0 nI,k, nR =
∑∞

k=0 nR,k. We write nk to denote the total number of vertices with
degree k; thus, for each k, nk = nS,k + nI,k + nR,k. Note that all these parameters, as well as
the sequence (di)

n
1 , depend on the number n of vertices, although we omit explicit mention

of this in the notation. For technical reasons, note that they do not have to be defined for
all integers n; a subsequence is enough.

We consider asymptotics as n → ∞, and all unspecified limits below are as n → ∞.
Throughout the paper we use the notation op in a standard way. That is, for a sequence

of random variables (Y (n))∞1 and real numbers (an)
∞
1 , ‘Y (n) = op(an)’ means Y (n)/an

p
−→ 0.

Similarly, Y (n) = Op(1) means that for every ε > 0 there exists Kε such that P(|Y (n)| >

Kε) < ε for all n. For a sequence (Y
(n)
t )∞1 of real-valued stochastic processes defined on a

subset E of R and a real-valued function y on E, ‘Y
(n)
t

p
−→ y(t) uniformly on E ′ ⊆ E’ means

supt∈E′ |Y
(n)
t − y(t)|

p
−→ 0. Given a sequence of events (En)

∞
1 , event En is said to hold w.h.p.

(with high probability) if the probability of En converges to 1.
We assume the following regularity conditions for the degree sequence asymptotics.

(D1) The fractions of initially susceptible, infective and recovered vertices converge to some
αS, αI, αR ∈ [0, 1], i.e.

nS/n → αS, nI/n → αI, nR/n → αR. (2.1)

Further, αS > 0.
(D2) The degree of a randomly chosen susceptible vertex converges to a probability distri-

bution (pk)
∞
0 , i.e.

nS,k/nS → pk, k > 0. (2.2)
3



Further, this limiting distribution has a finite and positive mean

λ :=
∞∑

k=0

kpk ∈ (0,∞). (2.3)

(D3) The average degree of a randomly chosen susceptible vertex converges to λ, i.e.

∞∑

k=0

knS,k/nS → λ. (2.4)

(D4) The average degree over all vertices converges to µ > 0, i.e.

∞∑

k=0

knk/n =

n∑

i=1

di/n → µ, (2.5)

and, in more detail, for some µS, µI, µR,

∞∑

k=0

knS,k/n → µS, (2.6)

∞∑

k=0

knI,k/n → µI,
∞∑

k=0

knR,k/n → µR. (2.7)

(D5) The maximum degree of the initially infective vertices is not too large:

max{k : nI,k > 0} = o(n). (2.8)

(D6) Either p1 > 0 or ρ > 0 or µR > 0.

Remark 2.1. Obviously, αS + αI + αR = 1 and µS + µI + µR = µ. Further, assumptions
(D1)–(D3) imply

∑∞
k=0 knS,k/n → αSλ. Thus, µS = αSλ and (2.6) is redundant.

The assumptions αS > 0 in (D1) and λ > 0 in (D2) mean that there are initially a signif-
icant number of susceptibles with non-zero degree. They are included to avoid trivialities,
and, in particular, imply that nS > 1 for large enough n.

Remark 2.2. Assumptions (D1)–(D3) together imply that
∑∞

k=0 knS,k/n is uniformly sum-
mable, i.e. for any ε > 0 there exists K such that

∑∞
k=K+1 knS,k/n < ε for n large enough.

Conversely, (D1), (D2) and uniform summability of
∑∞

k=0 knS,k/n imply (D3).

Remark 2.3. In particular, the uniform summability in Remark 2.2 implies that max{k :
nS,k > 0} = o(n). This and assumption (D5) imply, using (2.5),

∞∑

k=0

k2(nS,k + nI,k) 6 o(n)

∞∑

k=0

knk = o(n2). (2.9)

Conversely, (2.9) implies (2.8). We do not need the corresponding condition for initially
recovered vertices, but since these only play a passive role, it would be essentially no loss of
generality to assume that the maximum degree of all vertices maxi di = max{k : nk > 0} =
o(n).

4



It will be convenient for us to work with multigraphs, that is to allow loops and multiple
edges. Let G∗(n, (di)

n
1 ) be the random multigraph with given degree sequence (di)

n
1 defined

by the configuration model: we take a set of di half-edges for each vertex i and combine
half-edges into edges by a uniformly random matching (see e.g. [9]). Conditioned on the
multigraph being simple, we obtain G = G(n, (di)

n
1 ), the uniformly distributed random

graph with degree sequence (di)
n
1 .

The configuration model has been used in the study of epidemics in a number of earlier
works, see, for example, [1; 4; 12; 16; 8].

We prove our results for the SIR epidemic on G∗, and, by conditioning on G∗ being simple,
we deduce that these results also hold for the SIR epidemic on G . Our argument relies on
the probability that G∗ is simple being bounded away from zero as n → ∞. By the main
theorem of [21] this occurs provided the following condition holds.

(G1) The degree of a randomly chosen vertex has a bounded second moment, i.e.

∞∑

k=0

k2nk = O(n). (2.10)

Remark 2.4. Assumption (G1) implies that the distribution (pk)
∞
0 has a finite second

moment, i.e.
∑∞

k=0 k
2pk < ∞. Note also that (G1) implies (2.9) and thus (D5).

Remark 2.5. Although we use (G1) in order to draw conclusions for the simple graph G, we
suspect that the results hold even without it. Bollobás and Riordan [10] have recently shown
results for a related problem (the size of the giant component in G) from the multigraph case
without using (G1); they show that even if the probability that the multigraph is simple is
almost exponentially small, the error probabilities in their case are even smaller. We have
not attempted doing anything similar here.

We study the SIR epidemic on the multigraph G∗, revealing its edges dynamically while
the epidemic spreads. To be precise, we call a half-edge free if it is not yet paired to another
half-edge. We start with di half-edges attached to vertex i and all half-edges free. We call a
half-edge susceptible, infective or recovered according to the type of vertex it belongs to.

Now, each free infective half-edge chooses a free half-edge at rate β, uniformly at random
from among all the other free half-edges. Together the pair form an edge, and are removed
from the pool of free half-edges. If the chosen half-edge belongs to a susceptible vertex then
that vertex becomes infective. Infective vertices also recover at rate ρ.

We stop the above process when there are no free infective half-edges, at which point
the epidemic stops spreading. Some infective vertices may remain but they will recover at
i.i.d. exponential times without affecting any other vertex. In any case, they turn out to be
irrelevant for our purposes. Some susceptible and recovered half-edges may also remain, and
these are paired off uniformly at time ∞ to reveal the remaining edges in G∗. This step is
unimportant for the spread of the epidemic, but we perform it for the purpose of transferring
our results to the simple graph G.

Clearly, if all the pairings are completed then the resulting graph is the multigraph G∗.
Moreover, the quantities of interest (numbers of susceptible, infective and recovered vertices
at each time t) have the same distribution as if we were to reveal the multigraph G∗ first
and run the SIR epidemic on G∗ afterwards.
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For t > 0, let St, It and Rt denote the numbers of susceptible, infective and recovered
vertices, respectively, at time t. Thus St is decreasing and Rt is increasing. Also S0 = nS,
I0 = nI and R0 = nR.

For the dynamics described above (with half-edges paired off dynamically, as needed), for
t > 0, let XS,t, XI,t and XR,t be the number of free susceptible, infective and recovered half-
edges at time t, respectively. Thus XS,t is decreasing, XS,0 =

∑∞
k=0 knS,k, XI,0 =

∑∞
k=0 knI,k

and XR,0 =
∑∞

k=0 knR,k. The variables XS,t, XI,t and XR,t are convenient tools for the
analysis of St, It and Rt, but not ‘observable’ quantities. (They have no interpretation for
the version of the SIR process on G∗ where the multigraph is constructed upfront.) For the
uniformly random graph G with degree sequence (di)

n
1 , the variables XS,t, XI,t and XR,t, for

t > 0, are defined as above conditioned on the final multigraph G∗ being a simple graph.

2.1. Results. We will show that, upon suitable scaling, the processes St, It, Rt,XS,t, XI,t, XR,t

converge to deterministic functions. The limiting functions will be written in terms of a pa-
rameterisation θt ∈ [0, 1] of time solving an ordinary differential equation given below. The
function θt can be interpreted as the limiting probability that a given initially susceptible
half-edge has not been paired with a (necessarily infective) half-edge by time t. This means
that the probability that a given degree k initially susceptible vertex is still susceptible at
time t is asymptotically close to θkt . With this in mind, we define the function vS by

vS(θ) := αS

∞∑

k=0

pkθ
k, θ ∈ [0, 1], (2.11)

so the limiting fraction of susceptible vertices is vS(θt) at time t. Similarly, for the number
of susceptible half-edges we define

hS(θ) := αS

∞∑

k=0

kθkpk = θv′S(θ), θ ∈ [0, 1]. (2.12)

For the total number of free half-edges, we let

hX(θ) := µθ2, θ ∈ [0, 1]. (2.13)

The intuition here is that two free half-edges disappear each time an edge is formed by pairing,
so a random free half-edge is paired with intensity twice the intensity of a susceptible free
half-edge, and so the probability that a given half-edge is still free at time t is asymptotically
close to θ2t . For the numbers of half-edges of the remaining types, we define (with justification
in the proof below), for θ ∈ [0, 1],

hR(θ) := µRθ +
µρ

β
θ(1− θ), (2.14)

hI(θ) := hX(θ)− hS(θ)− hR(θ). (2.15)

Thus hX(θ) = hS(θ) + hI(θ) + hR(θ). The corresponding limit functions for infective and re-
covered vertices are more easily described by differential equations, which will be introduced
in (2.20) and (2.26). Note that

vS(1) = αS, (2.16)

hS(1) = αSλ = µS, hR(1) = µR, hI(1) = µ− µS − µR = µI. (2.17)

6



We also introduce the ‘infective pressure’

pI(θ) :=
hI(θ)

hX(θ)
, (2.18)

which appears in the differential equations (2.19) and (2.25) below.
Our first two theorems concern the case where the initially infective population is macro-

scopic, so that the course of the epidemic is approximately deterministic for a long time,
until shortly before extinction.

Theorem 2.6. Let us consider the SIR epidemic on the multigraph G∗ with degree sequence
(di)

n
1 . Suppose that (D1)–(D6) are satisfied. Let µI > 0.

(a) There is a unique θ∞ ∈ (0, 1) with hI(θ∞) = 0. Further, hI is strictly positive on
(θ∞, 1] and strictly negative on (0, θ∞).

(b) There is a unique continuously differentiable function θt : [0,∞) → (θ∞, 1] such that

d

dt
θt = −βθtpI(θt), θ0 = 1. (2.19)

Furthermore, θt ց θ∞ as t → ∞.
(c) Let Ît be the unique solution to

d

dt
Ît =

βhI(θt)hS(θt)

hX(θt)
− ρÎt, t > 0, Î0 = αI, (2.20)

and R̂t := 1− vS(θt)− Ît. Then, uniformly on [0,∞),

St/n
p

−→ vS(θt), It/n
p

−→ Ît, Rt/n
p

−→ R̂t, (2.21)

XS,t/n
p

−→ hS(θt), XI,t/n
p

−→ hI(θt), XR,t/n
p

−→ hR(θt), (2.22)

and, consequently, Xt/n
p

−→ hX(θt).
(d) Hence, the number S∞ := limt→∞ St of susceptibles that escape infection satisfies

S∞/n
p

−→ vS(θ∞).

Theorem 2.7. Let us consider the SIR epidemic on the uniform simple graph G with degree
sequence (di)

n
1 . Suppose that (D1)–(D6) and (G1) are satisfied. Let µI > 0. Then the

conclusions of Theorem 2.6 hold.

Decreusefond et al. [16] obtain a related result, assuming that the fifth moment of the
degree of a random vertex is uniformly bounded as n → ∞.

Remark 2.8. We can give examples in which St/n, It/n and Rt/n fail to converge to
deterministic limits when assumption (D5) does not hold. Generally, we believe (D5) is
necessary for the convergence to deterministic limits in Theorems 2.6 and 2.7, but have not
attempted to prove it.

Our third and fourth theorems concern the case where there are initially a small number
of infectives. Let

R0 :=

(
β

ρ+ β

)(
αS

µ

) ∞∑

k=0

(k − 1)kpk; (2.23)

this quantity can be interpreted as the basic reproductive ratio of the epidemic. When
R0 > 1, then there is a positive probability that a large epidemic develops in the population,

7



as previously identified in the literature on epidemic models, such as [2; 34; 41; 8]. In that
event, once established, the evolution of the epidemic is approximately deterministic, as
in Theorems 2.6 and 2.7.

We will prove below that there is a unique θ∞ ∈ (0, 1) with hI(θ∞) = 0, and that if there is a
large epidemic, the number of susceptibles that never get infected is approximately nvS(θ∞).
Fix a number s0 ∈ (vS(θ∞), αS), i.e., between the (approximate) fractions of susceptibles at
the beginning and at the end of the epidemic in the case that a large epidemic develops, and
let

T0 := inf{t > 0 : St 6 ns0}. (2.24)

(This means that T0 = ∞ if St never falls below ns0. We will see that this corresponds to the
case of a small outbreak.) We shift the initial condition of the limiting differential equation,
now defined on (−∞,∞), so that t = 0 corresponds to the time T0 in the random process,
by which the fraction of susceptible individuals has fallen from about αS = vS(1) to some
fixed smaller s0. By time T0, a positive fraction of the population has been infected, and
from that point onwards the quantities of interest follow a law of large numbers. The exact
choice of s0 is unimportant.

We extend the processes to be defined on (−∞,∞) by taking St = S0 for t < 0, and
similarly for the other processes.

Theorem 2.9. Let us consider the SIR epidemic on the multigraph G∗ with degree sequence
(di)

n
1 . Suppose that (D1)–(D6) and (G1) are satisfied. Suppose also that αI = µI = 0 but

there is initially at least one infective vertex with non-zero degree.

(i) If R0 6 1 then the number nS − S∞ of initially susceptible vertices that ever get
infected is op(n).

(ii) Suppose R0 > 1.
(a) There is a unique θ∞ ∈ (0, 1) with hI(θ∞) = 0. Further, hI is strictly positive on

(θ∞, 1) and strictly negative on (0, θ∞).
(b) Let s0 ∈ (vS(θ∞), vS(1)). Then there is a unique continuously differentiable θt :

R → (θ∞, 1) such that

d

dt
θt = −βθtpI(θt), θ0 = v−1

S (s0). (2.25)

Furthermore, θt ց θ∞ as t → ∞ and θt ր 1 as t → −∞.
(c) Let T0 be defined by (2.24). Then lim infn→∞ P(T0 < ∞) > 0. Furthermore, if

the initial number of infective half-edges XI,0 → ∞, then P(T0 < ∞) → 1.

(d) Let Ît be the unique solution to

d

dt
Ît =

βhI(θt)hS(θt)

hX(θt)
− ρÎt, lim

t→−∞
Ît = 0, (2.26)

and R̂t := 1− vS(θt)− Ît.
Conditional on T0 < ∞, then, uniformly on (−∞,∞),

ST0+t/n
p

−→ vS(θt), IT0+t/n
p

−→ Ît, RT0+t/n
p

−→ R̂t, (2.27)

XS,T0+t/n
p

−→ hS(θt), XI,T0+t/n
p

−→ hI(θt), XR,T0+t/n
p

−→ hR(θt), (2.28)

and, consequently, also XT0+t/n
p

−→ hX(θt).
8



(e) Conditional on T0 < ∞, the number of susceptibles that escape infection satisfies

S∞/n
p

−→ vS(θ∞).

(f) The number of susceptibles that ever get infected S0−S∞ satisfies S0−S∞ = op(n)
on the event T0 = ∞, in the sense that, for all ε > 0, P(T0 = ∞, S0 − S∞ >
εn) = o(1) as n → ∞.
Similarly, XS,0 − XS,∞ = op(n), supt>0XI,t = op(n), supt>0(X0 − Xt) = op(n)
on T0 = ∞.

The same result holds even without assumption (G1), except that, in this case, it is possible

to have θt : R → (θ∞, 1] with θt = 1 for t 6 Â0, for some Â0 < 0.

Theorem 2.10. Let us consider the SIR epidemic on the uniform simple graph G with
degree sequence (di)

n
1 . Suppose that (D1)–(D6) and (G1) are satisfied. Let µI = 0. Then the

conclusions of Theorem 2.10 hold.

It is possible that P(T0 = ∞) → 0, and then the statements in Theorem 2.9(ii)(f) are
trivial. In order to prove that quantities of interest are small conditional on T0 = ∞ in this
case, we would need to study the speeed at which P(T0 = ∞) → 0. Nevertheless, the theorem
shows a dichotomy when R0 > 1: w.h.p. either T0 = ∞ and the outbreak is small, with only
a few individuals infected; or T0 < ∞ and the outbreak is large, with (αS − vS(θ∞))n+ o(n)
individuals infected (a more detailed description of the evolution is given in (ii)(d)).

In fact, we will take T0 < ∞ as the definition of a large outbreak. (Formally this depends
on the choice of s0, but the theorem shows that any two choices w.h.p. yield the same
result.) Thus the probability P(T0 < ∞) in (ii)(c) is, by definition, the probability of a large
outbreak. We give a formula for this probability in Theorem 5.3, using a branching process
approximation to the early stage of the epidemic (or an equivalent approximation using a
random walk), see further Sections 4.3.1 and 5. The condition R0 > 1 can be interpreted as
supercriticality of this branching process approximation.

Furthermore, it turns out that a small outbreak is really small. In Theorem 5.4, we sharpen
Theorem (ii)(f) by showing that, for a small outbreak, only Op(1) susceptibles are infected,
both in the (sub)critical case (R0 6 1) provided XI,0 = O(1), and in the supercritical case
(R0 > 1).

For bounded degree sequences and R0 6= 1, a result similar to Theorems 2.9 and 2.10 is
proven in [8] by Bohman and Picollelli. The threshold in R0 for a possible large outbreak
and the final size of a large outbreak are derived heuristically in [2; 34; 41]. All the above
papers assume that initially there are no recovered vertices. Our motivation for allowing
the presence of initially recovered individuals is to be able to analyse simple vaccination
strategies, see Section 2.2. Before doing that, we give some connections to related results.

Theorems 2.6 and 2.7 imply XI,t/Xt
p

−→ pI(θt) and XS,t/Xt
p

−→ pS(θt) uniformly when
µI > 0, where pS(θ) := hS(θ)/hX(θ) is defined analogously to pI in (2.18). Theorems 2.9 and
2.10 yield the same result for the time shifted process when µI = 0 and R0 > 1, conditional
on a large outbreak. To explain the connection with [41], let

g(θ) :=
∞∑

k=0

pkθ
k, θ ∈ [0, 1], (2.29)

9



the probability generating function for the asymptotic degree distribution of initially sus-
ceptible vertices. Note that vS(θ) = αSg(θ) and hS(θ) = αSθg

′(θ). Differentiating pI(θt) and
pS(θt) yields, using (2.19) and (2.12)–(2.15),

dpI(θt)

dt
= pI(θt)

(
−(ρ+ β) + βpI(θt) + βpS(θt)θt

g′′(θt)

g′(θt)

)
, (2.30)

dpS(θt)

dt
= βpI(θt)pS(θt)

(
1− θt

g′′(θt)

g′(θt)

)
. (2.31)

These are the ‘Volz equations’ [41, Table 3] mentioned in the introduction. Volz [41] derived
them heuristically, assuming that the number of edges from a newly infective vertex to
susceptible, infective and recovered vertices has multinomial distribution with parameters
pI, pS and 1− pS − pI.

Theorem 2.10 relates to the existence of a giant component in G as follows. The epidemic
spreads only within connected components of G. Further, if there are no recoveries, then
all vertices connected to an initially infective vertex eventually get infected. Indeed, when
ρ = µI = µR = 0, the threshold R0 > 1 is equivalent to

∑∞

k=0 k(k − 2)pk > 0; this is the
well known condition of Molloy and Reed [31] for existence of a giant component. Also,
in part (ii)(a), the equation defining θ∞ ∈ (0, 1) becomes λθ2∞ −

∑∞
k=0 kpkθ

k
∞ = 0 in this

case. With this value of θ∞, and assuming αI = αR = 0 so αS = 1, it is known that
1− vS(θ∞) = 1−

∑∞

k=0 pkθ
k
∞ is the fraction of vertices in the giant component [32] (see also

[26]).
The connection to the giant component explains why (D6) is needed, at least when R0 = 1.

Suppose that (D6) is not satisfied, i.e. both ρ = µR = 0 and p1 = 0. If also µI = 0 then
R0 = 1 is equivalent to

∑∞

k=0 k(k−2)pk = 0, and so only p0 and p2 can be non-zero. At least
three different types of behaviour of component sizes in G are possible in this case. We will
demonstrate them with the following examples from [26, Remark 2.7], see also Remark 4.1.
We assume that nR = 0 in each example.

The first example is a random 2-regular graph, that is n2 = n for all n. In this case, all
the components are cycles. Let V1 > V2 > denote the ordered component sizes. Then V1/n
converges weakly to a non-degenerate distribution on [0, 1], and the same holds for V2/n,
V3/n, and so on [3, Lemma 5.7]. Let us suppose that there is initially a lone infective vertex.
The number of vertices in the component it occupies (and hence eventually infects) is a
size biased sample from (V1, V2, . . .), and, divided by n, also converges to a non-degenerate
distribution on [0, 1].

For the second example, we suppose that n = n1 + n2, where n2/n → 1, n1 is even and
n1 → ∞. The desired graph can be obtained from a random 2-regular graph with n− n1/2
vertices by selecting n1/2 degree 2 vertices at random, one after another, and creating two
degree 1 vertices out of each one. During this procedure, components are chosen in a size-
biased fashion and split uniformly (except on the first attempt, since they were all cycles to
begin with). The largest component in the resulting graph contains only op(n) vertices, and
so only op(n) susceptibles are infected if nI is bounded.

For our third example, we take n = n2 + n4, where n2/n → 1 and n4 → ∞. Each vertex
of degree 4 can be obtained by merging a pair of vertices of degree 2. Analogously to the
previous example, we see there is a unique giant component with n− op(n) vertices. Hence,

10



even if only a single given vertex is initially infective, then all n − op(n) susceptibles in the
giant component succumb to infection w.h.p.

2.2. Vaccination. Let us suppose that we vaccinate some susceptible vertices before the
epidemic process starts. The vaccine is assumed perfect, so that a vaccinated vertex never
becomes infective. In particular, vaccinated vertices behave like recovered vertices in the
SIR dynamics. Let us use this fact to analyse degree dependent vaccination strategies by
applying Theorems 2.9 and 2.10 to a suitably modified degree sequence.

We assume that each initially susceptible vertex of degree k > 0 is vaccinated with prob-
ability πk ∈ [0, 1), independently of all the others. Here are two examples of such strategies.

Uniform vaccination. We vaccinate every susceptible vertex with the same probability
πk = v for all k and some v ∈ [0, 1), independently of all the others. The total number V of

vaccinations thus satisfies V/nS
p

−→ v, using the law of large numbers.

Edgewise vaccination. We vaccinate the end point of each susceptible half edge with
probability v ∈ [0, 1), independently of all the other half-edges. Thus the probability that
a degree k susceptible is vaccinated is πk := 1 − (1 − v)k, and, under our assumptions, the

total number V of vaccinations satisfies V/nS
p

−→
∑∞

k=0 pkπk.

These strategies are considered in [12], where their efficacy in a related epidemic model
(equivalent to constant recovery times) is compared, along with two other strategies (uniform
acquaintance vaccination strategy and another edgewise strategy, neither of which can be
studied with the present argument).

As noted above, vaccinating a vertex amounts to changing its type from susceptible to
recovered. Let us calculate the (random) number of vertices of each type post-vaccination,
and show that assumptions (D1)–(D6) hold for the modified degree sequence.

We add a tilde to our notation for the post-vaccinated epidemic. Thus ñS,k denotes the
number of degree k > 0 initially susceptible vertices that remain unvaccinated. We have
ñS,k ∼ Binomial(nS,k, 1− πk), and, by the law of large numbers,

ñS,k = nS,k(1− πk) + op(n) = nαSpk(1− πk) + op(n).

Using the uniform summability of
∑∞

k=0 knS,k/n (see Remark 2.2)

ñS :=
∞∑

k=0

ñS,k = nαS

∞∑

k=0

pk(1− πk) + op(n),

whence
ñS

n

p
−→ αS

∞∑

k=0

pk(1− πk) =: α̃S > 0.

Furthermore,
ñS,k

ñS

p
−→

pk(1− πk)∑∞

k=0 pk(1− πk)
=: p̃k,

and p̃1 > 0 if p1 > 0. The mean of (p̃k)
∞
0 is

λ̃ :=
∞∑

k=0

kp̃k 6 αSλ/α̃S < ∞.

11



By the uniform summability of
∑∞

k=0 knS,k/n, and the inequality ñS,k 6 nS,k, we also have

1

ñS

∞∑

k=0

kñS,k
p

−→

∞∑

k=0

kp̃k.

The initial number ñR,k = nR,k+(nS,k− ñS,k) of degree k vertices that are either recovered
or have been vaccinated satisfies

ñR,k = nR,k + nαSπkpk + op(n),

and so, again using the uniform summability of
∑∞

k=0 knS,k/n,

∞∑

k=0

kñR,k/n → µ̃R := µR + αS

∞∑

k=0

kπkpk.

The number ñI,k of infective vertices of degree k after the vaccinations is unchanged, i.e.
ñI,k = nI,k. It follows that

α̃I = lim
n→∞

∞∑

k=0

ñI,k/n = αI, µ̃I = lim
n→∞

∞∑

k=0

kñI,k/n = µI.

Similarly, ñk = nk, and so µ̃ = µ. Furthermore,

∞∑

k=0

kñS,k/n → µ̃S = α̃Sλ̃ = αS

∞∑

k=0

kpk(1− πk) = µS − αS

∞∑

k=0

kπkpk.

These limits may be assumed almost sure by the Skorokhod coupling lemma. Hence,
we can apply Theorems 2.9 and 2.10 to the post-vaccination epidemic with the modified
values α̃S, α̃I, α̃R, λ̃, µ̃I, µ̃R and (p̃k)

∞
0 , with the understanding that Rt and XR,t now include

vaccinated vertices and half-edges (though these could easily be subtracted off). The limiting
deterministic evolution and final size follow immediately. Rather than restating the results
in full, we simply give criteria for the vaccination programme to be successful.

Corollary 2.11. Let us consider the SIR epidemic on the uniform simple graph G. Suppose
that (D1)–(D6) and (G1) hold. Suppose further that each initially susceptible vertex of degree
k is vaccinated with probability πk ∈ [0, 1) independently of the others, and µI = 0. Let

R̃0 :=

(
β

ρ+ β

)(
αS

µ

) ∞∑

k=0

k(k − 1)pk(1− πk). (2.32)

If R̃0 6 1, then the total number of susceptible vertices that get infected is op(n). If

R̃0 > 1, then there exists δ > 0 such that at least δn susceptibles get infected with probability
bounded away zero.

The same result holds for the SIR epidemic on the multigraph G∗, even without assumption
(G1).
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3. The time-changed epidemic

In this and the next two sections, we consider the SIR epidemic on the random multigraph
G∗; in Section 6 we transfer the results to the simple random graph G.

A key step in the proof is to alter the speed of the process by multiplying each transition
rate by a constant depending on the current state. The constant is chosen so that each
free susceptible half-edge gets infected at unit rate (or, equivalently, so that the infection
pressure on the population is 1). Specifically, if there are xI > 1 free infective half-edges, and
a total of x free half-edges of any type, we multiply all transition rates out of such a state
by (x− 1)/βxI > 0. Thus each infective vertex recovers at rate ρ(x− 1)/βxI, and each free
infective half-edge pairs off at rate (x− 1)/xI. This change of rates accelerates the epidemic
in its ‘slow’ phases, when the number of free infective half-edges is o(n) (beginning and end
of the epidemic). Later, we will invert the time change to obtain the original process.

We use Greek letters (τ and σ) for the time variable of the altered process as a reminder
of the rate modification. The notation for the numbers of half-edges and vertices of each
type in the modified process follows that for the original process, except that we superscript
each variable with a prime. For example, X ′

I,τ denotes the number of infective half-edges at
time τ > 0 in the modified process.

Let

τ ∗ := inf{τ > 0 : X ′
I,τ = 0} (3.1)

be the time at which the modified process stops, when there are no free infective half-edges.

Lemma 3.1. Suppose that (D1)–(D5) hold. Fix τ1 > 0. Then, uniformly over [0, τ1 ∧ τ ∗],

S ′
τ/n

p
−→ vS(e

−τ ), (3.2)

X ′
S,τ/n

p
−→ hS(e

−τ ), (3.3)

X ′
τ/n

p
−→ hX(e

−τ ), (3.4)

X ′
R,τ/n

p
−→ hR(e

−τ ), (3.5)

and, consequently,

X ′
I,τ/n

p
−→ hI(e

−τ ). (3.6)

Proof. For each k ∈ Z
+, let S ′

τ (k) denote the number of susceptible vertices with k half-edges
at time τ > 0 (we omit the qualifier τ 6 τ ∗ throughout the proof; any occurrence of ‘τ ’ is
understood to mean ‘τ ∧ τ ∗’). Thus S ′

τ =
∑∞

k=0 S
′
τ (k) and X ′

S,τ =
∑∞

k=0 kS
′
τ (k) for each τ .

Also, S ′
0(k) = nS,k, for each k.

For each k, the only jumps in S ′
τ (k) are decrements by 1, and these occur when an infective

half-edge pairs off and chooses one of the half-edges belonging to a susceptible vertex of degree
k. Hence, with the modified transition rates,

dS ′
τ (k) = −βX ′

I,τ

(
X ′

τ − 1

βX ′
I,τ

)(
kS ′

τ (k)

X ′
τ − 1

)
dτ + dMS,τ (k)

= −kS ′
τ (k) dτ + dMS,τ (k), (3.7)

where (MS,τ (k))τ>0 is a martingale starting from MS,0(k) = 0 [17, Proposition 1.7].
13



The differential notation in (3.7) means that

S ′
τ (k) = S ′

0(k)− k

∫ τ

0

S ′
σ(k) dσ +MS,τ (k). (3.8)

Since S ′
0(k) = nS,k, it follows that

|S ′
τ (k)− nS,ke

−kτ | =

∣∣∣∣S ′
τ (k)− nS,k

(
1− k

∫ τ

0

e−kσ dσ

)∣∣∣∣

=

∣∣∣∣
∫ τ

0

k
(
−S ′

σ(k) + nS,ke
−kσ
)
dσ +MS,τ (k)

∣∣∣∣

6 k

∫ τ

0

∣∣∣S ′
σ(k)− nS,ke

−kσ
∣∣∣ dσ + |MS,τ (k)|. (3.9)

Consequently, using Gronwall’s inequality (for positive bounded functions) [38, Appendix
§1],

sup
τ6τ1

|S ′
τ(k)− nS,ke

−kτ | 6 k

∫ τ1

0

sup
τ6σ

|S ′
τ(k)− nS,ke

−kτ | dσ + sup
τ6τ1

|MS,τ (k)|

6 ekτ1 sup
τ6τ1

|MS,τ (k)|,

and it follows that

sup
τ6τ1

∣∣S ′
τ (k)/n− αSpke

−kτ
∣∣ 6 |nS,k/n− αSpk|+ ekτ1 sup

τ6τ1

|MS,τ (k)|/n. (3.10)

The first term on the right goes to zero as n → ∞ by (D1) and (D2). Let us show that

supτ6τ1 |MS,τ (k)|/n
p

−→ 0.
The martingale MS,τ (k) is right continuous and has left limits (càdlàg), and it is also of

finite variation. The quadratic variation process of such a martingale is the running sum of
its (countably many) squared jumps [28, Theorem 26.6]. The jumps in MS,τ (k) are by (3.8)
the same as the jumps in S ′

τ (k). Each jump in S ′
τ (k) is a decrement by one, and there are

at most S ′
0(k) such jumps. Hence the quadratic variation [MS(k)]τ of MS,τ (k) satisfies

[MS(k)]τ =
∑

06σ6τ

(∆MS,σ(k))
2 6 S ′

0(k) = nS,k 6 n,

for any τ > 0. In particular, E[MS(k)]τ < ∞ for every τ > 0, so MS,τ (k) is square integrable
and EMS,τ (k)

2 = E[MS(k)]τ [37, Corollary 3 after Theorem II.6.27, p. 73]. Hence, Doob’s
L2-inequality [28, Proposition 7.16] yields

E sup
τ6τ1

|MS,τ (k)|
2 6 4EMS,τ1(k)

2 = 4E[MS(k)]τ1 = O(n). (3.11)

It follows that supτ6τ1 |MS,τ (k)| = op(n), and so, by (3.10), for each k,

sup
τ6τ1

∣∣S ′
τ (k)/n− αSpke

−kτ
∣∣ p
−→ 0. (3.12)

Let ε > 0. By assumptions (D1)–(D3), there exists K > 0 such that
∑∞

k=K+1 knS,k/n < ǫ
for any n, see Remark 2.2. Further, K can be chosen large enough that

∑∞

k=K+1 kpk < ε.
14



Consequently,

sup
τ6τ1

∣∣X ′
S,τ/n− hS(e

−τ )
∣∣ = sup

τ6τ1

∣∣∣∣∣
∞∑

k=0

kS ′
τ (k)/n− αS

∞∑

k=0

kpke
−τk

∣∣∣∣∣

6

K∑

k=0

k sup
τ6τ1

∣∣S ′
τ (k)/n− αSpke

−kτ
∣∣+

∞∑

k=K+1

k (nS,k/n+ pk)

6

K∑

k=0

k sup
τ6τ1

∣∣S ′
τ (k)/n− αSpke

−kτ
∣∣+ 2ǫ, (3.13)

and the same bound applies to supτ6τ1 |S
′
τ/n − vS(e

−τ )|. The finite sum in the last line of
(3.13) tends to zero in probability, by (3.12). This completes our proof of (3.2) and (3.3).

We prove (3.4) and (3.5) similarly. The total number of free half-edges decrements by 2
whenever an infective half-edge pairs off. Then

dX ′
τ = −2βX ′

I,τ

(
X ′

τ − 1

βX ′
I,τ

)
dτ + dMX,τ = −2(X ′

τ − 1) dτ + dMX,τ , (3.14)

where (MX,τ )τ>0 is a càdlàg martingale satisfying MX,0 = 0. Writing the equation in inte-
grated form and proceeding as in (3.9),

∣∣X ′
τ −X ′

0e
−2τ
∣∣ 6 2

∫ τ

0

∣∣X ′
σ −X ′

0e
−2σ
∣∣ dσ + 2τ + |MX,τ |.

Gronwall’s inequality yields

sup
τ6τ1

∣∣X ′
τ −X ′

0e
−2τ
∣∣ 6 e2τ1

(
2τ1 + sup

τ6τ1

|MX,τ |

)
,

and so,

sup
τ6τ1

∣∣X ′
τ/n− hX(e

−τ )
∣∣ 6

∣∣X ′
0/n− µ

∣∣+ e2τ1
(
2τ1 + sup

τ6τ1

|MX,τ |

)
/n.

By (D4)X ′
0/n =

∑∞

k=0 knk/n → µ, and so the first term above converges to 0. To estimate
the martingale term, note that the jumps in MX,τ are the same as the jumps in X ′

τ . At each
jump, X ′

τ decreases by 2, and there is at most one jump in X ′
τ for each of the X ′

0 initial
half-edges. Hence, the quadratic variation [MX]τ1 satisfies

[MX]τ1 6
∑

σ>0

(∆MX,σ)
2 6 4X ′

0 = O(n).

Proceeding as in (3.11), we see that supτ6τ1 |MX,τ | = op(n), and (3.4) follows.
Now, the number of free recovered half-edges X ′

R,τ decreases by 1 when an infective half-
edge is paired with a recovered half-edge, and increases by k > 0 when an infective vertex
with k free half-edges recovers. With the modified rates, we have

dX ′
R,τ =

(
−βX ′

I,τ

(
X ′

R,τ

X ′
τ − 1

)
+ ρX ′

I,τ

)(
X ′

τ − 1

βX ′
I,τ

)
dτ + dMR,τ

= −X ′
R,τ dτ + ρβ−1(X ′

τ − 1) dτ + dMR,τ , (3.15)

where (MR,τ )τ>0 is a càdlàg martingale with MR,0 = 0.
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Differentiating the expression for hR in (2.14) shows that

d

dσ
hR(e

−σ) = −hR(e
−σ) + ρβ−1hX(e

−σ).

Since hR(1) = µR, integrating, subtracting the integrated form of (3.15) divided by n, and
taking the absolute value yields

∣∣X ′
R,τ/n− hR(e

−τ )
∣∣ 6

∫ τ

0

∣∣X ′
R,σ/n− hR(e

−σ)
∣∣ dσ + Eτ , (3.16)

where the absolute error term Eτ is given by

Eτ :=
∣∣X ′

R,0/n− µR

∣∣ + ρ

β

∫ τ

0

∣∣X ′
σ/n− hX(e

−σ)
∣∣ dσ +

ρτ

nβ
+

|MR,τ |

n
.

Let us show that supτ6τ1 |Eτ |
p

−→ 0; then (3.5) follows from (3.16) by applying Gronwall’s
inequality.

First of all, X ′
R,0/n =

∑∞
k=0 knR,k/n → µR by (D4). The integrand in the second term

tends to zero uniformly by the convergence (3.4) of X ′
σ already proven. Finally, the jumps

in MR,τ are due to either an infective vertex recovering (which happens at most once for
each vertex, and only for vertices that were initially infective or initially susceptible) or an
infective half-edge pairing to a recovered half-edge (which happens at most once for each
half-edge). It follows that

[MR]τ1 6
∑

σ>0

(∆MR,σ)
2 6 X0 +

∞∑

k=0

k2(nS,k + nI,k) = o(n2),

by (D5) and (2.9), and so supτ6τ1 |MR,τ | = op(n).
Finally, the convergence (3.6) of X ′

I,τ/n = X ′
τ/n − X ′

S,τ/n − X ′
R,τ/n follows by applying

the triangle inequality. �

Remark 3.2. Any given susceptible half-edge gets infected at unit rate in the modified
process, and so each initial degree k susceptible gets infected after an Exp(k) time, indepen-
dently of all the other susceptibles. This observation can be used to give an alternative proof
of (3.12) using the Glivenko–Cantelli lemma for convergence of empirical distributions, as
in [26]. Using the Glivenko–Cantelli lemma would allow us to take τ1 = ∞ in (3.2)–(3.4).
However, this strengthening would give no extra benefit, since τ ∗ is bounded w.h.p., as shown
in Section 4 below.

Further, it is possible to obtain quantitative statements of convergence for supτ6τ1 |MS,τ |/n,
supτ6τ1 |MX,τ |/n and supτ6τ1 |MR,τ |/n using techniques such as those in [15].

3.1. Inverting the rate change to recover the original process. To close this section,
we explain how to rescale time in order to obtain the original process. To this end, we define

Aτ =

∫ τ

0

1

β

(
X ′

σ − 1

X ′
I,σ

)
dσ, τ > 0, (3.17)

where we regard the bracketed term in the integrand as being equal to 1/2 if X ′
I,σ = 0, i.e. if

σ > τ ∗ (till then, the bracketed term is at least 1/2, since X ′
σ > X ′

I,σ, and, if X
′
I,σ = 1, then

X ′
σ > 2). Thus A is strictly increasing and continuous. We let τ(t) : [0,∞) → [0,∞) be its

strictly increasing continuous inverse, so Aτ(t) = t for any t > 0.
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The processes in their original time scaling can then be realised as

St = S ′
τ(t), It = I ′τ(t), Rt = R′

τ(t), . . . , t > 0, (3.18)

by applying Lemma A.1 to the underlying Markov evolution of the epidemic and graph
dynamics. Since the epidemic stops when we run out of free infective half-edges, it makes
no difference to (3.18) if we replace τ(t) by τ̄(t) := τ(t) ∧ τ ∗ above; this will be convenient
for the proofs below.

4. Proofs for multigraphs: Theorems 2.6 and 2.9

We continue to study the SIR epidemic on the random multigraph G∗. We assume (D1)–
(D6), unless otherwise stated. For simplicity, we also assume (G1), and leave the minor
modifications in the general case to Section 7. (We are mainly interested in the simple
random graph G, where we have to assume (G1).)

We begin with the (sub)critical regime (part (i) of Theorem 2.9).

4.1. Subcriticality: proof of Theorem 2.9 part (i). Suppose that the hypotheses R0 6

1 and µI = 0 are satisfied. We must show only op(n) susceptibles ever get infected, and it
is sufficient to prove this for the modified epidemic studied in Section 3. The key step is

proving that the modified epidemic dies almost instantly, i.e. τ ∗
p

−→ 0.
For this purpose, we first show that hI(θ) < 0 for θ ∈ (0, 1). It is enough to consider

h(θ) := hI(θ)/θ = µθ − αS

∞∑

k=0

kθk−1pk − µR − ρµ(1− θ)/β. (4.1)

By assumption, h(1) = hI(1) = µI = 0, see (2.17). Furthermore,

h(0) = −αSp1 − µR − ρµ/β < 0, (4.2)

by (D6).
Differentiating h and substituting the identity βαS

∑∞
k=0 k(k − 1)pk = µ(ρ+ β)R0 yields

βh′(θ) = (ρ+ β)µ− βαS

∞∑

k=0

k(k − 1)θk−2pk

> (ρ+ β)µ(1−R0)

> 0, (4.3)

for θ ∈ (0, 1). If
∑∞

k=3 pk > 0 and θ < 1, then there is strict inequality going from the first
to second line in (4.3), and thus h′(θ) > 0. If

∑∞

k=3 pk = 0, then h is linear and h(0) < 0 by
(4.2). In any case, recalling that h(1) = 0, we obtain h(θ) < 0 for θ ∈ (0, 1).

We now take ε > 0 and apply Lemma 3.1 with τ1 = ε. It follows from (3.6) that

sup
τ6τ∗∧ε

∣∣X ′
I,τ/n− hI(e

−τ )
∣∣ < |hI(e

−ε)|/2 (4.4)

w.h.p. On the event that inequality (4.4) holds, we have τ ∗ < ε; otherwise the left hand side
of (4.4) is at least |hI(e

−ε)|, since X ′
I,ε > 0 and hI(e

−ε) < 0. Hence w.h.p. τ ∗ < ε.

It follows that τ ∗
p

−→ 0, and, by (3.2), the number nS − S ′
τ∗ of susceptibles that ever get

infected satisfies
(nS − S ′

τ∗)/n
p

−→ αS − vS(e
−0) = 0. (4.5)
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Remark 4.1. If (D6) does not hold, then h(0) = 0 = h(1). By (4.3), then h(θ) = 0 for
every θ. This happens only in the case p0 + p2 = 1. (In this case (2.23) yields R0 = 1.)

Lemma 3.1 is still valid, but it is no longer true in general that τ ∗
p

−→ 0. For example,
if all vertices have degree 2 and there is initially a single infective vertex, then there will
be two free infective half-edges until one pairs off with the other, and it is easy to see
that τ ∗ has an Exp(1) distribution. Furthermore, vS(θ) = θ2 and it follows from (3.3) that

S ′
τ∗/n

d
−→ vS(e

−τ∗) = e−2τ∗ ∼ B(1
2
, 1) (a beta distribution with density 1

2
x−1/2 on [0, 1]), so

in this case there is a non-degenerate limiting distribution of the size of the epidemic.
Recall that this example was considered at the end of Section 2.1. It is easily seen that for

the two modifications considered there, with some vertices of degree 1 or 4, we have τ ∗
p

−→ 0

and τ ∗
p

−→ ∞, respectively, and thus S ′
τ∗/n

p
−→ 1 and S ′

τ∗/n
p

−→ 0.

4.2. Many initially infective half-edges: proof of Theorem 2.6. We now consider the
case where there is initially a large number of infective half-edges, i.e. µI > 0.

(a) It suffices to prove that h defined in (4.1) has a unique root θ∞ ∈ (0, 1), since h(1) =
µI > 0 and h(0) = −αSp1 − µR − ρµ/β < 0 by (4.2) and (D6). Calculating h′′(θ) =
−αS

∑∞
k=0 k(k − 1)(k − 2)θk−3pk 6 0 shows that h is concave on (0, 1). This, together with

the inequality h(1) > 0, implies uniqueness of θ∞.

(b) By (G1),
∑∞

k=0 k
2pk < ∞, see Remark 2.4, and by (2.12)–(2.15), the derivative of hI is

bounded on [0, 1]. Hence, pI is Lipschitz continuous on [θ∞, 1]. Consequently, both existence
and uniqueness of the solution θt, t > 0, to (2.19) follow from standard theory. Note that
the constant function θ∞ is another solution to the differential equation, so θt > θ∞ for all
t by uniqueness of solutions. Thus θt is strictly decreasing and bounded below, so the limit
limt→∞ θt exists, and must be a zero of pI, i.e., by part (a), the limit equals θ∞.

In the proof below we will use a more explicit form of the solution. Let τ̂∞ := − ln θ∞,
and define Â : [0, τ̂∞) → [0,∞) by

Âτ :=

∫ τ

0

dσ

βpI(e−σ)
, 0 6 τ < τ̂∞. (4.6)

The integrand is strictly positive on [0, τ̂∞) and so Â is strictly increasing. Furthermore,
pI(e

−τ̂∞) = 0 and p′
I(e

−σ) is bounded for σ in a neighbourhood of τ̂∞. Hence pI(e
−σ) =

O(τ̂∞ − σ) for σ ∈ [0, τ̂∞]. It follows that Âτ ր ∞ as τ ր τ̂∞. The inverse τ̂ :

[0,∞) → [0, τ̂∞) of Â is strictly increasing and continuously differentiable, and satisfies
τ̂ ′(t) = βpI(exp(−τ̂ (t)) by the Inverse Function Theorem, and τ̂ (0) = 0. So θt = exp(−τ̂ (t))
solves (2.19).

(c) We first show that τ ∗
p

−→ τ̂∞. Let us take a sufficiently small ε > 0 and define

δ := inf
τ6τ̂∞−ε

hI(e
−τ ) ∧ |hI(e

−(τ̂∞+ε))|. (4.7)

By part (a), δ > 0. Then Lemma 3.1 (with τ1 = τ̂∞ + ε) shows that w.h.p.

sup
τ6τ∗∧(τ̂∞+ε)

∣∣X ′
I,τ/n− hI(e

−τ )
∣∣ < δ/2. (4.8)

We claim that, on that event, τ̂∞ − ε < τ ∗ < τ̂∞ + ε. Indeed, if τ ∗ 6 τ̂∞ − ε, then the
left hand side of (4.8) it is at least |X ′

I,τ∗/n − hI(e
−τ∗)| = hI(e

−τ∗) > δ, by definition of
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δ and the fact that X ′
I,τ∗ = 0. If τ ∗ > τ̂∞ + ε, then the left hand side of (4.8) is at

least |X ′
I,τ̂∞+ε/n − hI(e

−(τ̂∞+ε))| > |hI(e
−(τ̂∞+ε))| > δ, by definition of δ and the fact that

X ′
I,τ̂∞+ε > 0 and hI(e

−(τ̂∞+ε)) < 0. Thus, w.h.p.

τ̂∞ − ε < τ ∗ < τ̂∞ + ε. (4.9)

Our next task is to return to the original process, and, to this end, we need to study the
process (Aτ )τ>0 defined in (3.17) and its inverse τ(t). The integrand in (3.17) converges
to 1/(βpI(e

−σ)) uniformly in probability on [0, τ̂∞ − ε] by (3.4), (3.6), and the fact that
hI(e

−σ) > δ > 0 for 0 6 σ 6 τ̂∞ − ε. Therefore,

Aτ
p

−→ Âτ (4.10)

uniformly over 0 6 τ 6 τ̂∞ − ε, where Âτ is as in (4.6).

Let t1 := Âτ̂∞−2ε. (We assume ε < τ̂∞/2.) The uniform convergence (4.10) and strict

monotonicity of Â imply that Aτ̂∞−ε > t1 w.h.p. On this event, τ(t) 6 τ(t1) < τ̂∞ − ε for
t 6 t1, and so (4.10) shows that

t− Âτ(t) = Aτ(t) − Âτ(t)
p

−→ 0, (4.11)

uniformly on t 6 t1. Recall from the proof of (b) that τ̂ (t) is the inverse of the function

Âτ ; then 0 6 τ̂ ′(t) = βpI(exp(−τ̂(t)) 6 β, and so τ̂ is uniformly continuous. Hence, (4.11)
implies

sup
t6t1

∣∣τ̂ (t)− τ(t)
∣∣ p
−→ 0. (4.12)

Recall the definition τ̄(t) := τ(t) ∧ τ ∗. If t > t1, then w.h.p., using (4.12) and (4.9),

τ̂∞ − 3ε = τ̂(t1)− ε < τ̄ (t1) 6 τ̄ (t) 6 τ ∗ < τ̂∞ + ε,

from which it follows that w.h.p.

sup
t>t1

∣∣τ̂(t)− τ̄ (t)
∣∣ < 3ε. (4.13)

We conclude from (4.12)–(4.13) that τ̄(t)
p

−→ τ̂ (t), and hence that exp(−τ̄ (t))
p

−→ θt =
exp(−τ̂ (t)), uniformly over all t > 0. It now follows that

sup
t>0

|St/n− vS(θt)| = sup
t>0

|S ′
τ̄(t)/n− vS(θt)|

6 sup
t>0

|S ′
τ̄(t)/n− vS(e

−τ̄(t))|+ sup
t>0

|vS(e
−τ̄(t))− vS(θt)|

converges to zero in probability, by (3.2) and the uniform continuity of vS on [0, 1]. The
convergence statements in (2.22) follow similarly from Lemma 3.1 and uniform continuity of
the functions hS, hI, hR. The convergence of Xt/n also follows, as Xt = XS,t +XI,t +XR,t.

Since Rt/n = 1 − St/n − It/n, it remains to prove convergence for the fraction It/n
of infective vertices in (2.21). We will work directly with the original process, using a
compactness argument. The number of infective vertices It increases by 1 when a free
infective half-edge is paired with a free suceptible half-edge, and decreases by 1 when an
infective vertex recovers. Therefore,

dIt = βXI,t

(
XS,t

Xt − 1

)
dt− ρItdt+ dMI,t, (4.14)
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where (MI,t)t>0 is a càdlàg martingale with MI,0 = 0 and quadratic variation

[MI]t 6
∑

s>0

(∆Is)
2 6 2n,

since each vertex can only get infected or recover at most once. As in the proof of Lemma 3.1,
Doob’s inequality then gives supt>0 |MI,t| = op(n).

Writing (4.14) in integral form and dividing by n, we obtain

(It − I0 −MI,t)/n =

∫ t

0

((
βXI,sXS,s

n(Xs − 1)

)
−

ρIs
n

)
ds, (4.15)

and the integrand is bounded in absolute value (by 2βµ+ ρ for n large). Hence, (It − I0 −
MI,t)/n, n > 0, is a uniformly Lipschitz family, and it is also uniformly bounded on each
finite interval [0, t1]. Thus, the Arzela–Ascoli theorem implies that it is tight in C[0, t1] for
any t1 > 0 [28, Theorems A2.1 and 16.5], and so also in C[0,∞). This then implies that there
exists a subsequence along which the process converges in distribution in C[0,∞) ⊂ D[0,∞),
and the same holds for (It − I0)/n in D[0,∞) since supt>0 |MI,t| = op(n). The convergence
may be assumed almost sure by the Skorokhod coupling lemma.

Hence, along the subsequence, It/n a.s. converges, uniformly on compact sets, to a con-

tinuous limit Ît. Clearly, Î0 = αI. Let us show that Ît is deterministic. Since MI,t = op(n),
(4.15), the dominated convergence theorem, and the uniform convergence (2.22) of Xt/n,
XI,t/n and XS,t/n (which may also be assumed a.s.), together imply that

Ît = lim
n→∞

It/n = αI +

∫ t

0

((
βhI(θs)hS(θs)

hX(θs)

)
− ρÎs

)
ds.

Consequently, Ît is continuously differentiable, and, differentiating, we obtain the differential
equation (2.20) with the unique solution

Ît = αIe
−ρt +

∫ t

0

e−ρ(t−s)

(
βhI(θs)hS(θs)

hX(θs)

)
ds. (4.16)

Hence, the subsequential limit Ît is uniquely determined, which implies convergence along the
original sequence, and the convergence may be assumed almost sure. The limit is continuous,
so the convergence is uniform on [0, t1], for any t1 > 0.

Let t1 > 0 and let t > t1. The number of recovered vertices Rt is increasing in t, so

0 6 It/n = 1− St/n− Rt/n 6 1− St/n− Rt1/n.

But Rt1/n
p

−→ 1 − Ît1 − vS(θt1) and St/n > inft>0 St/n
p

−→ vS(θ∞). So for any t1 > 0 and
ε > 0, w.h.p. for all t > t1,

0 6 It/n 6 vS(θt1)− vS(θ∞) + Ît1 + ε, (4.17)

and vS(θt1) → vS(θ∞) as t1 → ∞, by continuity of vS.
In the case ρ > 0, we make a change of variable s = t − u in (4.16). Then hI(θt−u) →

hI(θ∞) = 0 as t → ∞, and, together with the dominated convergence theorem, this shows

that Ît → 0 as t → ∞. Since |It/n− Ît| 6 max{It/n, Ît}, it follows from (4.17) that w.h.p.

sup
t>t1

|It/n− Ît| 6 vS(θt1)− vS(θ∞) + sup
t>t1

Ît + ε, (4.18)

which is at most 2ε if t1 is large enough.
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In the case ρ = 0 (no recoveries), we instead note that It and Ît are non-decreasing. Then,

since Ît 6 1, Î∞ := limt→∞ Ît exists, and w.h.p.

sup
t>t1

(Ît − It/n) 6 Î∞ − It1/n 6 Î∞ − Ît1 + ε. (4.19)

Together with (4.17), this shows that supt>t1 |It/n− Ît| 6 2ε w.h.p. if t1 is large enough.

In summary, in both cases, for any ε > 0 we can choose t1 such that supt>t1 |It/n− Ît| 6 2ε

w.h.p. Since also It/n
p

−→ Ît uniformly on [0, t1], for any t1 > 0, it follows that It/n
p

−→ Ît
uniformly over the whole of [0,∞). This completes the proof of (2.21).

(d) This statement is an immediate consequence of (2.21).

Remark 4.2. If (D6) does not hold then h(0) = 0 and h(1) = µI > 0, so h(θ) > µIθ > 0 for
θ ∈ (0, 1], by concavity of h. So the only root of hI(θ) in [0, 1] is at zero, and the argument

in (c) above shows that, for any fixed τ1 > 0, τ ∗ > τ1 w.h.p. Thus τ ∗
p

−→ ∞, and it follows

from (3.2) that S ′
τ∗/n

p
−→ vS(0) = αSp0. Hence, apart from the isolated vertices, all but

op(n) of the susceptible vertices succumb to infection.

4.3. Supercriticality: proof of Theorem 2.9 part (ii). We now consider the ‘supercrit-
ical’ regime, where the basic reproductive ratio R0 > 1 and there are few initially infective
vertices (µI = 0). Let us start by noting that hI(1) = µI = 0, see (2.17).

We will say that an event En holds w.h.p. conditional on event Dn if P(En | Dn) = 1− o(1)
as n → ∞, or, equivalently, if P(E c

n | Dn) = o(1) as n → ∞. If P(Dn) is bounded away from
0 as n → ∞, then En holds w.h.p. conditional on Dn if and only if P(Dn, E

c
n) = o(1).

(a) It is sufficient to show that h defined in (4.1) has a unique root in (0, 1). Differentiating
h and then substituting βαS

∑∞

k=0 k(k − 1)pk = µ(ρ+ β)R0 yields, cf. (4.3),

βh′(1) = µ(ρ+ β)(1−R0) < 0.

Together with the fact that h(1) = hI(1) = µI = 0, this shows that h(θ) > 0 for all θ < 1
close enough to 1. Furthermore, h(0) = −αSp1 − µR − ρµ/β < 0 by (D6), and so there
is at least one root in (0, 1). Uniqueness follows from concavity of h, as in the proof of
Theorem 2.6(a).

(b) As in the proof of Theorem 2.6, existence and uniqueness of the solution to (2.25) follow
from Lipschitz continuity of pI and standard theory, but in the proof below we will use a
more explicit form of the solution.

Recall that there is an extra parameter s0 ∈ (vS(θ∞), vS(1)) used in the initial condition
of (2.25) to calibrate the time shift. Let τ̂0 := − ln v−1

S (s0) and τ̂∞ := − ln θ∞; thus 0 < τ̂0 <

τ̂∞. We define Â : (0, τ̂∞) → R by

Âτ :=

∫ τ

τ̂0

dσ

βpI(e−σ)
, 0 < τ < τ̂∞. (4.20)

Then Â is strictly increasing, Âτ̂0 = 0, and Âτ ր ∞ as τ ր τ̂∞. By (G1), pI is Lipschitz

continuous on [θ∞, 1] and pI(e
−σ) = O(σ), because pI(1) = 0; hence Âτ ց −∞ as τ ց 0.

The inverse τ̂ : R → (0, τ̂∞) of Â is strictly increasing and continuously differentiable. Also,

τ̂ ′(t) = βpI(exp(−τ̂ (t))), (4.21)
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and τ̂ (0) = τ̂0. Hence, θt = exp(−τ̂ (t)) satisfies (2.25). The final statements follow from
τ̂(t) ր τ̂∞ = − ln θ∞ as t → ∞ and τ̂ (t) ց 0 as t → −∞.

(c) The proof of this part is deferred till Section 4.3.1.

(d) Proceeding as in the proof of Theorem 2.6(c), but now defining

δ := inf
ε6τ6τ̂∞−ε

hI(e
−τ ) ∧ |hI(e

−(τ̂∞+ε))| (4.22)

instead of (4.7), we deduce that, for any ε > 0, either 0 6 τ ∗ < ε or τ̂∞ − ε < τ ∗ < τ̂∞ + ε,
w.h.p.; in other words, the time-changed epidemic dies out either almost instantaneously or
around time τ̂∞ := − ln θ∞.

Recall that T0 := inf{t > 0 : St 6 ns0}, and assume that ε > 0 is small enough that
vS(e

−ε) > s0. By (3.2),

inf
t>0

St/n = S ′
τ∗/n = vS(e

−τ∗) + op(1),

and so P(τ ∗ < ε, T0 < ∞) = o(1).
For the rest of this proof, we will condition on the event T0 < ∞. Since by part (c),

P(T0 < ∞) is bounded away from 0 as n → ∞, the previous two paragraphs show that, for
sufficiently small ε > 0, τ̂∞ − ε < τ ∗ < τ̂∞ + ε holds w.h.p. conditional on T0 < ∞.

As in the proof of Theorem 2.6, we need to study the inverse τ(t) of the process Aτ

defined in (3.17), now with the added complication of the time shift T0. Here, we extend
the definition of τ to (−∞, 0) by letting τ(t) := 0 for t < 0; note that this agrees with our
convention to take St = S0 for t < 0, etc., and that (3.18) holds for all t ∈ (−∞,∞).

The calibration time T0 = inf{t > 0 : S ′
τ(t) 6 s0n} satisfies τ(T0)

p
−→ τ̂0 := − ln v−1

S (s0),

by (3.2) and the fact that vS(e
−τ ) is strictly decreasing. (We use part (c) to guarantee

that the convergence in probability survives the conditioning. This is done without further
comment below.)

By (3.4), (3.6), and the fact that infε6σ6τ̂∞−ε hI(e
−σ) > 0,

Aτ − Aτ ′
p

−→

∫ τ

τ ′

dσ

βpI(e−σ)
= Âτ − Âτ ′ , (4.23)

uniformly over τ, τ ′ ∈ [ε, τ̂∞−ε]. Let us assume that ε is small enough that τ̂0 ∈ [2ε, τ̂∞−2ε].

Taking τ ′ = τ(T0) in (4.23) and using the fact that τ(T0)
p

−→ τ̂0 gives

Aτ − T0 = Aτ − Aτ(T0)
p

−→ Âτ − Âτ̂0 = Âτ , (4.24)

uniformly over τ ∈ [ε, τ̂∞ − ε].
Now suppose that t1 > 0 is given. We may assume that ε is small enough that t1 <

(−Âε) ∧ Âτ̂∞−ε (recall from part (b) that the right-hand side diverges as ε → 0). Then

Aε − T0
p

−→ Âε < −t1 by (4.24), so, w.h.p. conditional on T0 < ∞, Aε < T0 − t1 and thus
τ(T0 − t1) > ε. (In particular, T0 − t1 > 0, w.h.p. conditional on T0 < ∞. Since t1 is

arbitrary, this shows T0
p

−→ ∞.)
Similarly, w.h.p. conditional on T0 < ∞, Aτ̂∞−ε − T0 > t1 and τ(T0 + t1) < τ̂∞ − ε.

Thus, w.h.p. conditional on T0 < ∞, τ(T0 + t) ∈ [ε, τ̂∞ − ε] for all t ∈ [−t1, t1]. So, taking

τ = τ(T0+t) in (4.24) shows that Âτ(T0+t)
p

−→ t uniformly on t ∈ [−t1, t1]. Thus τ(T0+t)
p

−→
τ̂(t) uniformly over t ∈ [−t1, t1] by uniform continuity of τ̂(t), and this holds for any t1 > 0.
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Furthermore, as shown above, w.h.p. conditional on T0 < ∞, τ(T0 + t) < τ̂∞ − ε < τ ∗ for all
t ∈ [−t1, t1], and thus τ̄(T0 + t) := τ(T0 + t) ∧ τ ∗ = τ(T0 + t) for t 6 t1. Hence,

τ̄(T0 + t)
p

−→ τ̂(t), (4.25)

uniformly over t ∈ [−t1, t1]. As before, uniform convergence for |t| > t1 follows by mono-
tonicity: if t > t1 then w.h.p. conditional on T0 < ∞, by (4.25), 0 6 τ̄(T0− t) 6 τ̄(T0− t1) <
τ̂(−t1) + ε and τ̂ (t1) − ε < τ̄(T0 + t1) 6 τ̄(T0 + t) 6 τ ∗ < τ̂∞ + ε. Hence, w.h.p. con-
ditional on T0 < ∞, |τ̄(T0 − t) − τ̂(−t)| 6 max{τ̄(T0 − t), τ̂(−t)} 6 τ̂(−t1) + ε and
|τ̄(T0 + t) − τ̂(t)| 6 τ̂∞ − τ̂ (t1) + ε for all t > t1, and the right hand sides can be made
arbitrarily small by choosing t1 large and ε small. Hence, (4.25) holds uniformly on R.

Consequently, exp(−τ̄ (T0 + t))
p

−→ exp(−τ̂ (t)) = θt uniformly on R. The convergence

ST0+t/n
p

−→ vS(θt) in (2.27) and the limits in (2.28) then follow from Lemma 3.1 and uniform
continuity of the limit functions, just as in the proof of Theorem 2.6.

The compactness argument from Section 4.2 shows that IT0+t/n converges in distribution

in D(−∞,∞) along a subsequence to a differentiable process Ît that satisfies

d

dt
Ît = β

hI(θt)hS(θt)

hX(θt)
− ρÎt, t ∈ R. (4.26)

Recovered vertices never become infective, and so, by (2.27) and the fact that nI/n → αI = 0,

0 6 IT0+t/n 6 nI/n+ (nS − ST0+t)/n
p

−→ αS − vS(θt). (4.27)

Hence, Ît 6 αS− vS(θt), which tends to zero as t → −∞ and hence Ît → 0 as well. It follows

that the subsequential limit Ît is unique and deterministic, given by

Ît =

∫ t

−∞

e−ρ(t−s) βhI(θs)hS(θs)

hX(θs)
ds, (4.28)

which implies that IT0+t/n → Ît in distribution along the original sequence. The convergence

can be assumed almost sure by the Skorokhod coupling lemma, and so, since Ît is continuous,
IT0+t/n → Ît uniformly on [−t1, t1], a.s. for any t1 > 0.

Take any ε > 0. Then, w.h.p. conditional on T0 < ∞, IT0+t/n < αS − vS(θ−t1) + ε
for any t 6 −t1, by (4.27) and monotonicity of St. Thus, w.h.p. conditional on T0 < ∞,

supt6−t1 |IT0+t/n− Ît| < 2ε if t1 is large enough. Furthermore, the argument leading to (4.18)

and (4.19) gives supt>t1 |IT0+t/n− Ît| < 2ε w.h.p. conditional on T0 < ∞, for t1 large enough.

Hence IT0+t/n
p

−→ Ît uniformly on R and the remaining parts of (2.27) follow.

(e) This is an immediate consequence of (d).

(f) Given s ∈ (vS(θ∞), vS(1)), let T (s) := inf{t > 0 : St 6 ns}, so that T0 = T (s0). We will
show that, for any s1, s2 ∈ (vS(θ∞), vS(1)) with s1 < s2, P(T (s2) < ∞, T (s1) = ∞) = o(1).
(Clearly, P(T (s2) = ∞, T (s1) < ∞) = 0.) By part (e), conditional on the event T (s2) < ∞,

S∞/n
p

−→ vS(θ∞), and so S∞/n < s1 w.h.p. conditional on T (s2) < ∞, which implies that,
w.h.p. conditional on T (s2) < ∞, St 6 ns1 for some t < ∞ and thus T (s1) < ∞. So
P(T (s2) < ∞, T (s1) = ∞) = o(1), as required.

Now, recall that s0 ∈ (vS(θ∞), vS(1)). Let ε > 0; by the above, P(T0 = ∞, T (vS(1)−ǫ/2) <
∞) = o(1), and so P(T0 = ∞, St 6 n(vS(1) − ǫ/2) for some t) = o(1). It then follows that
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P(T0 = ∞, S∞ < n(vS(1) − ǫ/2)) = o(1), and so P(T0 = ∞, S0 − S∞ > εn) = o(1). Since ε
can be taken arbitrarily small, we have that S0 − S∞ = op(n) on the event T0 = ∞.

Since S0 − S∞ = op(n) on T0 = ∞, also supt>0 It 6 nI + S0 − S∞ = op(n) on T0 = ∞.
Further, the uniform summability of

∑∞
k=0 knS,k/n (see Remark 2.2) implies that the number

XS,0−XS,∞ of half-edges that ever get infected is op(n) on T0 = ∞ also. Hence supt>0XI,t =
op(n) on T0 = ∞, and only op(n) half-edges pair off before the end of the epidemic, so
supt>0(X0 −Xt) = op(n) on T0 = ∞.

4.3.1. Proof of part (c): there is a large epidemic with probability bounded away from zero. To
study the beginning phase of the epidemic, we concentrate on the number XI,t of free infective
half-edges. It is convenient to colour the half-edges of a newly infected vertex according to
whether the vertex recovers before the half-edge can pair off. More specifically, as soon as
a new vertex is infected, we give it a random recovery time with distribution Exp(ρ) and
each of its remaining half-edges an infection time with distribution Exp(β); these times are
independent of each other and everything else. We then colour each of these half-edges red
if its infection time is smaller than the recovery time of the vertex, and black otherwise. The
black half-edges thus will recover without pairing off, so we can ignore them, while the red
half-edges will pair off at some time. Let Zt be the number of free red half-edges at time t
(for this proof, we need only consider the process in its original time scale).

We fix a small ε > 0 and stop if and when either XI,t becomes at least εn or at least
εn infective half-edges have paired off. Of course, we also stop if XI,t becomes 0. Before
stopping, the number Xt of free half-edges thus satisfies

∞∑

k=0

knk = X0 > Xt > X0 − 2εn. (4.29)

Furthermore, before stopping, there are at least nS,k − εn remaining susceptible vertices of
degree k, for each k. Hence, when an infective half-edge pairs off, it will infect a vertex of
degree k with probability at least

k(nS,k − εn)∑∞

k=0 knk
=

k(αSpk + o(1)− ε)n

(µ+ o(1))n
=

k(αSpk − ε)

µ
+ o(1) >

k(αSpk − 2ε)

µ
, (4.30)

if n is large enough. (Uniformly in k because we only have to consider the finite set of k for
which the final expresssion is nonnegative.) If a vertex of degree k is infected, this produces
k − 1 new free infective half-edges. Of these, some random number Yk−1 will be red; the
distribution of Yk−1 can easily be given explicitly, see Lemma 5.1 below, but here we only
need the simple fact that its mean is

E[Yk−1] =
β

β + ρ
(k − 1). (4.31)

Since the infecting half-edge is removed from among the free infective half-edges, the net
change in Zt is Yk−1 − 1.

When a half-edge is paired off, there is also a possibility that it gets joined to another
infective half-edge, in which case that half-edge is removed from the free infective half-edges
and Zt is reduced by 1 or 2 (depending on whether the second half-edge was black or red);
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this happens with probability at most

XI,t∑∞

k=0 knk − 2εn
6

εn

(µ+ o(1)− 2ε)n
< 2ε/µ (4.32)

if n is large and ε small.
Finally, it may happen that the infective half-edge connects to a recovered half-edge. In

this case Zt is reduced by 1.
Consequently, if ti is the i:th time an infective half-edge is paired off, then

∆Zti > −1 + Ui, (4.33)

where Ui is independent of the previous history and and has the mixture distribution

Ui =





Yk−1 with probability k(αSpk − 2ε)+/µ, for each k > 1,

−1 with probability 2ε/µ

0 otherwise.

(4.34)

We may assume that ε 6 µ/2, and then Ui is well-defined, because either (αSpk − 2ε)+ = 0
for every k > 1, or there exists a k with αSpk > 2ε, and then

∞∑

k=0

k(αSpk − 2ε)+ 6

∞∑

k=0

kαSpk − 2ε = αSλ− 2ε 6 µ− 2ε.

The random variable Ui has expectation

EUi =
∞∑

k=1

k(αSpk − 2ε)+
µ

EYk−1 −
2ε

µ
=

β

(β + ρ)µ

∞∑

k=1

(k − 1)k(αSpk − 2ε)+ −
2ε

µ
(4.35)

which, as ε ց 0, converges by monotone convergence to

β

(β + ρ)µ

∞∑

k=1

(k − 1)kαSpk = R0 > 1. (4.36)

Thus we may assume that ε is chosen so small that EUi > 1, and thus E[Ui − 1] > 0.
By (4.33), the sequence Zti −Z0 (i > 1), until we stop, dominates a random walk starting

at 0, with i.i.d. increments Ui − 1 such that E[Ui − 1] > 0. It is well-known that such a
random walk is transient and diverges to +∞, so its minimum M− is a.s. finite. If the
process stops at time ti by running out of infective half-edges, we must have Zti = 0, and

thus M− 6 −Z
(n)
0 (the n dependency is added to Z here as a reminder that M does not

depend on n).
Suppose that the initial number of infective half-edges XI,0 =

∑∞

k=0 knI,k → ∞ (however

slowly). Then also the initial number of red infective half-edges Z
(n)
0 → ∞ in probability;

to see this, observe that either there are at least
√

XI,0 infective vertices with at least one
half-edge (and the half-edges for different vertices are coloured independently), or there is
at least one infective vertex with at least

√
XI,0 half-edges (each of which was coloured

independently, given the recovery time). Hence P(M− 6 −Z
(n)
0 ) → 0, and w.h.p. we do not

stop by running out of red half-edges.
Since the process must stop at some point, w.h.p. either the process stops by producing

at least εn infective half-edges or because at least εn half-edges have paired off. In either
case, at least one of XI,t/n and Xt/n differs by at least ε from its initial value, so we cannot
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have convergence to the trivial constant solution. Thus w.h.p. T0 < ∞, see (f). We deduce
that XI,0 → ∞ implies T0 < ∞ w.h.p.

Finally, provided there is initially at least one infective half-edge, we have P(Z
(n)
0 > 1) >

β/(ρ + β). Further, Z
(n)
0 > 1 occurs independently of the steps in the random walk above

and it is straightforward to show P(M− = 0) > 0. Hence, the probability of stopping by
running out of red half-edges is at most

P(M− 6 −Z
(n)
0 ) 6 1−

β

ρ+ β
P(M− = 0) < 1. (4.37)

It follows that, with probability bounded away from zero, we stop by producing at least εn
infective half-edges or because at least εn half-edges have been paired off. As noted above,
this implies that XI,t/n and Xt/n cannot converge to constants, and thus w.h.p. T0 < ∞.

5. The probability of a large outbreak and the size of a small outbreak

In this section, we obtain an expression for the probability P(T0 < ∞) in Theorem 2.9(ii)(c)
using a branching process approximation of the initial steps. We thus assume (D1)–(D6),
αI = µI = 0 and R0 > 1. We begin by finding the distribution of the variables Yk−1 defined
in Section 4.3.1. We denote falling factorials by (n)j := n · · · (n− j + 1), and let 2F1 denote
the hypergeometric function, as defined in e.g. [36].

Lemma 5.1. Consider an infective vertex with ℓ > 0 free half-edges and let Yℓ be the number
of them that pair off before the vertex recovers (assuming that none of them is chosen by
another infective half-edge in a pairing event). If ρ > 0, then

P(Yℓ = j) =
ρ ℓ! Γ(ℓ+ ρ/β − j)

β (ℓ− j)! Γ(ℓ+ ρ/β + 1)
=

ρ

ℓβ + ρ
·

(ℓ)j
(ℓ+ ρ/β − 1)j

, (5.1)

and the probability generating function gℓ(x) := E xYℓ is given by

gℓ(x) =

ℓ∑

j=0

P(Yℓ = j)xj =
ρ

ℓβ + ρ
· 2F1

(
−ℓ, 1;−ℓ−

ρ

β
+ 1; x

)
. (5.2)

If ρ = 0, then Yℓ = ℓ and gℓ(x) = xℓ.

Proof. The case ρ = 0 is trivial, so assume ρ > 0. By conditioning on the time of recovery,
and changing variables x = e−βt to obtain a beta integral,

P(Yℓ = j) =

∫ ∞

0

(
ℓ

j

)(
1− e−βt

)j
e−(ℓ−j)βte−ρtρ dt

=

∫ 1

0

(
ℓ

j

)
(1− x)jxℓ−j+ρ/β−1 ρ

β
dx

=
ρ

β

(
ℓ

j

)
Γ(ℓ− j + ρ/β)Γ(j + 1)

Γ(ℓ+ ρ/β + 1)
,

which can be written as in (5.1), and (5.2) follows from the definition of hypergeometric
functions. �
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Remark 5.2. The standard hypergeometric distribution obtained by drawing n balls from an
urn with N balls of which m are white has probability generating function c · 2F1(−n,−m;
N − n − m + 1; x), where c = (N − n)! (N − m)!/

(
(N − m − n)!N !

)
is a normalization

constant. Hence the distribution of Yℓ can formally be regarded as a ‘negative hypergeometric
distribution’, with parameters (n,m,N) = (ℓ,−1,−1− ρ/β).

Next, we define ξ to be the random variable obtained by mixing Yk−1 with probabilities
αSkpk/µ; to be precise,

ξ =

{
Yk−1 with probability αSkpk/µ, for each k > 1,

0 with probability µR/µ,
(5.3)

where the probabilities sum to 1, since we assume µI = 0. (If µR = 0, we thus mix using the
size-biased distribution corresponding to (pk)

∞
0 .) Note that this is the limiting case ε = 0 of

(4.34). We have, by (4.31) and (2.23), cf. (4.35),

E ξ =

∞∑

k=1

αSkpk
µ

EYk−1 =
αS

µ
·

β

β + ρ

∞∑

k=1

(k − 1)kpk = R0 > 1. (5.4)

Theorem 5.3. Suppose that the assumptions of Theorem 2.9(ii) (Theorem 2.10(ii)) hold.
Let q ∈ (0, 1) be the extinction probability for a Galton–Watson process with offspring distri-
bution ξ, starting with a single individual. Then for the SIR epidemic on the multigraph G∗

(simple graph G)

P(T0 = ∞) =
∞∏

k=1

gk(q)
nI,k + o(1). (5.5)

Hence the probability of a large outbreak is 1−
∏∞

k=1 gk(q)
nI,k + o(1).

Note that gk(q) is the extinction probability if we start the Galton–Watson process with
Yk individuals instead of one. Hence the product in (5.5) is the extinction probability if
we start with a number of individuals distributed as Yk for each initially infected vertex of
degree k, with these numbers independent. (This is just the number of initially red infective
half-edges in Section 4.3.1.)

Before proving Theorem 5.3, we state another theorem, saying that a small outbreak infects
only Op(1) vertices. This is valid in the supercritical case without further assumption, and
also in the (sub)critical case (when the outbreak is small w.h.p.) provided the initial number
of infected half-edges XI,0 =

∑∞
k=0 knI,k, is bounded. (This is equivalent to the initial number

of infected individuals and their degrees being bounded.)

Theorem 5.4. Suppose that the assumptions of Theorem 2.9 (Theorem 2.10) are satisfied.
Then the following holds for the SIR epidemic on the multigraph G∗ (simple graph G).

(i) If R0 6 1 and further the initial number of infective half-edges XI,0 = O(1), then the
number nS − S∞ of susceptible vertices that ever get infected is Op(1).

(ii) If R0 > 1 , then a small outbreak infects only Op(1) vertices. In other words, for every
ε > 0 there exists Kε < ∞ such that

P(T0 = ∞ and nS − S∞ > Kε) < ε. (5.6)
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Remark 5.5. The assumption XI,0 = O(1) is easily seen to be necessary in part (i) of this
result. Indeed, if XI,0 → ∞, then the number of initially infective half-edges that pair off
before recovering tends to infinity in probability. While there are at least δn susceptible
vertices, then the probability that at a pairing event an infective half-edge is joined to a
half-edge at a susceptible vertex is asymptotically bounded away from 0. Hence, the number
of susceptibles infected tends to infinity in probability.

In the supercritical case this can be assumed because of Theorem 2.9(ii)(c) (Theorem 2.10(ii)(c)).
We leave it to the reader to study the precise size of the epidemic in the subcritical case

when XI,0 → ∞. The critical case (R0 = 1) is examined in a forthcoming work [23].

Theorems 5.3 and 5.4 are valid both in the simple graph case and the multigraph case
of Theorem 2.9. We prove the multigraph case here and defer the simple graph case to
Section 6.

Proof of Theorems 5.3 and 5.4 in the multigraph case. We begin with the supercritical case
R0 > 1. Since E ξ = R0 > 1 by (5.4), the Galton–Watson process is supercritical, and thus
0 < q < 1 as asserted.

Fix a small ε > 0. We have shown in Section 4.3.1 that, ifXI,0 → ∞, then P(T0 < ∞) → 1.
It follows that there exists a finite N (depending on the parameters β, ρ, (pk)

∞
0 , etc., but

not on n) such that, if XI,0 > N , then P(T0 < ∞) > 1 − ε. (If not, then there would exist
a sequence of initial conditions satisfying (D1)–(D6) with XI,0 → ∞, and thus n → ∞, but
P(T0) 6 1− ε.)

Now consider the Galton–Watson process (Wi)
∞
i=0 with offspring distribution ξ and some

initial W0. Since the process is supercritical, a.s. either Wi = 0 for some i, and thus also for
all larger i, or Wi → ∞ as i → ∞. We consider also the corresponding random walk stopped
at 0, defined by Ẑ0 = W0, Ẑi+1 = 0 if Ẑi = 0 and Ẑi+1 = Ẑi − 1 + ξi+1 if Ẑi > 0, where (ξi)
are i.i.d. copies of ξ. This can be regarded as the Galton–Watson process modified so that
different individuals give birth at different times, and thus Wi → ∞ (0) ⇐⇒ Ẑi → ∞ (0).

A.s., Ẑi → ∞ unless the random walk hits 0 and thus is absorbed there. Thus, P(0 < Ẑi <
N) → 0 as i → ∞, and it follows that there exists some K < ∞ such that, for any initial

number Ẑ0, P(0 < ẐK < N) < ε and furthermore P(limi→∞ Ẑi = ∞) > P(ẐK > N) − ε.

(It suffices to consider a finite number of Ẑ0, since, if Ẑ0 is large, then P(inf i Ẑi < N) < ε.)

From now on, we let Ẑ0 = W0 be the initial number of red infective half-edges.
Let us now return to the epidemic, and consider only the K first half-edges that pair off.

Let us colour the half-edges as in Section 4.3.1. Since we consider only a fixed number of
steps, each half-edge that pairs off infects a susceptible vertex of degree k with probability,
cf. (4.30),

k(nS,k +O(1))∑∞
k=0 knk + o(n)

=
αSkpk
µ

+ o(1). (5.7)

Hence we can w.h.p. couple the first K steps of the epidemic and the random walk Ẑi such
that Zti = Ẑi, for i 6 K, where, as above Zti is the number of red infective half-edges when
i half-edges have paired off.

If we have at least N red infective half-edges after K steps, let us restart the epidemic
there, and regard the situation after K steps as a new initial configuration, omitting the
2K half-edges that have been paired. Since only o(n) half-edges have changed status, the
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assumptions (D1)–(D6) still hold; however, we now start with at least N infective half-edges.
Thus, by our choice of N , P(T0 < ∞) > 1− ε.

Combining these facts, we see that, with probability 1−O(ε) + o(1), either:

(i) the Galton–Watson process (Wi) dies out, ẐK = 0, the epidemic infects at most K
vertices, and T0 = ∞; or

(ii) the Galton–Watson process (Wi) survives, ẐK > N , there are at least N free infective
half-edges after K steps, and T0 < ∞.

Since ε is arbitrary, (5.5) follows, using the comment above that the extinction probability
of (Wi) is the product in (5.5), and so does (5.6).

This proves the theorems in the supercritical case. In the (sub)critical case R0 6 1, we
only have to prove Theorem 5.4(i). This follows by comparison with a random walk as in
the supercritical case; the details are simpler and are omitted. �

Remark 5.6. By standard branching process theory, the extinction probability q is the
unique root in (0, 1) of

q = E qξ =
µR

µ
+

αS

µ

∞∑

k=1

kpkgk−1(q), (5.8)

where gk−1 is given by (5.2). Hence q and the (asymptotic) probability 1−
∏∞

k=1 gk(q)
nI,k of

a large outbreak can be determined to arbitrary precision given the parameters of the model.

Remark 5.7. We have in Theorem 5.3 used a single-type Galton–Watson process, for sim-
plicity. It is perhaps more natural to use a multi-type Galton–Watson process, with types
0, 1, 2, . . . , where an individual of type k has a number of children distributed as Yk and
each child is randomly assigned type ℓ with probability αS(ℓ + 1)pℓ+1/µ + δℓ,0µR/µ, ℓ > 0;
we start with nI,k individuals of type k for each k > 0. The total number of individuals
in each generation, ignoring their types, will form the single-type Galton–Watson process
above, with offspring distribution ξ (starting as explained above). Hence the two different
branching processes have the same extinction probability, which is the product in (5.5).

6. Transfer to the simple random graph: proofs of Theorems 2.7 and 2.10

In this section we consider the simple random graph G. We assume (G1), in addition to
(D1)–(D6).

All results in Theorems 2.6 and 2.9 about convergence in probability, or results holding
w.h.p., immediately transfer from the random multigraph G∗ to the simple graph G by
conditioning on G∗ being simple, since lim infn→∞ P(G∗ is simple) > 0 by assumption (G1)
and [21].

It remains to show Theorem 2.10(ii)(c), and the more precise Theorem 5.3, for G. Again,
the case XI,0 → ∞, when P(T0 < ∞) → 1, is clear. By considering subsequences, it thus
suffices to consider the case XI,0 = O(1), i.e. a bounded number of initially infected half-
edges. Our assumptions allow a number nI,0 of isolated infected vertices, but they do not
affect the edges in the graph or the infections at all, so we may simply delete them and
assume nI,0 = 0. (Since we assume nI/n → αI = 0, the number of isolated infected vertices
o(n) and their deletion will not affect the assumtions.) We may thus assume that there is
a bounded number of initially infected vertices, with uniformly bounded degrees. By again
considering subsequences, we may assume that the numbers nI,k of initially infected vertices
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are constant (i.e., do not depend on n), with only a finite number different from 0. This
assumption implies that the number κ :=

∏∞
k=1 gk(q)

nI,k in Theorem 5.3 is constant, and the
conclusion (5.5) may be written

P(T0 = ∞) → κ. (6.1)

We have shown this for the random multigraph G∗, and we want to show that it holds also
if we condition on G∗ being simple, i.e., that the events {T0 = ∞} and {G∗ is simple} are
asymptotically independent.

We thus continue to work with G∗ and the configuration model. Let W be the number of
loops and pairs of parallel edges in G∗; thus G∗ is simple if and only if W = 0. We write
W =

∑
α∈A Iα, where the index set A = A′∪A′′ with A′ the set of all pairs of two half-edges

at the same vertex and A′′ the set of all pairs of two pairs {ai, aj} and {bi, bj} with ai and bi
distinct half-edges at some vertex i and aj and bj distinct half-edges at some other vertex j;
Iα is the indicator that these half-edges form a loop or a pair of parallel edges, respectively.

We let L be the event that at most log n vertices will be infected. By the definition of
T0, L implies T0 = ∞ (for large n), and by Theorem 5.4(ii), P(T0 = ∞ and not L) = o(1).
Hence L and {T0 = ∞} coincide w.h.p., and it suffices to show that

P(L | W = 0) → κ. (6.2)

We do this by inverting the conditioning and using the method of moments, in the same way
as in the proof of a similar result in [25]. (See in particular the general formulation in [25,
Proposition 7.1]. However, we prefer to give a self-contained proof here.)

First, since we already know P(L) → κ > 0 and lim inf P(W = 0) > 0, (6.2) is equivalent
to

P(L and W = 0) = P(L)P(W = 0) + o(1) (6.3)

and thus to

P(W = 0 | L) = P(W = 0) + o(1). (6.4)

By again considering a subsequence, we may assume that W
d

−→ Ŵ for some random

variable Ŵ , with convergence of all moments, where furthermore the distribution of Ŵ
is determined by its moments (at least among non-negative distributions), see [21] if the

maximum degree max di = o(n1/2) and [22] in general. (Ŵ has a Poisson distribution if
max di = o(n1/2), but not in general, see [22].)

We write A = A1 ∪ A2, where A2 is the set of all α ∈ A that include a half-edge at an
initially infected vertex, and A1 are the others. Correspondingly, we have W = W1 + W2,
where W1 :=

∑
A1

Iα and W2 :=
∑

A2
Iα.

Since the number of initially infected half-edges is O(1), we have, using (2.10) and denoting
the total number of half-edges by N :=

∑
k knk ∼ µn,

EW2 6
O(1)

N − 1
+

O(1)
∑

i d
2
i

(N − 1)(N − 3)
, (6.5)

where the first term on the right-hand side is an upper bound on the number of loops at
infective vertices, and the second term is an upper bound on the number of pairs of parallel
edges coming out of infective vertices. (The probability that a particular half-edge at an
infective vertex joins to vertex i is di/(N − 1), and the probability that another half-edge

at the same infective vertex joins to vertex i is (di − 1)/(N − 3).) Thus W2
p

−→ 0, and
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W1 = W −W2
d

−→ Ŵ . For each m > 1, EWm
1 6 EWm → E Ŵm, so each moment of W1 is

bounded as n → ∞, and thus the convergence W1
d

−→ Ŵ implies moment convergence

EWm
1 → E Ŵm (6.6)

for every m > 1.

We next consider the conditioned variable (W1 | L). We want to show that (W1 | L)
d

−→ Ŵ
by the method of moments, so we fix m > 1 and write

E(Wm
1 | L) =

∑

α1,...,αm∈A1

E(Iα1
· · · Iαm

| L). (6.7)

Consider some α1, . . . , αm ∈ A1. If we condition on Iα1
· · · Iαm

= 1, we have fixed the
pairing of O(1) half-edges, but the remaining half-edges are paired uniformly, so if we remove
the edges given by α1, . . . , αm, we have another instance of the configuration model, say
Ḡ∗. Obviously, our assumptions (D1)–(D6) and (G1) hold for Ḡ∗ too. Furthermore, the
probability that the infection will spread to any vertex involved in α1, . . . , αm before log n
vertices have been infected is O

(
log nmaxi di/n

)
= o(1), since maxi di = O(n1/2) by (G1).

Hence, w.h.p., the extra edges given by α1, . . . , αm will not affect whether L occurs or not.
Consequently, Theorem 5.3 applied to Ḡ∗ shows that

P(L | Iα1
· · · Iαm

= 1) = P(L in Ḡ∗) + o(1) = κ + o(1), (6.8)

uniformly in all α1, . . . , αm ∈ A1 (for a fixed m). (The estimate (6.8) fails if some αi ∈ A2,
for example if α1 is a loop at an initially infected vertex. This is the reason for considering W2

separately.) We invert the conditioning again and obtain, uniformly in all α1, . . . , αm ∈ A1,

E(Iα1
· · · Iαm

| L) =
P(Iα1

· · · Iαm
= 1 and L)

P(L)

=
(κ + o(1))P(Iα1

· · · Iαm
= 1)

κ + o(1)

=
(
1 + o(1)

)
E(Iα1

· · · Iαm
). (6.9)

Summing over all α1, . . . , αm ∈ A1 yields, using (6.6),

E(Wm
1 | L) =

(
1 + o(1)

)
E(Wm

1 ) → E Ŵm. (6.10)

This holds for each m > 1, and thus (W1 | L)
d

−→ Ŵ by the method of moments. Further-

more, W2
p

−→ 0, and thus (W2 | L)
p

−→ 0. Consequently, (W | L) = (W1 +W2 | L)
d

−→ Ŵ .

In particular, P(W = 0 | L) → P(Ŵ = 0). Since also W
d

−→ Ŵ and thus P(W = 0) →

P(Ŵ = 0), the equation (6.4) follows, which, as stated above, implies (6.2) and completes
the proof.

7. No second moment assumption

The main reason for making the assumption (G1) on a bounded second moment of the
degree distribution is that it allows us to study the epidemic on the configuration model
multigraph instead of the uniform simple graph, see Section 6. However, we have used (G1)
also in some parts of the proofs for the multigraph case. We will now show that this is not
necessary, so that, in the multigraph case, the only assumption on the degree distribution
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required is the uniform summability of
∑

k knS,k/n inherent in assumptions (D1)–(D3), see
Remark 2.2. The uniform summability assumption seems indispensible.

In the proof of Theorem 2.6(b), using an identical argument but without assuming (G1),
hI and pI are Lipschitz continuous on [θ∞, θ1] for any θ1 < 1, so that pI is locally Lipschitz

continuous on [θ∞, 1). Hence, if we choose b ∈ (θ∞, 1), then there is a unique solution θ̃t,

t > 0, to the differential equation with initial condition θ̃0 = b, and we may extend θ̃t to a
solution θ̃t : (a,∞) → (θ∞, 1) for some a < 0, where, by choosing |a| maximal, θ̃t → 1 as

t ց a. Note that a > −∞, since pI(1) > 0 and pI is continuous. The translate θt := θ̃t+a

then is a solution to (2.19). Uniqueness is proved similarly: if θt and θ̄t are two solutions
to (2.19), then we may translate them so that the translates θt−a and θ̄t−ā (with a, ā < 0)
have the same value b at 0, with b ∈ (θ∞, 1). By the uniqueness, as long as θ ∈ [θ∞, 1), the
two translates θt−a and θ̄t−ā coincide on the set where they are both less than 1, and, by
continuity, they coincide completely and thus a = ā and θt = θ̄t. The rest of the proof is the
same.

In the proof of Theorem 2.9(ii)(b), we note first that, as in the proof of Theorem 2.6(b) just
given, pI is locally Lipschitz continuous on [θ∞, 1), which implies uniqueness of the solution

to (2.25). Furthermore, as before, we define Â by (4.20) and note that

lim
τ→0

Âτ = Â0 := −

∫ τ̂0

0

dσ

βpI(e−σ)
. (7.1)

If Â0 = −∞, everything is as before. However, if we do not assume (G1), it is possible that

the integral converges and thus Â0 > −∞. In this case, the inverse τ̂ : [Â0,∞) → [0, τ̂∞)

of Â is continuously differentiable on (Â0,∞), and, if we extend it by defining τ̂ (t) = 0 for

t < Â0, then it is continuous on R and satisfies (4.21) for all t 6= Â0. (Recall that pI(1) = 0.)
Since the right-hand side of (4.21) is continuous on R, it follows that τ̂(t) is continuously

differentiable everywhere and that (4.21) is satisfied also at Â0. Thus, again, θt = exp(−τ̂ (t))

satisfies (2.25), although now θt = 1 for t 6 Â0. (In this case, there is a unique solution to
(2.25) for θ0 < 1 but infinitely many solutions for θ0 = 1.) The rest of the proof is the same.

The proof of Theorem 2.9(ii)(d) remains the same if Â0 = −∞. If Â0 > −∞, then the in-

terval [−t1, t1] should be replaced by [t2, t1] with −Â0 < t2 < t1 < ∞. The convergence (4.25)
then follows as before, uniformly on each such [t2, t1]. Furthermore, the same monotonicity

argument as before, now using τ̂ (t2) → 0 as t2 → Â0, shows that (4.25) holds uniformly on
R. The rest is the same as before.

Let us confirm it is indeed possible that Â0 > −∞. By (7.1) and (2.18),

Â0 > −∞ ⇐⇒

∫ τ̂0

0

dσ

pI(e−σ)
< ∞ ⇐⇒

∫ τ̂0

0

dσ

hI(e−σ)
< ∞ ⇐⇒

∫ x0

0

dx

hI(1− x)
< ∞,

(7.2)
for any small positive x0 (x0 < 1 − θ∞). Recall that hI(1) = µI = 0. Thus, (2.13)–(2.15)
imply that, as x → 0, hI(1− x) = hS(1)− hS(1− x) +O(x). It follows easily from (7.2) that

Â0 > −∞ ⇐⇒

∫ x0

0

dx

hS(1)− hS(1− x)
< ∞. (7.3)

Example 7.1. Suppose that pk ∼ k−α−1 as k → ∞, with 1 < α 6 2. (This means that the
asymptotic degree distribution has moments of order < α, but not of order α.) Then (2.12)
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implies that if 1 < α < 2, then h′
S(1−x) ≍ xα−2 as x → 0 and thus hS(1)−hS(1−x) ≍ xα−1

so the integral in (7.3) converges and Â0 > −∞. However, if α = 2, then h′
S(1−x) ≍ | log x|,

so hS(1)− hS(1− x) ≍ x| log x| and Â0 = −∞.

We end this section by noting that, when there is no second moment, then R0 is infinite
(and thus the process is supercritical, for any β and ρ). On the other hand, if (G1) holds,
then R0 is finite, cf. Remark 2.4.

8. The random time shift

In Theorems 2.9(ii) and 2.10(ii), we use a (random) time-shift T0, which can be interpreted
as the time it takes for the epidemic to grow from a small number of initially infected to a
large outbreak.

Suppose for simplicity that
∑∞

k=1 knI,k → ∞, so T0 < ∞ w.h.p. by Theorem 2.9(ii) for
G∗, and by Theorem 2.10(ii) for G. Then, for any δ > 0, (4.24) shows that

T0 > T0 − Aδ
p

−→ −Âδ. (8.1)

Suppose first that (G1) holds. Letting δ → 0, we have −Âδ → ∞, as noted after (4.20); thus

T0
p

−→ ∞.
On the other hand, if we assume that (G1) does not hold (and we thus consider the

multigraph case), the situation is more complicated. It is possible that Â0 = −∞, as seen

in Example 7.1, and then T0
p

−→ ∞ as above. However, if Â0 > −∞, then we obtain only
T0 > |Â0| − ε w.h.p., for every ε > 0. It is possible to give examples showing that in this

case, both T0
p

−→ ∞ and T0
p

−→ |Â0| < ∞ are possible (as well as intermediate cases). We
omit the details.

Appendix A. Time-changed Markov chains

The following lemma justifies the time change in Section 3. A more general result appears
in [39, III. (21.7)] but we include a proof in the simpler setting of Markov chains.

Lemma A.1. Suppose (Yτ )τ>0 is a continuous time Markov chain with finite state space E,
and infinitesimal transition rates (q(i, j))i,j∈E.

Let f : E → (0,∞) be strictly positive and define the strictly increasing process

Aτ =

∫ τ

0

f(Yσ) dσ, τ > 0, (A.1)

and its inverse τ(t), t > 0.
Then the time-changed process (Yτ(t))t>0 is again Markov and has infinitesimal rates

(q(i, j)/f(i))i,j∈E.

Proof. The paths of Y are piecewise constant and right continuous. Let J0 = 0 and Jk+1 =
inf{τ > Jk : Yτ 6= YJk}, k > 0, be the jump times of (Yτ)τ>0. The state space E is finite,
so the process is non-explosive and a.s. Jk → ∞. Also, without loss of generality we may
assume no state is absorbing, i.e. the rate of leaving q(i) := −q(i, i) =

∑
j 6=i q(i, j) > 0 is

strictly positive for each i ∈ E. Thus Jk < ∞ a.s. for each k.
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For notational ease, let Ỹt := Yτ(t), t > 0. Since τ(AJk) = Jk, the jump times of Ỹ are

given by J̃k := AJk , k > 0. It follows that the holding times for Ỹ are

J̃k+1 − J̃k = AJk+1
− AJk

= (Jk+1 − Jk)f(YJk)

= ((Jk+1 − Jk)q(YJk))

(
f(YJk)

q(YJk)

)

= Tk q̃(ỸJ̃k
)−1

k > 0, where Tk = (Jk+1 − Jk)q(YJk) and q̃(i) = q(i)/f(i), i ∈ E. The Markov property
of (Yτ )τ>0 implies the Tk are independent Exp(1) random variables that are also indepen-
dent of the embedded jump chain (YJk)k>0 = (ỸJ̃k

)k>0. The latter has transition kernel

(q(i, j)/q(i))i,j∈E = (q̃(i, j)/q̃(i))i,j∈E, where q̃(i, j) = q(i, j)/f(i), i, j ∈ E. It follows that Ỹt

is a Markov chain with transition rates q̃(i, j). �

Appendix B. Summary of notation

For ease of reference we summarise the main notation used to describe the epidemic. A
subscript of S, I or R always refers to susceptible, infective or recovered, respectively. The
initial conditions are as follows.

nS, nI, nR Number of vertices (of given type).
nS,k, nI,k, nR,k Number of degree k > 0 vertices.
αS, αI, αR Limiting fractions of vertices.
(pk)

∞
0 , λ Limiting degree distribution for a randomly chosen

susceptible and its mean.
µ = µS + µI + µR Limiting mean degree (for any vertex).

The stochastic processes are denoted as follows.

St, It, Rt Number of vertices (of given type) at time t > 0.
St(k), It(k), Rt(k) Number of degree k > 0 vertices.
XS,t, XI,t, XR,t Number of free half-edges.
Xt = XS,t +XI,t +XR,t Total number of half-edges.

Time-changed versions of the above processes are superscripted with a prime and use greek
time indices. In addition we have τ(t) and Aτ , the time change and its inverse. The limiting
trajectories for these processes are denoted as follows.

τ̂(t), Âτ Time change and its inverse.
θt = e−τ̂(t) Parameterisation of time.

vS(θt), Ît, R̂t Fraction of vertices (of given type) at time t > 0.
hS(θt), hI(θt), hR(θt), hX(θt) Number of free half-edges divided by n.
pS(θt) = hS(θt)/hX(θt), Susceptible proportion of free half-edges.
pI(θt) = hI(θt)/hX(θt) Infective proportion of free half-edges.

The following quantities are also important in our analysis.
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θ∞ = limt→∞ θt Root of hI corresponding to the end of the epi-
demic.

τ ∗ Duration of the time-changed epidemic.
τ̂∞ = − ln θ∞ Limiting duration of the time-changed epidemic,

assuming a large outbreak.
s0 ∈ (vS(θ∞), vS(1)) Fraction of susceptibles used in calibration time

T0.
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