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Abstract

We compute an asymptotic expansion in 1/c of the limit in n of the empirical spectral
measure of the adjacency matrix of an Erdős-Rényi random graph with n vertices and
parameter c/n. We present two different methods, one of which is valid for the more
general setting of locally tree-like graphs. The second order in the expansion gives some
information about the edge of the spectrum.
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1 Introduction

It is a consequence of the celebrated result of Wigner [11] that the limit of the empirical
spectral measure of the adjacency matrix of a large Erdős-Rényi random graph with fixed
parameter p is the semi-circle law. This fact remains valid when p is allowed to depend on
the size n of the graph, as long as np→ ∞.

In the diluted regime, i.e. when np converges to a constant c, it has been proved that
the empirical spectral distribution still converges, when properly rescaled, to a probability
distribution µc (see the work of Zakharevich [12]). However, this measure is far from being
well understood. Let us mention two recent breakthroughs: in [6], Bordenave, Lelarge and
Salez computed the mass µc({0}), and more recently, Bordenave Sen and Virag proved in [7]
that µc has a continuous part if and only if c > 1.

In the present paper, we focus on the study of µc for large c and describe how µc differs
from the semi-circle law. More precisely, we compute an asymptotic expansion in 1/c of µc

(see Theorem 1 and 3 for precise statements). The second order in the expansion gives some
information about the edge of the spectrum (see Section 4).

In a famous paper [2], Benjamini and Schramm introduced the so-called notion of local
convergence for sequences of graphs. In this terminology, Erdős-Rényi graphs of parameter
c/n converge locally towards a Galton-Watson tree with Poisson offspring distribution. More
generally, the configuration model introduced by Bollobás [3] gives a generic construction of
random graphs converging locally towards random trees.

Bordenave and Lelarge proved in [5] that, for random graphs converging locally to
random trees, the expectation of the spectral measure of the limiting tree is the limit of the
spectral measures of the random graphs. This allows us to extend the computations we did
for Erdős-Rényi random graphs to any sequence of growing random graphs converging
locally to a random tree.

Our method is based on the computation of the moments of µc and the underlying
combinatorics. An interesting aspect of the present work is that this combinatorics takes a
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very different form depending on whether the computations are made directly on the whole
finite graph — as we do in the special case of Erdős-Rényi random graphs — or on their local
limit.

On the basis of former works of Khorunzhyi, Shcherbina and Vengerovsky [9], and also
Bordenave, Lelarge and Salez [5, 6], it is natural to try to use the resolvent method for our
computations. We show in the appendix that this method faces some serious problems since
it involves, during intermediate computations, quantities that are strongly diverging.

2 Spectral measure of the Erdős-Rényi random graph

Let Xn be the adjacency matrix of the Erdős-Rényi random graph G(n, c/n). It is a symmetric
n× n random matrix having a null diagonal and whose entries above the diagonal are i.i.d.
Bernoulli random variables with parameter c/n. We define the normalised spectral measure
of Xn by

µc
n =

1
n ∑

λ∈Sp(c−1/2Xn)

δλ.

As in the Gaussian Unitary Ensemble, we rescale Xn by c−1/2 so that the variance of off
diagonal entries is asymptotically equal to 1/n . Indeed, if i 6= j:

E[X2
n] =

c
n

.

It is of common knowledge (see e.g. [9, 5, 12]) that

• the sequence (µc
n)n≥ converges weakly to a probability measure µc as n→ ∞.

• when c→ ∞, the measure µc converges to Wigner’s semi-circle law.

Our first result gives an asymptotic expansion of µc as c→ ∞:

Theorem 1. For a measure µ, denote mk(µ) the moment of order k of µ when it exists (i.e. when∫
|x|k|dµ(x)| < ∞). One has, for every k ≥ 0 and as c→ ∞

mk(µ
c) = mk

(
σ +

1
c

σ{1}
)
+ o

(
1
c

)
where σ is the semi-circle law having density

1
2π

√
4− x21|x|<2

and σ{1} is a measure with total mass 0 and density

1
2π

x4 − 4x2 + 2√
4− x2

1|x|<2.
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Proof. Let us compute the moments of µc
n. Let l be an integer,

ml (µ
c
n) = E

[∫
xldµc

n

]
=

1
n

E

[
Tr
(

1√
c

Xn

)l
]
=

1
ncl/2 ∑

1≤j1,...,jl≤n
E [Xn(j1, j2) · · ·Xn(jl, j1)] .

(1)

First, let us prove that odd moments converge to 0 as n goes to infinity. For this purpose,
we notice the useful following fact : in the sum (1), the contribution of all the sequences
j1, . . . , jl where a pair {m, m′} appears an odd number of times among the pairs of the form
{ji, ji+1} goes to 0 as n goes to infinity.

Indeed, since E[Xn(i, j)l] = c
n for all l, i and j, if we fix a sequence j1, . . . , jl, then

E [Xn(j1, j2) · · ·Xn(jl, j1)] =
( c

n

)a(j1,...,jl)

where a(j1, . . . , jl) denotes the number of different pairs of the form {ji, ji+1}. Let s(j1, . . . , jl)
be the number of distinct integers in the sequence j1, . . . , jl. The contribution in (1) of all
sequences j1, . . . , jl such that a(j1, . . . , jl) = α and such that s(j1, . . . , jl) = ζ is then smaller
than 1

ncl/2

( c
n
)α nζ . A non null asymptotic contribution arise only for ζ = α + 1.

Note now that a sequence j1, . . . , jl defines a connected graph whose vertex set is {j1, . . . , jl}
and whose edges are the pairs {ji, ji+1}. This graph has s(j1, . . . , jl) vertices and a(j1, . . . , jl)
edges and is therefore a tree when s = a + 1.

The sequence j1, . . . , jl, j1 is then a closed path of length l on this tree and must therefore
be of even length.

From now on, we consider even moments so that l = 2k. Let us take a closer look at the
sequences j1, . . . , j2k such that a(j1, . . . , j2k) = α and s(j1, . . . , j2k) = α + 1 for fixed α. When n
goes to infinity, their contribution is equal to cα−k multiplied by the number of closed paths
of length 2k on trees with α edges, with the constraints that a path starts and ends at the root
of the tree and visits every vertex.

Based on this observation, we can study the asymptotic expansion for large c of the
asymptotic (in n) spectral measure of Xn via its moments. The mean value in this expansion
comes from the special case α = k. Each sequence j1, . . . , j2k, j1 such that a(j1, . . . , j2k) = k,
s(j1, . . . , j2k) = k+ 1 is then the countour function of a tree with k edges. The total contribution
of these sequences is therefore the k-th Catalan number Cat(k). This explains that when
c goes to infinity, the asymptotic (in n) spectral measure of the random graph is close to
Wigner’s semi-circle law.

The next term in the asymptotic expansion is of order 1/c and comes from the case
α = k− 1. Whereas in the previous case each edge of the tree was visited exactly twice, in this
case, exactly one edge is visited four times and all the other edges are visited twice. Therefore
we have to enumerate sequences of the form

S = j1S1i jS2 j iS3i jS4 j iS5 j1

such that

• the sequences S1, . . . , S5 have no common term and do not contain any of the three
integers i or j. In addition, the sequences S2, S3 and S4 do not contain j1

• the sequences j1S1iS5 j1, jS2 j, iS3i and jS4 j are the contour functions of trees with
respectively p1, p2, p3 and p4 edges satisfying p1 + p2 + p3 + p4 = k− 2;
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Figure 1: Labeled tree with contour S .

up to the specific values of the integers appearing in the whole sequence.
The sequence j1S1iS5 j1 corresponds to a rooted tree with p1 edges and a marked corner

(adjacent to the vertex i) where the trees corresponding to the three other sequences are
inserted (see Figure 1 for an illustration). Note that when p1 = 0, the sequence S boils down
to i jS2 j iS3i jS4 j i.

There are (2p1 + 1)Cat(p1) such trees with a marked corner. The term of order 1/c in the
asymptotic expansion of the moment m2k is then:

m{1}2k = ∑
p1+···+p4=k−2

(2p1 + 1)Cat(p1) · · ·Cat(p4).

The generating function S{1} of the sequence
(

m{1}2k

)
k≥0

is given by

S{1}(x) = ∑
k≥0

m{1}2k xk = ∑
k≥0

x2 ∑
p1+···+p4=k−2

(2p1 + 1)Cat(p1)xp1 · · ·Cat(p4)xp4

= x2
(

2xT′(x)T(x)3 + T(x)4
)

where T is the generating function of Catalan numbers: T(x) = 1−
√

1−4x
2x for |x| < 1/4.

We show now that the sequence
(

m{0}l + 1
c m{1}l

)
l≥0

is the sequence of the moments of

the probability measure announced in the theorem. A formal proof would consist in the
computation of the moments of this measure, but we will rather show how to compute this
density from the moments via the Stieljes transform. Define

H{1}(z) = 1
z

S{1}
(

1
z2

)
.

One has

H{1}(z) = 2
z7 T′

(
1
z2

)
T
(

1
z2

)3

+
1
z5 T

(
1
z2

)4

= −H′(z)H(z)3

whereH(z) = 1
z T
(

1
z2

)
= 1

2

(
z−
√

z2 − 4
)

is the Stieljes transform of the semi-circle law σ .
Therefore

H{1}(z) = 1
16

(
z−
√

z2 − 4
)4

√
z2 − 4

. (2)
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This corresponds to the Stieljes transform of a signed measure σ{1} with null total mass and
having density

lim
ε→0
− 1

π
Im
(
H{1}(x + iε)

)
=

1
2π

x4 − 4x2 + 2√
4− x2

1|x|<2.

3 Spectral measure of Unimodular Galton Watson trees

3.1 Asymptotic expansion of the spectral measure

Erdős-Rényi random graphs with parameter c/n are known to converge locally towards
Galton Watson trees with a Poisson reproduction law. The aim of this section is to extend
our computation to the so-called "locally tree-like graphs", whose local limit are Unimodular
Galton Watson trees [1]. The classical setting providing such limits is the configuration model
we now present (see [4] Section 2.4 for details).

Let p(c) = (pk(c))k≥0 be a probability measure on N with finite mean c. We can construct
a random graph with n vertices associated to p(c) by the following procedure. In a first step,
we choose a sequence (di)i=1...n of i.i.d. random variables with distribution p(c). In a second
step, for every i between 1 and n, we make di half-edges start from vertex i. Assuming the
sum of the di’s is even we can connect the half edges by pairs and obtain a graph (possibly
with loops and multiple edges). If the sum of the di’s is not even, we increase the degree dn
by 1 as it will not change the local limits of the graphs. In a third step, we choose a graph
uniformly at random among all the graphs obtained by connecting the half edges by pairs. In
order to obtain a simple graph we erase self-loops and merge multiple edges. We denote by
Gn(p(c)) the random graph obtained by this device.

Viewed from a uniformly chosen vertex ρ, these graphs are known to converge locally
as their number of vertices grows to infinity towards the Unimodular Galton Watson tree
UGW(p(c)) defined as follows. The root of UGW(p(c)) has a random number of children
distributed according to p(c). Other vertices have independent numbers of children dis-
tributed according to the size biased version of p(c), namely the probability q(c) with weight
sequence qk(c) = (k + 1)pk+1(c)/c.

As we show in the following (see [5] for details), the local limit UGW(p(c)) contains all
the material to identify the limiting spectral measure of the initial graphs Gn(p(c)). Denote
the adjacency matrix of Gn(p(c)) by An(p(c)) and consider the normalised spectral measures
of Gn(p(c)):

µn(p(c)) =
1
n ∑

λ∈Sp(c−1/2 An(p(c)))

δλ.
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One has

E [mk(µn(p(c)))]

= E
[∫

xkdµn(p(c))
]

=
1
n

E

[
Tr
(

1√
c

An(p(c))
)k
]

=
1

ck/2 E
[

1
n
× number of loops of length k in Gn(p(c))

]
=

1
ck/2 E [number of loops started at ρ and of length k in Gn(p(c))]

−→
n→∞

1
ck/2 E [number of loops started at the root and of length k in UGW(p(c))] . (3)

If T is a random rooted tree (finite or infinite), a loop inside T is of even length, therefore we
define, for every k ≥ 0,

Lk(T) = E [number of loops started at the root and of length 2k in T]

so that (3) can be written as

E [m2k+1(µn(p(c)))] −→n→∞
0

E [m2k(µn(p(c)))] −→n→∞

1
ck Lk (UGW(p(c))) . (4)

Up to the factor c−k, the right hand side of (4) is the 2k-th moment of the spectral measure
µ (UGW(p(c))) of UGW(p(c)) defined in [5] (this paper also states that p(c) must have a
finite variance for this measure to be defined and characterised by its moments, which will
be the case in the following). As in the previous section, we are interested in the asymptotic
expansion of this measure as c→ ∞. In the sequel, we assume that the distribution p(c) is
concentrated around its mean c. More precisely, we make the following assumption on the
factorial moments of p(c): there exists α > 0 and a function f : N→ R such that for every
k ∈N one has, when c→ ∞

FMk(p(c))
ck :=

Ep(c) [X(X− 1) . . . (X− k + 1)]

ck = 1 +
f (k)
cα

+ o
(

1
cα

)
. (5)

Note that this condition implies that p(c) has finite moments of all orders and that f (0) =
f (1) = 0.

Theorem 2. Let (p(c))c>0 = ((pk(c))k≥0)c>0 be a family of probability measures on N with finite
mean c satisfying (5). One has, for every k ≥ 0 and as c→ ∞

mk(µ(p(c))) = mk

(
σ +

1
cα

σ
{1}
f +

1
c

σ{1}
)
+ o

(
1

c1∧α

)
where σ and σ{1} are defined in Theorem 1 and σ

{1}
f is a measure of total mass 0 whose moments

generating function is given by

2F(xT(x))
1− xT(x)2

where T is the generating series of Catalan numbers and F(x) = ∑k≥0 f (k)xk.
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1 2 3 n

12 l

L(0) L(0) L(0)

L(0)

=

∅ ∅

Figure 2: Illustration of (6) satisfied by L(0)
k (UGW(p(c))). Numbers in gray

next to vertices count the children of the root, while numbers in black give the
order of appearance of first generation vertices in the loop.

Proof. Let us focus on the right hand side of (4). As with Erdős-Rényi random graphs, the
key to obtain an asymptotic expansion of c−kLk (UGW(p(c)) when c→ ∞ resides in the fact
that the contribution of loops with repeated edges is of smaller order than the contribution of
loops with no repeated edges. The notion of loops with repeated edges will be instrumental
in the following, therefore we introduce the following notation.

Definition 1. Given a rooted tree, we denote

• by 0-loops the loops started at the root and visiting each edge of the tree either twice (a first time
from the root and a second time towards the root) or not at all;

• by 1-loops the loops started at the root and visiting each edge of the tree either twice (a first time
from the root and a second time towards the root) or not at all with the exception of one edge
visited four times.

Furthermore, if T is a random tree, we denote by L(0)
k (T) the expected number of 0-loops in T of length

2k and L(1)
k (T) the expected number of 1-loops in T of length 2k

Let us start by studying L(0)
k (UGW(p(c))). A 0-loop can be decomposed into a sequence

of visits of l ∈ {1, . . . , k} distinct edges joining the root to a first generation vertex, each of
these visits being followed by a 0-loop in the subtree of the descendants of the associated first
generation vertex. When T is the tree UGW (p(c))), the root has n children with probability
pn(c) and the subtrees of the descendants of these n children are independant Galton Watson
trees with reproduction law q(c) denoted GW (q(c)). See Figure 2 for an illustration. The
choice of a sequence of l distinct first generation vertices among the n children of the root
gives a factor n(n− 1) . . . (n− l + 1) This yields the following recursion equation for k > 0

c−kL(0)
k (UGW(p(c)))

=
k

∑
l=1

c−l

(
∑
n≥l

n(n− 1) · · · (n− l + 1)pn(c)

)
× ∑

k1+···+kl=k−l
c−k1 L(0)

k1
(GW(q(c)))× · · · × c−kl L(0)

kl
(GW(q(c)))

=
k

∑
l=1

FMl(p(c))
cl ∑

k1+···+kl=k−l
c−k1 L(0)

k1
(GW(q(c)))× · · · × c−kl L(0)

kl
(GW(q(c))) . (6)
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1 2 3 n

l2 1

L(1) L(0) L(0)
L(1)

=

∅ ∅

1 2 3 n

12 l

L(0) L(0)

∅

4 3

L(0)

2L(0)

+
24 5

Figure 3: Illustration of (8) satisfied by L(1)
k (UGW(p(c))). Numbers in gray

next to vertices count the children of the root, while numbers in black give the
order of appearance of first generation vertices in the loop. The two edges in fat
are the same edge of the tree : it is the edge visited four times by the loop.

Note that in the above equation, the factors c−k play no combinatorial role and can be dropped
resulting in a recursion relation for the Lk’s. However, we keep them in the formula since we
have to deal with the moments of the spectral measure c−kLk. Similarly

c−kL(0)
k (GW(q(c)))

=
k

∑
l=1

FMl(q(c))
cl ∑

k1+···+kl=k−l
c−k1 L(0)

k1
(GW(q(c)))× · · · × c−kl L(0)

kl
(GW(q(c)))

=
k

∑
l=1

FMl+1(p(c))
cl+1 ∑

k1+···+kl=k−l
c−k1 L(0)

k1
(GW(q(c)))× · · · × c−kl L(0)

kl
(GW(q(c))) . (7)

Our aim in this section is to provide an asymptotic expansion in c of the moments
c−kLk (UGW(p(c))) with a precision of order 1/c1∧α. A first step will be the asymptotic
expansion of c−kL(0)

k (UGW(p(c))) derived later, but 1-loops have a contribution of order
1/c. Therefore, a recursion equation analogous to (6) for 1-loops is needed.

Denoting by 2L(0)
k (T) the expectation of the number of disjoint and ordered pairs of 0-loops

of total length 2k in a random tree T, we have

c−kL(1)
k (UGW(p(c)))

=
k−2

∑
l=1

FMl(p(c))
cl l

k−l

∑
k′=2

c−k′L(1)
k′ (GW(q(c))) ∑

k1+···+kl−1
=k−k′−l

l−1

∏
j=1

c−kj L(0)
kj

(GW(q(c)))

+
k−1

∑
l=1

FMl(p(c))
cl+1

l(l + 1)
2

k−(l+1)

∑
k′=0

c−k′ 2L(0)
k′ (GW(q(c))) ∑

k1+···+kl−1
=k−k′−l−1

l−1

∏
j=1

c−kj L(0)
kj

(GW(q(c))) .

(8)

The first term corresponds to loops with an edge repeated four times in the upper generations.
As before, l distinct vertices are chosen among the children of the root (leading to the factor
FMl(p(c))). The subtree issued from one of them contains a 1-loop whereas the subtrees
issued from the l − 1 other vertices contain 0-loops. The choice of the vertex followed by the
1-loop induces the additional factor l.

The second term deals with loops where the edge repeated four times connects the root
to one of its children. Recall that a loop visits an edge connecting the root twice before it

8



can visit another edge connecting the root. Among the l chosen edges connecting the root,
l − 1 will be repeated only twice (from the root then towards it) and the last one will be
repeated four times, giving a total of l + 1 visits of these l edges both ways. There are now
(l+1

2 ) choices for the ranks of the visits of the edge repeated four times. Once these 2 ranks are
fixed, and when the root has n children, there are n(n− 1) · · · (n− l + 1) choices for these
edges giving the factor FMl(p(c))l(l + 1)/2. The remaining of the loop then consists on the
one hand of 0-loops lying in the subtrees issued from the l− 1 first generation vertices visited
exactly twice and on the other hand of two 0-loops lying in the subtree issued from the first
generation vertex visited four times, these two 0-loops being disjoint (exception made of their
starting point) leading to the factor 2L(0)

k′ (GW(q(c)). See Figure 3 for an illustration. We turn
now to the recursion relation satisfied by this term:

c−k′ 2L(0)
k′ (GW(q(c))) =

k′

∑
l1+l2=0

FMl1+l2+1(p(c))
cl1+l2+1 ∑

k1+···+kl1+l2
=k′−l1−l2

l1+l2

∏
j=1

c−kj L(0)
kj

(GW(q(c))) . (9)

In the above equation l1 and l2 represent the respective number of first generation vertices
visited by both loops. If the root has n children, there are n(n− 1) · · · (n− l1 + 1) possible
choices for these vertices and their order of appearance in the first loop. There are then
(n− l1) · · · (n− l1 − l2 + 1) choices for the vertices visited by the second loop. This leads to
the term FMl1+l2(q(c)) = FMl1+l2+1(p(c))/c.

Finally, we need the following recursion equation for L(1)
k (GW(q(c)) obtained in a similar

way than (8), the only change residing in the factorial moments which are now related to q
instead of p resulting in a shift from l to l + 1 in these terms:

c−kL(1)
k (GW(q(c)))

=
k−2

∑
l=1

FMl+1(p(c))
cl+1 l

k−l

∑
k′=2

c−k′L(1)
k′ (GW(q(c))) ∑

k1+···+kl−1
=k−k′−l

l−1

∏
j=1

c−kj L(0)
kj

(GW(q(c)))

+
k−1

∑
l=1

FMl+1(p(c))
cl+2

l(l + 1)
2

k−l−1

∑
k′=0

c−k′ 2L(0)
k′ (GW(q(c))) ∑

k1+···+kl−1
=k−k′−l−1

l−1

∏
j=1

c−kj L(0)
kj

(GW(q(c))) .

(10)

Recall that our aim is to compute the asymptotic expansion

c−kLk(UGW(p(c))) =: ak +
1

c1∧α
bk + o

(
1

c1∧α

)
. (11)

For that, we will need to compute the asymptotic expansions

c−kL(0)
k (UGW(p(c))) =: a(0)k +

1
cα

b(0)k + o
(

1
cα

)
and

c−kL(1)
k (UGW(p(c))) =:

1
c

b(1)k + o
(

1
c

)
.

9



Indeed, one can see that c−kL(1)
k (UGW(p(c))) is of order 1/c from equation (8): the second

term in the right hand side of (8) is of order 1/c because of the factor FMl(p(c))/cl+1 and
the first term is a finite sum of terms of the sequence c−k′L(1)

k′ (GW(q(c))). In turn, one can
prove that these terms are of order 1/c by induction from equation (10) due again to the
presence of the term FMl+1(p(c))/cl+2. The same line of reasoning allows to prove that loops
with more repetitions than 1-loops will have a contribution of order 1/c2 because of a factor
FMl(p(c))/cl+2 in their recursion relation.

Identifying the main terms in (6), we get that the sequence
(

a(0)k

)
k≥0

satisfies the recursion

relation of Catalan numbers:

a(0)k =
k

∑
l=1

∑
k1+···+kl=k−l

a(0)k1
. . . a(0)kl

for k ≥ 1 and a(0)0 = 1. Therefore, for every k ≥ 0, one has a(0)k = Cat(k).
Since equations (6) and (8) need equations (7),(10) and (9) to form a closed system of

recursions, we introduce similarly the asymptotic expansions :

c−kL(0)
k (GW(q(c))) =: Cat(k) +

1
cα

b̃(0)k + o
(

1
cα

)
;

c−kL(1)
k (GW(q(c))) =:

1
c

b̃(1)k + o
(

1
c

)
;

c−k 2L(0)
k (GW(q(c))) =: 2ã(0)k + o (1) .

Now, let us compute the respective generating functions B(0), B̃(0), B(1), B̃(1) and 2Ã(0) of
the numbers b(0)k , b̃(0)k , b(1)k , b̃(1)k and 2ã(0)k . From equations (7) and (5), we get

b̃(0)k =
k

∑
l=1

f (l + 1) ∑
k1+···+kl
=k−l

Cat(k1) . . . Cat(kl) +
k

∑
l=1

l
k−l

∑
k′=0

b̃(0)k′ ∑
k1+···+kl−1
=k−k′−l

Cat(k1) . . . Cat(kl−1).

This yields

B̃(0)(x) = ∑
l≥1

f (l + 1)xl (T(x))l + ∑
l≥1

lxl B̃(0)(x) (T(x))l−1

=
1

xT(x) ∑
l≥2

f (l) (xT(x))l +
xB̃(0)(x)

(1− xT(x))2

=
F (xT(x))

xT(x)
+ xB̃(0)(x) (T(x))2

where F is the generating function F(x) = ∑l≥2 f (l)xl. Hence

B̃(0)(x) =
F (xT(x))

xT(x) (1− xT(x)2)
.

Similarly

B(0)(x) = ∑
l≥1

f (l)xl (T(x))l + ∑
l≥1

lxl B̃(0)(x) (T(x))l−1

= F (xT(x)) + xB̃(0)(x)T(x)2

10



leading to

B(0)(x) =
2F(xT(x))
1− xT(x)2 .

From equation (9), we get

2ã(0)k =
k

∑
l1+l2=0

∑
k1+···+kl1+l2

=k−l1−l2

Cat(k1) . . . Cat(kl1+l2)

leading to

2Ã(0)(x) = ∑
l1+l2≥0

xl1+l2 T(x)l1+l2 =
1

(1− xT(x))2 = T(x)2.

We now compute B̃(1) based on the following equation obtained from (10)

b̃(1)k =
k−2

∑
l=1

l
k−l

∑
k′=2

b̃(1)k′ ∑
k1+···+kl−1
=k−k′−l

Cat(k1) . . . Cat(kl−1)

+
k−1

∑
l=1

l(l + 1)
2

k−(l+1)

∑
k′=0

2ã(0)k′ ∑
k1+···+kl−1
=k−k′−l−1

Cat(k1) . . . Cat(kl−1)

leading to

B̃(1)(x) = ∑
l≥1

lxl B̃(1)(x)T(x)l−1 + ∑
l≥1

l(l + 1)
2

xl+1 2Ã(0)(x)T(x)l−1

= xB̃(1)(x)T(x)2 + ∑
l≥1

l(l + 1)
2

(xT(x))l+1

= xB̃(1)(x)T(x)2 + (xT(x))2 ∑
l≥0

l(l − 1)
2

(xT(x))l−2

= xB̃(1)(x)T(x)2 + (xT(x))2 1
(1− xT(x))3

= xB̃(1)(x)T(x)2 + x2T(x)5.

Therefore

B̃(1)(x) =
x2T(x)5

1− xT(x)2 .

Similarly, we compute B(1) from equation (8):

B(1)(x) = ∑
l≥1

lxl B̃(1)(x)T(x)l−1 + ∑
l≥1

l(l + 1)
2

xl+1 2Ã(0)(x)T(x)l−1

= xB̃(1)(x)T(x)2 + x2T(x)5 =
x2T(x)5

1− xT(x)2

11



(note that B(1) = B̃(1) !).
This gives the theorem once we have identified B(1) with the moment generating function

of the measure σ{1}. Recall the following properties of the Hilbert transform H of the
semi-circle law:

H(z) =
1
z

T
(

1
z2

)
=

1
2

(
z−

√
z2 − 4

)
leading to

1−H(z)2 =
√

z2 − 4×H(z).

This gives

H(1)(z) :=
1
z

B(1)
(

1
z2

)
=
H(z)5

1−H(z)2 =
H(z)4
√

z2 − 4

which is the Hilbert transform of σ{1} computed in (2).

3.2 Applications to Erdős-Rényi and regular random graphs

For Erdős-Rényi random graphs, f (k) = 0 for every k, therefore F = 0 and Theorem 2 directly
gives Theorem 1.

For a c-regular random graph, which converges locally towards a c regular random tree,
namely UGW(δc):

FMk(δc)

ck =
c(c− 1) · · · (c− k + 1)

ck = 1− k(k− 1)
2c

+ o
(

1
c

)
so that f (k) = −k(k− 1)/2 for all l ≥ 0 and

F(x) = − x2

(1− x)3 .

Therefore

F(xT(x)) = −x2T(x)5

and σ
{1}
f = −2σ{1} and the perturbation of order 1/c is the exact opposite as for Erdős-Rényi

random graphs.
Note that this last density can be obtained from the Kesten Mc Kay formula [8, 10]:

µ (UGW(δc)) (dx) =
c

2π

√
4(c− 1)− x2

c2 − x2 1{|x|<2
√

c−1}(x) dx.

More generally, one can consider the family p(c) corresponding to the laws of random
variables of the form c + c1− α

2 Y(c) such that E
[
Y(c)

]
= 0, E

[
(Y(c))2

]
→ β as c → ∞ and

all other moments of the Y(c)’s stay bounded with c. This example contains regular graphs
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(with Y(c) = 0) and Erdős-Rényi random graphs (with α = β = 1 and Y(c) converging to a
Gaussian random variable as c→ ∞). In this setting,

FMk(p(c))
ck = 1 + β

k(k− 1)
2

1
cα
− k(k− 1)

2
1
c
+ o

(
1

c1∧α

)
and the asymptotic expansion is given by

mk(µ(p(c))) = mk(σ) +
1
cα

mk

(
2βσ{1}

)
− 1

c
mk

(
σ{1}

)
+ o

(
1

c1∧α

)
.

4 Higher orders and edge of the spectrum

Proposition 2. The moments of the limiting spectral measure µc of the Erdős-Rényi random graph
have the following asymtotic expansion in c:

mk(µ
c) = mk

(
σ +

1
c

σ{1}
)
+

1
c2 dk + o

(
1
c2

)
where the generating series of the numbers dk is given by

D(x) =
x3T(x)7

(1− xT(x)2)3

(
1 + 6xT(x)2 − 10x2T(x)4 + 4x3T(x)6

)
.

Proof. Les us denote by P(c) the Poisson law with parameter c. We can write

mk(µ
c) = c−kLk(UGW(P(c))) = c−kLk(GW(P(c))) = ak +

1
c

bk +
1
c2 dk + o

(
1
c2

)
. (12)

The numbers ak and bk were computed in Section 2. The loops contributing to dk are the loops
with two repetitions defined below.

Definition 3. Given a rooted tree, we denote

• by 2-loops the loops started at the root and visiting each edge of the tree either twice (a first time
from the root and a second time towards the root) or not at all with the exception of one edge
visited six times

• by (1, 1)-loops the loops started at the root and visiting each edge of the tree either twice (a first
time from the root and a second time towards the root) or not at all with the exception of two
distinct edges visited four times each.

Furthermore, if T is a random tree, we denote by L(2)
k (T) the expected number of 2-loops in T of length

2k and L(1,1)
k (T) the expected number of (1, 1)-loops in T of length 2k.

Let us first focus on 2-loops. They satisfy the following recursion relation:

c−kL(2)
k (GW(P(c)))

=
k−3

∑
l=1

FMl(P(c))
cl l

k−l

∑
k′=3

c−k′L(2)
k′ (GW(P(c))) ∑

k1+···+kl−1
=k−k′−l

l−1

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

+
k−1

∑
l=1

FMl(P(c))
cl+1

(
l + 2

3

) k−(l+2)

∑
k′=0

c−k′ 3L(0)
k′ (GW(P(c))) ∑

k1+···+kl−1
=k−k′−l−2

l−1

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

(13)
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where 3L(0)
k′ (T) denotes the expectation of the number of disjoint and ordered triplets of

0-loops started of total length 2k in a random tree T. The justification is pretty similar as for
relation (8).

We introduce the following notations for the asymptotic expansions :

c−kL(2)
k (GW(P(c))) = 1

c2 d(2)k + o
(

1
c2

)
,

c−k 3L(0)
k (GW(P(c))) = 3a(0)k + o(1),

and denote by D(2) and 3A(0) the respective generating series of the numbers d(2)k and 3a(0)k .

The expression of c−k 3L(0)
k (GW(P(c))) in terms of numbers c−kL(0)

k (GW(P(c))) is simi-
lar to equation (9) and induces 3A(0)(x) = T(x)3. Equation (13) gives

D(2)(x) = D(2)(x)xT(x)2 + ∑
l≥1

(
l + 2

3

)
xl+2T(x)3T(x)l−1

= D(2)(x)xT(x)2 + (xT(x))3T(x)4.

Therefore

D(2)(x) =
x3T(x)7

1− xT(x)2 .

We now have to deal with (1, 1)-loops. They satisfy the following recursion relation

c−kL(1,1)
k (GW(P(c)))

=
k−4

∑
l=1

FMl(P(c))
cl l

k−l

∑
k′=4

c−k′L(1,1)
k′ (GW(P(c))) ∑

k1+···+kl−1
=k−k′−l

l−1

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

+
k−4

∑
l=1

FMl(P(c))
cl

(
l
2

) k−l

∑
k′=4

c−k′L(1)
k′ (GW(P(c)))

k−k′−l

∑
k′′=4

c−k′′L(1)
k′ (GW(P(c)))

× ∑
k1+···+kl−2
=k−k′−k′′−l

l−2

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

+
k−3

∑
l=1

FMl(P(c))
cl+1

(
l + 1

2

) k−(l+1)

∑
k′=2

c−k′ 2L(1)
k′ (GW(P(c)))

× ∑
k1+···+kl−1
=k−k′−l−1

l−1

∏
j=1

c−kj L(0)
kj

(GW(P(c)))
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+
k−2

∑
l=1

FMl(P(c))
cl+1

(
l + 1

2

) k−l−1

∑
k′=0

c−k′ 2L(0)
k′ (GW(P(c)))

× (l − 1)
k−l−1−k′

∑
k′′=2

c−k′′ L(1)
k′′ (GW(P(c))) ∑

k1+···+kl−2
=k−k′−k′′−l−1

l−2

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

+
k−4

∑
l=2

FMl(P(c))
cl+2

(
l + 2

4

)(
4
2

) k−(l+2)

∑
k′=0

c−k′ 2L(0)
k′ (GW(P(c)))

×
k−k′−(l+2)

∑
k′′=0

c−k′′ 2L(0)
k′′ (GW(P(c))) ∑

k1+···+kl−2
=k−k′−k′′−l−2

l−2

∏
j=1

c−kj L(0)
kj

(GW(P(c))) .

(14)

where 2L(1)
k′ (T) denotes the expectation of the number of disjoint and ordered pairs loops of

total length 2k in a random tree T, with one of the loops being a 1-loop and the other being a
0-loop.

The two first terms correspond to loops with repeated egdes only in the upper generations.
Such loops visit l distinct vertices among the children of the root (leading to the factor
FMl(P(c))). In the first term, the subtree issued from one of them contains a (1, 1)-loop
whereas the subtrees issued from the l − 1 other vertices contain 0-loops. In the second term,
two of the subtrees issued from the l vertices contain a 1-loop whereas the subtrees issued
from the l − 2 other vertices contain 0-loops.

The third and fourth terms deal with loops where one edge repeated four times connects
the root to one of its children. Recall that a loop visits an edge connecting the root twice
before it can visit another edge connecting the root. Among the l chosen edges connecting
the root, l − 1 will be repeated only twice (from the root then towards it) and the last one will
be repeated four times, giving a total of l + 1 visits of these l edges both ways. There are now
(l+1

2 ) choices for the ranks of the visits of the edge repeated four times. Once these 2 ranks are
fixed, and when the root has n children, there are n(n− 1) · · · (n− l + 1) choices for these
edges and l finally giving the factor FMl(P(c))l(l + 1)/2. In the third term, the remaining of
the loop consists on the one hand of 0-loops lying in the subtrees issued from the l − 1 first
generation vertices visited exactly twice and on the other hand of one 1-loop together with a
disjoint 0-loop lying in the subtree issued from the first generation vertex visited four times,
leading to the factor 2L(1)

k′ (GW(P(c)). In the fourth term, the remaining of the loop consists
on the one hand of a 1-loop lying in one of the subtrees issued from the l − 1 first generation
vertices visited exactly twice, the rest of these subtrees being visited by 0-loops, and on the
other hand of a pair of disjoint 0-loops lying in the subtree issued from the first generation
vertex visited four times.

The last term deals with loops where the two edges repeated four times connect the root
to one of its children.
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We turn now to the recursion relation satisfied by c−k 2L(1)
k (GW(P(c))):

c−k 2L(1)
k (GW(P(c)))

= 2
k

∑
l1=1

k−l1

∑
l2=0

FMl1+l2(P(c))
cl1+l2

l1
k−l1−l2

∑
k′=1

c−k′ L(1)
k′ (GW(P(c)))

× ∑
k1+···+kl1+l2−1

=k−l1−l2−k′

l1+l2−1

∏
j=1

c−kj L(0)
kj

(GW(P(c)))

+ 2
k

∑
l1=1

k−l1

∑
l2=0

FMl1+l2(P(c))
cl1+l2

(
l1 + 1

2

) k−l1−l2−1

∑
k′=0

c−k′ 2L(0)
k′ (GW(P(c)))

× ∑
k1+···+kl1+l2−1

=k−l1−l2−k′−1

l1+l2−1

∏
j=1

c−kj L(0)
kj

(GW(P(c))) . (15)

As in equation (9), the parameters l1 and l2 represent the respective number of first generation
vertices visited by both loops. If the root has n children, there are n(n− 1) · · · (n− l1 + 1)
possible choices for these vertices and their order of appearance in the first loop. There are
then (n − l1) · · · (n − l1 − l2 + 1) choices for the vertices visited by the second loop. This
leads to the term FMl1+l2(P(c)).

The first term on the right hand side of the equation verified by 2L(1)
k deals with pairs

of loops where the repeated edge lies in the upper generations of the tree. In this case, if
the 1-loop visits l1 first generation vertices, exactly one of the subtrees issued from these
vertices is visited by a 1-loop (hence the multiplicative factor l1), and the l1 + l2− 1 remaining
subtrees are visited by 0-loops. The factor 2 comes from the fact that the pair of loops (1-loop
and 0-loop) is ordered.

Finally, the second term on the right hand side of the equation verified by 2L(1)
k deals with

pairs of loops where the repeated edge connects a first generation vertex to the root. Consider
such a pair of loops. As in equation (9), if the 1-loop visits l1 vertices in the first generation of
a tree, there are (l+1

2 ) choices for the ranks of the visits of the edge repeated four times. The
remaining of the loops then consists on the one hand of 0-loops lying in the subtrees issued
from the l1 + l2 − 1 first generation vertices visited exactly twice and on the other hand of
two 0-loops lying in the subtree issued from the first generation vertex visited four times,
these two 0-loops being disjoint (exception made of their starting point). Here again, the
factor 2 comes from the fact that the pair of loops (1-loop and 0-loop) is ordered.

Let us introduce the following asymptotic expansions:

c−kL(1,1)
k (GW(P(c))) = 1

c2 d(1,1)
k + o

(
1
c2

)
;

c−k 2L(1)
k (GW(P(c))) = 2b(1)k + o(1)

and denote by 2B(1)(x) the generating series of the numbers 2b(1)k . Using the fact that
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FMk(P(c)) = ck for every k > 0, the equation (15) yields

2B(1)(x) = 2B(1)(x)

(
∑

l1≥1
l1xl1 T(x)l1−1

)(
∑

l2≥0
(xT(x))l2

)

+ 2 2Ã(0)(x)

(
∑

l1≥1

l1(l1 + 1)
2

xl1+1T(x)l1−1

)(
∑

l2≥0
(xT(x))l2

)

=
2x3T(x)8

1− xT(x)2 + 2x2T(x)6 =
2x2T(x)6

1− xT(x)2 .

In addition, If we denote by D(1,1) the generating series of the numbers d(1,1)
k , the equation

(14) yields

D(1,1)(x)

= D(1,1)(x)xT(x)2 +
(

B(1)(x)
)2

∑
l≥0

l(l − 1)
2

xlT(x)l−2

+ 2B(1)(x) ∑
l≥0

l(l + 1)
2

xl+1T(x)l−1 +
(

2Ã(0)(x)
)2

∑
l≥2

(
l + 2

4

)(
4
2

)
xl+2T(x)l−2

+
2Ã(0)(x)B̃(1)(x) ∑

l≥1

(l + 1)l(l − 1)
2

xl+1T(x)l−1

= D(1,1)(x)xT(x)2 +

(
x2T(x)5

1− xT(x)2

)2

x2T(x)3 +
2x2T(x)6

1− xT(x)2 x2T(x)3

+ 6x4T(x)9 + 3
x5T(x)11

1− xT(x)2

=
x4T(x)9

(1− xT(x)2)3

(
8− 11xT(x)2 + 4x2T(x)4

)
.

Finally, the generating series of the term of the second order of the moments of Erdős-
Rényi spectral measure is given by :

D(x) = D(2)(x) + D(1,1)(x) =
x3T(x)7

(1− xT(x)2)3

(
1 + 6xT(x)2 − 10x2T(x)4 + 4x3T(x)6

)
.

In the spirit of Theorem 1, we would like to interpret the numbers dk as the moments of a
measure with null mass. To that aim, let us compute the Stieljes transform of their generating
series D:

H(2)(z) =
1
z

D
(

1
z2

)
=
H(z)7

1−H(z)2

(
1 + 6H(z)2 − 10H(z)4 + 4H(z)6

)
=
H(z)4 + 6H(z)6 − 10H(z)8 + 4H(z)10

(z2 − 4)3/2 .

It is then easy to obtain

lim
ε→0
− 1

π
H(2)(x + iε) =

−2x10 + 25x8 − 113x6 + 435
2 x4 − 155x2 + 19

π(4− x2)3/2 1|x|<2
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which is not the density of a measure (this function has a non integrable singularity at 2 and
−2)! This is due to the fact that the support of µc is not [−2, 2] but unbounded.

It is possible to overcome this problem by trying to approximate the moments of µc by the
moments of measures supported on intervals larger than [−2, 2]. Before stating our result,
we introduce for α > 0 the dilation operator Λα that transforms a measure µ into the measure
Λα(µ) satisfying for every Borel set A, Λα(µ)(A) = µ(A/α).

Theorem 3. The moments of µc satisfy the following asymptotic expansion:

mk (µ
c) = mk

(
Λ1+ 1

2c

(
σ +

1
c

σ̂{1} +
1
c2 σ̂{2}

))
+ o

(
1
c2

)
where σ is the semi-circle law, σ̂{1} is the measure with null mass and density given by

f̂ (1)(x) = −x4 − 5x2 + 4
2π
√

4− x2
1|x|<2

and σ̂{2} is the measure with null mass and density given by

f̂ (2)(x) = −2x8 − 17x6 + 46x4 − 325
8 x2 + 21

4

π
√

4− x2
1|x|<2.

Before proving this theorem, let us make a brief comment. The measures appearing in
the theorem are all supported on ] − 2− 1

c ; 2 + 1
c [. This suggests that, in some sense, the

right edge of the spectrum µc is located at 2 + 1
c . This can be compared with the spectrum of

an infinite d-regular tree which is supported on [−2
√

d− 1, 2
√

d− 1] by the Kesten McKay
formula; rescaling the spectrum by a factor d−1/2 yields a support between −2 + 1/d and
2− 1/d up to a correction of order o(1/d).

Proof of Theorem 3. Fix α ∈ R and define

m̂2k =
(

1 +
α

c

)−2k
c−kLk (UGW (p(c)))

= ak +
1
c
(bk − 2kαak) +

1
c2

(
dk − 2kαbk + k(2k + 1)α2ak

)
+ o

(
1
c2

)
=: ak +

1
c

b̂k +
1
c2 d̂k + o

(
1
c2

)
.

If we can find α such that both b̂k and d̂k are the moments of two measures µ̂(1) and µ̂(2), then
the following expansion holds:

∫ ( x
1 + α

c

)2k
dµc(x) =

∫
x2kσ(x)dx +

1
c

∫
x2kµ̂(1)(dx) +

1
c2

∫
x2kµ(2)(dx) + o

(
1
c2

)
giving the asymptotic expansion announced in the theorem.

Now let us compute α. To that aim, we need the generating series of d̂k:

D̂(x) = D(x)− 2αxB′(x) + 2α2x2T′′(x) + 3α2xT′(x)
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With

T(x) =
1

1− xT(x)
;

T′(x) =
T(x)3

1− xT(x)2 ;

T′′(x) =
2T(x)5(2− xT(x)2

(1− xT(x)2)
3 ;

B′(x) =
2xT(x)5 + 2x2T(x)7 − 2x3T(x)9

(1− xT(x)2)
3

we obtain

D̂(x) =
(

1− xT(x)2
)−3 (

4x6T(x)13 − 10x5T(x)11 + (6 + 4α) x4T(x)9

+
(

1− 4α− α2
)

x3T(x)7 +
(
−4α + 2α2

)
x2T(x)5 + 3α2xT(x)3

)
.

We then have to compute the Stieljes transform of D̂:

HD̂(z) =
1
z

D̂
(

1
z2

)
=

4H10 − 10H8 + (6 + 4α)H6 +
(
1− 4α− α2)H4 +

(
−4α + 2α2)H2 + 3α2

(z2 − 4)3/2 .

The singularities ofHD̂ at z = 2 and z = −2 do not allow it to be the Stieljes transform of a
measure except if the numerator is null for z = 2 and z = −2. SinceH(2) = H(−2) = 1, this
gives the necessary condition

4α2 − 4α + 1 = 0

with α = 1/2 as the only solution. We then have, using the identity 1−H(z)2 =
√

z2 − 4H(z),

HD̂(z) =
H2 (16H6 − 8H4 + 3

)
4
√

z2 − 4
.

This is the Stieljes transform of a measure with density given by

f̂ (2)(x) = −2x8 − 17x6 + 46x4 − 325
8 x2 + 21

4

π
√

4− x2
1|x|<2.

In this setting, the perturbation of order 2 is a measure with total mass 0, supported on[
−2 + 1

c ; 2 + 1
c

]
and with density

1
1 + 1

2c
f̂ (2)

(
x

1 + 1
2c

)
.

Note that this also changes the perturbation of order 1, indeed, recall that b̂k = bk −
2αkak = bk − kak. The generating series of b̂k is

B̂(x) = B(x)− xT′(x) =
x2T(x)5 − xT(x)3

1− xT(x)2 .
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The corresponding Stieljes tranform is given by

HB̂(z) =
H4 −H2
√

z2 − 4

and corresponds to a measure with density

f̂ (1)(x) = −x4 − 5x2 + 4
2π
√

4− x2
1|x|<2.

Therefore, the perturbation of order 1 is also a measure with total mass 0, supported on[
−2 + 1

c ; 2 + 1
c

]
and with density

1
1 + 1

2c
f̂ (1)

(
x

1 + 1
2c

)
.

5 Appendix: obstacles in the resolvent method

In random matrix theory, the usual alternative to the moments method is the so-called
resolvent method. In this short section, we want to explain why this method fails for our
purpose. For the sake of simplicity, we focus on the special case of the Erdős-Rényi random
graph.

For a general probability measure µ, the resolvent Rµ of µ is a function defined for every
z ∈ C by

Rµ(z) =
∫

R

dµ(x)
x− z

.

The resolvent Yc of the spectral measure of an unimodular Galton Watson tree with reproduc-
tion law Poisson with parameter c satisfies the following identity in law [5]:

Yc(z) = −
1

z + ∑
N(c)
i=1 Yc,i(z)

where N(c) is a Poisson random variable with parameter c and the Yc,i’s are iid copies of Yc.
The resolvent of µc, the limiting spectral measure of the Erdős-Rényi random graph with
parameter c/n as n→ ∞ as defined at the begining of Section 2, is given by the expectation
of Y(c)(z) =

√
cYc(
√

cz).
In this setting, it is common to introduce

f (c)(u, z) = E
[
eiuY(c)(z)

]
which satisfies the following functional equation (see [9] for Erdős-Rényi and [5] Section 2. 2
for a more general case):

f (c)(u, z) = 1−
√

u
∫ ∞

0

J1
(
2
√

us
)

√
s

eiszec( f (c)( s
c ,z)−1)ds (16)
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where J1 denotes the Bessel function of the first kind with index 1. We want to compute

E
[
Y(c)(z)

]
= −i ∂ f (c)

∂u (0, z); to this aim, let us take the derivative of equation (16):

∂ f (c)

∂u
(u, z) = −

∫ ∞

0

(
1

2
√

u
J1(2
√

us)√
s

+ J′1(2
√

us)
)

eiszec( f (c)( s
c ,z)−1)ds

= −
∫ ∞

0

(
−J2(2

√
us) + 2

J1(2
√

us)√
s

)
eiszec( f (c)( s

c ,z)−1)ds.

Taking u→ 0, this yields

E
[
Y(c)(z)

]
= i

∫ ∞

0
eiszec( f (c)( s

c ,z)−1)ds. (17)

We want to compute an asymptotic expansion of E
[
Y(c)(z)

]
as c→ ∞. Let us forget about

the technical details and write the following formal asymptotic expansion:

f (c)(u, z) = f0(u, z) + f1(u, z)
1
c
+ o

(
1
c

)
.

This also implies that

E
[
Y(c)(z)

]
= g0(z) + g1(z)

1
c
+ o

(
1
c

)
with gi(z) = −i ∂ fi

∂u (0, z). Taking c→ ∞ in equation (17) formally gives

g0(z) = i
∫ ∞

0
eiszeisg0(z)ds =

−1
z + g0(z)

. (18)

This is the functional equation satisfied by the Hilbert transform of the semi-circle law, so we
have recovered, at least at a formal level, that µc → σ as c→ ∞. One can imagine that with
some work, this method can be rigorously justified.

However, if we pursue this method to compute the perturbation of order 1/c, we will
meet more serious problems. Still, we will continue the formal computations in order to try
and recover the result of Theorem 1. Indeed, equation (16) leads to

f0(u, z) +
1
c

f1(u, z) = 1−
√

u
∫ ∞

0

J1
(
2
√

us
)

√
s

eiszec( f0(
s
c ,z)−1)e f1(

s
c ,z)ds + o

(
1
c

)
= 1−

√
u
∫ ∞

0

J1
(
2
√

us
)

√
s

eiszeisg0(z)+ s2
2c

∂2 f0
∂u2 (0,z)+ s

c
∂ f1
∂u (0,s)ds + o

(
1
c

)
. (19)

This allows to compute f0 :

f0(u, z) = 1−
√

u
∫ ∞

0

J1
(
2
√

us
)

√
s

eiszeisg0(z)ds = e
−i u

z+g0(z) = eiug0(z).

Replacing f0 in (19), one gets

f1(u, z) = −
√

u
∫ ∞

0

J1
(
2
√

us
)

√
s

eis(z+g0(z))
(

s
∂ f1

∂u
(0, z) +

s2

2
∂2 f0

∂u2 (0, z)
)

ds

= −
√

u
∫ ∞

0

J1
(
2
√

us
)

√
s

eis(z+g0(z))
(

s
∂ f1

∂u
(0, z)− s2

2
(g0(z))

2
)

ds
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This last equation is where serious problems start: the integral is now divergent! Indeed, one
has
√

us.J1(2
√

us) ∼
√

2/πs1/4u1/4 cos(2
√

us− 3π/4) as s→ ∞. Therefore, the expression
of f1 can only be considered at a formal level. From there, we can compute the term of order
1/c of the Hilbert transform of µc:

∂ f1

∂u
(0, z) = −

∫ ∞

0
eis(z+g0(z))

(
s

∂ f1

∂u
(0, z)− s2

2
(g0(z))

2
)

ds

=
1

i(z + g0(z))

∫ −i.(z+g0(z))×∞

0
e−t
(

it
z + g0(z)

∂ f1

∂u
(0, z) +

t2

(z + g0(z))2
(g0(z))2

2

)
dt

where the last line is obtained with the change of variables t = −is(z + g0(z)). Here again,
taking no precautions and staying at a formal level (writing

∫ −i.(z+g0(z))×∞
0 e−ttkdt = Γ(k +

1)), one gets

∂ f1

∂u
(0, z) =

1
(z + g0(z))2

∂ f1

∂u
(0, z)− i

(g0(z))2

(z + g0(z))3

= (g0(z))2 ∂ f1

∂u
(0, z) + i(g0(z))5

using (18) to obtain the last equality. This finally yields

g1(z) = −i
∂ f1

∂u
(0, z) =

(g0(z))5

1− (g0(z))2

which is the Hilbert transform of σ{1} computed in (2).

Finally, let us mention that our best efforts to try to obtain the second order term of
Proposition 2 by an analogous formal computation failed.

6 Appendix: numerical simulations

We present here numerical simulations on 100 adjacency matrices of Erdős-Rényi graphs with
10000 vertices for c = 20. Figure 4 illustrates Theorem 1 and Figure 5 illustrates Theorem 3.
Concerning the plot of the second order perturbation in Figure 5, one can notice a difference
between the histogram and the density of the associated limiting measure. This difference
can be explained by the fact that n is not large enough even if it was large enough for the first
order.

This raises the following interesting question: find a sequence of integers n(c) (respectively
n1(c), n2(c)) depending on c such that the moments of µc

n(c) (respectively c
(

µc
n1(c)
− σ

)
,

c2
(

µc
n2(c)
−Λ1+ 1

2c

(
σ + 1

c σ̂1
))

) converge towards the moments of σ (respectively σ{1}, σ̂{2}).
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Figure 4: Left: Histrogram of µc
n compared with the density of the semi-circle

law σ. Right: Histrogram of c(µc
n − σ) compared with the density of σ{1}.
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Figure 5: Left: Histrogram of c
(

µc
n −Λ1+ 1

2c
(σ)
)
compared with the density of

Λ1+ 1
2c

(
σ̂{1}

)
. Right: Histrogram of c2

(
µc

n −Λ1+ 1
2c

(
σ + 1

c σ̂{1}
))

compared

with the density of Λ1+ 1
2c

(
σ̂{2}

)
.
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