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ABSTRACT: In the confetti percolation model, or two-coloured dead leaves model, radius one
disks arrive on the plane according to a space-time Poisson process. Each disk is coloured black with
probability p and white with probability 1 − p. In this paper we show that the critical probability for
confetti percolation equals 1/2. That is, if p > 1/2 then a.s. there is an unbounded curve in the plane
all of whose points are black; while if p ≤ 1/2 then a.s. all connected components of the set of black
points are bounded. This answers a question of Benjamini and Schramm [1]. The proof builds on
earlier work by Hirsch [7] and makes use of an adaptation of a sharp thresholds result of Bourgain.
© 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 679–697, 2017
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1. INTRODUCTION AND STATEMENT OF RESULTS

The confetti percolation model is informally described as follows. Imagine that disks of
equal radius have been raining down on the plane for a very long time. Each disk is either
black (with probability p) or white (with probability 1 − p). Suddenly the rain of confetti
disks stops and we examine the pattern of colours that we see on the ground. Here the colour
of a point of the plane is of course determined by the disk that was last to arrive among all
disks that cover the point.

A more formal (and precise) definition of the confetti percolation model is as follows. We
start with a Poisson process P of constant intensity λ > 0 on R

2 × (−∞, 0]. Around each
point of P we center a closed horizontal disk of radius one. We colour each of these disks
black with probability p and white with probability 1 − p, independently of the colours of
all other disks and of P . To determine the colour of a point q ∈ R

2, we draw a vertical line
� through q (here and in the rest of the paper we identify R

2 with {z = 0} ⊆ R
3) and assign
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Fig. 1. Simulations of confetti percolation with p = 1
4 , 1

2 , 3
4 . A square of dimensions 200 × 200 is

shown.

to p the colour of the highest disk that intersects the line �. We can think of the z-coordinate
of a point of P as the time when the corresponding confetti disk arrives, obscuring parts
of pre-existing confetti disks from view. The confetti model is a special case of the colour
dead leaves model introduced by Jeulin [8] for the purpose of simulating mineral structures.
The model of Jeulin allows for more colours and different shapes of the confettis (leaves).
See Figure 1 for computer simulations of the process.

We say that percolation occurs if there exists an unbounded curve γ ⊆ R
2 all of whose

points are black. As usual, the critical probability is defined as

pc := inf
{
p : Pp(percolation) > 0

}
.

We index the probability only by p and not by λ since the precise value of λ is irrelevant –
see the next section for a detailed explanation. Benjamini and Schramm [1] asked whether
pc = 1/2. Here we answer their question in the affirmative.

Theorem 1.1. pc = 1/2.

Very recently, Hirsch [7] proved a version of Theorem 1.1 for the case when instead of
disks, squares are used as the confetti. Part of Hirsch’s arguments in fact work for a wide
range of shapes. In particular, the fact that pc ≥ 1/2, also in the setting with disk-shaped
confetti, is already proved by Hirsch. However, technical issues forced Hirsch to restrict
himself to the case of squares in his proof of the full result. He also asked for generalizations
of his result to more general shapes. Our proof of Theorem 1.1 does in fact work for a large
class of shapes. For the sake of the exposition we will focus on disk shaped confettis and
we sketch the adaptations that need to be made to generalise the proof later, in Section 6.
A crucial step in our approach is the application of an asymmetric version of a powerful
“sharp threshold” result of Bourgain (that appeared in the appendix to Friedgut’s paper [5]).
We believe similar arguments should work in many other percolation models.

Overview of the paper and the main ideas in the proof. With the work that has already
been done by Hirsch [7], all that remains for us to prove is that percolation does occur almost
surely when p > 1/2. By standard machinery in percolation theory, it in fact suffices to
show that, when p > 1/2, a rectangle of dimensions 3s × s has a black crossing in the
long direction with probability that will get arbitrarily close to one as we send s to infinity
(and p > 1/2 stays fixed). To achieve this, we first show that we can approximate such
a crossing event by a discrete event defined in terms of finitely many Bernoulli random
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CRITICAL PROBABILITY FOR CONFETTI PERCOLATION EQUALS 1/2 681

variables. To define this discrete event, we dissect a relevant part of R
2 × (−∞, 0] into

small, equal-sized cubes. Each Bernoulli random variable indicates whether or not there is
a black, respectively white, point of the Poisson process inside a given cube. These Bernoulli
random variables are independent and their means take one of two values, depending on
whether the random variable detects black or white points. A powerful tool by Bourgain
(that appeared in the appendix to Friedgut’s paper [5]) gives a condition which must hold if
a monotone event defined in terms of i.i.d. Bernoulli random variables does not have a rapid
transition from probability nearly zero to probability nearly one, as we vary the common
mean of the Bernoullis from zero to one. Roughly speaking, it says that if there is no such
rapid transition and the parameters are chosen such that the probability of our monotone
event is neither too small nor too large, then there must be a bounded number of variables
such that the probability of the event, conditioned on those variables all equalling one, is
close to one. Proposition 2.1 below generalizes this result to the case where the Bernoulli
random variables are independent but may have different means. We use it show that if the
probability of the (discrete approximations to our) crossing events does not undergo such a
sharp increase at p = 1/2, then there is a bounded number of cubes such that the status of
those cubes influences the crossing events noticeably. That is, conditioning on black/white
points in these cubes increases/decreases the crossing probability by a constant. This would
mean that with constant (unconditional) probability it holds that (a) every crossing gets
close to the projection of at least one of these cubes on the plane and (b) there is at least one
crossing. We will see that this is impossible, and hence that there must be a rapid transition
for crossing probabilities at p = 1/2. Together with standard percolation machinery this
gives that percolation does occur almost surely when p > 1/2.

What distinguishes our approach from that of Hirsch [7] is that his approach, which
follows that of Bollobás and Riordan [2], relied on a result of Friedgut and Kalai [6] to
show that there is a “sharp threshold” for crossing probabilities, while we instead will use
Proposition 2.1 to achieve the same. Like Proposition 2.1, the result of Friedgut and Kalai
applies to monotone events defined in terms of independent Bernoulli random variables, but
in order for it to imply a sharp threshold it is needed that the common mean of these Bernoulli
random variables is not too small. This meant that the discretizations Hirsch used could not
be arbitrarily fine, which in turn led to considerable technical difficulties. In contrast, our
use of Proposition 2.1 does allow us to use arbitrarily small cubes in our discretizations.

In the next section, we provide some preliminary discussion and results that we will
need in the proof of Theorem 1.1. In Section 3 we define and formally justify the discrete
approximations to the box-crossing events. Section 4 contains the main part of our argument,
which applies Proposition 2.1 to the discrete approximations to crossing events. In Section 5
we direct the reader to a place in the literature where the standard argument that completes
the proof of Theorem 1.1 can be found. Section 6 briefly sketches the changes that need to
be made to adapt the proof to work in the case of other confetti shapes besides the unit disk.
The proof of Proposition 2.1 can be found in Appendix A.

2. NOTATION AND PRELIMINARIES

Throughout this paper, Po(λ) will denote the Poisson distribution with parameter λ and
Be(p) will denote the Bernoulli distribution with parameter p.

A subset A of the discrete hypercube {0, 1}n is called an up-set if it is closed under
increasing coordinates. That is, whenever we take a point of A and we change one of its
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coordinates into a one, then the resulting point is still in A. That is, if a = (a1, . . . , an) ∈
A, b = (b1, . . . , bn) ∈ {0, 1}n and ai ≤ bi for all i then also b ∈ A.

For p = (p1, . . . , pn) ∈ (0, 1)n the notation Pp(.) will signify the situation where
X1, . . . , Xn are independent random variables with Xi =d Be(pi). Observe that, for every
A ⊆ {0, 1}2, the probability Pp[(X1, . . . , Xn) ∈ A] can be written as a polynomial in
p1, . . . , pn. In particular, this probability is a continuous function of the pi-s and the
partial derivatives ∂

∂pi
Pp

[
(X1, . . . , Xn) ∈ A

]
exist. Note also that if A is an up-set then

Pp[(X1, . . . , Xn) ∈ A] is non-decreasing in each parameter pi.
The following result is key to our proof of Theorem 1.1. It can be considered as an

asymmetric version of Bourgain’s powerful sharp threshold result (that appeared in the
appendix of Friedgut’s influential paper [5]).

Proposition 2.1. For every C > 0 and 0 < α < 1/2 there exist K = K(C, α) ∈ N, δ =
δ(C, α) > 0 such that the following holds, for every n ∈ N and every up-set A ⊆ {0, 1}n.
If p ∈ (0, 1)n is such that Pp

[
(X1, . . . , Xn) ∈ A

] ∈ (α, 1 − α) and

n∑
i=1

pi(1 − pi) · ∂

∂pi
Pp

[
(X1, . . . , Xn) ∈ A

] ≤ C,

then there exist indices i1, . . . , iK ∈ {1, . . . , n} such that one of the following holds:

(a) Pp

[
(X1, . . . , Xn) ∈ A

∣∣Xi1 = · · · = XiK = 1
] ≥ Pp

[
(X1, . . . , Xn) ∈ A

] + δ, or
(b) Pp

[
(X1, . . . , Xn) ∈ A

∣∣Xi1 = · · · = XiK = 0
] ≤ Pp

[
(X1, . . . , Xn) ∈ A

] − δ.

What makes this result potentially very useful is the fact that K and δ do not depend on
the particular up-set or even the number of variables n. Proposition 2.1 can be derived in
a relatively straightforward manner from a version of Bourgain’s sharp threshold result for
general probability spaces that can be found in O’Donnell’s new book [10]. We defer the
proof to Appendix A.

Recall that in the definition of the confetti model, we used a constant intensity Poisson
process P on R

2 × (−∞, 0]. Throughout the paper, we will denote its intensity by λ > 0. It
follows from standard properties of the Poisson process (see for instance [9]) that the precise
value of λ is irrelevant: if we rescale the z-coordinates of the points of P by a constant a > 0
then we obtain a Poisson process on R

2 × (−∞, 0] with intensity λ/a. Since the vertical
ordering of the confetti disks is unchanged by this scaling, so are the colours that each of
the points of the plane receives.

It is convenient to enumerate the points of our Poisson process P as P = {p1, p2, . . . }.
Furthermore, we let Ci (for i-th confetti disk) denote the closed horizontal disk around pi

of radius one and we let Di denote the projection of Ci onto R
2 (recall that we identify R

2

with {z = 0} ⊆ R
3). The visible part of Di is defined as:

Vi := Di \
⋃

j:zj>zi

int(Dj).

(Recall that zi is the last coordinate of pi.) Note that a visible part may consist of more
than one path-connected component. We will call the (path-) connected components of the
visible parts cells. The reader can probably easily convince him- or herself of the following
straightforward fact, a formal proof of which can for instance be found in the work of
Bordenave et al. [4].
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Fig. 2. A close-up of a realization of the confetti process. Each cell is bounded by finitely many circle
segments. There are points on the common boundary of three cells, but not of four.

Lemma 2.2 ([4], Lemma 2). Almost surely, every point of R
2 is contained in some cell,

and every bounded set intersects only finitely many cells.

An elementary property of the Poisson process is that, almost surely, the set of all
coordinates of its points will be algebraically independent (no subset is the a solution to
a non-trivial polynomial equation with integer coefficients). In particular, all z-coordinates
are distinct, no two of the disks Di and Dj are tangent, and no point lies on the boundary of
more than two Dis. From this, together with Lemma 2.2, it can be seen that almost surely:

(C-1) Each cell has non-empty interior and is bounded by finitely many circle segments (this also
includes the case where the boundary is a single circle), and;

(C-2) Each point of the plane is either in the interior of some cell, on the boundary of exactly two
cells or on the boundary of exactly three cells.

See Fig. 2 for a depiction. The points where three cells meet together with the circle segments
separating adjacent cells can be viewed as an infinite three-regular plane graph.

Let Pb be the set of points of the Poisson process P that receive a black disk, and let
Pw ⊆ P denote those points that receive a white disk. By standard properties of the Poisson
process (see again [9]), Pb and Pw are independent Poisson processes with intensities
λb := pλ and λw := (1−p)λ, respectively, on R

2 × (−∞, 0]. Conversely, we can start with
two independent Poisson processes Pb and Pw of intensities λb resp. λw on R

2 × (−∞, 0].
If we now center black disks on the points of Pb and white disks on the points of Pw then
the situation is indistinguishable from the original setup with parameters λ := λb + λw and
p := λb/(λb + λw). We will work with both settings in the paper, depending on which is
more convenient at the time. Sometimes we will use the notation Pλb,λw(.) to emphasize that
we are working in the second setting (and to specify the values of λb, λw).

Formally speaking, we can say that the pair (Pb, Pw) takes values in the set � whose
elements are pairs (ωb, ωw) of countable subsets of the lower halfspace R

2 × (−∞, 0]. We
will call a such pair ω = (ωb, ωw) a configuration. A configuration specifies all the relevant
information about a particular realization of the confetti model.

Random Structures and Algorithms DOI 10.1002/rsa
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We say that an event E is black increasing if it is preserved under the addition of black
points and the removal of white points. That is, if we have a configuration ω = (ωb, ωw)

for which E holds, and we set ω′
b := ωb ∪ A, ω′

w := ωw \ B for arbitrary countable sets
A, B ⊆ R

2 ×(−∞, 0] then E holds for the configuration (ω′
b, ω′

w). In this article we will rely
heavily on the following generalization of Harris’ inequality due to Hirsch, which itself is
based on a similar result of Bollobás and Riordan [2].

Lemma 2.3 ([7], Lemma 1). If E1, E2 are two black-increasing events then

Pp(E1 ∩ E2) ≥ Pp(E1)Pp(E2),

for all p ∈ [0, 1].
Let R ⊆ R

2 be an axis-parallel rectangle. We say that R has a black, horizontal crossing
if there is a polygonal curve γ ⊆ R between a point on the left edge of R and a point of
the right edge of R, such that all points of γ are black. Similarly we say R has a black,
vertical crossing if there is such a curve between the bottom edge and the top edge of R,
and we define white horizontal and vertical crossings analogously. Let us remark that the
restriction to polygonal curves is not really a restriction at all: as can be seen from the earlier
observations in this section, unless a certain event of probability zero holds, whenever there
is a black, continuous (but not necessarily polygonal) curve “horizontally crossing” R then
there also is a polygonal such curve. By restricting attention to polygonal curves we avoid
having to needlessly deal with topological intricacies in our proofs. In the rest of the paper
we will write:

H(R) := {R has a black, horizontal crossing},
V(R) := {R has a black, vertical crossing}.

For notational convenience we will also write

Hs×t := H([0, s] × [0, t]).
A key ingredient to our proof of Theorem 1.1 is the following result of Hirsch [7], whose

proof is essentially an adaptation of the sophisticated method developed by Bollobás and
Riordan [2] to settle the critical probability for Voronoi percolation.

Theorem 2.4 ([7]). For every ρ > 0 we have that

lim sup
s→∞

P1/2(Hρs×s) > 0.

3. DISCRETE APPROXIMATIONS TO CROSSING EVENTS

For k ∈ N, we dissect [−k, k]2 × [−k, 0] into axis-parallel cubes of sidelength 2−k in the
obvious way. We denote the collection of cubes obtained in this way, together with the
set

(
R

2 × (−∞, 0]) \ ([−k, k]2 × [−k, 0]), as Ck . We say that a configuration ω ∈ � is
a k-perturbation of another configuration ω′ ∈ � if c ∩ ωb �= ∅ ⇔ c ∩ ω′

b �= ∅ and
c ∩ ωw �= ∅ ⇔ c ∩ ω′

w �= ∅, for all c ∈ Ck . For E an arbitrary event and k ∈ N we define
the event E(k) as follows

E(k) := {ω ∈ � : for every k-perturbation ω′ of ω, we have ω′ ∈ E}
Random Structures and Algorithms DOI 10.1002/rsa
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In other words, E(k) holds if E holds for every configuration that can be obtained from the
current realization of (Pb, Pw) by wiggling, adding or removing points in such a way that
the same parts of Ck are hit by black, resp. white, points. Obviously we have, for every k
and every event E, that E(k) ⊆ E. Also note that E(k) ⊆ E(k+1) for all k since the partition
Ck+1 refines Ck .

Proposition 3.1. For every ε > 0, every λb, λw > 0 and every bounded set A ⊆ R
2, there

exists a k0 = k0(ε, λb, λw, A) such that

sup
R⊆A,

R axis-parallel rectangle

∣∣∣Pλb,λw [H(R)] − Pλb,λw [H (k)(R)]
∣∣∣ < ε,

for all k ≥ k0.

The rest of this section is devoted to the proof of the last proposition. The proof is
relatively straightforward and could be skipped in a first reading of the paper.

For technical reasons it is convenient to also treat horizontal and vertical line segments
and single points as rectangles in the remainder of this section. Of course, when R is a
vertical line segment, then H(R) holds if at least one point of R is black, and when R is a
horizontal line segment then H(R) holds if all points of R are black.

Lemma 3.2. For every λb, λw > 0 and every axis-parallel rectangle R we have that

Pλb,λw [H(R)] = lim
k→∞

Pλb,λw [H (k)(R)].

Proof. For notational convenience, let us write E := H(R). As already noted, we have
E(1) ⊆ E(2) ⊆ · · · ⊆ E. This gives

Pλb,λw(E) ≥ Pλb,λw

( ∞⋃
k=1

E(k)

)
= lim

k→∞
Pλb,λw(E(k)).

It remains to show the reverse inequality. To achieve this, it suffices show that for all
configurations ω ∈ E except for a set of configurations of measure zero, we have ω ∈⋃∞

k=1 E(k).
Let us thus fix an arbitrary configuration ω ∈ E. It is convenient to enumerate ωb ∪ωw as

{p1, p2, . . . } and to write pi = (xi, yi, zi). Discarding a set of configurations of total measure
zero, we can assume without loss of generality that every bounded set contains finitely
many points of ωb ∪ ωw, that all the coordinates of all the pi-s are distinct and that the
properties (C-1) and (C-2) hold. Hence, there is a black horizontal crossing γ of R that does
not pass through any “corners” of cells (i.e. points on the boundary of three or more cells),
and does not pass through any point on the common boundary of a black and a white cell.
Let us fix such a crossing γ .

Consider a point q ∈ γ . Let us suppose first that q lies in the interior of some (black) cell.
That q lies in the interior of a black cell means that the highest pi such that ‖q −π(pi)‖ ≤ 1
belongs to ωb, and moreover ‖q − π(pi)‖ < 1. (Here of course π(x, y, z) := (x, y) denotes
the projection onto the plane.) From our assumptions on ω, we see that there is a ε > 0 such
that ‖q−π(pi)‖ < 1−ε and for every j �= i we have either zj < zi−ε or ‖q−π(pj)‖ > 1+ε.
(Otherwise there are either two points with equal z-coordinates, or infinitely many points
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in some bounded region.) Let us now fix an integer k0(q) satisfying 2−k0(q) < ε/1000 and
k0(q) ≥ ‖pi‖ + 1 + ε. Then we have that for every k ≥ k0(q) and every k-perturbation ω′

of ω, the point q together with all points of the plane at distance < 2−k0(q) from q will be
coloured black in the colouring of the plane defined by ω′.

Suppose now that q lies on the common boundary of two black cells (but not on a
corner). This means that if pi, respectively pj, are the highest, respectively second highest,
points such that ‖q − π(pi)‖, ‖q − π(pj)‖ ≤ 1 then pi, pj ∈ ωb and ‖q − π(pi)‖ = 1 and
‖q − π(pj)‖ < 1. Similarly to before, we see that there exist a k0(q) such that, for every
k ≥ k0(q) and every k-perturbation ω′ of ω, the point q together with all points of the plane
at distance < 2−k0(q) from q will be coloured black under ω′.

Next, let us observe that the disks {B(q, 2−k0(q)) : q ∈ γ } form an open cover of the
compact set γ . Hence there exists a finite subcover {B(q1, 2−k0(q1)), . . . , B(qN , 2−k0(qN ))} that
still covers γ . Setting k := max(k0(q1), . . . , k0(qN)), we see that in every k-perturbation of
ω, the entire curve γ is coloured black. In other words, we have shown that every ω ∈ E
except for a set of configurations of total measure zero lies in some E(k), as required.

Lemma 3.3. For every (fixed) λb, λw > 0 the probability Pλb,λw

[
Hs×t

]
is continuous as a

function of s, t.

Proof. For A ⊆ R
2 let us write x(A) := sup{x : (x, y) ∈ A} and let Kt(A) denote the set of

path-connected components of A ∩ R × [0, t]. We set Bt := ⋃{Kt(C) : C a black cell}. We
point out that by (C-1), almost surely, Kt(C) is finite for each cell C. Hence, almost surely,
Bt is countable and each bounded set A ⊆ R

2 intersects finitely many elements of Bt (using
also Lemma 2.2 for the latter observation).

Let us now remark that Hs×t ⊆ Hs′×t if s′ ≤ s. Hence we have that P(Hs×t) −
lims′↓s P(Hs′×t) = P

(
Hs×t \ ⋃

s′>s Hs′×t

)
. We observe that if Hs×t \ ⋃

s′>s Hs′×t holds, then
the rightmost point that can be reached by a black curve that stays inside R × [0, t] and
starts in {s} × [0, t] must have x-coordinate exactly equal to s. In particular there must be
some C ∈ Bt such that x(C) = s. Since the colouring of the plane produced by the confetti
percolation model is invariant (in law) under horizontal translations and Bt is almost surely
countable, the probability that there exists such a C equals zero. (Consider for instance
the situation where we first generate the model in the usual way and then simultaneously
translate all cells to the left by the same amount U, with U uniform on [0, 1].) This shows
that lims′↓s P(Hs′×t) = P(Hs×t).

Similarly we have lims′↑s P(Hs′×t) − P(Hs×t) = P
(⋃

s′<s Hs′×t \ Hs×t

)
. We observe that

if
⋃

s′<s Hs′×t \ Hs×t holds and only finitely many C ∈ Bt intersect [0, s] × [0, t], then there
must be some C ∈ Bt with x(C) = s. (Since only finitely many elements of Bt intersect
[0, s]×[0, t] and for every s′ < s there is a C ∈ Bt with s′ ≤ x(C) ≤ s.) Hence we also have
lims′↑s P(Hs′×t) = P(Hs×t), proving continuity in s. Continuity in t follows by the symmetry
of the model.

The final ingredient we will need for the proof of Proposition 3.1 is the following variant
of Dini’s theorem. It is an easy undergraduate exercise, but for completeness we provide a
proof in Appendix B.

Lemma 3.4. Let I ⊆ R
d be an axis parallel box (in other words, a cartesian product of

bounded, closed intervals) and let f , f1, f2, . . . be functions satisfying:

(i) f : I → R is continuous, and;

Random Structures and Algorithms DOI 10.1002/rsa
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(ii) fk : I → R is non-decreasing (in each coordinate) for all k ∈ N, and;
(iii) fk+1(x) ≥ fk(x) for all k ∈ N, x ∈ I, and;
(iv) lim

k→∞
fk(x) = f (x) for all x ∈ I.

Then fk converges uniformly to f .

Let us remark that, by an easy reparametrization, the lemma also holds if instead of
condition (ii) fk is non-decreasing in some coordinates and non-increasing in the other
coordinates – with the set of coordinates on which fk is non-increasing being the same for
each k.

Proof of Proposition 3.1. Without loss of generality we can take A = [−K , K]2 for some
K . We define f , f1, f2, · · · : [−K , K]4 → R by

f (x1, x2, y1, y2) := Pλb,λw

[
H([x1, max(x1, x2)] × [y1, max(y1, y2)])

]
,

fk(x1, x2, y1, y2) := Pλb,λw

[
H (k)([x1, max(x1, x2)] × [y1, max(y1, y2)])

]
.

We have fk+1 ≥ fk by definition of E(k). By Lemma 3.2, fk converges pointwise to f . That f
is continuous follows from Lemma 3.3 (note that f (x1, x2, y1, y2) = f (0, x2 − x1, 0, y2 − y1)).
Finally note that fk is non-decreasing in x1, y1 and non-increasing in x2, y2. Appealing to
Lemma 3.4 and the remark following it, we see that fk converges uniformly to f , which is
precisely what Proposition 3.1 states.

4. CROSSING PROBABILITIES WHEN P > 1/2

Proposition 4.1. For every p > 1/2 it holds that sup
s>1000

Pp(H3s×s) = 1.

Proof. By Proposition 2.4, there exists a constant c > 0 and a sequence (sn)n tending to
infinity such that P1/2(H3sn×sn) ≥ c for all n. By restricting to a subsequence if necessary,
we can assume without loss of generality that s1 > 1000 and si+1 > 1000si for all i.

Let us fix an arbitrary p > 1/2 and 0 < α < c/2. We will show that Pp(H3sn×sn) ≥ 1−α

for some n ∈ N, which will clearly prove the proposition.
From now on we switch to the Pb, Pw setting. We pick m = m(p, α) ∈ N large (to be

made precise later in the proof). Appealing to Proposition 3.1, we can pick a k = k(m) such
that

∣∣P1,1[H (k)(R)] − P1,1[H(R)]∣∣ ,
∣∣P1,1[V (k)(R)] − P1,1[V(R)]∣∣ ≤ c/2, (1)

for every axis-parallel rectangle R ⊆ [−1000sm, 1000sm]2. We now define the function
F : [0, 1] → [0, 1] by:

F(t) := Pλb(t),λw(t)

[
H (k)

3sm×sm

]
,

where

λb(t) := 1 + t(2p − 1), λw(t) := 1 − t(2p − 1).
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By the discussion in Section 2, we have

F(0) = P1,1

[
H (k)

3sm×sm

]
= P1/2

[
H (k)

3sm×sm

]
,

F(1) = P2p,2(1−p)

[
H (k)

3sm×sm

]
= Pp

[
H (k)

3sm×sm

]
.

In particular, Pp

[
H3sm×sm

] ≥ F(1), so that it suffices to prove that F(1) ≥ 1 − α. Aiming
for a contradiction, let us assume that F(1) < 1 − α instead.

We now remark that, for every event E, whether or not E(k) holds is determined by a
finite number of independent Bernoulli random variables. To make this more concrete, let
us arbitrarily enumerate the side length 2−k-cubes of Ck as c1, . . . , cn/2, where n = k323k+1

is twice the number of such cubes. We now define

For 1 ≤ i ≤ n/2: Xi =
{

1 if ci contains a black point,
0 otherwise.

,

For n/2 < i ≤ n: Xi =
{

1 if ci−n/2 does not contain a white point,
0 otherwise.

Then the variables X1, . . . , Xn are independent Bernoulli random variables and we can write
Pλb,λw

[
E(k)

] = P[(X1, . . . , Xn) ∈ A] for some A = A(E) ⊆ {0, 1}n.
In particular, we can write

F(t) = Pp(t)[(X1, . . . , Xn) ∈ A], (2)

where A ⊆ {0, 1}n is an up-set (as H (k)

3sm×sm
is a black-increasing event), and the parameters

pi(t) = EXi satisfy:

pi(t) =
{

1 − exp[−λb(t)2−3k] for 1 ≤ i ≤ n/2, and
exp[−λw(t)2−3k] for n/2 < i ≤ n.

The function F is differentiable as can be seen from the expression (2) and the expressions
for pi(t). By the mean value theorem, there must be a t ∈ [0, 1] such that

F ′(t) ≤ F(1) − F(0) ≤ 1.

By the chain rule we have

F ′(t) =
n∑

i=1

∂

∂pi
Pp[(X1, . . . , Xn) ∈ A] · p′

i(t).

For i ≤ n/2 we have

p′
i(t) = (2p − 1) · 2−3k · exp[−λb(t)2−3k]

≥
(

2p−1
2p

)
· λb(t) · 2−3k · exp[−λb(t)2−3k]

≥
(

2p−1
2p

)
· (1 − exp[−λb(t)2−3k]) · exp[−λb(t)2−3k]

=
(

2p−1
2p

)
pi(t)(1 − pi(t)).
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Fig. 3. The event Aq,r .

(Here the second line follows since λb(t) ≤ 2p and the third line follows since e−x ≥ 1 − x
for all x ≥ 0.) Similarly, we find that for i ≥ n/2:

p′
i(t) = (2p − 1) · 2−3k · exp[−λw(t)2−3k] ≥

(
2p − 1

2p

)
pi(t)(1 − pi(t)).

It follows that

n∑
i=1

pi(1 − pi)
∂

∂pi
Pp[(X1, . . . , Xn) ∈ A] ≤ 2p/(2p − 1) =: C.

Using that F is non-decreasing as λb(t) is increasing and λw(t) decreasing, that F(1) < 1−α

by assumption, and that F(0) = P1/2[H (k)

3sm×sm
] ≥ P1/2[H3sm×sm ] − c/2 ≥ c/2 > α, we also

have
Pp(t)[(X1, . . . , Xn) ∈ A] = F(t) ∈ [F(0), F(1)] ⊆ (α, 1 − α).

Proposition 2.1 thus provides us with indices 1 ≤ i1, . . . , iK ≤ n and b ∈ {0, 1} such that∣∣∣Pp(t)

[
H (k)

3sm×sm

∣∣∣Xi1 = · · · = XiK = b
]

− Pp(t)

[
H (k)

3sm×sm

]∣∣∣ ≥ δ, (3)

where K = K(α, C) ∈ N and δ = δ(α, C) > 0 are constants that depend only on p and α

but – and this is crucial for the current proof – not on m or k.
For j = 1, . . . , K let us fix a point qj ∈ R

2 that is above the cube that Xij corresponds
to. (I.e. qj is contained in the projection of the cube cij , respectively cij−n/2, for ij ≤ n/2,
respectively ij > n/2.) For q ∈ R

2 and r > 0 let us denote Rleft
q,r := q + [−3r

2 , −r
2

] ×[−3r
2 , 3r

2

]
, Rright

q,r := q + [
r
2 , 3r

2

] × [− 3r
2 , 3r

2

]
, Rtop

q,r := q + [−3r
2 , 3r

2

] × [
r
2 , 3r

2

]
, Rbottom

q,r :=
q+[−3r

2 , 3r
2

]×[−3r
2 , −r

2

]
and let Aq,r denote the event V(Rleft

q,r )∩V(Rright
q,r )∩H(Rtop

q,r )∩H(Rbottom
q,r ).

See Fig. 3 for a depiction.
Let us observe that the event Aq,r implies that there is a closed, black, polygonal Jor-

dan curve that separates q + (− r
2 , r

2

)2
from R

2 \
(

q + [− 3r
2 , 3r

2

]2
)

. For j = 1, . . . , K and
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� = 1, . . . , m − 1 let us define Ej,� := A(k)
qj ,s�

. By Lemma 2.3, the choice of the sequence (sn)n

and (1), we have that
Pp(t)[Ej,�] ≥ Pp(0)[Ej,�] ≥ (c/2)4.

In the first inequality we also used that Ej,� is a black-increasing event and p(t) ≥ p(0) as
λb(t) ≥ 1 = λb(0) = λw(0) ≥ λw(t).
For 1 ≤ j ≤ K we define Ij ⊆ {1, . . . , m − 1} by:

� ∈ Ij ⇔ {q1, . . . , qK} ∩
(

qj +
[−3s� − 100

2
,

3s� + 100

2

]2

\
[−s� + 100

2
,

s� − 100

2

]2
)

= ∅.

In particular, if � ∈ Ij then each of q1, . . . , qK has distance at least 50 to the square annu-

lus qj +
[

−3s�
2 , 3s�

2

]2 \ [−s�
2 , s�

2

]2
. Let us observe that, since s1 ≥ 1000, si+1 ≥ 1000si by

assumption, we have that |Ij| ≥ (m − 1) − (K − 1) = m − K for each j. Let us set:

Ej :=
⋃
�∈Ij

Ej,�.

Using that the events Ej,1, . . . , Ej,m−1 are independent, we find

Pp(t)[Ej] = 1 − Pp(t)

[ ⋂
�∈Ij

Ec
j,�

]
≥ 1 − (1 − (c/2)4)|Ij | ≥ 1 − (1 − (c/2)4)m−K .

Writing E := ⋂K
j=1 Ej, we have:

Pp(t)(E) ≥ 1 − K(1 − (c/2)4)m−K ≥ 1 − δ/3,

where the last inequality holds for m sufficiently large. Thus we also have that

Pp(t)

[
H (k)

3sm×sm
∩ E

]
≥ Pp(t)

[
H (k)

3sm×sm

]
− Pp(t)

[
Ec

]
≥ Pp(t)

[
H (k)

3sm×sm

]
− δ/3. (4)

Note that the event E is independent of the event {Xi1 = · · · = XiK = b} since the state of
these random variables can only influence the colour of points within distance less than two
(1 + 21/2−k to be exact) of q1, . . . , qK . Hence, completely analogously to (4), it follows that

Pp(t)

[
H (k)

3sm×sm
∩E

∣∣∣Xi1 = · · · = XiK = b
]

≥ Pp(t)

[
H (k)

3sm×sm

∣∣∣Xi1 = · · · = XiK = b
]
−δ/3 (5)

Next, we claim that:

Claim 4.2. We have Pp(t)

[
H (k)

3sm×sm
∩ E

∣∣∣Xi1 = · · · = XiK = b
]

= Pp(t)

[
H (k)

3sm×sm
∩ E

]
.

Proof of Claim 4.2. Let B denote the event that there is a black, horizontal crossing of
R := [0, 3sm] × [0, sm] that does not get within distance two of any of the points q1, . . . , qK .
Obviously we have B(k) ⊆ H (k)

3sm×sm
.

We will show that H (k)

3sm×sm
∩ E ⊆ B(k). This implies that H (k)

3sm×sm
∩ E = B(k) ∩ E is an

event that is independent of the state of Xi1 , . . . , XiK (since these variables can only influence
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Fig. 4. The curves γ1 and γ2 (not to scale).

the colours of points in the plane that are within distance two of q1, . . . , qK ). This in turn
implies the claim.

Let us thus pick a configuration ω ∈ H (k)

3sm×sm
∩E, and consider an arbitrary k-perturbation

ω′ of ω. In the colouring of the plane defined by ω′, there must be a black, horizontal crossing
γ of R and for each j = 1, . . . , K there is an �j ∈ Ij and a black polygonal Jordan curve βj

that separates qj +
(
−s�j/2, s�j/2

)2
from R

2 \
(

qj +
[
−3s�j/2, 3s�j/2

]2
)

.

We will show that there is in fact a black, horizontal crossing γ ′ of R that does not come
within distance 2 of any of the qi-s. To show this, it is enough to show that if γ comes within
distance 2 of qj, then there is a black, horizontal crossing γ ′ ⊆ γ ∪ βj of R that does not
come within distance 2 of qj. This is because γ ′ will be within distance 2 of strictly fewer
qi-s than γ is, as βj does not come within distance two of any of q1, . . . , qK by choice of Ij.
We can thus apply induction on the number of qi-s that are within distance two of γ to find
a crossing that does not come within distance two of any qi.

Let us first assume that qj +
[
−3s�j/2, 3s�j/2

]2
lies completely in R. Observe that γ

must intersect βj, since B(qj, 2) ⊆ qj +
[
−s�j/2, s�j/2

]2
. Let z1, respectively z2, be the first,

respectively last, intersection point of γ and βj. Here first and last refers to the order in
which we encounter the intersection points as we traverse γ from the left side to the right
side of R. Let γ1 be the piece of γ between the left side of R and z1 and let γ2 be the piece
of γ between z2 and the right side of R. See Fig. 4 for a depiction.
Since βj is a polygonal Jordan curve, we can find a polygonal curve β ′

j ⊆ βj between z1 and
z2. Clearly γ ′ := γ1 ∪ β ′

j ∪ γ2 is a black, horizontal crossing of R all of whose points are at
distance at least two from qj.

In the case when qj +
[
−3s�j/2, 3s�j/2

]2
intersects the boundary of R we can clearly

find a black horizontal crossing γ ′ ⊆ γ ∪ βj that does not come within distance 2 of qj

in a similar manner. We leave the details to the reader. (Here it is important that βj cannot
intersect opposite sides of R, since s�j is at least a factor 1000 smaller than the height of R.)
Thus, by induction, there is a black horizontal crossing that does not come within distance
two of any of q1, . . . , qK .

We have now shown that ω′ ∈ B. As ω′ is an arbitrary k-perturbation of ω, we have
ω ∈ B(k) as required.
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We now observe that Claim 4.2 together with (4) and (5) implies that

∣∣∣Pp(t)

[
H (k)

3sm×sm

∣∣∣Xi1 = · · · = XiK = b
]

− Pp(t)

[
H (k)

3sm×sm

]∣∣∣
≤∣∣∣Pp(t)

[
H (k)

3sm×sm

∣∣∣Xi1 = · · · = XiK = b
]

− Pp(t)

[
H (k)

3sm×sm
∩ E

]∣∣∣
+

∣∣∣Pp(t)

[
H (k)

3sm×sm
∩ E

]
− Pp(t)

[
H (k)

3sm×sm

]∣∣∣
=∣∣∣Pp(t)

[
H (k)

3sm×sm
∩ E

∣∣∣Xi1 = · · · = XiK = b
]

− Pp(t)

[
H (k)

3sm×sm

∣∣∣Xi1 = · · · = XiK = b
]∣∣∣

+
∣∣∣Pp(t)

[
H (k)

3sm×sm
∩ E

]
− Pp(t)

[
H (k)

3sm×sm

]∣∣∣
≤

2δ/3,

contradicting (3). This contradiction proves that F(1) ≥ 1 − α as required.

5. THE PROOF OF THEOREM 1.1

That percolation does not occur (a.s.) for p ≤ 1/2 has already been proved by Hirsch [7].
With Proposition 4.1 in hand, that percolation occurs (a.s.) when p > 1/2 follows from a
standard argument involving a comparison to 1-dependent percolation. (See for instance [3],
pages 73–75 and bottom of page 287.)

6. OTHER CONFETTI SHAPES

Here we briefly describe the changes that need to be made in order for our proof to work
for a more wide range of confetti shapes. Theorem 2.4, a key ingredient to our proof of
Theorem 1.1, was in fact proved by Hirsch [7] under rather general assumptions on the shape
of the confettis. In the definition of the confetti process, instead of centering a horizontal
disk on each point of the P = {p1, p2, . . . }, we can fix a “shape” A ⊆ R

2 and define
collection C1, C2, . . . by Ci = pi + A, colour each Ci black with probability p and white
with probability 1−p and then determine the colour of each point of the plane as before. Let
us consider the following list of axioms that we would like our confetti shape A to satisfy:

(A-1) A is homeomorphic to the unit disk;
(A-2) A is invariant under rotations by π/2 and reflections in the coordinate axes;
(A-3) A is locally star-shaped, in the sense that for every z ∈ A there is an open set U ⊆ R

2 such
that z ∈ A ∩ U and A ∩ U is star-shaped with center z;

(A-4) ∂A is a Borel subset of R
2 with finite one-dimensional Hausdorff measure;

(A-5) The sets {x ∈ R
2 : |∂A ∩ (x + ∂A)| = ∞}, {x ∈ R

2 : A ∩ (x + A) is not regular-open} and
{x ∈ R

2 : |(x + ∂A) ∩ {y = 0}| = ∞} have Lebesgue measure zero.

Our Theorem 1.1 in fact generalizes to:

Theorem 6.1. If the confetti shape A satisfies the axioms (A-1)–(A-5), then pc = 1/2.

It is not hard to see that our set of axioms implies the more general set of axioms listed
by Hirsch at the beginning of Section 2 in [7]. In particular we know that Lemma 2.3,
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Theorem 2.4 and pc ≥ 1/2 (Proposition 7 in [7]) hold in our setting. We will now sketch the
changes that need to be made to adapt our proof of pc ≤ 1/2 to the case of confetti shapes
that satisfy the axioms (A-1)–(A-5).

First, we remark that Lemma 2.2 also holds in our new setting with more general shapes.
(In fact, Bordenave et al. [4] prove it in even greater generality.) Property (C-1) still holds
if we substitute “circle segment” by “segment of ∂A”. This follows from (A-1) and (A-5).
Similarly, (C-2) still holds by (A-5). (If there is a point on the boundary of more than three
cells then either a) that point is simultaneously on the boundaries of three or more projected
confetti leafs or b) there are two projected confetti leafs that locally have only that point
in common – or more precisely, the intersection of both projected leafs with an open disk
around the point contains only that point. Almost surely, no point is on the boundary of
three or more projected confetti leafs since the first set in (A-5) has measure zero. Almost
surely, situation b) does not happen because the second set in (A-5) has measure zero.)

We now see that the proof of Lemma 3.2 carries through verbatim if we make the
substitutions: ‖q − π(pi)‖ ≤ 1 by q ∈ π(pi) + A; ‖q − π(pi)‖ < 1 by q ∈ π(pi) + int A;
‖q−π(pi)‖ < 1−ε by B(q, ε) ⊆ π(pi)+A;‖q−π(pj)‖ > 1+ε by B(q, ε) ⊆ R

2\(π(pi)+A).
In proof of Lemma 3.3 we used that (a.s.) Kt(C) is finite for all t and all cells C. That this
is also the case in the current more general setting follows from the fact that the third set in
(A-5) has Lebesgue measure zero. The rest of the proof of Proposition 3.1 then also carries
through without any further changes.

In the proof of Proposition 4.1 the only things we may need to change are the constants
1000, 100, 50 and 2 (the last constant occurring in the sentence after (4) and in the proof of
Claim 4.2, as an upper bound on the distance needed between two points for their colours
to be independent), to adjust for the new confetti shape A. Multiplying these constants by
max(diam(A), 1) will clearly do.
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APPENDIX A: THE PROOF OF PROPOSITION 2.1

Here we provide a proof of Proposition 2.1. We will make use of an extension of Bourgain’s
sharp threshold result to general finite probability spaces that can be found in O’Donnell’s
new book [10]. Before we can state that result we need to give some more definitions.

Throughout the remainder of this section, (V , π) will denote a finite probability space.
That is, a finite set V equipped with a probability measure π . If (V1, π1), . . . , (Vn, πn) are
such finite probability spaces, then we denote by π1 ⊗ · · · ⊗ πn the probability distribution
of the random vector X = (X1, . . . , Xn) ∈ V1 ×· · ·× Vn whose coordinates are independent
with Xi ∼ πi. If π1 = · · · = πn = π then we also write π⊗n. We define the total influence
of a function f : V1 × · · · × Vn → {0, 1} (wrt. π1, . . . , πn) as

I(f ) :=
n∑

i=1

P
[
f (X1, . . . , Xn) �= f (X1, . . . , Xi−1, Yi, Xi+1, . . . , Xn)

]
,

where (X1, . . . , Xn), (Y1, . . . , Yn) ∼ π1 ⊗ · · · ⊗ πn are independent. We remark that this
definition of total influence differs from the definition of total influence used in several
other texts such as [3].

For x ∈ V1 ×· · ·×Vn, T ⊆ {1, . . . , n}, we denote by xT := (xi)i∈T the projection of x onto
the coordinates in T . For T ⊆ {1, . . . , n} and τ > 0, we say that a vector z ∈ ∏

i∈T Vi is a
τ -booster if E

[
f (X1, . . . , Xn)

∣∣Xi = zi, ∀i ∈ T
] ≥ Ef (X1, . . . , Xn) + τ . For τ < 0, the vector

z ∈ ∏
i∈T Vi is a τ -booster if instead E

[
f (X1, . . . , Xn)

∣∣Xi = zi, ∀i ∈ T
] ≤ Ef (X1, . . . , Xn)+τ .

We are now ready to present the generalized version of Bourgain’s sharp threshold
theorem. The original version in [5] was stated only for the case when V = {0, 1}, but
as noted in [10], the proof in fact generalizes to arbitrary V . The following is a slight
reformulation of the generalized version that can be found on page 303 of [10].

Theorem A.1 ([10]). There exist absolute constants c1, c2 > 0 such that the following
holds for every finite set V, every probability measure π on V, every integer n ∈ N and
every function f : V n → {0, 1}. If Var(f (X)) ≥ 1

400 then either

(a) P
[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(f ), such that XT is a τ -booster

] ≥ τ , or
(b) P

[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(f ), such that XT is a (−τ)-booster
] ≥ τ ,

where τ = exp[−c2I2(f )] and X = (X1, . . . , Xn) ∼ π⊗n.

We have chosen to consider functions with values in {0, 1}, while in [10] the theorem is
stated in terms of {−1, 1}-valued functions. It is however clear that if f is {0, 1}-valued then
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g := 2f −1 is {−1, 1}-valued, Var(g) = 4 Var(f ) and x is a τ -booster for f if and only if it is
a 2τ -booster for g. We should also mention that our definiton of total influence is different
from the one given in [10]. That the two definitions are equivalent follows Proposition 8.24
on page 204 of [10].

The last theorem also extends to asymmetric situations.

Corollary A.2. There exist absolute constants c1, c2 > 0 such that the following holds
for all n ∈ N, all (V1, π1), . . . , (Vn, πn) and every function f : V1 × · · · × Vn → {0, 1}.
If Var(f ) ≥ 1

400 then either

(a) P
[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(f ), such that XT is a τ -booster

] ≥ τ , or
(b) P

[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(f ), such that XT is a (−τ)-booster
] ≥ τ ,

where τ = exp[−c2I2(f )] and X = (X1, . . . , Xn) ∼ π1 ⊗ · · · ⊗ πn.

Proof. We set V := V1 × · · · × Vn, π = π1 ⊗ · · · ⊗ πn and we define g : V n → {0, 1}
by g(z1, . . . , zn) := f (z1,1, . . . , zn,n), where zi,j denotes the j-th coordinates of zi. Clearly,
Theorem A.1 applies to this new situation.

If Z1, . . . , Zn, Z ′
1, . . . , Z ′

n ∼ π are independent, then, for every 1 ≤ i ≤ n

P
[
g(Z1, . . . , Zn) �= g(Z1, . . . , Zi−1, Z ′

i , Zi+1, . . . , Zn)
]

=
P
[
f (Z1,1, . . . , Zn,n) �= f (Z11, . . . , Zi−1,i−1, Z ′

i,i, Zi+1,i+1, . . . , Zn,n)
]
.

Since (Z1,1, . . . , Zn,n), (Z ′
1,1, . . . , Z ′

n,n) ∼ π1 ⊗· · ·⊗πn by construction, it follows that I(g) =
I(f ). Similary, taking X = (X1, . . . , Xn) ∼ π1 ⊗ · · · ⊗ πn, we find that Eg(Z1, . . . , Zn) =
Ef (X1, . . . , Xn) and

P
[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(g), such that ZT is a τ -booster wrt. g

]
=

P
[∃T ⊆ {1, . . . , n}, |T | ≤ c1I(f ), such that XT is a τ -booster wrt. f

]
,

where c1 is as provided by Theorem A.1. This concludes the proof of the corollary.

Let us note that the number 1
400 in Theorem A.1 and Corollary A.2 could have been

replaced by any other number (at the expense of changing the constants c1, c2). This can of
course be seen from the proof of Theorem A.1, but it can also be derived from the statement
in a straightforward way. For completeness we prefer to spell out the details.

Corollary A.3. For every 0 < α < 1/2 and C > 0, there exist constants K = K(α, C) ∈
N, δ = δ(α, C) > 0 such that the following holds for all n ∈ N, all (V1, π1), . . . , (Vn, πn)

and every function f : V1 × · · · × Vn → {0, 1}.
If P[f (X) = 1] ∈ (α, 1 − α) and I(f ) ≤ C then there exist indices 1 ≤ i1, . . . , iK ≤ n and
values xi1 ∈ Vi1 , . . . , xiK ∈ ViK such that one of the following holds:

(a) P
[
f (X) = 1|Xi1 = xi1 , . . . , XiK = xiK

] ≥ P
[
f (X) = 1

] + δ, or
(b) P

[
f (X) = 1|Xi1 = xi1 , . . . , XiK = xiK

] ≤ P
[
f (X) = 1

] − δ,

where X = (X1, . . . , Xn) ∼ π1 ⊗ · · · ⊗ πn.
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Proof. Let us first remark that Var(f ) ≤ 1
400 if and only if Ef ∈ (α0, 1 − α0), where

α0 := (1 − √
99/100)/2 ≈ .0025 is the smaller of the two solutions to x(1 − x) = 1

400 .
Hence, if Ef ∈ (α0, 1 − α0) then the result is an immediate consequence of Corollary A.2,
setting K := c1 · C and δ := exp[−c2 · C2].

Let us thus assume that (α < α0 and) Ef ∈ (α, α0] ∪ [1 − α0, 1 − α). Switching to
g := 1 − f if necessary (observe that this transformation leaves the total influence intact,
and (a) holds for f if and only if (b) holds for g, and similarly with f , g switched), we can
assume without loss of generality that 1 − α0 ≤ Ef < 1 − α.

We now set k := �log(1 − α0)/ log(Ef )� and k0 := �log(1 − α0)/ log(1 − α)� (Observe
that k ≤ k0 and k0 depends only on α but not on n, f , the Vi-s or πi-s.). We define

g :=
k∏

i=1

f (X(i−1)n+1, . . . , Xin),

where X1, . . . , Xkn are independent with Xjn+i ∼ πi for all 0 ≤ j ≤ k − 1, 1 ≤ i ≤ n. We
have

Eg = (Ef )k ∈ (α0, 1 − α0),

so that Corollary A.2 applies to g. Hence there are indices 0 ≤ i1, . . . , iK ≤ kn and values
xi1 , . . . , xiK such that

∣∣E[
g|Xi1 = xi1 , . . . , XiK = xiK

] − Eg
∣∣ ≥ τ ,

where K := c1 · C and τ = exp[−c1 · C2] with c1, c2 as provided by Corollary A.2.
Let us first suppose that E

[
g|Xi1 = xi1 , . . . , XiK = xiK

] ≥ Eg + τ . We have

E
[
g(X1, . . . , Xkn)|Xi1 = xi1 , . . . , XiK = xiK

]
=∏k

j=1 E
[
f (X(j−1)n+1, . . . , Xjn)|Xi1 = xi1 , . . . , XiK = xiK

]
.

There must be a 1 ≤ j ≤ k such that E
[
f (X(j−1)n+1, . . . , Xjn)|Xi1 = xi1 , . . . , XiK = xiK

] ≥
Ef + τ

k02k0
. This is because otherwise we would have

E
[
g|Xi1 = xi1 , . . . , XiK = xiK

] ≤
(

Ef + τ

k02k0

)k

≤ (Ef )k + τ/2,

using that d
d x (Ef + x)k is at most k2k−1 for x ∈ [0, 1], so that (Ef + x)k ≤ (Ef )k + xk2k−1

for all x ∈ [0, 1]. Relabelling if necessary, we can assume without loss of generality that
j = 1. Hence we have

E
[
f (X1, . . . , Xn)

∣∣Xi1 = xi1 , . . . .XiK = xiK

] ≥ Ef (X1, . . . , Xn) + τ

k02k0
.

It may be that some indices ij are bigger than n. But in that case the value Xij is irrelevant
to f (X1, . . . , Xn). To match into the framework of the Corollary we can just set ij = ij′ and
xij = xij′ for some index ij′ ≤ n.

Suppose then that E
[
g|Xi1 = xi1 , . . . , XiK = xiK

] ≤ Eg − τ . Similarly to before, there is
a 1 ≤ j ≤ k such that E

[
f (X(j−1)n+1, . . . , Xjn)|Xi1 = xi1 , . . . , XiK = xiK

] ≤ Ef − τ

k02k0
. We

can continue as in the previous case.
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This proves that the corollary indeed holds with K = c1 ·C and δ = exp[−c2 ·C2]/k02k0 .

Our next ingredient is the well-known Margulis-Russo formula. A proof can for instance
be found in [3], where it appears as Lemma 9 on page 46.

Lemma A.4 (Margulis-Russo formula). Suppose that f : {0, 1}n → {0, 1} is non-
decreasing (coordinatewise). For p = (p1, . . . , pi) ∈ (0, 1)n we have

∂

∂pi
Pp[f (X1, . . . , Xn) = 1] = 1

2pi(1 − pi)
Pp[f (X1, . . . , Xn) �= f (X1, . . . , Xi−1, Y , Xi+1, . . . , Xn)],

where X1, . . . , Xn, Y are independent and Xj ∼ Be(pj) for all 1 ≤ j ≤ n and Y ∼ Be(pi).

We now have all the ingredients for a quick proof of Proposition 2.1. For completeness
we spell out the details.

Proof of Proposition 2.1. The up-set A ⊆ {0, 1}n corresponds to a function f : {0, 1}n →
{0, 1} that is one if and only if its input is in A. This function f is non-decreasing since A is
an up-set. By the Margulis-Russo formula we have that

I(f ) = 2
n∑

i=1

pi(1 − pi) · ∂

∂pi
Pp

[
(X1, . . . , Xn) ∈ A

]
.

Also observe that, since f is non-decreasing, we have

P(f (X) = 1|Xi1 = · · · = XiK = 1)

≥
P(f (X) = 1|Xi1 = xi1 , . . . , XiK = xiK )

≥
P(f (X) = 1|Xi1 = · · · = XiK = 0),

for all xi1 , . . . , xiK ∈ {0, 1}.
Proposition 2.1 is thus a direct corollary of Corollary A.3.

APPENDIX B: THE PROOF OF LEMMA 3.4

Proof of Lemma 3.4. Let us fix ε > 0. By continuity of f , for each x ∈ I there is a set
Ux = [a1, b1] × · · · × [ad , bd] ⊆ I such that x ∈ Ox := intI(Ux) (we take the interior in the
relative topology of I), and |f (x′)− f (x)| < ε/2 for all x′ ∈ Ux. Since fk → f pointwise and
fk+1 ≥ fk , there is a k0(x) such that fk(a1, . . . , ad) ≥ f (a1, . . . , ad) − ε/2 for all k ≥ k0(x).
By the nondecreasingness of fk we also have that fk(x′) ≥ f (a1, . . . , ad) − ε/2 ≥ f (x′) − ε

for all x′ ∈ Ux and all k ≥ k0(x).
Since I is compact and {Ox : x ∈ I} is an open cover of I , there must be a finite subcover

{Ox1 , . . . , OxN } of I . Setting k0 := max(k0(x1), . . . , k0(xN)), it is clear that fk(x) ≥ f (x) − ε

for every x ∈ I and every k ≥ k0. Also observe that fk(x) ≤ f (x) for all k and all x ∈ I ,
since fk(x) is non-decreasing in k and converges to f (x) by assumption. So we have that
|fk(x) − f (x)| < ε for all x ∈ I and all k ≥ k0, which proves that fk converges uniformly as
claimed.
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