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Finding paths in sparse random graphs requires many queries

Asaf Ferber ∗ Michael Krivelevich† Benny Sudakov ‡ Pedro Vieira §

Abstract

We discuss a new algorithmic type of problem in random graphs studying the minimum number
of queries one has to ask about adjacency between pairs of vertices of a random graph G ∼ G(n, p)
in order to find a subgraph which possesses some target property with high probability. In this
paper we focus on finding long paths in G ∼ G(n, p) when p = 1+ε

n
for some fixed constant ε > 0.

This random graph is known to have typically linearly long paths.

To have ℓ edges with high probability in G ∼ G(n, p) one clearly needs to query at least Ω
(

ℓ
p

)

pairs of vertices. Can we find a path of length ℓ economically, i.e., by querying roughly that many
pairs? We argue that this is not possible and one needs to query significantly more pairs. We prove

that any randomised algorithm which finds a path of length ℓ = Ω

(

log( 1

ε
)

ε

)

with at least constant

probability in G ∼ G(n, p) with p = 1+ε
n

must query at least Ω

(

ℓ

pε log( 1

ε
)

)

pairs of vertices. This

is tight up to the log
(

1
ε

)

factor.

1 Introduction

Let P be a monotone increasing graph property (that is, a property of graphs that cannot be violated

by adding edges). Suppose that the edge probability p = p(n) is chosen so that a random graph G

drawn from the probability space G(n, p) has P with high probability (whp). How many queries of the

type “is (i, j) ∈ E(G)?” are needed for an adaptive algorithm interacting with the probability space

G(n, p) in order to reveal whp a subgraph G′ ⊆ G possessing P?

This fairly natural algorithmic setting (see the excellent survey of Frieze and McDiarmid [10] for

an extensive coverage of a variety of problems and results in Algorithmic Theory of Random Graphs)

has been considered implicitly in several papers on random graphs (e.g. [14], [5]), but apparently has

been stated explicitly only in the companion paper [9] of the authors. Notice that in this framework

the issue of concern is not the amount of computation required for the algorithm to find a target

structure, but rather the amount of its interaction with the underlying probability space.

In the discussion below, we assume some basic familiarity with results about the probability space

G(n, p); the reader is advised to consult monographs [11] and [6] for background on the subject.

In general, given a monotone property P, what can we expect? If all n-vertex graphs belonging

to P have at least m edges, then the algorithm should get at least m positive answers to hit the
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target property with the required absolute certainty. This means that the obvious lower bound in this

case is at least (1 + o(1))m/p queries. Perhaps one of the simplest graph properties to consider in

this respect is connectedness: for any connected graph G on n vertices a spanning tree can be found

after n − 1 queries with positive answers – the algorithm starts with an arbitrary vertex v ∈ V (G),

and each time queries the pairs leaving the current tree until the first edge is found, the tree is then

updated by appending this edge. Thus for the regime where G(n, p) is whp connected (which is when

p(n) ≥ lnn+ω(n)
n with limn→∞ ω(n) = 1), we get an algorithm whp discovering a spanning tree after

querying (1 + o(1))n/p pairs of vertices.

A much more challenging problem is that of Hamiltonicity, i.e., of finding a Hamilton cycle. In

this case the trivial lower bound translates to n positive answers. In [9] we show that this lower bound

is tight by providing an adaptive algorithm interacting with the probability space G(n, p), which whp

finds a Hamilton cycle in G ∼ G(n, p) after obtaining only (1 + o(1))n positive answers (provided p is

above the sharp threshold for Hamiltonicity in G(n, p)).

Yet another positive example is that of uncovering a giant component in the supercritical regime

p = 1+ε
n . Though this was not the main concern in [14], the second and the third author presented

there a very natural adaptive algorithm (essentially performing the Depth First Search (DFS) on a

random input G ∼ G(n, p)), typically discovering a connected component of size at least ǫn/2 after

querying ǫn2/2 vertex pairs.

Upon reviewing these results, the reader may arrive at a conclusion that the above stated trivial

lower bound for this type of problems is nearly tight for almost every natural graph property. However,

this happens not to be the case, and the main qualitative goal of the present paper is to provide such a

negative example, including its analysis. Here we focus on the property of containing a path of length

ℓ in the supercritical regime in G ∼ G(n, p), that is, when p = 1+ε
n for some fixed constant ε > 0. For

this regime, G ∼ G(n, p) is known to contain whp a path of length linear in n, due to the classical

result of Ajtai, Komlós and Szemerédi [3] (see [14] for a recent simple proof of this fact.) Note that

in order to have ℓ edges with high probability in G ∼ G(n, p) one needs to query at least Ω
(

ℓ
p

)

pairs

of vertices. Can we find a path of length ℓ by asking roughly that many queries, as in the case of

Hamiltonicity mentioned above? We show that in this case one actually needs to query significantly

more pairs of vertices:

Theorem 1. There exists an absolute constant C > 0 such that the following holds. For every constant

q ∈ (0, 1) there exist n0, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and any n ≥ n0 there is no adaptive

algorithm which reveals a path of length ℓ ≥ 3C
ε ln

(

1
ε

)

with probability at least q in G ∼ G (n, p), where

p = 1+ε
n , by querying at most qℓ

8640Cpε ln( 1
ε)

pairs of vertices.

Notice that [14] presents a simple adaptive DFS algorithm, finding a path of length 1
5ε

2n with

probability at least 1 − exp (Ω(εn)) in G ∼ G(n, p) after querying only O
(

εn2
)

pairs of vertices. In

fact, if one uses the same algorithm to find a path of length ℓ ≤ 1
5ε

2n in G ∼ G(n, p) then the same

argument shows that such a path is found with probability at least 1 − exp
(

Ω
(

ℓ
ε

))

after querying at

most O
(

ℓ
pε

)

pairs of vertices. This shows that up to the Θ
(

log
(

1
ε

))

factor, Theorem 1 is tight.

The key ingredient of the proof of Theorem 1 is the following result of independent interest.

Theorem 2. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and p = 1+ε
n we

have whp that a graph G ∼ G (n, p) does not contain a set of vertex disjoint paths of lengths at least
C
ε ln

(

1
ε

)

whose union covers at least 13ε2n vertices.
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The rest of this paper is organised as follows. In Section 2 we provide auxiliary lemmas needed for

the proofs of Theorem 1 and 2. In Section 3 we prove Theorem 1 assuming Theorem 2. In Section 4

we prove Theorem 2. Finally, in Section 5 we discuss some concluding remarks.

Notation. Our notation is fairly standard. Given a natural number n we use [n] to denote the

set {1, 2, . . . , n}. Moreover, given a set V we use SV to denote the permutation group of V and
(

V
2

)

to denote the set of all (unordered) pairs of elements in V .

Given a subset S of the vertex set of a graph G, G[S] denotes the subgraph of G induced by the

vertices in S, i.e. the graph with vertex set S whose edges are the ones of G between vertices in S.

A subgraph P of the graph G is called a path if V (P ) = {v1, . . . , vℓ} and the edges of P are v1v2,

v2v3, . . ., vℓ−1vℓ. We shall oftentimes refer to P simply by v1v2 . . . vℓ. We say that such a path P has

length ℓ− 1 (number of edges) and size ℓ (number of vertices).

If G is a graph then the 2-core of G is the maximal induced subgraph of G of minimum degree at

least 2. If no such subgraph exists then the 2-core of G is the empty graph.

Given an ordered set V and a real number p ∈ [0, 1], the binomial random graph model G(V, p) is a

probability space whose ground set consists of all labeled graphs on the vertex set V . We can describe

the probability distribution of G ∼ G(V, p) by saying that each pair of elements of V forms an edge in

G independently with probability p. If V = [n] then we will abuse notation slightly and use G(n, p) to

refer to G([n], p). Given a property P (that is, a collection of graphs) and a function p = p(n) ∈ [0, 1],

we say that G ∼ G(n, p) has P with high probability (or whp for brevity) if the probability that G ∈ P
tends to 1 as n tends to infinity.

2 Auxiliary Lemmas

2.1 Concentration inequalities

We need to employ standard bounds on large deviations of random variables. The following well-

known lemma due to Chernoff (commonly known as the “Chernoff bound”) provides a bound on the

upper tail of the Binomial distribution (see e.g. [4], [11]).

Lemma 1. Let X ∼ Bin(n, p) and let µ = E [X]. Then Pr [X ≥ (1 + a)µ] < e−
a2µ
3 for any 0 < a < 3

2 .

The next lemma is a concentration inequality for the edge exposure martingale in G(n, p) which

follows easily from Theorem 7.4.3 of [4].

Lemma 2. Suppose X is a random variable in the probability space G(n, p) such that |X(G)−X(H)| ≤
C if G and H differ in one edge. Then

Pr
[

|X − E [X]| > Cα
√

n2p
]

≤ 2e−
α2

4

for any positive α < 2
√

n2p.

2.2 Galton-Watson trees and paths

A Galton-Watson tree is a random rooted tree, constructed recursively from the root where each node

has a random number of children and these random numbers are independent copies of some random

variable ξ taking values in {0, 1, 2, . . .}. We let T denote a (random) Galton-Watson tree. We view

the children of each node as arriving in some random order, so that T is an ordered, or plane tree.

3



We consider the conditioned Galton-Watson tree Tt, which is the random tree T conditioned on

having exactly t vertices. In symbols, Tt := (T | |T | = t), where, for any tree T , |T | denotes its number

of vertices.

For a rooted tree T , the depth h(v) of a vertex v is its distance to the root (in particular the root

has depth 0). We define as usual the height of the rooted tree T by H(T ) := max{h(v) : v ∈ T}.

The following lemma which appears in [1] provides essentially optimal uniform sub-Gaussian upper

tail bounds on H(Tt)√
t

for every offspring distribution ξ with finite variance.

Lemma 3. Suppose that E [ξ] = 1 and 0 < Var [ξ] < ∞. Then there exist constants C, c > 0 (which

may depend on ξ) such that

Pr [H(Tt) ≥ h] ≤ C exp

(

−ch2

t

)

for all h ≥ 0 and t ≥ 1.

As is well known, the distribution of the tree Tt is not changed if ξ is replaced by another random

variable ξ′ whose distribution is created from that of ξ by tilting or conjugation (see e.g. [13]): if for

every k ≥ 0 we have Pr [ξ′ = k] = c′µk Pr [ξ = k] for some µ > 0 and normalizing constant c′. Thus, we

see that Lemma 3 remains true for ξ ∼ Poisson(µ), with µ > 0, in which case the parameters C, c > 0

are universal constants which do not depend on the parameter µ. It is also well known (see e.g. Section

6.4 of [7]) that if ξ ∼ Poisson(µ) then Tt is distributed as a random rooted labelled tree, that is, a tree

picked uniformly from the tt−1 trees on vertices {1, 2, . . . , t} in which one vertex is declared to be the

root. From this we obtain an estimate to be used by us later.

Lemma 4. Given 0 ≤ ℓ ≤ t let pt,ℓ denote the proportion of (rooted) labeled trees on t vertices which

contain a path of length at least ℓ. There exist constants C, ε0 > 0 such that for any ε ∈ (0, ε0) if

ℓ = C
ε ln

(

1
ε

)

and t0 = 15
ε2 ln

(

1
ε

)

then
∑

ℓ≤t≤t0

pt,ℓ ≤ ε3

Proof of Lemma 4. It follows from Lemma 3 and the considerations above that there exist constants

C ′, c′ > 0 such that for every t ≤ t0:

pt,ℓ ≤ C ′ exp

(

−c′ℓ2

t

)

≤ C ′ exp

(

−c′
(

C
ε ln

(

1
ε

))2

15
ε2

ln
(

1
ε

)

)

= C ′ε
c′C2

15 .

Thus, if C >
√

90
c′ and if ε0 is sufficiently small then we see that for any ε ∈ (0, ε0) and for t ≤ t0 we

have pt,ℓ ≤ ε6. Using this we conclude that

∑

ℓ≤t≤t0

pt,ℓ ≤ ε6 · t0 = 15ε4 ln

(

1

ε

)

≤ ε3 ,

provided ε0 is sufficiently small, as claimed.

The next lemma concerns the sizes of Poisson Galton-Watson trees which contain long paths.
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Lemma 5. For ε > 0 let 0 < µ < 1 be such that µe−µ = (1 + ε)e−(1+ε). Given ℓ ≥ 1 consider a

Poisson(µ)-Galton-Watson tree T and the random variable

Tℓ :=

{|T | if T contains a path of length at least ℓ
3

0 otherwise ,

where |T | denotes the number of vertices of T . Then there exist constants C, ε0 > 0 such that for

every ε ∈ (0, ε0) and for ℓ = C
ε ln

(

1
ε

)

we have E [Tℓ] ≤ 14ε3 and Var [Tℓ] ≤ 8
ε3 .

Proof. We have

E [Tℓ] = E [E [Tℓ | |T |]] =
∑

t≥1

Pr [|T | = t] · E [Tℓ | |T | = t] . (1)

It is well-known (see, e.g., Section 6.6 of [7]) that the size of the Poisson(µ)-Galton-Watson tree T
follows a Borel(µ) distribution, namely,

Pr [|T | = t] =
tt−1 (µe−µ)

t

µ · t! .

Moreover, as discussed in the remarks that follow Lemma 3, if we condition a Poisson(µ)-Galton-

Watson tree on it having exactly t vertices then it is identically distributed to a random rooted

labelled tree on t vertices. Thus, it follows that E [Tℓ | |T | = t] is equal to t · pt, ℓ
3
, where pt, ℓ

3
denotes

the proportion of rooted labeled trees on t vertices which contain a path of length at least ℓ
3 . Hence,

setting t0 := 15
ε2 ln

(

1
ε

)

with foresight, it follows from (1) that

E [Tℓ] =
∑

t≥1

tt−1 (µe−µ)
t

µ · t! · t · pt, ℓ
3

≤ 1

µ

∑

t≥ ℓ
3

tt

t!
· (1 + ε)t · e−(1+ε)t · pt, ℓ

3

≤ 2
∑

t≥ ℓ
3

e−
ε2

3
t · pt, ℓ

3

≤ 2 ·







∑

ℓ
3
≤t≤t0

pt, ℓ
3

+
∑

t≥t0

e−
ε2

3
t






, (2)

where in the second inequality we used the facts that tt

t! ≤ et, that (1 + ε)t ≤ eεt−
ε2

3
t (which holds

since the first terms of the Taylor series expansion of ln(1 + ε) are ε− ε2

2 ) and that 1
µ ≤ 2 provided ε0

is chosen sufficiently small. By Lemma 4 there exist constants C, ε0 > 0 such that the first sum in (2)

is at most ε3. Moreover, the second sum in (2) is

∑

t≥t0

e−
ε2

3
t = e−

ε2

3
t0 · 1

1 − e−
ε2

3

≤ ε5 · 6

ε2
= 6ε3 , (3)

where we used the fact that 1
1−e−x ≤ 2

x for x > 0 sufficiently small (which holds since the first terms of

the Taylor series expansion of e−x are 1 − x). Thus, all in all, we conclude that there exist constants

C, ε0 > 0 such that

E [Tℓ] ≤ 2 · (ε3 + 6ε3) = 14ε3

5



as claimed. Since |T | ∼ Borel(µ) it follows that

Var [Tℓ] ≤ E
[

T 2
ℓ

]

≤ E
[

|T |2
]

=
1

(1 − µ)3
.

Morever, it is straightforward to check that if ε0 is chosen sufficiently small then µ ≤ 1− ε
2 . Thus, we

conclude that

Var [Tℓ] ≤
8

ε3

as claimed.

Lemma 6. Let P = (V,E) be a path of length ℓ and B ⊆ E a set of size |B| ≤ αℓ, where α ≥ 1
ℓ . Let

Q denote the graph obtained from P by deleting all the edges in B. Then there exist vertex disjoint

subpaths {Qj}j∈J of Q such that each Qj has length at least 1
3α and the subpaths {Qj}i∈J cover at

least
(

1
3 − α

)

ℓ vertices of V .

Proof of Lemma 6. Since P is a path, Q consists of a union of vertex disjoint paths {Qj}j∈[k] for some

k ≤ |B| + 1 ≤ αℓ + 1. Denoting by ℓj the length of the path Qj for j ∈ [k], note that

∑

j∈[k]
ℓj = ℓ− |B| ≥ (1 − α)ℓ. (4)

Moreover, setting J := {j ∈ [k] : ℓj ≥ 1
3α} we see that

∑

j /∈J
ℓj ≤ k · 1

3α
≤ 1

3
ℓ +

1

3α
≤ 2

3
ℓ. (5)

Putting (4) and (5) together we get that

∑

j∈J
ℓj ≥

(

1

3
− α

)

ℓ.

Thus, it follows that the paths {Qj}j∈J satisfy the desired conditions.

2.3 Properties of random graphs

The next lemma provides bounds on the sizes of the largest and second largest connected components

of G ∼ G(n, p) as well as the size of its 2-core when p = 1+ε
n , where ε > 0 is a small constant. This

lemma is a simple consequence of Theorem 5.4 of [11] and Theorem 3 of [15].

Lemma 7. Let p = 1+ε
n where ε > 0 is a constant. Then there exists a constant ε0 > 0 such that for

every ε ∈ (0, ε0) the following holds whp for G ∼ G(n, p):

(a) the largest connected component of G has between εn and 3εn vertices.

(b) the second largest connected component of G has at most 20
ε2 lnn vertices.

(c) the 2-core of the largest connected component of G has at most 2ε2n vertices.

6



In [8], Ding, Lubetzky and Peres established a complete characterization of the structure of the

giant component C1 of G ∼ G(n, p) in the strictly supercritical regime (p = 1+ε
n with ε > 0 constant).

This was achieved by offering a tractable contiguous model C̃1, i.e. a model such that every graph

property that is satisfied by C̃1 whp is also satisfied by C1 whp. In their model, C̃1 consists of a 2-core

C̃(2)
1 where one attaches to each vertex of C̃(2)

1 one independent Poisson(µ)-Galton-Watson tree (where

0 < µ < 1 is such that µe−µ = (1 + ε)e−(1+ε)). In light of this, any graph property that is satisfied

whp by the disjoint union of |C̃(2)
1 | independent Poisson(µ)-Galton-Watson trees must also be satisfied

whp by C1 \ C(2)
1 , the graph obtained from the giant component C1 by removing the edges of its 2-core

C(2)
1 . As one would expect, the random variable |C̃(2)

1 | is tightly concentrated around its expectation,

which agrees with the expected size of the 2-core C(2)
1 of C1. By (c) of Lemma 7 this at most 2ε2n. The

next technical lemma which will be useful in the proof of Theorem 2 follows from the considerations

above.

Lemma 8. Let C1 denote the largest connected component of G ∼ G(n, p) for p = 1+ε
n , where ε > 0

is fixed, let C(2)
1 denote its 2-core and let C1 \ C(2)

1 denote the graph obtained from C1 by removing

the edges in C(2)
1 . Let 0 < µ < 1 be such that µe−µ = (1 + ε)e−(1+ε) and consider 2ε2n independent

Poisson(µ)-Galton-Watson trees T1, . . . ,T2ε2n. Then, for every ℓ and m (which might depend on n) if

whp the disjoint union of T1, . . . ,T2ε2n does not contain a set of vertex disjoint paths of length at least

ℓ covering at least m vertices then the same holds whp for C1 \ C(2)
1 .

3 Proof of Theorem 1

We start this section by repeating the statement of Theorem 1 for the reader’s convenience.

Theorem 1. There exists an absolute constant C > 0 such that the following holds. For every constant

q ∈ (0, 1) there exist n0, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and any n ≥ n0 there is no adaptive

algorithm which reveals a path of length ℓ ≥ 3C
ε ln

(

1
ε

)

with probability at least q in G ∼ G (n, p), where

p = 1+ε
n , by querying at most qℓ

8640Cpε ln( 1
ε)

pairs of vertices.

Proof of Theorem 1. Suppose Alg is an adaptive algorithm which with probability at least q finds a

path of length ℓ in G ∼ G (n, p), where p = 1+ε
n , after querying at most qℓ

8640Cpε ln( 1
ε)

pairs of vertices.

We consider implicitly that Alg takes an ordered vertex set as part of its input. We shall assume

henceforth that n,C > 0 are sufficiently large and ε > 0 is sufficiently small in order to obtain a

contradiction. Note that, by restricting Alg to a set of n vertices, we get an algorithm which for any

n′ ≥ n with probability at least q finds in G′ ∼ G(n′, p) a path of length ℓ after querying at most
qℓ

8640Cpε ln( 1
ε)

pairs of vertices. We shall abuse notation slightly and call Alg to all these algorithms.

Define n′ :=
(

1 + 720ε2

q

)

n, V0 := [n′], I0 := ∅ and s := 720ε2n
q(ℓ+1) . For i = 1, . . . , s do the following:

• Apply Alg to Gi−1 ∼ G (Vi−1, p), where the vertices in Vi−1 are permuted according to a per-

mutation πi ∈ SVi−1 chosen uniformly at random. Let Li be the graph of all pairs of vertices

queried and let Ki ⊆ Li be the graph of edges present. By the algorithm we know that Li has at

most qℓ

8640Cpε ln( 1
ε )

edges. If Ki contains a path of length ℓ then let Pi be one such path, define

Vi := Vi−1 \ V (Pi) and set Ii := Ii−1 ∪ {i}. Otherwise, set Vi := Vi−1 and Ii := Ii−1.

7



Observe that |Vs| ≥ n′ − (ℓ + 1)s =
(

1 + 720ε2

q

)

n− 720ε2

q n = n and so we can indeed apply Alg to

Vi−1 for any i ∈ [s]. We define a random graph H with vertex set V0 in the following way. For every

pair of vertices {u, v} ⊆ V0 if {u, v} ∈ E(Li) for some i ∈ [s] then let i0 be the smallest such index and

set {u, v} as an edge of H if and only if {u, v} ∈ E(Ki0). Consider all the other pairs {u, v} ⊆ V0 as

non-edges of H. From the procedure above it follows that for every {u, v} ⊆ V0 we have independently

that

Pr [{u, v} ∈ E(H)] ≤ p =
1 + ε

n
=

1 + ε

n′ · n
′

n
=

(1 + ε)
(

1 + 720ε2

q

)

n′ ≤ 1 + 2ε

n′ ,

provided ε ≤ q
1440 . Thus, the graph H can be viewed as a subgraph of a graph sampled from

G
(

n′, 1+2ε
n′

)

. In particular, if with probability at least q2

4 the graph H contains a set of vertex disjoint

paths of length at least C
ε ln

(

1
ε

)

which cover at least 52ε2n′ vertices then the same must also hold with

probability at least q2

4 in G
(

n′, 1+2ε
n′

)

. However, this would contradict Theorem 2 and so it suffices to

prove the following claim:

Claim. With probability at least q2

4 the graph H contains a set of vertex disjoint paths of length at

least C
ε ln

(

1
ε

)

which cover at least 52ε2n′ vertices of V0.

Define for each i ∈ Is the graph Hi with vertex set Vi−1 and edge set
(

⋃i−1
j=1E(Lj)

)

∩
(Vi−1

2

)

and

note that

|E(Hi)| ≤ s · qℓ

8640Cpε ln
(

1
ε

) ≤ εn2

12C ln
(

1
ε

)

(1 + ε)
≤ ε

6C ln
(

1
ε

) ·
(|Vi−1|

2

)

. (6)

Observe that for each i ∈ Is the set Vi−1 \ Vi consists of the vertex set of a path Pi in the graph Ki.

For each such i set Bi := E(Pi) ∩E(Hi) and let Qi denote the graph obtained from Pi by deleting all

the edges in Bi. Note crucially that E(Qi) ⊆ E(H) and that the graphs {Qi}i∈Is are vertex disjoint.

Consider now the set I :=

{

i ∈ Is : |Bi| ≤ ε
3C ln( 1

ε )
ℓ

}

. By Lemma 6 it follows that for any i ∈ I

there exist vertex disjoint subpaths {Qj
i}j∈Ji of Qi each of length at least C

ε ln
(

1
ε

)

which cover at least
(

1
3 − ε

3C ln( 1
ε )

)

ℓ ≥ 1
4(ℓ+1) vertices of V (Qi). Thus, if |I| ≥ 1

3sq then {Qj
i}i∈I,j∈Ji forms a collection of

vertex disjoint paths in H of length at least C
ε ln

(

1
ε

)

which cover at least 1
4(ℓ+1)· 13sq = 60ε2n ≥ 52ε2n′

vertices of V0. It suffices to show then that with probability at least q2

4 we have |I| ≥ 1
3sq.

Let I ′ := [s] \ I and note that for every i ∈ [s] we have

Pr
[

i ∈ I ′
]

= Pr [i /∈ Is] + Pr
[

i ∈ I ′ | i ∈ Is
]

· Pr [i ∈ Is] . (7)

It is clear from the procedure above that for each i ∈ [s] we have Pr [i ∈ Is] ≥ q. Note also crucially

that, provided i ∈ Is, the path Pi is a randomly mapped path of length ℓ on the vertex set Vi−1.

Indeed, this happens because before the i-th application of Alg we permuted the vertices of Vi−1

according to a permutation πi ∈ SVi−1 chosen uniformly at random. Thus, by conditioning on the

event that i ∈ Is, on any possible graph Hi satisfying (6) and on the path π−1
i (Pi), we have for any

e ∈ E
(

π−1
i (Pi)

)

:

Pr [πi(e) ∈ E(Hi)] ≤
ε

6C ln
(

1
ε

) ,

and so, by linearity of expectation it follows that:

E [|E(Pi) ∩ E(Hi)|] ≤
ε

6C ln
(

1
ε

)ℓ.
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Thus, by Markov’s inequality (see, e.g., [4]) we get that

Pr
[

i ∈ I ′ | i ∈ Is
]

≤ 1

2
,

and so by equation (7) we see that for any i ∈ [s] we have Pr [i ∈ I ′] ≤ 1 − 1
2 Pr[i ∈ Is] ≤ 1 − q

2 . It

follows then by linearity of expectation that E [|I ′|] ≤ s
(

1 − q
2

)

. Hence, again by Markov’s inequality

we conclude that

Pr

[

|I ′| ≥ s

1 + q
2

]

≤ 1 − q2

4
, which implies

q2

4
≤ Pr

[

|I| ≥ sq

2 + q

]

≤ Pr
[

|I| ≥ sq

3

]

.

This completes the proof.

4 Proof of Theorem 2

Theorem 2. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) we have whp that

G ∼ G
(

n, 1+ε
n

)

does not contain a set of vertex disjoint paths of lengths at least C
ε ln

(

1
ε

)

whose union

covers at least 13ε2n vertices.

Proof of Theorem 2. Let G ∼ G(n, p) where p = 1+ε
n . Let C1 denote the largest connected component

of G, let C(2)
1 denote the 2-core of C1 and let C1 \ C(2)

1 denote the graph obtained from C1 by deleting

the edges in C(2)
1 . For ℓ ≥ 1 consider the following random variables:

• Xℓ = number of vertices which belong to connected components of G of size at most 20
ε2 lnn

containing a path of length at least ℓ.

• Yℓ = maximum number of vertices covered by vertex disjoint paths of length at least ℓ in C1.

• Zℓ = maximum number of vertices covered by vertex disjoint paths of length at least ℓ
3 in C1\C(2)

1 .

By (b) of Lemma 7 it follows that whp Xℓ + Yℓ is an upper bound on the maximum number of

vertices of G covered by vertex disjoint paths of length at least ℓ. Note that we may assume that all

the paths considered have size at most 2ℓ by splitting larger paths into several paths of length at least

ℓ. Moreover, if P is a path of length at least ℓ in C1 then, since C1 \ C(2)
1 consists of a disjoint union of

trees, there must exist a subpath P ′ of the path P with at least |P |
3 ≥ ℓ

3 vertices which lies in C(2)
1 or

in C1 \ C(2)
1 . Since |P | ≤ 6|P ′| it follows that Yℓ ≤ 6|C(2)

1 | + 6Zℓ.

By (c) of Lemma 7 we know that whp |C(2)
1 | ≤ 2ε2n, provided ε0 is chosen small enough. It

suffices then to show that there exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for

ℓ := C
ε ln

(

1
ε

)

we have whp that

Xℓ < ε3n and Zℓ < 29ε5n.

since in that case we have whp that the maximum number of vertices of G covered by vertex disjoint

paths of length at least ℓ is at most

Xℓ + Yℓ ≤ Xℓ + 6|C(2)
1 | + 6Zℓ < ε3n + 6 · 2ε2n + 6 · 29ε5n ≤ 13ε2n.

provided ε0 is chosen sufficiently small. Lemmas 9 and 10 complete the proof.
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Lemma 9. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for ℓ := C
ε ln

(

1
ε

)

we have Xℓ < ε3n whp.

Proof of Lemma 9. Given a set S ⊆ [n] of size t, let Sℓ(S) (resp. Tℓ(S)) denote the set of possible

connected graphs (resp. spanning trees) on the vertex set S which contain a path of length at least

ℓ. Let XS denote the indicator random variable of the event that G[S] ∈ Sℓ(S) and that there are no

edges in G between S and [n] \ S. Note that G[S] ∈ Sℓ(S) if and only if there exists T ∈ Tℓ(S) such

that T ⊆ G[S]. Thus, by the union bound we have

E [XS ] ≤ |Tℓ(S)| · pt−1 · (1 − p)t(n−t) (8)

where the first term accounts for taking a union bound over all T ∈ Tℓ(S), the second term accounts for

the probability that the edges in T are present in G[S] and the last term accounts for the probability

that none of the edges between S and [n] \ S are present in G. Note that |Tℓ(S)| does not depend on

the set S and is equal to the number of labeled trees on t vertices which contain a path of length at

least ℓ. More specifically, if pt,ℓ denotes the proportion of labeled trees on t vertices which contain a

path of length at least ℓ, then |Tℓ(S)| = pt,ℓ · tt−2. Observe now that the random variable Xℓ satisfies

the following:

Xℓ ≤
20
ε2

lnn
∑

t=ℓ

∑

S∈([n]
t )

t ·XS .

We claim that for ℓ := C
ε ln

(

1
ε

)

, where C > 0 is a large constant, and for some constant ε0 > 0,

if ε ∈ (0, ε0) is fixed then Pr
[

Xℓ ≥ ε3n
]

= o(1). To prove this claim we start by estimating E[Xℓ].

Setting t0 := 15
ε2

ln
(

1
ε

)

, we have by the linearity of expectation and by (8) that if ε0 is sufficiently small

then:

E[Xℓ] ≤
20
ε2

lnn
∑

t=ℓ

t ·
(

n

t

)

· pt,ℓ · tt−2 · pt−1 · (1 − p)t(n−t)

≤
20
ε2

lnn
∑

t=ℓ

t ·
(en

t

)t
· pt,ℓ · tt−2 ·

(

1 + ε

n

)t−1(

1 − 1 + ε

n

)t(n−t)

≤
20
ε2

lnn
∑

t=ℓ

et · t−1 · n · pt,ℓ ·
eεt−

ε2

3
t

1 + ε
· e−(1+ε)t+

(1+ε)t2

n

≤ (1 + o(1))n

ℓ(1 + ε)
·
∑

t≥ℓ

pt,ℓ · e−
ε2

3
t

≤ n

14
·





∑

ℓ≤t≤t0

pt,ℓ +
∑

t≥t0

e−
ε2

3
t



 (9)

where in the third inequality we used the fact that (1 + ε)t ≤ eεt−
ε2

3
t for sufficiently small ε > 0. By

Lemma 4 there exist constants C, ε0 > 0 such that the first sum in (9) is at most ε3. Moreover, by (3)

the second sum in (9) is at most 6ε3. Thus, all in all, we conclude that there exist constants C, ε0 > 0

such that

E [Xℓ] ≤
n

14
· (ε3 + 6ε3) =

ε3n

2
.
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Note that if G and H differ in precisely one edge then |Xℓ(G)−Xℓ(H)| ≤ 40
ε2

lnn because one edge

affects at most two connected components of size at most 20
ε2

lnn. Thus, by Lemma 2 it follows that

Pr
[

Xℓ > ε3n
]

≤ Pr

[

|Xℓ − E[Xℓ]| >
ε3n

2

]

≤ e
−Ω

(

n

(lnn)2

)

= o(1).

Remark. An alernative approach to the proof of Lemma 9 would be to invoke the so called symmetry

rule (see, e.g., Chapter 5.6 of [11]), postulating that in the supercritical regime p = 1+ε
n , the subgraph

of G ∼ G(n, p) outside the giant component behaves typically as a random graph with subcritical edge

probability. One can then estimate the likely contribution of paths of length at least ℓ = C
ε ln

(

1
ε

)

coming from the small components to the total volume of vertex disjoint paths of length at least ℓ

and to show it to be O(ε2n) whp, using a direct first moment argument. Since we still need to treat

the paths residing in the giant component outside the 2-core (the random variable Zℓ), we chose to

adopt a unified approach using the machinery of Galton-Watson trees developed in Section 2.2, and

to apply it here as well.

Lemma 10. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for ℓ := C
ε ln

(

1
ε

)

we have Zℓ < 29ε5n whp.

Proof of Lemma 10. Recall that Zℓ counts the maximum number of vertices covered by vertex disjoint

paths of length at least ℓ
3 in C1\C(2)

1 . Let 0 < µ < 1 be such that µe−µ = (1+ε)e−(1+ε) and consider 2ε2n

independent Poisson(µ)-Galton-Watson trees T1, . . . ,T2ε2n. By Lemma 8 it suffices for our purposes

to show that whp the maximum number of vertices covered by vertex disjoint paths of length at least
ℓ
3 in the disjoint union of T1, . . . ,T2ε2n is less than 29ε5n, for appropriate C, ε0 > 0.

For each 1 ≤ i ≤ 2ε2n consider the following random variable:

Ti,ℓ :=

{

|Ti| if Ti contains a path of length at least ℓ
3

0 otherwise

and set Tℓ =
∑2ε2n

i=1 Ti,ℓ. Clearly Tℓ is an upperbound on the maximum number of vertices covered by

vertex disjoint paths of length at least ℓ
3 in in the disjoint union of T1, . . . ,T2ε2n. To finish the proof,

we show that whp Tℓ < 29ε5n, provided C, ε0 > 0 are chosen appropriately.

By Lemma 5 we know that there exist constants C, ε0 > 0 such that for every ε ∈ (0, ε0) and for

ℓ = C
ε ln

(

1
ε

)

we have E [Ti,ℓ] ≤ 14ε3 and Var [Ti,ℓ] ≤ 8
ε3

. Thus, since the random variables Ti,ℓ are

independent, we have that

E [Tℓ] ≤ 14ε3 · 2ε2n = 28ε5n and Var [Tℓ] ≤
8

ε3
· 2ε2n =

16n

ε
.

Thus, by Chebyshev’s Inequality (see, e.g., [4]) we conclude that

Pr
[

Tℓ ≥ 29ε5n
]

≤ Pr
[

|Tℓ − E [Tℓ] | ≥ ε5n
]

≤ Var [Tℓ]

ε10n2
≤ 16

ε11n
= o(1).
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5 Concluding remarks

We have shown that in order to find a path of length ℓ = Ω

(

log( 1
ε)

ε

)

in G ∼ G (n, p) with at least some

constant probability, where p = 1+ε
n with ε > 0 fixed, one needs to query at least Ω

(

ℓ
pε log( 1

ε )

)

pairs

of vertices. This is close to best possible since a randomised depth first search algorithm from [14]

finds whp a path of length ℓ after querying at most O
(

ℓ
pε

)

pairs of vertices. A natural question, which

remains open, is to close the gap between these bounds. We believe that every adaptive algorithm

which reveals whp a path of length ℓ in G ∼ G(n, p), where p = 1+ε
n with ε > 0 fixed, has to query

Ω
(

ℓ
pε

)

pairs of vertices.

Recall that, to prove our main result, in Theorem 2 we bounded the total number of vertices

covered by vertex disjoint paths of size at least Ω
(

1
ε log

(

1
ε

))

in a typical graph sampled from G(n, p),

p = 1+ε
n , by O

(

ε2n
)

. Since a graph G ∼ G(n, p) contains whp a path of length Θ(ε2n) (see e.g. [11]),

this is best possible up to a multiplicative constant. If one can show that a similar statement holds

for paths of length Ω
(

1
ε

)

then one can modify our proof to obtain a Ω
(

ℓ
pε

)

bound in Theorem 1.

In the proof of Theorem 2 we needed to bound the number of vertices covered by vertex disjoint

paths of a prescribed length ℓ in a random tree of fixed size t (Lemma 5). Our estimate was a bit

wasteful because for trees which contained a path of length ℓ we used their total number of vertices

t instead of the number of vertices covered by vertex disjoint paths of length ℓ, which is most likely

significantly smaller. A way to fix this is to obtain good bounds for the following question:

Question. Given a = a(t) ∈ N and b = b(t) ∈ N what is the probability that a random tree on t

vertices contains b vertex disjoint paths, each of length at least a?

Note that, since the diameter of a random tree on t vertices is whp Θ(
√
t) (see e.g. [1]), the only

interesting regime is when ab ≥ C
√
t for some constant C > 0. Moreover, by splitting paths of length

larger than 2a into smaller subpaths of length at least a, we may consider only paths of length between

a and 2a.

One possible approach to this problem would be through a nice argument of Joyal ([12], see also

[2]). It shows that a random tree T on t vertices can be obtained from a random map f : [t] → [t]

as follows. First we create the directed graph D (possibly with loops) on vertex set [t] with edges

i → f(i) for each i ∈ [t]. Then we look at a maximal set of vertices M = {i1, . . . , im} ⊆ [t] such

that f |M is a permutation. We remove the directed edges inside M and replace them by the path

f(i1) → f(i2) → . . . → f(im) (where i1 < i2 < . . . < im). By ignoring the orientations of the edges

we obtain the desired tree T . Note that, since the vertices in M form a path in T , we must have

|M | = O(
√
t) whp. Moreover, if we have a path P in T then a moment’s thought reveals that either

P has at least |V (P )|
3 vertices in M or there are |V (P )|

3 vertices of P which form a directed path in D.

Thus, it follows that if we have a collection of b vertex disjoint paths in T each of length between a

and 2a then D contains a collection of vertex disjoint directed paths each of length between a+1
3 and

2a covering at least (a+1)b
3 − |M | vertices. Since |M | = O(

√
t) whp and since we are interested only in

the case when ab ≥ C
√
t for some large constant C > 0, it follows that in that case we have, say, at

least b
10 such paths. Thus, up to changing a and b by constant multiplicative factors, it is enough to

estimate the probability that the directed graph D obtained from a random map f : [t] → [t] contains

at least b vertex disjoint directed paths, each of length (at least) a.
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We can give a simple upper bound on this probability by taking the union bound over all collections

of b vertex disjoint directed paths of length a. This shows that the probability that we want to estimate

is at most

t!

(t− (a + 1)b)!b!

(

1

t

)ab

=
tb

b!

(a+1)b−1
∏

i=1

(

1 − i

t

)

≤ eb+b ln(t/b)−((a+1)b
2 )/t.

Unfortunately, this upper bound is not strong enough to allow us to prove Theorem 2 for paths of

length at least Ω
(

1
ε

)

because when b is roughly a constant and a is close to
√
t the positive term

b ln (t/b) in the exponent is much larger than the negative term
(

(a+1)b
2

)

/t. Thus, it would be nice to

obtain tighter bounds for the probability in question.
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