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Abstract

Consider the following one-player game played on an initially empty
graph with n vertices. At each stage a randomly selected new edge is
added and the player must immediately color the edge with one of r avail-
able colors. Her objective is to color as many edges as possible without
creating a monochromatic copy of a fixed graph F.

We use container and sparse regularity techniques to prove a tight
upper bound on the typical duration of this game with an arbitrary, but
fixed, number of colors for a family of 2-balanced graphs. The bound
confirms a conjecture of Marciniszyn, Spöhel and Steger and yields the
first tight result for online graph avoidance games with more than two
colors.

1 Introduction

Consider the following one-player game played on an initially empty graph on
n vertices. In every round we insert a new edge chosen uniformly at random
among all non-edges of the graph. The player, henceforth called Painter, must
immediately color this edge with one of r available colors. Her objective is to
avoid a monochromatic copy of some fixed graph F for as long as possible.
We refer to this game as the online F-avoidance game with r colors.

We call N0(F, r, n) a threshold function for the online F-avoidance game
with r colors if for every N ≪ N0(F, r, n) there exists a strategy for Painter
that survives for N rounds with high probability and if for every N ≫ N0(r, n)
every strategy fails to survive for N rounds with high probability. Note that
such a threshold function always exists [10, Lemma 2.1].

This game was first studied by Friedgut, Kohayakawa, Rödl, Ruciński and
Tetali, who have shown in [4] that N0(K3, 2, n) = n4/3 is a threshold for the
online triangle-avoidance game with two colors. In 2009 Marciniszyn, Spöhel
and Steger proved the following lower bound

∗author was supported by grant no. 200021 143338 of the Swiss National Science Foundation.

1

http://arxiv.org/abs/1603.07570v1


Theorem 1.1 ([10]). Let F be a graph that is not a forest, and let r ≥ 1. Then the
online F-avoidance game with r colors has a threshold N0(F, r, n) that satisfies

N0(F, r, n) ≥ n2−1/mr
2(F),

where m2
r (F) is given by

mr
2(F) :=







maxH⊆F
eH
vH

if r = 1,

maxH⊆F
eH

vH−2+1/mr−1
2 (F)

if r ≥ 2.

In an accompanying paper they provide matching upper bounds in the
two color case for a large class of graphs, which includes cycles and cliques:

Theorem 1.2 ([11]). Let F be a graph that is not a forest which has a subgraph
F− ⊂ F with eF − 1 edges satisfying

m2(F−) ≤ m2
2(F).

Then the threshold for the online F-avoidance coloring game with two colors is

N0(F, 2, n) = n2−1/m2
2(F).

They conjecture that a similar result is true for all r ≥ 3.
For three or more colors no tight upper bounds are known. The corre-

sponding offline triangle avoidance game (where Painter gets to see all N
edges at once) has a threshold given by N = n3/2 [13]. Clearly this upper
bound also applies to the online game. In [3] Belfrage, Mütze and Spöhel con-
nected the probabilistic one player game to a deterministic two player game
originally introduced by Kurek and Ruciński in [9]. In this version of the game
the edges are no longer presented in a random order but can be chosen by a
second player called Builder. They show that if there exists a winning strategy
for Builder which only creates subgraphs of density at most d, then n2−1/d is
an upper bound for the threshold of the original probabilistic game.

This technique was used by Balogh and Butterfield in [1] to improve the
upper bound for the online triangle avoidance game to n3/2−cr for some con-
stant cr > 0. Thus the thresholds of the online and offline games differ. Still
their upper bound of n2/3−cr does not match the lower bound provided by
Marciniszyn, Spöhel and Steger.

Our contribution is an upper bound, which matches the lower bound
Marciniszyn, Spöhel and Steger, for an arbitrary number of colors. That is
we show the following:

Theorem 1.3. Let F be a 2-balanced graph that is not a tree which has a subgraph
F− ⊂ F with eF − 1 edges satisfying

m2(F−) ≤ m2
2(F).

Then the threshold for the online F-avoidance game with r colors is

N0(F, r, n) = n2−1/mr
2(F).
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The premise of our theorem is satisfied by a large class of graphs, which
includes cycles and cliques. The condition that F is 2-balanced is used only
for technical reasons. On the other hand the second condition is (in general)
necessary. In [10] the authors give an example of a graph (two triangles inter-
secting in a single vertex) for which the above threshold is incorrect.

To go from two to more colors we prove a generalization of the KŁR-
conjecture. For two colors the (unmodified) KŁR-conjecture immediately tells
us that Painter has to color on the order of nvF− peF− copies of F− with the

majority color (where p ≍ n−1/m2
2). In expectation a p-fraction of those copies

of F− will form a copy of F which contains one edge colored in the secondary

color. The density of those edges is roughly nvF−2 peF = n−1/m(F) so we may
expect them to form a copy of F. A.a.s. this is indeed the case and thus Painter

looses the game after ω
(

n2−1/m2
2(F)
)

edges have been presented.

To generalize this argument to three colors we want to show that there exist
copies of F− in the primary and secondary colors which share their missing
(non)-edge. These non-edges, if they appear later, will have to be colored with
the tertiary color and as before the mr

2 density is large enough to guarantee
that a.a.s. Painter will have to close a copy of F in the tertiary color.

To find the aforementioned copies we prove a variant of the KŁR-conjecture,
which allows us find copies of F− where the missing edge lies in some fixed
set of (non-)edges. The proof of this statement uses the container theorem in-
troduced by Saxton and Thomason [14] and independently by Balogh, Morris
and Samotij [2].

1.1 Preliminaries and Notation

For n ∈ N let [r] = {1, . . . , r}. For sets V, V′ and ε ∈ [0, 1] we write V′ ⊆ε V
to denote that V′ is a subset of V of cardinality at least ε|V|. We say that a
statement holds asymptotically almost surely (a.a.s.) if it holds with probabil-
ity 1− o(1). The underlying uncolored graph of the game follows the random
graph process (G(n, N))1≤N≤(n

2)
, where the edges are added in an order se-

lected uniformly at random from the (n
2)! possible permutations. Let Gn,p

denote the binomial random graph on n vertices where every edge is present
with probability p independently of all others. If N ≍ p(n

2) then the two mod-
els are equivalent in terms of asymptotic properties [6]. We will thus mostly
work with Gn,p.

Let G be a graph and let R ⊆ V(H) denote an ordered subset of the
vertices. We call the pair (R, G) a rooted graph. We denote the number of
vertices of G with vG and the number of edges with eG. For a rooted graph
we set vR,G = vG − |R| and eR,G = eG − eG[R]. For convenience we drop
the dependence on R if the set of roots is obvious from the context. That is
vG = vR,G and eG = eR,G. We write H ⊆R G do denote that H is a subgraph
of G with R ⊆ V(H) and H[R] = G[R]. For a rooted graph (R, F) we denote
with F− the subgraph of F obtained by removing all edges of F[R]. We write
(e, F) to indicate that the set of roots has cardinality two (this notation does
not imply that e ∈ E(F)).

For two rooted graphs (R, G), (e, F) we denote with (R, G) × (e, F) the
graph obtained by attaching to every non root edge e′ of (R, G) a new copy
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of F rooted in e′ (possibly removing the edge e′ if it is not present in F). In
general one can choose to orient the attached copies of F in two different ways.
For our purposes the actual choice does not matter so we fix one based on the
lexicographic ordering of the vertices.

For a collection of graphs (R, G1), . . . , (R, Gk) which agree on R we denote

with
⊔k

i=1(R, Gi) the rooted graph obtained by joining pairwise disjoint copies
of G1, . . . , Gk together at their roots.

For graphs we define the following densities (by convention 0/0 = 0):

d(G) =
eG

vG
m(G) = max

H⊆G
d(H)

d1(G) =
eG

vG − 1
m1(G) = max

H⊆G
d1(H)

d2(G) =
eG − 1

vG − 2
m2(G) = max

H⊆G
d2(H)

d
r
2(G, H) =







eH
vH

if r = 1,
eH

vH−2+1/mr−1
2 (G)

if r ≥ 2.
mr

2(G) = max
H⊆G

d
r
2(G, H)

We say that a graph G is (strictly) balanced with respect to a density function
if the maximum is attained (uniquely) by G. We say that G is balanced (1-
balanced, 2-balanced) if it is balanced with respect to m (m1, m2).

One can check (see [10]) that for every graph G we have

m(G) = m1
2(G) < m2

2(G) < · · · < mr
2(G) < · · · < m2(G).

Furthermore if G is 2-balanced then it is also balanced with respect to mr
2 for

all r. It is also easy to check that for every graph G which is not a forest

m1(G) ≤ m2
2(G),

and that if G is additionally 2-balanced then it is also strictly 1-balanced.
The density of a rooted graph is defined by

d(R, G) =
eG

vG
m(R, G) = max

H⊆G
d(R ∩V(H), H).

As in the unrooted case we call a rooted graph balanced if it is balanced with
respect to m.

Assume that there exists G′ ⊆ Gn,p such that G′ ∼ G− G[R]. We say that
G′ is a copy of G− G[R] in Gn,p and that the vertices of G′ which correspond
to the roots of (R, G) span a copy of (R, G). Observe that the edges between
root vertices are immaterial. We will make heavy use of the following upper
bound due to Spencer on the number of rooted graphs spanned by vertices of
the random graph.

Theorem 1.4 ([15]). Let (R, G) be a rooted graph and suppose that t > m(R, G) and

p(n) = Ω
(

n−1/t
)

. Then a.a.s. in Gn,p every |R|-tuple of vertices spans (1± o(1))µ

copies of (R, G) where µ ≍ nvG peG is the expected number of such copies.

If p is below the density of (R, G) then the following easy to show upper
bound will suffice:
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Lemma 1.5. Suppose that (R, G) is a balanced rooted graph and that t < m(R, G).
Then there exists a constant D(t) such that for p ≤ n−1/t with probability 1− o(1)
no set of |R| vertices in Gn,p spans more than D copies of G.

Proof. Let us first prove that the balancedness of (R, G) implies that t <

m(R′, G) for all R′ with R ⊆ R′ ( V(G). As (R, G) is balanced we have

for q = m−1/m(R,G)

nvG−|R
′ |q

eG−eG[R′] =
nvG−|R|qeG−eG[R]

n|R
′|−|R|q

eG[R′]−eG[R]
=

Θ(1)

Ω(1)
= O(1),

and thus m(R′, F) ≥ m(R, F) > t.
Now the probability that a fixed set of roots spans C pairwise edge disjoint

copies of (R′, G) is at most

(nvR′,G peR′,G )C =
(

n−Θ(1)
)C

= o
(

n−vG
)

,

provided that C is large enough depending on t and vG. Using the union
bound we conclude that a.a.s. for every R′ ⊇ R no set of |R′| vertices spans
more than C pairwise edge disjoint copies of (R′, G).

Fix a set of roots R ⊆ V(Gn,p) and a maximal set of edge disjoint copies of
(R, G) spanned by R. Every other copy of (R, G) spanned by R must intersect
these copies in some set R′ ) R. By induction R′ spans at most a constant
number of copies of (R′, G) and since the number of choices for R′ is a constant
the total number of copies of (R, G) spanned by R is a constant as well.

The final density of interest is a generalization of the 2-density to rooted
graphs. For t > 0 we define

d2(R, G, t) =

{

eG−1
vG−2−teG[R]

if vG − 2− teG[R] > 0,

∞ otherwise.

And
m2(R, G, t) = max

H⊆G
eH−eH[R]>1

d2(R ∩V(H), H, t).

The motivation for this definition is given in Section 1.1.2.

1.1.1 Szemerédi’s regularity lemma for sparse graphs

Our proof relies heavily on the sparse regularity lemma and related concepts.
The required definitions and theorems are briefly stated below. A more in
depth introduction to the topic can be found in [5].

Definition 1.6. A bipartite graph B = (U ∪W, E) is called (ε, p)-regular if for all
U′ ⊆ε U and W ′ ⊆ε W,

∣

∣

∣

∣

|E(U′, W ′)|

|U′||W ′|
−
|E|

|U||W|

∣

∣

∣

∣

≤ εp.

We write (ε)-regular in case p equals the density |E|/(|U||W|).

5



The original regularity lemma of Szemerédi allows us to partition arbitrary
graphs into a constant number of (ε, 1)-regular pairs. Kohayakawa[7] and
Rödl (unpublished) independently introduced an analogue of Szemerédi’s reg-
ularity lemma which gives meaningful results for p → 0. The generalization
works for a class of graph which do not contain large dense spots.

Definition 1.7. Let G = (V, E) be a graph and let 0 < η, p ≤ 1. We say that G is
(η, p)-upper-uniform if for all disjoint sets U, W ⊆η V

|E(U, W)| ≤ (1 + η)p|U||W|.

We can now state Szemerédi’s regularity lemma for sparse graphs. We use
the second version presented in [7].

Definition 1.8. A partiton (Vi)
k
0 of the vertex set V is called an (ε, p)-regular parti-

tion with exceptional class V0 if |V1| = |V2| = · · · = |Vk|, |V0| ≤ εn, and, with the
exception of at most εk2 pairs, the pairs

(

Vi, Vj

)

, 1 ≤ i ≤ j ≤ k are (ε, p)-regular.

Theorem 1.9 (sparse regularity lemma). For any ε > 0 and m0 ≥ 1, there are
constants η = η(ε, m0) > 0 and M0 = M0(ε, m0) ≥ m0 such that for any p > 0,
any (η, p)-upper-uniform graph with at least m0 vertices admits an (ε, p)-regular

partition (Vi)
k
i=0 with exceptional class V0 such that m0 ≤ k ≤ M0.

The (ε, p)-regularity of a pair does not imply any lower bounds on its
density. In fact the empty graph is (ε, p)-regular for all ε > 0, 0 ≤ p ≤ 1.
Still it is not hard to show that if G has density at least αp then, for η, ε small
enough, we find at least one pair Vi, Vj which is (ε, p)-regular with density at
least αp/2 (and thus (2ε/α)-regular).

1.1.2 A KŁR type statement for rooted graphs

Fix a graph F and let (Vi)i∈V(F) denote pairwise disjoint sets of size n. We call

a graph G on the vertex set ∪i∈V(F)Vi (F, ε)-regular if for every {i, j} ∈ E(F)

the pair (Vi, Vj) is (ε)-regular. We denote with G(F, n, m, ε) the class of (F, ε)-
regular graphs G for which for every i, j ∈ V(F)

∣

∣E(Vi, Vj)
∣

∣ =

{

m if {i, j} ∈ E(F),

0 otherwise.

A partite copy of F in G is a set of vertices {vi ∈ Vi : i ∈ V(F)} such that
{

vi, vj

}

∈ E(G) whenever {i, j} ∈ E(F). In [8] Kohayakawa, Łuczak and Rödl
conjectured that almost all graphs in G(F, n, m, ε) contain a partite copy of F.
This conjecture, known as the KŁR-conjecture, was recently proven in full by
Saxton and Thomason [14] and independently by Balogh, Morris and Samotij
[2]. The following counting version is due to Saxton and Thomason.

Theorem 1.10 (KŁR conjecture, weak counting version [14]). Let F be a graph
and let β > 0. There exists µ(β) > 0 such that for n sufficiently large and m ≥

µ−1n2−1/m2(F) the number of graphs in G(F, n, m, µ) which do not contain at least
µ(m/n2)eF nvF partite copies of F is at most

βm

(

n2

m

)eF

.
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Our main tool will be a slight generalization of this theorem: we want to
count only those copies of F which satisfy some additional constraints. These
constraints take the form of a partite hypergraph on a subset of the vertex
partitions. For a rooted graph (R, F) we denote with R(R, n) the class of par-
tite |R|-uniform hypergraphs on the partitions V1, . . . , V|R|. Fix GR ∈ R(R, n)

and G ∈ G(F−, n, m, ε). We denote with T(G, GR) the multi-hypergraph on
V1, . . . , V|R| which contains an edge e ∈ E(GR) with multiplicity k if G con-
tains exactly k partite copies of F− which contain all vertices from e.

For our theorem to work we require that the edges of GR are roughly
distributed like partite copies of F[R] in a random |R|-partite graph. This
notion is formalized in the following two definitions.

Definition 1.11. We say that GR ∈ R(R, n) is (F, q, ε)-lower-regular if all tuples of
subsets V′1 ⊆ε V1, . . . , V′

|R|
⊆ε V|R| induce at least qeF[R] ∏i∈R

∣

∣V′i
∣

∣ edges.

Definition 1.12. We say that GR ∈ R(R, n) is (F, q)-upper-extensible if for every
induced subgraph F′ ⊆ F[R] the degree of all tuples from×i∈V(F′))

Vi is at most

qeF[R]−eF′n|R|−vF′ .

With these definitions at hand we can state our generalization of Theorem 1.10.

Theorem 1.13. Let (R, F) be a rooted graph. For every β > 0, A ≥ 1 there exists
α(A, β), µ(β) > 0 such that for every q(n) = o(1) the following holds:

For n large enough suppose that m ≥ α−1n2−1/m2(R,F,− logn q) and that GR ∈
R(R, n) is (F, Aq)-upper-extensible as well as (F, q, µ)-lower-regular. Then the
number of graphs G in G(F−, n, m, µ) for which T(G, GR) contains fewer than

α(m/n2)eF−qeF[R]nvF edges is at most

βm

(

n2

m

)eF−eF[R]

.

The proof follows the proof of the KŁR conjecture presented in [14] and is
deferred to Section 3.

2 Proof of Main Theorem

We will assume that F is a fixed 2-balanced graph which contains an edge
e ∈ E(F) such that m2(F− e) ≤ m2

2(F). This fixes a rooted graph (e, F). Based
on the choice of e we now define the classes F 1,F 2, . . . of rooted graphs. F 1

consists of a singular rooted graph: an edge rooted in its endpoints. For k ≥ 2
we define

F k :=

{

⊔

i<k

(e, F)× (ei, F∗i ) | ∀i : (ei, F∗i ) ∈ F
≤i

}

,

where F≤i :=
⋃

j≤iF
j. It is useful to observe that every F∗ ∈ F k, k ≥ 2 can

be built by starting with a copy of F and then repeatedly attaching a copy of
(e, F) to some edge. Since F is 2-balanced this implies that F∗ is 2-balanced
with the same 2-density (see Lemma 2.16).
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If Painter employs the greedy strategy then all edges colored with her k-
th favorite color will span a copy of the densest graph from F k. We will
ultimately show that, for some F∗ ∈ F≤k, Painter will have to color a linear
fraction of all edges which span a copy of F∗ with the k-color (up to a permu-
tation of the colors). To this end let us define the notion of a dangerous copy of
F∗−.

Definition 2.1. Let F∗ ∈ F k. We say that an r-coloring of F∗− is dangerous if
the k − 1 copies of F− whose roots were identified in the construction of F∗− are all
monochromatic and colored with pairwise different colors. We say that F∗− is danger-
ous if it is colored with a dangerous coloring. We say that F× (e, F∗−) is dangerous if
all attached copies of F∗− are colored according to the same dangerous coloring.

Assume that Painter has crated a dangerous copy of (e, F∗−) where F∗ ∈ F k.
If e appears as an edge in a later round then Painter will be forced to color it
with one of the remaining r− k + 1 colors or close a monochromatic copy of
F. In particular if F∗ ∈ F r and Painter creates a dangerous copy of F× (e, F∗−)
then Painter cannot color the inner copy of F (if it were to appear) without
creating a monochromatic copy of F. The following Lemma states that Painter
cannot avoid such dangerous copies of F× (e, F∗−).

Lemma 2.2. Fix a function p = p(n) satisfying n−1/mr
2(F) ≪ p≪ n−1/mr

2(F) log n.
Then there exists constants c, C > 0 such that a.a.s. after Cn2 p rounds there either
exists a monochromatic copy of F or we find a graph (e, F∗) ∈ F r such that Painter

has created cnvF

(

n
vF∗−−2 p

eF∗−

)eF
dangerous copies of F× (e, F∗−).

In other words at least a constant fraction of the copies of F× (e, F∗−) are
dangerous (for some F∗ ∈ F r). Assuming the above Lemma the main result
follows from a second moment argument similarly to the one presented in
[11]. For completeness we restate the proof below. We shall also require the
following proposition, whose proof we defer to Section 2.2.

Proposition 2.3. All rooted graphs (e, F∗) ∈ F r satisfy

m(F× (e, F∗)) ≤ mr
2(F).

Proof of main theorem. We pause the game after m = Θ
(

n2 p
)

rounds. Exploit-
ing the asymptotic equivalence between Gn,m and Gn,p we consider the result-
ing graph to be distributed like a Gn,p.

For a graph G let the random variable XG denote the number of copies
of G in Gn,p. Let F∗ denote the graph guaranteed by Lemma 2.2 and define

F̃ := F × (e, F∗) and F̃− := F × (e, F∗−). By Lemma 2.2 Painter has created

M = Ω
(

XF̃−

)

dangerous copies of F̃−. We now consider these M copies to

be fixed and for i ∈ [M] denote with Fi the missing inner copy of F of the i-th
copy of F̃−. Observe that Fi and Fj are not required to be disjoint and may in
fact be identical.

Observe that if Painter is forced to color one of the Fi in a future round
then she must close a monochromatic copy of F and thus loose the game. We
now show that indeed a.a.s. one of the Fi appears within the next Θ

(

n2 p
)

rounds.
Let Zi denote the event that Fi appears and let Z = ∑

M
i=1 Zi. We have

E[Z] = MpeF = Ω
(

E
[

XF̃−

])

peF = Ω(E[XF̃])
(∗)
= ω(1),

8



where (∗) follows from Proposition 2.3. Furthermore

Var[Z] = E
[

Z2
]

− E[Z]2

= ∑
i,j

E
[

ZiZj

]

− E[Zi]E
[

Zj

]

= ∑
G⊆F
eG≥1

∑
i,j

Fi∩Fj∼G

p2eF−eG − p2eF

≤ ∑
G⊆F
eG≥1

MG p2eF−eG ,

where MG denotes the number of pairs of F∗− whose (missing) inner copies of
F intersect in a copy of G.

Fix G ⊆ F and let H denote a graph obtained as the union of two copies
of F̃− whose (missing) inner copies intersect in a copy of G. Let T denote
their intersection and T+ the graph obtained by adding the missing edges of
the inner copy of G to T. Observe that T+ ⊆ F̃ and thus by Proposition 2.3
E
[

XT+

]

= ω(1).
We have

E[XH ] = Θ







E
[

XF̃−

]2

E[XT ]






= Θ







E
[

XF̃−

]2
peG

E
[

XT+

]






= o

(

E
[

XF̃−

]2
peG

)

.

Since for every G ⊆ F the number of choices for H is constant we have (over

the first Θ
(

n2 p
)

rounds) E[MG] = o

(

E
[

XF̃−

]2
peG

)

and thus by first moment

method MG = o

(

E
[

XF̃−

]2
peG

)

a.a.s.

This implies (over the second set of Θ
(

n2 p
)

rounds) Var[Z] = o
(

E[Z]2
)

and thus Z ≥ 1 a.a.s.

2.1 Proof of Lemma 2.2

Fix a function p = p(n) which satisfies n−1/mr
2(F) ≪ p ≪ n−1/mr

2(F) log n. We
will divide the game into a constant number of phases. In each phase we
sample a copy of the binomial random graph Gn,p and present its edges to
Painter in random order (edges already presented in a previous phase are
ignored). A.a.s. in each phase at most Θ

(

n2 p
)

edges are presented. Denote

with Gk
n,p the colored graph after k phases. We implicitly assume that Gk

n,p
does not contain a monochromatic copy of F.

As a main step in the proof we will show that for every set S of at most
r− 2 colors Painter must create a graph G ∈ G(Kt, ñ, m, ε) monochromatic in
some color from [r] \S after a constant number of phases. In general we cannot
expect that m = Ω

(

n2 p
)

(for example a greedy Painter will only produce a sin-
gle color class with this density). Instead we will require that m = Θ(nvF∗ peF∗ )

for some F∗ ∈ F |S|+1. To retain some control on these graphs we introduce
the concept of an F∗-spanning subgraph.

9



Definition 2.4. For a rooted graph (e, F∗) ∈ F k we say that a subgraph G ⊆ Gk
n,p

is F∗-spanning if for every edge e ∈ E(G) there exists F∗(e) ∼ F∗ in Gk
n,p such that

1. the endpoints of e are the roots of (e, F∗(e)),

2. all non root vertices of F∗(e) lie outside of V(G) and,

3. F∗(e) and F∗(e′) are edge disjoint for all e′ ∈ E(G) \ {e}.

We shall see later that an F∗-spanning subgraph behaves like a Gn,q with

q = nvF∗−2 peF∗ in the sense that we obtain bounds on its maximum degree
as well as exponential upper bounds on the number of edges between linear
sized vertex sets.

We are now in a position to state the main Lemma of this subsection.

Lemma 2.5. Fix a set S of at most r− 2 colors and an integer t ≥ 2. Then there exist
a positive integer k and a constant δ > 0 such that for every ε > 0 there exists η > 0

such that for p = ω
(

n−1/mr
2(F)
)

a.a.s. in Gk
n,p we find a subgraph G ∈ G(Kt, ñ, m, ε)

which is monochromatic in some color from [r] \ S and F∗-spanning in Gk
n,p where

F∗ ∈ F≤|S|+1, m ≥ ηnvF∗ peF∗ and ñ ≥ ηn.

Furthermore for every choice of ñ, m and graphs F∗ ∈ F≤|S|+1 and G′ with
|E(G′)| = ω(n) the probability that the statement nominates ñ, m, F∗ and G ⊇ G′

is at most
( m

ñ2δ

)|E(G′)|
.

It is crucial that in the probability bound we loose only a constant factor
(the δ) independently of the requested regularity (as opposed to the density
of G which depends on η(ε)).

The next lemma states that this is the density guaranteed by Lemma 2.5
has the right order of magnitude in the sense that if we forbid |S| colors then
the resulting graph should have high enough density for Painter to loose the
game with r− |S| colors.

Lemma 2.6. Every F∗ ∈ F k satisfies

nvF∗−2n−eF∗/mr
2(F) ≥ n−1/mr−k+1

2 (F),

provided that k ≤ r.

Proof. The proof proceeds by induction on k. The singular graph in F 1 con-
sists of a single edge and thus the statement holds for k = 1.

For k ≥ 2 let F∗1 , . . . , F∗k−1 denote the graphs used during the construction

of F∗ ∈ F k. Writing pi = n−1/mi
2(F) we have

nvF∗−2 p
eF∗
r = pr ∏

i<k

nvF−2

(

n
vF∗

i
−2

p
eF∗

i
r

)eF−1 (∗)
≥ pr ∏

i<k

nvF−2 peF−1
r−i+1, (1)

where (*) follows from the induction hypothesis.

By definition of mi
2 we have

nvF−2 peF
r−i+1 ≥ pr−i

10



and thus (1) is at least

pr ∏
i<k

pr−i/pr−i+1 = pr−k+1.

We will give a detailed proof of Lemma 2.5 below. Before that we will walk
through the main argument and state a number of auxiliary lemmas.

Assume that (by induction) we have found graphs G1, G2, . . . , Gk with

Gi ∈ G
(

F−, ñ, Θ
(

n−1/mr−i+1
2 (F)

)

, ε
)

,

which are monochromatic in pairwise different colors. Assume furthermore
that Gi is Fi-spanning for some Fi ∈ F i and that the partitions Va, Vb corre-
sponding to the missing edge of F− = F − {{a, b}} are the same for all Gi.
Through repeated application of Theorem 1.13 we will be able to count the
number of copies of

⊔

i≤k(e, F−) in
⋃

i≤k Gi (where the i-th copy of F− is to be
from Gi).

We expect to find roughly

n2 ∏
i≤k

nvF−2n−(eF−1)/mr−i+1
2 (F) = n2 ∏

i≤k

n−1/mr−i
2 (F)

n−1/mr−i+1
2 (F)

= n2−1/mr−k
2 (F)+1/mr

2(F)

(2)
such graphs. The 2-density of F is strictly above mr

2(F). Since F is 2-balanced
we have m2(F) = m(e, F) = m(e, F−) and Lemma 1.5 implies that every pair
from Va ×Vb spans at most a constant number of copies of (e, F−). Thus the
number of pairs in Va ×Vb which span a copy of F− in each of the graphs Gi

is of the same order of magnitude as (2).

Out of these pairs roughly n2−1/mr−k(F) will appear as actual edges if we
present Painter with another set of n2 p edges. If Painter wants to avoid a
monochromatic copy of F then she is forced to color these edges with colors
distinct from those used in G1, . . . , Gk. Furthermore since all the Gi were Fi-
spanning these edges all span a copy of

⊔

i≤k

(e, F)× (e, Fi) = F∗ ∈ F k+1.

We are below the 2-density of F∗ (which equals that F) and therefore the
following Lemma tells us that this edge set can be turned into an F∗-spanning
subgraph by discarding a negligible number of edges.

Lemma 2.7. Suppose that F is a 2-balanced graph and that F1, F2 ∼ F intersect in
at least one, but not all edges. Then nvF peF ≫ nvF1∪F2 peF1∪F2 provided that p =

o
(

n−1/m2(F)
)

.

Proof. For a graph H write XH = nvH peH . Let G = F1 ∩ F2. Since F is 2-
balanced and vF, vG ≥ 2 we have

XF

n2 p
=

(

p

n−1/m2(F)

)eF−1

and
XG

n2 p
≥

(

p

n−1/m2(F)

)eG−1

.

11



For p = o
(

n−1/m2(F)
)

we obtain

XF

XF1∪F2

=
XF

X2
F

XG

=
XG

XF
≥

(

p

n−1/m2(F)

)eG−eF

= ω(1),

as desired.

Finally we will want to apply the sparse regularity lemma to this F∗-
spanning subgraph. For this we need it to be upper-uniform, which is con-
firmed in the following lemma.

Lemma 2.8. Suppose that p = ω
(

n−1/mr
2(F)
)

. Let (e, F∗) ∈ F≤r−1. Then for every

η > 0 a.a.s. every F∗-spanning subgraph G of G(n, p) with at least ηn vertices is
(

η, nvF∗−2 peF∗
)

-upper-uniform.

Proof. The lemma follows from the following extension of the standard Cher-
noff bound:

Theorem 2.9 ([12]). Let X1, . . . , Xn be a sequence of not necessarily independent

Bernoulli-distributed random variables which satisfy Pr[
∧

i∈S Xi] ≤ q|S| for all sub-
sets S ⊆ [n]. Then for 0 < ε ≤ 1

Pr

[

n

∑
i=1

Xi ≥ (1 + ε)qn

]

≤ e−nqε2/3.

For fixed vertex sets V1, V2 ⊆η2 V let G ⊆ G(Gn,p) denote a (canonical)

(e, F∗)-spanning graph in Gn,p which maximizes the number of edges between
V1 and V2. For e ∈ E(Kn[V1, V2]) let Xe denote the indicator random variable
for the event e ∈ G. We have for every set S

Pr

[

∧

e∈S

Xe

]

≤ Pr
[

S is (e, F∗)-spanning in Gn,p
]

≤
(

nvF∗−2 peF∗
)|S|

.

And thus by Theorem 2.9

Pr
[

|EG(V1, V2)| ≥ (1 + η)|V1||V2|n
vF∗−2 peF∗

]

≤ e−Θ(nvF∗ peF∗ ).

Since

nvF∗ peF∗
Lemma 2.6
≫ n2−1/m1

2(F) ≥ n

a union bound over at most 4n choices for V1 and V2 proves the Lemma.

We thus obtain an F∗-spanning graph G ∈ G(K2, ñ, Θ(nvF∗ peF∗ ), ε). Re-
peating the argument a constant number of times (by exposing more edges
inside one of the two partitions of G) one can obtain a monochromatic graph
Gk+1 ∈ G(Kt, ñ, Θ(nvF∗ peF∗ ), ε) as required to finish the induction.

This argument can be repeated as long as |S| ≤ r − 2. One could hope

to iterate one more time and find a graph Gr ∈ G
(

F−, ñ, Θ
(

n2−1/m1
2(F)
)

, ε
)

.

This approach is bound to fail. The density of Gr is (in general) not above
the 2-density of F− so we cannot hope to find copies of F− in Gr. Instead we

12



find graphs G1, . . . , Gr−1, where Gi ∈ G
(

F× (e, F−), ñ, Θ
(

n2−1/mr−i+1(F)
)

, ε
)

,

whose inner partitions agree and use Theorem 1.13 to show directly that many
vF-tuples span copies of F× (e, F−) in all the Gi.

Before formalizing the above we need two more auxiliary lemmas. The first
one asserts that the density of Gi is indeed large enough to apply Theorem 1.13.

Lemma 2.10. Suppose that F is a 2-balanced graph, which contains an edge e such
that m2(F− {e}) ≤ m2

2(F). Then for all r ≥ k ≥ 2

mk
2(F) ≥ m2(e, F,+1/mk

2(F)− 1/mr
2(F)),

mk
2(F) ≥ m2(V(F), F× (e, F),+1/mk

2(F)− 1/mr
2(F)).

Secondly Theorem 1.13 requires the (hyper)-graph to be upper-extensible.
For us this hypergraph will consist of all pairs (all vF-tuples) which already
span a copy of F− (of F× (e, F−)) in all graphs G1, . . . , Gi. By Theorem 1.4 it
suffices to show that we are above the rooted density of the corresponding
graphs:

Lemma 2.11. Let F∗ ∈ F k where k ≥ 2. Then

m1(F∗−) < mk
2(F)

and for every V0 ( V(F)

m(V0, (V0, F)× (e, F∗−)) < mk
2(F).

We can now state the proof of Lemma 2.5.

Lemma 2.5. Fix a set S of at most r− 2 colors and an integer t ≥ 2. Then there exist
a positive integer k and a constant δ > 0 such that for every ε > 0 there exists η > 0

such that for p = ω
(

n−1/mr
2(F)
)

a.a.s. in Gk
n,p we find a subgraph G ∈ G(Kt, ñ, m, ε)

which is monochromatic in some color from [r] \ S and F∗-spanning in Gk
n,p where

F∗ ∈ F≤|S|+1, m ≥ ηnvF∗ peF∗ and ñ ≥ ηn.

Furthermore for every choice of ñ, m and graphs F∗ ∈ F≤|S|+1 and G′ with
|E(G′)| = ω(n) the probability that the statement nominates ñ, m, F∗ and G ⊇ G′

is at most
( m

ñ2δ

)|E(G′)|
.

Proof. The proof follows by induction on |S| and t. For t = 2 and S = ∅ we
apply the sparse regularity lemma (Theorem 1.9) to the majority color class
(in that case F∗ = (e, e) is just an edge - the unique graph in F 1).

t step: Fix t > 2 and a set S. We will apply the induction hypothesis (for

t ← 2 and S ← S) K = rt|F≤|S|+1| times. Let k′, δ′ denote the absolute
constants guaranteed for t← 2. Denote with ε i the value which we will
use for ε in the i-th application of the induction hypothesis and let ηi(ε i)
denote the guaranteed constant. Our choice for ε i will depend only on
the constants ε j, ηj where j > i and on the requested ε.

Apply the induction hypothesis once to Gk′
n,p for t ← 2 and obtain an

(ε1)-regular graph G1 ∈ G(K2, ñ1, m1, ε1). Let V1 ⊂ V(G) denote one
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of its vertex partitions. We then ask painter to color another Gk′
n,p but

we look only at the subgraph induced by V1 (which is distributed like

a Gk′

|V1|,p
). Since |V1| ≥ η1n we have p = ω

(

|V1|
−1/mr

2(F)
)

and thus

we can apply the induction hypothesis a second time to obtain an (ε2)-
regular graph G2 whose edges are fully contained in V1. We repeat this
procedure K times and obtain a sequence of sets V1 ⊃ V2 ⊃ · · · ⊃ VK

and nested graphs G1, . . . , GK, where Gi ∈ G(K2, ñi, mi, ε i). Every such

Gi nominates a color and a graph F∗i ∈ F
≤|S|+1 out of at most r|F≤|S|+1|

choices. By the pigeonhole principle we may thus fix a subset T ⊆ [K]
of size t such that all graphs Gi with i ∈ T nominate the same color and

the same graph F∗ ∈ F≤|S|+1.

Let ñ := ñK denote the size of the vertex partitions of GK. We arbitrarily
pick sets Vi of size ñ such that

V1 ⊆V(G1) \V1,

...

VK ⊆V(GK) \VK .

Finally set VK+1 = VK . These sets are pairwise disjoint and for every
pair i < j we have Vj ⊆ Vj−1 ⊆ Vi. Therefore the sets Vi, Vj are subsets
of the two partitions of Gi and for ε i small enough, depending on ε,
ηi+1, . . . , ηK, the induced bipartite graph Gi

[

V i, V j

]

is (ε/2)-regular with
at least half the density. Let

m = min
i,j∈T
i<j

∣

∣E
(

Gi

[

Vi, V j

])∣

∣

and pick for every i, j ∈ T, i < j a subgraph Gi,j ⊂ Gi

[

V i, V j

]

with
exactly m edges u.a.r. among all subgraphs with m edges. By Lemma 2.6
we have

m = Ω(nvF∗ peF∗ )≫ n2−1/m
r−|S|+1
2 (F) ≥ n

and thus these graphs Gi,j will be (ε)-regular with high probability. Since

ñ ≥ n ∏
i∈[K]

ηi and m ≥ ηkñv∗F pe∗F

we may set

G :=
⋃

i,j∈T
i<j

Gi,j ∈ G(Kt, ñ, m, ε).

Furthermore we claim that the graphs F∗(e) guaranteed by the invoca-
tions of the induction hypothesis are pairwise edge disjoint. This is
because for e ∈ E(Gi) the graph F∗(e) has no edges inside Vi, but for
j > i the graphs F∗(e′), e′ ∈ E(Gj) lie completely inside Vi. Thus G is
F∗-spanning.

Finally we have to calculate the probability that G′ ⊆ G for some graph

G′ with ω(n) edges. To do so fix ñ, m and the sets Vi among 2Θ(n)
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possibilities. We may assume that all edges of G′ go between the sets
Vi. Since G is the (disjoint) union of random subgraphs of Gi[V i, V j] and
∣

∣E(Gi[V i, V j])
∣

∣ ≥ ñ2(mi/2ñ2
i )whose density is at least half as large as the

density of Gi the probability that G′ ⊆ G is then at most

∏
i<j∈T

Pr
[

G′[Vi, V j] ⊆ Gi[V i, V j]
]

(

m
∣

∣E(Gi[Vi, V j])
∣

∣

)|E(G′[V i,V j])|

≤ ∏
i<j∈T

(

mi

ñ2
i δ′

m
∣

∣E(Gi[V i, V j])
∣

∣

)|E(G′[V i ,V j])|

≤ ∏
i<j∈T

(

2m

δ′ñ2

)|E(G′[V i,V j])|
=

(

2m

δ′ñ2

)|E(G′)|

.

Allowing some room for a union bound over the choices for ñ, m and
the sets V i we may fix δ = δ′/3, η = ηK ∏i∈[K] η

vF∗

i and k = Kk′.

S step: Fix a nonempty set S of at most r − 2 colors and assume that the
statement holds for all sets containing fewer than |S| colors. Our goal is
to show that then the statement holds for S and t = 2.

Similarly to what we did in the induction step for t we apply the in-
duction hypothesis |S| times in a nested fashion. As before let k′, δ′

denote absolute constants for which the induction hypothesis holds for
t ← vF − 1 and all subsets of S. Denote with ε i the value which we
will use for ε in the i-th application of the induction hypothesis and let
ηi(ε i) denote the guaranteed constant. Again ε i will depend only on ε j,
ηj, where j > i. Crucially ε i will not depend on the requested ε and ε |S|
will be an absolute constant. Finally for the i-th invocation we will pick
S as the set of colors of G1, . . . , Gi−1 (thus S← ∅ for i = 1).

As before we obtain monochromatic graphs G1, . . . , G|S|, such that Gi ∈

G
(

KvF−1, ñi, mi, ε i

)

and V(Gi) ⊆ Vi−1 for V0 = V and where Vi is an
arbitrary partition of Gi.

Assume that one of the Gi is monochromatic in a color from [r] \ S. The

density of Gi is in Θ
(

n
vF∗

i
−2

p
eF∗

i

)

, where the constant does not depend

on ε (since ε1, . . . , ε |S| do not depend on ε). Furthermore by Lemma 2.8

Gi is
(

o(1), n
vF∗

i
−2

(|S|k′p)
eF∗

i

)

-upper-uniform. Thus we can apply the

sparse regularity lemma (Theorem 1.9) to Gi and obtain a graph from
G(K2, ñ, m, ε) whose density is of the same order as the density of Gi

and we are done.

Otherwise all of the Gi are monochromatic in distinct colors of S. We
want to show that in V|S| there are many pairs of vertices which span

a copy of (e, F−) in each of the Gi. To this end we define the auxiliary
directed graphs Ai. Let A0 denote the complete directed graph on V.
For i = 1, . . . , |S| the vertex set of Ai is Vi and we connect two vertices
x 6= y ∈ Vi if (x, y) ∈ E(Ai−1) and if (x, y) span a partite copy of F− in
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Gi (partite with respect to the non root vertices, x and y lie in the same
partition).

Define (e, F∗) :=
⊔

j∈[|S|](e, F) × (e, F∗i ) ∈ F
|S|+1. By definition of A|S|

every edge e ∈ E
(

A|S|

)

spans a copy of (e, F−) in each of the Gi. Fur-

thermore since every edge of Gi spans a copy of (e, F∗i ) the edge e spans
a copy of (e, F∗−). Finally observe that since the Gi are monochromatic
in pairwise different colors of S the edge e (if it would be presented to
Painter in some later round) has to be colored with some color from
[r] \ S.

We will need the following auxiliary claim about the density of A|S|
whose proof we defer.

Claim 2.12. For every integer i ≤ |S| and κ > 0 and small enough ε1, . . . , ε i

there exists γ(κ, ε1, . . . , ε i) > 0 such that a.a.s. for all disjoint and equi-sized
subsets X, Y ⊆κ Vi the induced bipartite subgraph Ai[X, Y] contains at least

γ|X||Y|∏i
j=1 pj edges, where

pj = nvF−2

(

n
vF∗

j
−2

p
eF∗

j

)eF−1

.

We invoke the claim for i← |S| and κ ← 1/4 to lower bound the number
of pairs x, y ∈ V|S| which span a dangerous copy of F∗ by

γ

2





∣

∣

∣V|S|

∣

∣

∣

2





2
|S|

∏
j=1

pi ≥ γ′nvF∗ peF∗−1 Lemma 2.6
≫

n2−1/m
r−|S|
2 (F)

p
≫

n

p
,

where γ is the constant guaranteed by the claim and γ′ = γ(∏i ηi)
2/8 is

an absolute constant, which in particular does not depend on ε.

We then present another Gn,p to Painter. Painter will be forced to color
at least a p/r-fraction of the edges in A|S| with some color from [r] \ S
(or create a monochromatic copy of F). Thus we obtain a monochro-
matic set of γ′nvF∗ peF∗/r edges which all span a copy of F∗. Next we
remove all edges whose copies of F∗ intersect. Lemma 2.7 together with
Markov’s inequality implies that with probability 1 − o(1) we remove
only o(nvF∗ peF∗ ) edges.

So we are left with a (e, F∗)-spanning set of at least γ′nvF∗ peF∗/2 ≫
n edges E′. By Lemma 2.8 E′ is

(

o(1), nvF∗−2((|S|k′ + 1)p)eF∗
)

-upper-
uniform. Therefore we may apply the sparse regularity lemma to E′ and
obtain a graph from G(K2, ñ, m, ε) whose density is a constant fraction
of the density of E′.

Finally the probability that a fixed set of s edges is (e, F∗) spanning is

at most
(

nvF∗−2((|S|k′ + 1)p)eF∗
)s

. Since m/ñ2 = Ω
(

nvF∗−2 peF∗
)

(not
depending on ε) the probability bound holds for some δ.

It remains to prove Claim 2.12. We proceed by induction on i. A0 is
complete and thus the base case i = 0 holds vacuously. So let i ≥ 1
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and fix some κ > 0. Denote the lower bound on the density of Ai−1

guaranteed by the induction by

q = Ω

(

∏
j<i

pj

)

≫
n−1/mr−i+1

2 (F)

p
.

We define β = (δ′/(3e))eF− and

A =
∏

i−1
j=1 pj

qκ ∏
i
j=1 ηj

= Θ(1).

Let µ(β) and α(A, β) denote the constant guaranteed by Theorem 1.13
when invoked with (R, F) ← (e, F), β ← β and A ← A. Fix disjoint
equi-sized sets X, Y ⊆κ Vi. Write m =

⌈

|X||Y|mi/(2ñ2
i )
⌉

and pick any
subgraph G′i ⊆ Gi from G(F−, |X|, m, µ) such that its partitions which
correspond to the roots of F− are X and Y (taking suitable vertex sets
and a random subset of m edges from each partition succeeds with prob-

ability 1− 2−Θ(m)).

If T(G′, Ai−1[X, Y]) contains at least

α

(

m

|X|2

)eF−

|X|vF q = Θ

(

n2 ∏
j≤i

pj

)

edges, then since by Lemma 1.5 every edge e spans at most a constant
number of copies of F− the density of Ai[X, Y] is of the correct order of
magnitude.

Otherwise we want to apply Theorem 1.13 with G ← G′ and GR ←
Ai−1[X, Y] (viewed as an undirected graph) and q← q. To apply Theorem 1.13
it suffices to check the following:

1. The number of edges in G′ is in

Ω
(

n
vF∗

i p
eF∗

i

) Lemma 2.6
≫ n2−1/mr−i+1

2 (F)
Lemma 2.10

≥ n2−1/m2(e,F,− logn q),

since for n large enough − logn q ≤ 1/mr−i+1
2 (F)− 1/mr

2(F).

2. If we invoke the induction hypothesis with say κ ← κηiµ then
Ai−1[X, Y] is (F, µ, q)-lower-regular.

3. To see that it is also (F, Aq)-upper-extensible observe that every
edge of Ai−1 spans a copy of of (e, F′∗− ) :=

⊔

j<i(e, F−)× (e, F∗j ). So

for upper uniformity it suffices to bound the number of copies of
F′∗− spanned by a single vertex. But our p is such that we are above
the 1-density of F′∗− (Lemma 2.11). Thus this number is concen-
trated around its expectation (Theorem 1.4), which is upper bounded
by

n
vF′∗−
−1

p
eF′∗− = n ∏

j<i

pj ≤ |X|
∏j<i pj

κ ∏j≤i ηj
= Aq|X|.
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Therefore we can apply Theorem 1.13 and G′ must come from a set of at
most

βm

(

|X|2

m

)eF−

≤ βm

(

e|X|2

m

)eF−
m

≤ βm

(

2eñ2
i

mi

)eF−
m

graphs. But then for our choice of β the probability that G′ ⊆ Gi is in
o(1).

The proof of Lemma 2.2 proceeds similarly to the proof of Claim 2.12 from
the previous lemma. The only difference is that we replace Ai with the hyper-
graph of vF-tuples which span a copy of F× (e, F−) in each of the graphs Gi.

Lemma 2.2. Fix a function p = p(n) satisfying n−1/mr
2(F) ≪ p≪ n−1/mr

2(F) log n.
Then there exists constants c, C > 0 such that a.a.s. after Cn2 p rounds there either
exists a monochromatic copy of F or we find a graph (e, F∗) ∈ F r such that Painter

has created cnvF

(

n
vF∗−−2 p

eF∗−

)eF
dangerous copies of F× (e, F∗−).

Proof. Let t = vF − 1 and let k, δ be such that Lemma 2.5 holds for all S ⊆ [r],
|S| ≤ r − 2. Let ε1, . . . , εr−1 denote constants whose value we will determine
later in reverse order (that is ε i will depend on ε i+1, . . . , εr−1.)

We ask Painter to color an instance of Gk
n,p. Applying Lemma 2.5 with

t← t, S← ∅, ε← ε1 we obtain a constant η1(ε1), a graph F∗1 ∈ F
1 and an F∗1 -

spanning graph G1 ∈ G(Kt, ñ1, m1, ε1) monochromatic in some color s1. Pick
one of the vertex partitions of G1 arbitrarily and call it V1. We now present
Painter with a second instance of Gk

n,p but only consider the subgraph induced

by V1 which is distributed like a Gk
ñ1,p. Invoking Lemma 2.5 a second time

with ε ← ε2 and S ← {s1} we obtain a second graph G2 ∈ G(Kt, ñ2, m2, ε2).
We repeat this procedure r− 1 times and obtain

1. sets V = V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 such that |Vi| ≥ ηi|Vi−1| for i ∈ [r− 1],

2. graphs F∗i ∈ F
≤i where i ∈ [r− 1],

3. monochromatic graphs Gi ⊆ G(Kt, ñi, mi, ε i) ⊆ Gi·k
n,p[Vi−1] in pairwise

different colors, where ñi = |Vi|, mi ≥ ηiñ
vF∗

i p
eF∗

i such that Gi is F∗i -

spanning in Gi·k
n,p[Vi−1].

Furthermore for every graph G′ with ω(n) edges we have

Pr
[

G′ ⊆ Gi

]

≤

(

mi

δñ2
i

)|E(G′)|

.

Observe that this probability is over the phases (i− 1) · k + 1, . . . , i · k and that
Gi is fixed after the first i · k phases.

Let A0 denote the complete directed vF-uniform hypergraph on V = V0.
We identify the edges of A0 with a (hypothetical) copy of F in V (depending
on the automorphisms of F different (directed) edges might represent the
same copy of F). Now for i ∈ [r− 1] let Ai denote the directed vF-uniform
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hypergraph on Vi ⊆ Vi−1 where e ∈ E(Ai) if e ∈ E(Ai−1) and additionally the
edges of e (when viewed as a graph F(e) ∼ F) are the roots of pairwise edge
disjoint copies of F− in Gi.

Define

F̃∗i =
⊔

j<i

(e, F)× (e, F∗j ) ∈ F
i,

pi = nvF−2
(

n
vF∗

i
−2

p
eF∗

i

)eF−1
,

qi = ∏
j∈[i]

pi = n
vF̃∗

i+1
−2

p
eF̃∗

i+1
−1

.

Since Gi is F∗i -spanning the edges of F(e) (for e ∈ Ai) are not only roots of
pairwise edge disjoint copies of F− but even of (still pairwise edge disjoint)
copies of F− × (e, F∗i ). Furthermore these copies are disjoint from those certi-
fying membership in A1, . . . , Ai−1. Thus for every e ∈ E(Ai) the edges of F(e)
are the roots of pairwise edge disjoint copies of

(

F̃i+1

)

−.

Claim 2.13. Suppose that X1, . . . , XvF ⊆ Vi are mutually disjoint and of size ñ.
Then Ai[X1, . . . , XvF ], when viewed as a undirected hypergraph from R(V(F), ñ), is
(F, (n/ñ)vF qi)-upper-extensible provided that i ≤ r− 1.

Proof of claim. q0 = 1 and thus the claim holds vacuously for i = 0. For i ≥ 1
fix some σ ⊆ V(Ai). If there exists e such that σ ( e ∈ E(Ai) then σ fixes
some V′ ( V(F) and the degree of σ is at most the number of copies of
(V′, F)× (e,

(

F̃∗i+1

)

−
) rooted in σ. By Lemma 2.11

m(V′, (V′, F)× (e,
(

F̃∗i+1

)

−)) < mi+1
2 (F) ≤ mr

2(F)

and thus by Theorem 1.4 this number is concentrated around its expectation

which is at most nvF−|V
′|q

eF−eF[V′]

i as required for the upper-extensibility of
Ai.

Claim 2.14. For every integer i ≤ r − 1 and κ > 0 and small enough ε1, . . . , ε i

there exists γ(κ, ε1, . . . , ε i) > 0 such a.a.s. for all pairwise disjoint equi-sized sets
X1, . . . , XvF ⊆κ Vi the number of directed edges in E(Ai[X1, . . . , XvF ]) is at least
γ|X1|

vF qeF
i .

Invoking the claim for i = r− 1 and say κ = 1/(2vF) proves the Lemma.
To prove the claim we will proceed by induction on i. For i = 0 the

statement holds vacuously with γ = 1 since A0 is complete. For i ≥ 1 we fix
equi-sized and pairwise disjoint sets X1, . . . , XvF ⊆κ Vi of size ñ. Define

m =

⌈

ñ2mi

2eFñ2
i

⌉

and β =

(

δ

4eFe

)eF·(eF−1)

.

Let µ = µ(β) be given by Theorem 1.13 (invoked with (R, F) ← (V(F), F ×
(e, F−))) and let γ′ = γ(κηiµ, ε1, . . . ε i−1) denote the constant guaranteed by
the induction hypothesis. Finally define

A =
1

γ′
(

κ ∏j∈[i] ηj

)vF
.
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F× (e, F−) is t-partite and thus for ε i small enough depending on µ we can,
using standard techniques, find a graph G′i ⊆ Gi from G(F× (e, F−), ñ, m, µ)
such that the vertex partitions corresponding to to the vertices of the (missing)
inner copy of F are the sets X1, . . . , XvF .

If the number of edges in T(G′i , Ai−1[X1, . . . , XvF ]) is at least

Θ

(

( m

ñ2

)eF·(eF−1)
ñvF+eF·(vF−2)qeF

i−1

)

= Θ
(

peF
i nvF qeF

i−1

)

= Θ
(

nvF qeF
i

)

,

then we are done, since by Lemma 2.16 (V(F), F× (e, F−)) is balanced with
density m2(F) and thus Lemma 1.5 the multiplicity of all edges is at most a
constant.

Otherwise we invoke the induction hypothesis with κ ← κηiµ to deduce
that Ai−1[X1, . . . , XvF ] is (F, q, µ)-lower-regular where q = γ′qi−1. We have

(n

ñ

)vF
qi−1 ≤

qi−1

(κ ∏j∈[i] ηj)vF
= Aq

and therefore by Claim 2.13 the hypergraph Ai−1[X1, . . . , XvF ] is (F, Aq)-upper-
extensible. Finally

m = Ω
(

n
vF∗

i p
eF∗

i

) Lemma 2.6
≫ n2−1/mr−i+1

2 (F)
Lemma 2.10

≥ n2−1/m2(V(F),F×(e,F),qi)

≍ n2−1/m2(V(F),F×(e,F),q)

and thus we may apply apply Theorem 1.13 with q ← q, G ← G′i and GR ←
Ai−1[X1, . . . , XvF ] to deduce that G′i is from a set graphs of size at most

βm

(

ñ2

m

)eF·(eF−1)

≤ βm

(

eñ2

m

)m·eF·(eF−1)

≤ βm

(

e2eFñ2
i

mi

)m·eF·(eF−1)

=

(

ñ2
i

2δmi

)m·eF·(eF−1)

,

Since m ≫ n a union bound over the 2Θ(n) choices for the sets X1, . . . , XvF

together with the bound

Pr
[

G′ ⊆ Gi

]

≤

(

mi

ñ2
i δ

)|E(G′)|

from Lemma 2.5 guarantees that a.a.s. no such subgraph G′i exists.

2.2 Auxiliary Lemmas

In Section 2 we stated a number of auxiliary statements without proof (namely
Proposition 2.3, Lemma 2.10 and Lemma 2.11). The proofs of these statements
are somewhat technical and are given in this section.

We start with the proof of Lemma 2.10 for which we need the following
simple bound.
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Lemma 2.15. Every graph F on at least 3 vertices and with at least one edge satisfies
m2(F) ≤ 2m(F).

Proof. One checks that the statement holds for all graphs on 3 vertices. If F is
2-balanced and contains at least 4 vertices then

m2(F) =
e− 1

v− 2
≤

e

v− 2
≤ 2

e

v
= 2d(F) ≤ 2m(F).

Otherwise let F′ ⊆ F denote a graph that attains the m2 density of F. By
the above

m2(F) = m2(F′) ≤ 2m(F′) ≤ 2m(F).

Lemma 2.10. Suppose that F is a 2-balanced graph, which contains an edge e such
that m2(F− {e}) ≤ m2

2(F). Then for all r ≥ k ≥ 2

mk
2(F) ≥ m2(e, F,+1/mk

2(F)− 1/mr
2(F)),

mk
2(F) ≥ m2(V(F), F× (e, F),+1/mk

2(F)− 1/mr
2(F)).

Proof. Write p = n−1/mk
2(F) and q = n−1/mk

2(F)+1/mr
2(F). The first inequality is

equivalent to

min
(R,F′)⊆(e,F)

eF′≥1

nvF′−2 peF′−1q
eF′[R] ≥ 1.

Fix such a rooted graph (R, F′). If |R| ≤ 1 then F′ ⊆ F− {e} and eF′[R] = 0.

Since p ≥ n−1/m2
2(F) ≥ n−1/m2(F−{e}) we have

nvF′−2 peF′−1 ≥ 1.

Otherwise |R| = 2 and without loss of generality eF′[R] = 1 and eF′ =
eF′ − 1. We rewrite the above as

nvF′−2 peF′−2q =
nvF′−2 peF′

pn−1/mr
2(F)
≥

nvF′−2 peF′

n−2/m2(F)
.

By definition of mk
2 we have nvF′−2 peF′ ≥ n−1/mk−1

2 (F). Together with

n2/m2(F)
Lemma 2.15

≥ n1/m(F) ≥ n1/mk−1
2 (F)

this implies the desired bound.
The second inequality is equivalent to

min
(R,H)⊆(V(F),F×(e,F))

eH≥1

nvH−2 peH qeH[R] ≥ 1.

For e ∈ E(F) let Fe ⊆ H denote the graph isomorphic to a subgraph of F
which is attached to the root e in H. There must exist at least on edge e′ such
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that Fe′ contains at least one non root edge. For such an edge we apply the
first inequality to obtain

n
vF

e′
−2

p
eF

e′
−eF

e′
[e′ ]−1

q
eF

e′
[e′ ] ≥ 1.

Thus the minimization is at least

nvH[R]−2 ∏
e∈E(F)\{e′}

nvFe−vFe[e] peFe−eFe[e]qeFe[e] .

If for some e ∈ E(F) we have vFe[e] ≤ 1 then Fe is isomorphic to a subgraph
of F− and

nvFe−vFe[e] peFe−eFe[e]qeFe [e] ≥ nvFe−1 peFe ≥ 1,

since we are above the 1-density of F−. In particular if H does not contain at
least two root vertices then we are done. If vFe[e] = 2 then

nvFe−vFe[e] peFe−eFe[e]qeFe [e] ≥ nvFe−2 peFe−1q =
nvFe−2 peFe

n−1/mr
2(F)

≥
n−1/mk−1

2 (F)

n−1/mr
2(F)

≥
n−1/m(F)

n−1/m2(F)
≥ n−1/m2(F).

Thus the original minimization reduces to

min
F′⊆F
vF′≥2

nvF′−2n−(eF′−1)/m2(F)

which is at least 1 by definition of m2(F).

Proposition 2.3 concern the density of graphs in the class F k. Every graph
F∗ ∈ F k (for k ≥ 2) can be constructed by starting with a copy of F and
repeatingly attaching copies of (e, F) to some edge. Since F is 2-balanced
one may expect that graphs constructed by this procedue will be also be 2-
balanced. The following lemma establishes that this is indeed the case.

Lemma 2.16. Suppose that G and H are two 2-balanced graphs such that G ∩ H is
a single edge. If G and H both have 2-density d then G ∪ H is also 2-balanced with
density d.

Similarly if (R, G) and (R, H) are balanced rooted graphs of density d with
V(G) ∩V(H) = R then (R, G ∪ H) is balanced with density d.

Proof. Let p = n−1/d and pick an induced subgraph F ⊆ G ∪ H with eF ≥ 1.
Write G′ = F[V(G)] and H′ = F[V(H)]. Without loss of generality we have
eG′ ≥ 1 and

nvF−2 peF−1 = nvG′−2 peG′−1nvH′−vH′∩G′ peH′−eH′∩G′ ≥ 1,

since d = m2(H) ≥ m1(H) ≥ m(H) and since H′ ∩ G′ is either an edge, a
vertex or empty. Thus m2(G ∪ H) ≤ d. Furthermore

nvG∪H−2 peG∪H−1 = nvG−2 peG−1nvH−2 peH−1 = 1 · 1,

which implies m2(G ∪ H) = d and that G ∪ H is balanced with respect to the
2-density.

The second claim can be proved in a similar fashion.
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Thus every F∗ ∈ F k, where k ≥ 2, is 2-balanced with 2-density m2(F).
Similarly F× (e, F∗) is 2-balanced (and thus balanced)

Proposition 2.3. All rooted graphs (e, F∗) ∈ F r satisfy

m(F× (e, F∗)) ≤ mr
2(F).

Proof. Fix F∗ ∈ F r, where r ≥ 2 . As noted above F × (e, F∗) is balanced.
Therefore it suffices to check that

nvF×(e,F∗)n−eF×(e,F∗)/mr
2(F) = nvF

(

nvF∗−2n−eF∗/mr
2(F)
)eF

(2.6)
≥ nvF n−eF/m1

2(F) ≥ 1.

It remains to prove Lemma 2.11. To do so we require two more auxiliary
lemmas.

Lemma 2.17. Let (R, G), (e, H) be rooted graphs. Suppose that (e, H) is balanced
and that for some t > 0

m1(H − e) ≤ t,

vH −
eH

t
≥ −

1

m(R, G)
.

Then
m(R, (R, G)× (e, H − e)) ≤ t.

Proof. Let p = n−1/t and let (R, F) = (R, G)× (e, H − e). It suffices to show
that

min
(R,F′)⊆(R,F)

nvF′−|R|peF′ ≥ 1. (3)

Fix a graph (R, F′) ⊆ (R, F) which attains the minimum. Let H1, . . . , Hk ∼
H − e denote the (canonical) copies of H − e in F and write H′i = F′ ∩ Hi. The
above term can be rewritten as

nvF′∩G−|R| ∏
i∈[k]

n
vH′

i
−vH′

i
∩G p

eH′
i .

If for some i we have vH′i∩G ∈ {0, 1} then t ≥ m1(H − e) ≥ m(H − e)

implies

n
vH′

i
−vH′

i
∩G p

eH′
i ≥ 1.

We may thus assume that for such i we have H′i = Hi ∩ G.
Otherwise vH′i∩G = 2. If t ≥ m(e, H) then the above bound holds as well

and in particular (3) is satisfied. If t < m(e, H) then, since (e, H) is balanced,

the minimum of n
vH′

i
−2

p
eH′

i is attained for H′i = Hi. Thus the minimization
reduces to

min
(R,G′)⊆(R,G)

nvG′

(

nvH−2 peH−1
)eG′

= min
(R,G′)⊆(R,G)

nvG′

(

nvH−2−(eH−1)/t
)eG′

≥ min
(R,G′)⊆(R,G)

nvG′n−eG′/m(R,G) = 1.
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Lemma 2.18. Let r ≥ 2 and suppose that G is a 2-balanced graph with density at
least 1. Then

max
R(V

m(R, G) ≤ v− 1 <

(

1

m(G)
−

1

mr
2(G)

)−1

.

Proof. m(R, G) is monotone increasing under edge addition. Thus for the first
inequality it suffices to consider the case G = Kv. We have

m(R, Kv) =
(v

2)− (|R|2 )

v− |R|
≤

(v
2)− (v−1

2 )

v− (v− 1)
= v− 1.

For the second inequality we use mr
2(G) < m2(G) and the fact that since G

is 2-balanced it is also balanced to obtain

1

m(G)
−

1

mr
2(G)

<
1

m(G)
−

1

m2(G)
=

v

e
−

v− 2

e− 1
. (4)

Maximizing (4) subject to v ≤ e we see that the maximum is attained whenever
v = e. Thus the above is at most

1−
v− 2

v− 1
=

1

v− 1
.

Lemma 2.11. Let F∗ ∈ F k where k ≥ 2. Then

m1(F∗−) < mk
2(F)

and for every V0 ( V(F)

m(V0, (V0, F)× (e, F∗−)) < mk
2(F).

Proof. Let F∗ ∈ F k. We have

nvF∗−1n−eF∗/mk
2(F)

Lemma 2.6
≥ n1−1/m1

2(F) ≥ 1

and thus d1(F∗) ≤ mk
2(F). F∗ is 2-balanced and thus strictly 1-balanced. There-

fore we obtain the inequality

m1(F∗−) < m1(F∗) = d1(F∗) ≤ mk
2(F),

which proves the first part of Lemma 2.11.
For the second part we want to apply Lemma 2.17 with (R, G) ← (V0, F),

(e, H) ← (e, F∗) and t ← mk
2(F) − ε, where ε > 0 is a small constant such

that m1(F∗−) ≤ mk
2 − ε. Since F∗ is 2-balanced (e, F∗) is also balanced. We

have choosen ε such that m1(F∗−) ≤ t. The final premise of Lemma 2.17 is
established by

vF∗ − 2−
eF∗ − 1

mk
2(F)

Lemma 2.6
≥ −

1

m1
2(F)

+
1

mk
2(F)

Lemma 2.18
> −

1

m(V0, G)
.

Thus we can apply Lemma 2.17 which proves the last property.
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3 Proof of Theorem 1.13

The proof of the theorem follows the proof of the KŁR-conjecture by Saxton,
Thomason in [14] and relies on their container theorem:

Definition 3.1. Let G be an r-graph of order n and average degree d. Let τ > 0.
Given v ∈ V(G) and 2 ≤ j ≤ r, let

d(j)(v) = max{d(σ) : v ∈ σ ⊂ V(G), |σ| = j}.

If d > 0 we define δj by the equation

δjτ
j−1nd = ∑

v

d(j)(v).

Then the co-degree function δ(G, τ) is defined by

δ(G, τ) = 2(
r
2)−1

r

∑
j=2

δj2
−(j−1

2 ).

If d = 0 we define δ(G, τ) = 0.

Theorem 3.2 ([14], Corollary 3.6). Let E be an r-graph on the vertex set [n]. Let
0 < ε, τ < 1/2. Suppose that τ satisfies δ(E , τ) ≤ ε/12r!. Then there exists a
constant c = c(r), and a function C : P([n])s → P [n] where s ≤ c log(1/ε), with
the following properties. Let T =

{

(T1, . . . , TS) ∈ P([n])
s : |Ti| ≤ cτn

}

, and let
C = {C(T) : T ∈ T }. Then

1. for every I ⊂ [n] for which e(E [I]) ≤ ετre(E ) there exists T = (T1, . . . , Ts) ∈
T ∩ P(I)s with I ⊂ C(T),

2. e(E [C]) ≤ εe(E ) for all C ∈ C .

For a graph F we denote with KF,n the vF-partite graph with vertex parti-
tions V1, . . . , VvF of size n, such that KF,n[Vi, Vj] is complete if {i, j} ∈ E(F) and
empty otherwise.

For a rooted graph (R, F) and GR ∈ R(R, n) we denote with E (GR, F)
the hypergraph whose vertices are the edges of KF−,n and whose edges form
(when seen as subgraphs of KF−,n) a partite copy of F− whose roots induce an
edge in GR.

To proof Theorem 1.13 we will apply Theorem 3.2 to E (GR, F). The first
step is to obtain a bound on the co-degree function.

Lemma 3.3. Let (R, F) be a rooted graph with eF− > 1. Let 0 < γ, q(n) ≤ 1 ≤ A.
Then for n sufficiently large every hypergraph GR ∈ R(R, n) which is (F, Aq)-

upper-extensible satisfies

δ
(

E (GR, F), γ−1n−1/m2(R,F,− logn(q))
)

≤ γeF−2
e2

F−
n|R|(Aq)eF[R]

|E(GR)|
.

Proof. Let σ denote a set of vertices of E = E (GR, F). We identify σ with the
set of edges from KF−,n which it represents. If the degree of σ is non zero this
set of edges is a graph F′ ⊂ KF−,n which is isomorphic to some subgraph of
F−. The degree of F′ is the number of ways we can extend F′ to a partite copy
of F− in KF−,n whose roots form an edge in GR.

25



Since G is (F, Aq)-upper-extensible we have

d
(

F′
)

≤ nvF−vF′ (Aq)
eF[R]−eF[R∩V(F′)] .

For j ≥ 2 and an edge e ∈ E
(

KF−,n

)

the quantity d(j)(e) is the maximum of
d(F′) over all F′ with e ∈ F′ and |F′| = j. Thus

d(j)(e) ≤ n
vF−vFj (Aq)

eF[R]−eF[R∩V(Fj)]

where
Fj = arg max

F′⊆F
e(F′)−e(F′[R])=j

n−vF′ (Aq)
−eF′[R] .

Observe that Fj[R] = F[R∩V(Fj)]. Let t = − logn(q) and τ = γ−1n−1/m2(R,F,t).

Using m2(R, F, t) ≥ d2

(

R ∩V(Fj), Fj, t
)

we obtain

1

τ j−1
= γj−1

(

n1/m2(R,F,t)
)(j−1)

≤ γj−1
(

n1/d2(R∩V(Fj),Fj,t)
)(j−1)

= γj−1n
vFj
−2

q
eFj[R] .

The number of edges in E is |E(GR)|n
vF−|R|. Thus for j ≥ 2 we have

δj =
∑e d(j)(e)

τ j−1eF− |E(E )|
≤

eF−n2n
vF−vFj (Aq)

eF[R]−eFj[R]

τ j−1eF− |E(GR)|nvF−|R|
≤ γj−1 n|R|A

eF[R]−eFj[R]qeF[R]

|E(GR)|
.

Finally we obtain

δ(E , τ) = 2
(

eF−
2
)−1

eF−

∑
j=2

δj2
−(j−1

2 ) ≤ eF−2
e2

F−γ
n|R|(Aq)eF[R]

|E(GR)|
.

as claimed.

Having bounded the co-degree function we can obtain a collection of con-
tainers for E (GR, F) which do not induce many edges in E (GR, F). Viewing
our contains as subgraphs of KF−,n this means that they contain few copies
of F− whose roots induce an edge in GR. To prove a KŁR-type statement
we want our containers to be sparse subgraphs of KF−,n. The following two
lemmas establish that if GR is lower-regular then the containers obtained by
Theorem 3.2 are indeed sparse.

Lemma 3.4. Let (R, F) denote a rooted graph. For every δ > 0 there exists ε > 0
such that for all p ≥ δ the following holds. Suppose that GR ∈ R(R, n) is (F, q, ε)-
lower-regular and that the bipartite graphs of G ⊆ KF−,n are (ε)-regular with density
at least p then

|E(T(G, GR))| ≥ (1− δ)peF−qeF[R]nvF .

Proof. Observe that the density p is at least δ, which is a constant. There-
fore G is a (dense) regular graph and standard counting arguments apply.
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We only sketch of the proof: using standard arguments we find roughly

nvF−|R|peF[V(F)\R] tuples in×i∈V(F)\R Vi whose common neighborhoods into

the partitions GR are roughly as large as expected (in particular they are of
linear size). Thus for ε small enough the (F, q, ε)-lower-regularity of GR guar-

antees that every one of these tuples extends to roughly n|R|peF−eF[V(F)\R]qeF[R]

copies of F− whose roots form an edge in GR. Every such copy of F− con-
tributes on edge to the multi-hypergraph T(G, GR) and we obtain the desired
bound.

Lemma 3.5. Let (R, F) be a rooted graph with eF− > 1. Let δ > 0 be small
enough and let A ≥ 1. Then there exists c, ε(δ), R(δ), γ(δ, A) such that the fol-

lowing is true. Suppose that τ(n), q(n) ∈ o(1) satisfy τ ≥ γ−1n−1/m2(R,F,− logn q).
If GR ∈ R(R, n) is (F, Aq)-upper-extensible and (F, q, ε)-lower-regular then for n
large enough there exists a collection C of subgraphs of KF−,n such that

1. for every G ⊆ KF−,n for which e(T(G, GH)) ≤ ετeF− qeF[R]nvF there exists

T1, . . . , Ts ⊆ G with G ⊂ C(T1, . . . , Ts) ∈ C , e(Ti) ≤ cτn2 and s ≤
c log(AeF[R]/ε),

2. for every C ∈ C there exists {i, j} ∈ E(F−) and equitable partitions Vi =
Vi,1 ∪ · · · ∪Vi,r and Vj = Vj,1 ∪ · · · ∪Vj,r where r ≤ R(δ) such that for at least

r2/2eF− pairs x, y ∈ [r] we have e
(

C
[

Vi,x, Vj,y

])

≤ δ|Vi,x|
∣

∣Vj,y

∣

∣.

Proof. The constants c, µ(δ), R(µ), ε(δ, µ, R) and γ(ε, A) will be determined

later. Let ε′ = εqeF[R]n|R|/e(GR) and E = E (GR, F). Since GR is (F, Aq)-upper-
extensible we can invoke Lemma 3.3 to obtain the bound

δ(E , τ) ≤ γeF−2
e2

F−
n|R|(Aq)eF[R]

e(GH)
= γeF−2

e2
F−

ε′AeF[R]

ε
.

For γ(ε, A) small enough we obtain

δ(E , τ) ≤
ε′

12r!
,

which is what we need to apply Theorem 3.2 with E ← E , ε ← ε′, τ ←
τ, r← eF− to obtain a collection of containers C . We will now show that these
containers (when viewed as subgraphs of KF−,n) satisfy the conditions of our
Lemma.

So let G ⊆ KF−,n with

e(T(G, GR)) ≤ ετeF− qeF[R]nvF = ε′τeF−nvF−|R|e(GR) = ε′τeF− e(E ).

Define I = E(G) and observe that e(E [I]) = e(T(G, GR)) and thus e(E [I]) ≤
ε′τeF− e(E ). Therefore we obtain T1, . . . , Ts ⊆ G ⊆ C(T1, . . . , Ts) ∈ C with
e(Ti) ≤ c′τv(E ) = cτn2 and s ≤ c log(1/ε′). Since GR is (F, Aq)-upper-
extensible we have

log

(

1

ε′

)

= log

(

e(GR)

εqeF[R]n|R|

)

≤ log

(

AeF[R]

ε

)

,

which proves the bound on s.
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It remains to show that every C ∈ C contains a sparse partition (in the
sense of 2.). To this end, for µ small enough depending on δ, consider a µ-
regular partition of C which refines the initial partition (Vi)i∈V(F). For every

i we obtain a partition Vi = Vi,1 ∪ · · · ∪Vi,r for some r ≤ R(µ). Now consider

Cx = C
[

V1,x1
∪ · · · ∪VvF ,xvF

]

for some x ∈ [r]vF . For ε small enough depending

on R, µ the |R|-graph GR,x = GR[V(Cx)]] is (F, µ, q)-lower-regular. Thus if all
pairs in Cx are µ-regular with density at least δ then by Lemma 3.4 for µ small
enough depending on δ

e(T(Cx, GR,x)) ≥ (1− δ)δeF− qeF[R]

( n

2r

)vF
.

But e(T(Cx, GR,x)) is at most

e(E [C]) ≤ ε′e(E ) = ε′nvF−|R|e(GR) = εnvF qeF[R] ,

which is a contradiction for ε small enough depending on R, δ.

Thus for every x there exists {i, j} ∈ E(F) such that C
[

Vi,xi
, Vj,x j

]

is either

sparse or not µ-regular. By the pigeonhole principle at least an 1/eF-fraction
of the x nominate the same edge {i, j} and every pair Vi,a, Vj,b is nominated

by at most rvF−2 different x. Finally at most an µ-fraction of these pairs is not
µ-regular. Therefore we have found i, j such that at least r2/(2eF−) of the pairs
Vi,·, Vj,· have density at most δ.

The proof of Theorem 1.13 now follows from a standard counting argu-
ment:

Theorem 1.13. Let (R, F) be a rooted graph. For every β > 0, A ≥ 1 there exists
α(A, β), µ(β) > 0 such that for every q(n) = o(1) the following holds:

For n large enough suppose that m ≥ α−1n2−1/m2(R,F,− logn q) and that GR ∈
R(R, n) is (F, Aq)-upper-extensible as well as (F, q, µ)-lower-regular. Then the
number of graphs G in G(F−, n, m, µ) for which T(G, GR) contains fewer than

α(m/n2)eF−qeF[R]nvF edges is at most

βm

(

n2

m

)eF−eF[R]

.

Proof. The proof will require a number of constants which will be fixed during
the proof. Their dependencies are as follows: δ(β), ε(δ), R(δ), γ(δ, A), ŝ(A, ε),
η(ŝ, γ), α(ε, γ, η), µ(ε, R).

We invoke Lemma 3.5 with δ ← δ, A ← A and obtain constants c, ε(δ),
R(δ) and γ(δ, A).

Fix τ = ηm/n2. For α small enough depending on γ and η we have

τ ≥ γ−1n−1/m2(R,F,− logn q) and for α small enough depending on ε and η we
have

ετeF− qeF[R]nvF ≥ α(m/n2)eF− qeF[R]nvF .

Therefore for µ ≤ ε small enough Lemma 3.5 guarantees the existence of a con-
tainer T1, . . . , Ts ⊆ G ⊆ C(T1, . . . , Ts) with s ≤ c log

(

AeF[R]/ε
)

=: ŝ whenever

G ∈ G(F−, n, m, µ) does not satisfy e(T(G, GR)) > α
(

m/n2
)eF− qeF[R]nvF .
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To count all such graphs G we fix T = (T1, . . . , Ts) and then pick G ⊆
KF−,n u.a.r. among all graphs with exactly m edges in each bipartite graph.
Following [14] we define the following events

ET : T1 ∪ · · · ∪ Ts ⊆ G ⊆ C(T) and G ∈ G(F−, n, m, µ),

FT : T1 ∪ · · · ∪ Ts ⊆ G,

GT : G ⊆ C(T) and G ∈ G(F−, n, m, µ).

We firstly show that ∑T Pr[FT] ≤ 2m. Note that this is the expected number
of tuples T ⊆ G. The maximum number of tuples T ⊆ G is at most

∑
|T1|,...,|Tŝ|

∏
i≤ŝ

(

eF−m

|Ti|

)

≤
(

cτn2
)ŝ
(

eF−m

cτn2

)ŝ

≤
(

cτn2
)ŝ( eeF−m

cτn2

)ŝcτn2

= (cηm)ŝ
(

eeF−

cη

)ŝcηm

≤ 2m,

for η small enough depending on ŝ.
Secondly we show that Pr[GT | FT ] ≤ (β/2)m and thus

∑
T

Pr[ET ] = ∑
T

Pr[GT | FT]Pr[FT ] ≤ βm,

which implies the Theorem.
For fixed T and C(T) let {i, j} ∈ E(F−) and Vi = Vi,1 ∪ · · · ∪ Vi,r and

Vj = Vj,1 ∪ · · · ∪ Vj,r be given by property (2) of Lemma 3.5. For µ(R) small

enough we use the (µ)-regularity of G
[

Vi, Vj

]

to require

∣

∣G
[

Vi,x, Vj,x

]∣

∣ ≥ (1− µ)
(n

r

)2 m

n2
≥ m/2r2

for every x, y ∈ [r] while
∣

∣C
[

Vi,x, Vj,x

]∣

∣ ≤ δ
(

n
r

)2
for at least r2/2eF− choices of

x, y. Let C′ =
⋃

C
[

Vi,x, Vj,x

]

where the union runs over r2/2eF− sparse pairs.

We have |C′| ≤ δn2/2eF− and for G to be (µ)-regular we require |G ∩ C′| ≥
m/4eF− . We conclude for η(γ, c) small enough

Pr[GT | FT] ≤ Pr
[∣

∣G ∩ C′
∣

∣ ≥ m/4eF− | FT

]

≤ Pr
[

∣

∣(G− T) ∩ C′
∣

∣ ≥ m/4eF− − ŝcτn2
]

≤ Pr
[∣

∣(G− T) ∩ C′
∣

∣ ≥ m/6eF−

]

≤

(

δ n2

2eF−
m

6eF−

)

( m

n2

)m/6eF−
≤ (3eδ)m/6eF− ≤

(

β

2

)m

,

for η(ŝ) and δ(β) small enough.
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