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An n-state deterministic finite automaton over a k-letter alphabet can be
seen as a digraph with n vertices which all have k labeled out-arcs. Grusho
[20] proved that whp in a random k-out digraph there is a strongly connected
component of linear size, i.e., a giant, and derived a central limit theorem.
We show that whp the part outside the giant contains at most a few short
cycles and mostly consists of tree-like structures, and present a new proof of
Grusho’s theorem. Among other things, we pinpoint the phase transition for
strong connectivity.
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1 Introduction

1.1 The model and the history

The deterministic finite automaton (dfa) is widely used in computational complexity
theory. Formally, a dfa is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite set called the
set of states, Σ is a finite set called the alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the start state, and F ⊆ Q is the set of accept states. If q0 and F
are ignored, a dfa with n states and a k-alphabet can be seen as a digraph with vertices
[n] ≡ {1 . . . , n} in which each vertex has k out-arcs labeled by 1, . . . , k (a k-out digraph).
Note that such a digraph can have self-loops and multi-arcs. For a basic introduction to
dfa and its applications, see [37].
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Let Dn,k denote a digraph chosen uniformly at random from all k-out digraphs of n
vertices. Equivalently Dn,k is a random k-out digraph of n vertices with the endpoints
of its kn arcs chosen independently and uniformly at random.

When k = 1, Dn,k is equivalent to a uniform random mapping from [n] to itself, which
has been well studied by Kolchin [27], Flajolet and Odlyzko [18], and Aldous and Pitman
[2]. In Dn,1, the largest strongly connected component (scc) has expected size Θ(

√
n),

and so does the size of the longest cycle. However, as shown later, for k ≥ 2, the largest
scc has expected size Θ(n).

From now on we assume that k ≥ 2. Let Sv (the spectrum of v) be the set of vertices
in Dn,k that are reachable from vertex v, including v itself. In 1973 Grusho [20] first
proved that (|S1|− νkn)/σk

√
n converges in distribution to a standard normal, where νk

and σk are explicitly defined constants.
Given a set of vertices S ⊆ [n], call S closed if there are no arcs that start from vertices

in S and end at vertices in Sc ≡ [n] \ S. Let Gn be the set of vertices in the largest
closed scc in Dn,k. (If the largest closed scc is not unique, let Gn be the vertex set of the
largest closed scc that contains the smallest vertex-label.) We call Gn the giant. Grusho
also proved that |Gn| has the same limit distribution as |S1| by showing that with high
probability (whp) Gn is reachable from all vertices and that |S1|−|Gn| = op(

√
n) (see [22]

for the notation). His proof relies on a result by Sevast’yanov [35] which approximates
the exploration of S1 with a Gaussian process.

In 2012 Carayol and Nicaud [10] proved a local limit theorem for |S1| by analyzing the
limit behavior of the probability that |S1| = s for an s close to νkn. Their proof depends
on a theorem by Korshunov [28] which says that conditioned on every vertex having
in-degree at least one, the probability that S1 = [n] tends to some constant. Carayol
and Nicaud derived a simple and explicit formula of this constant from their theorem.
(The same formula is also proved by Lebensztayn [29] with a more analytic approach
using Lagrange series.)

Lately the simple random walk (SRW) on Dn,k has gained some attention for its
applications in machine learning. Addario-Berry, Balle, and Perarnau [1] studied the
stationary distribution of the SRW by analyzing the distances in Dn,k. They proved
that the diameter and the typical distance, rescaled by log n, converge in probability
to explicit constants. Angluin and Chen [3] studied the rate of the convergence to the
stationary distribution of the SRW. They also suggested an algorithm for learning a
uniformly random dfa under Kearns’ statistical query model [26].

1.2 Our results and a sketch of proof

A digraph can be uniquely decomposed into sccs which form a directed acyclic graph
(dag) through a process called condensation that contracts every scc into a single vertex
while keeping all the arcs between sccs [5]. The condensation dag of Dn,k is denoted
by DA

n,k.
Let Gcn ≡ [n] \ Gn, i.e., Gcn is the set of vertices that are outside the giant. The

structure of DA
n,k depends on Dn,k[Gcn], the digraph induced by Gcn. Our analysis shows

that in Dn,k[Gcn] the total number of cycles and the number of cycles of a fixed length

2



both converge to Poisson distributions with constant means. So the number of cycles
and the length of the longest cycle are both Op(1) (see [22]). Furthermore, these cycles
are vertex-disjoint whp. Therefore, almost every vertex in Gcn is a scc itself and DA

n,k is
very much like Dn,k with the giant contracted into a single vertex.

The d-core of an undirected graph is the maximum induced subgraph in which all
vertices have degree at least d. Similarly the d-in-core of a digraph can be defined as
the maximum induced sub-digraph in which all vertices have in-degree at least d. Let
On denote the set of vertices in the one-in-core of Dn,k. Note that Gn ⊆ On since a scc
induces a sub-digraph with each vertex having in-degree at least one. Also note that
cycles cannot exist outside On, for otherwise they contradict the maximality of On. Now
assume that every vertex can reach Gn, which happens whp by Grusho [20]. Then Dn,k
can be divided into three layers: the center is Gn; then comes On \ Gn, which consists
of cycles outside Gn and paths from these cycles to Gn; the outermost is Ocn ≡ [n] \ On,
which is acyclic.

GnOn\GnOcn

Figure 1: Three layers of Dn,k: the giant Gn; the one-in-core On; and the whole graph.

Since there cannot be many vertices in cycles outside the giant, the middle layer
On \ Gn must be very “thin”. Thus if we can prove (|On| − νkn)/

√
n converges to a

normal distribution, then we can also prove it for |Gn|. The event |On| = s happens if
and only if there is a set of vertices S with |S| = s such that: (a) Dn,k[S], the sub-digraph
induced by S, has minimum in-degree one (surjective) and there are no arcs going from
S to Sc (closed), which we refer to as S being a k-surjection (since Dn,k[S] is equivalent
to a surjective function from [ks] to [s]); (b) Dn,k[Sc] is acyclic. The probability of (a)
can be computed by counting the number of surjective functions. And we are able to
show that the probability of (b) converges to a constant. Note that for a fixed set S
(a) and (b) are independent because they depend on the endpoints of two disjoint sets
of arcs. Thus we can get the limit of P {On = S}. Since the one-in-core of a digraph
is unique, P {|On| = s} =

∑
S⊆[n]:|S|=s P {On = S}. Thus we can finish the proof by

computing the characteristic function of (|On| − νkn)/
√
n.

Note that although our formula for P {|On| = s} is inspired by and resembles Carayol
and Nicaud’s formula for P {|S1| = s}, we actually prove the result from scratch without
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relying on previous work. Since we are able to derive explicit expressions of all the
constants in our formula, the computation of the characteristic function becomes quite
simple. Furthermore, to our knowledge this is the first self-contained proof. Thus in
Section 2 we prove:

Theorem 1 (Central limit law). Let Z denote a standard normal random variable.
Then as n→∞,

|On| − νkn
σk
√
n

d→Z, |Gn| − νkn
σk
√
n

d→Z,
maxv∈[n] |Sv| − νkn

σk
√
n

d→Z,

where νk and σk are constants defined by

νk ≡
τk
k
, σ2

k ≡
τk

keτk(1− ke−τk)
,

and τk is the unique positive solution of 1− τk/k − e−τk = 0.

Remark. Equivalently, νk is the unique positive solution of 1− νk = e−kνk and

σ2
k =

νk(1− νk)
1− k(1− νk)

.

Let G(n,m) be a Erdős–Rényi random graph, i.e., a graph chosen uniformly at random
from all graphs with n vertices and m edges [16]. It is well-known that for k > 1,
|Cnmax|—the size of the largest component in G(n,m = nk/2)—is (νk + o(1))n whp.
Moreover, (|Cnmax|− νkn)/

√
n also converges in distribution to a normal random variable

with variance σ2
k (see, e.g., Durrett [14]). Intuitively, this is because the in-degree of a

vertex in Dn,k has asymptotically a Poisson distribution of mean k. Thus a backward
exploration process from vertex in Dn,k is approximately a Galton-Watson process with
survival probability νk, as is the exploration process starting from a vertex in G(n,m =
nk/2).

Section 3 studies the part of Dn,k outside the giant, which determines the structure of
DA
n,k and supports the proof of Theorem 1. Our results are summarized in two theorems,

where all our logarithms are natural:

Theorem 2 (Cycles outside the giant). We have:

(a) Let Ln be the length of the longest cycle in Dn,k[Gcn]. Then Ln = Op(1).

(b) Let Cn be the number of cycles in Dn,k[Gcn]. Then

Cn
d→ Poi

(
log

1

1− ke−τk

)
,

where Poi(x) denotes the Poisson distribution with mean x.
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(c) Let Cn,` be the number of cycles of length ` in Dn,k[Gcn]. Then for all fixed ` ≥ 1,

Cn,`
d→ Poi

(
(ke−τk)`

`

)
.

Theorem 3 (Spectra outside the giant). Let S ′v ≡ Sv ∩ Gcn, i.e., S ′v is the spectrum of
v in Dn,k[Gcn]. Let dist(v, u) be the distance from v to u, i.e., the length of the shortest
directed path from v to u. Then

(a) P
{
∪v∈Gcn [arc(Dn,k[S ′v])− |S ′v| ≥ 1]

}
= o(1), where arc(·) denotes the number of arcs.

In other words, whp every spectrum in Dn,k[Gcn] is a tree or a tree plus an extra arc.

(b) Let Sn ≡ maxv∈Gcn |S ′v|. Let λk ≡ (k − τk)
(
τk
k−1

)k−1
. Then

Sn
log n

p→ 1

log(1/λk)
.

(c) Let Wn ≡ maxv∈Gcn minu∈Gn dist(v, u), i.e., the maximum distance to Gn. Then

Wn

logk log n

p→ 1.

(d) Let Mn be the length of the longest path in Dn,k[Gcn]. Then

Mn

log n

p→ 1

log(eτk/k)
.

(e) Let Dn ≡ maxv∈Gcn maxu∈S′v dist(v, u). Then

Dn

log n

p→ 1

log(eτk/k)
.

The rest of the paper gives some other results regarding this model. Section 4 shows
that Dn,k exhibits a phase transition for strong connectivity. Section 5 extends some of
our results to simple k-out digraphs. Section 6 analyzes the typical distances in Dn,k
with a technique called path counting, which is very different from the method used by
Addario-Berry et al. in [1]. Section 7 suggests some extensions of this model.

Remark. Lemma 9 shows that |On| − |Gn| = Op(1). The intuition is that a digraph
with minimal in-degree and out-degree at least one is likely to have a large scc. This
phenomenon is also observed in D(n, p), which is a random digraph of n vertices with
each possible arc existing independently with probability p. Pittel and Poole [33, thm.
1.3] showed that in D(n, p) the (1, 1)-core—the maximal induced sub-digraph in which
each vertex has in-degree and out-degree at least one—differs from the largest scc in
size by at most O((log n)8), whp. This intuition is also used for studying the asymptotic
counts of strongly connected digraphs (see Pérez-Giménez and Wormald [34], Pittel [32]).
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2 The size of the one-in-core

2.1 The law of large numbers for the one-in-core

To prove Theorem 1, we first need to narrow the range of |On| to close to νkn.

Theorem 4 (Law of large numbers). For all fixed δ ∈ (0, 1/2),

P {|On| /∈ In} ≤
1 + o(1)

n
,

where In ≡ [νkn− n1/2+δ, νkn+ n1/2+δ].

Thus |On|/n
p→ νk, which gives the theorem its name.

Let Ks be the number of k-surjections of size s in Dn,k. Then it suffices to show that
P
{∑

s/∈In Ks ≥ 1
}
≤ (1 + o(1))/n. As argued in the introduction, for a set of vertices

S to be the one-in-core, it must also be a k-surjection, i.e., every vertex in Dn,k[S], the
sub-digraph induced by S, must have minimum in-degree one (S is surjective), and there
are no arcs going from S to Sc (S is closed). Thus

P {S is a k-surjection} = P {S is surjective | S is closed}P {S is closed} .

Computing the limit of the two factors shows that:

Lemma 1. We have

P

{∑
s/∈In

Ks ≥ 1

}
≤ 1 + o(1)

n
.

And for s ∈ In
EKs ∼

1√
2π(1− ke−τk)n

g
( s
n

) [
f
( s
n

)]n
,

where

g(x) ≡ 1√
x(1− x)

, f(x) ≡
[

xk−1γk
(1− x)(1−x)/x

]x
,

and γk ≡
(

k
eτk

)k
(eτk − 1).

Theorem 4 follows immediately. The proof of Lemma 1 is postponed to the appendix.
(The two functions f(x) and g(x) are also studied by Carayol and Nicaud [10].)

2.2 The central limit law of the one-in-core

In this section we prove the part of Theorem 1 about |On|. The rest of the theorem
appears as corollaries in Section 3. Let ∂On = |On| − νkn. Then ∂On takes values in
[n] − νkn ≡ {s : νkn + s ∈ [n]}. As Theorem 4 shows, whp ∂On ≤ n1/2+δ for all fixed
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δ ∈ (0, 1/2). Thus it suffices to consider only the probability that ∂On takes value in
the set

Jn ≡ ([n]− νkn) ∩
[
−n1/2+δ, n1/2+δ

]
,

for some fixed δ ∈ (0, 1/2). Thus the characteristic function of ∂On/
√
n is

φn(t) =
∑

s∈([n]−νkn)\Jn

eits/
√
nP {∂On = s}+

∑
s∈Jn

eits/
√
nP {∂On = s}

= o(1) +
∑
s∈Jn

eits/
√
nP {∂On = s} .

Let S be a set of vertices with |S| = νkn + s for some s ∈ Jn. Recall that On = S if
and only if S is a k-surjection and Dn,k[Sc] is acyclic, two events that are independent.
By Theorem 5 in Section 3.2, P {Dn,k[Sc] is acyclic} ∼ 1 − ke−τk . Also recall that Kx

counts the number of k-surjections of size x. It follows from Lemma 1 that

P {∂On = s} =
∑

S⊆[n]:|S|=νkn+s

P {On = S}

=
∑

S⊆[n]:|S|=νkn+s

P {S is a k-surjection} × P {Dn,k[Sc] is acyclic}

∼ (1− ke−τk)EKνkn+s

=

√
1− ke−τk

2π

1√
n
g
(
νk +

s

n

) [
f
(
νk +

s

n

)]n
,

where Kx, f(x) and g(x) are defined as in the previous subsection.
If s ∈ Jn, then Lemma A6 in the appendix shows that

g
(
νk +

s

n

)
=

(
1 +O

(
|s|
n

))
1

σk
√

1− ke−τk
,

and

f
(
νk +

s

n

)
= exp

{
− s2

2σ2
kn

2

}
+O

(
|s|3

n3

)
.

Therefore, choosing δ small enough, e.g., δ = 1/9, we have∑
s∈Jn

eits/
√
nP {∂On = s} ∼ 1√

2πσ2
k

1√
n

∑
s∈Jn

eits/
√
n exp

{
− s2

2σkn

}

= o(1) +
1√

2πσ2
k

∫ nδ

−nδ
eitx exp

{
− x2

2σ2
k

}
dx

= o(1) +
1√

2πσ2
k

∫ ∞
−∞

eitx exp

{
− x2

2σ2
k

}
dx

= o(1) + exp

(
σ2
kt

2

2

)
.
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Thus the characteristic function of ∂On/
√
n converges to exp(σ2

kt
2/2), the characteristic

function of σkZ. It follows from the central limit theorem that ∂On/
√
n converges to

σkZ in distribution. Note that using the estimates of this section, we actually have a
local limit theorem for |On|.

3 The structure of the directed acyclic graph

3.1 De-randomizing the giant

Since a scc induces a sub-digraph in which each vertex has in-degree at least one, a
closed scc is also a k-surjection. Lemma 1 implies that whp all k-surjections are of sizes
in In ≡ [νkn−n1/2+δ, νkn+n1/2+δ]. When this happens, as νk > 1/2 (Lemma A1), there
exists one and only one closed scc and it is Gn. And if Gn is the only closed scc, then
every vertex must be able to reach it. This can be summarized as:

Lemma 2. Whp |Gn| ∈ In and Gn is reachable from all vertices.

Since e−τk ≡ 1 − τk/k ≡ 1 − νk, the above lemma implies that whp ||Gcn| − e−τkn| ≤
n1/2+δ. Thus the structure of Dn,k[Gcn], the sub-digraph induced by Gcn ≡ [n] \Gn, should
be close to that of a sub-digraph induced by a fixed set of vertices whose size is close to
e−τkn. Formally, we have:

Lemma 3. Let fn be a sequence of integer-valued functions on a sequence of digraphs.
Let X be an integer-valued random variable. If there exists a sequence εn → 0 such that

sup
Vn⊆[n]:|Vn|∈In

‖fn(Dn,k[Vcn]), X‖tv ≤ εn,

where Vcn ≡ [n] \ Vn and ‖ · , ·‖tv denotes the total variation distance, then

fn(Dn,k[Gcn])
d→X.

Proof. Define the event En = [|Gn| ∈ In]. Let m be an integer, let Vn ⊆ [n] be a fixed set
of vertices with |Vn| ∈ In. Recall that since νk > 1/2, |Vn| > n/2 for large n. Thus the
event [Gn = Vn] depends only on the induced sub-digraph Dn,k[Vn], which is independent
of Dn,k[Vcn]. Therefore the two events [Gn = Vn] and [fn(Dn,k[Vcn]) = m] are independent.
Using this observation and Lemma 2, we have

P {fn(Dn,k[Gcn]) = m}
= P {[fn(Dn,k[Gcn]) = m] ∩ Ec

n}+ P {[fn(Dn,k[Gcn]) = m] ∩ En}

= o(1) +
∑

Vn⊆[n]:|Vn|∈In

P {fn(Dn,k[Vcn]) = m | Gn = Vn}P {Gn = Vn}

≤ o(1) +
∑

Vn⊆[n]:|Vn|∈In

(P {X = m}+ εn)P {Gn = Vn}

≤ o(1) + P {X = m} .
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Similarly we have P {fn(Dn,k[Gcn]) = m} ≥ P {X = m} + o(1). Since this applies to all

integers m, fn(Dn,k[Gcn])
d→X.

Corollary 1. Let En be a sequence of sets of digraphs. If there exists a sequence εn → 0
such that

sup
Vn⊆[n]:|Vn|∈In

P {Dn,k[Vcn] /∈ En} ≤ εn,

then whp Dn,k[Gcn] ∈ En.

Proof. This follows from the previous lemma by taking X ≡ 1 and fn to be the indicator
function that a digraph is in En.

The rest of this section proves Theorem 2 and Theorem 3. But instead of working
on Gcn directly, we prove similar theorems on fixed sets of vertices, and then apply the
above lemma or its corollary to get the final result.

3.2 Cycles outside the giant

In this subsection, we show the following:

Theorem 5. Let ωn → ∞ be an arbitrary sequence. There exists a sequence εn = o(1)
such that for all fixed sets of vertices Vn ⊆ [n] with |Vn| ∈ In, we have:

(a) Let L∗n be the length of the longest cycle in Dn,k[Vcn]. Then P {L∗n > ωn} ≤ εn.

(b) The probability that Dn,k[Vcn] contains vertex-intersecting cycles is at most εn.

(c) Let C∗n,` be the number of cycles of length ` in Dn,k[Vcn]. Let X` = Poi((ke−τk)`/`).

Then for all fixed `,
∥∥C∗n,`, X`

∥∥
tv
≤ εn.

(d) Let C∗n be the number of cycles in Dn,k[Vcn]. Let X = Poi(log 1
1−ke−τk ). Then

‖C∗n, X‖tv ≤ εn. As a result, |P {C∗n = 0} − (1− ke−τk)| ≤ 2εn.

Theorem 2 follows from the above theorem and Lemma 3. Our proof is inspired by
Cooper and Frieze’s work on the directed configuration model [12]. Note that the
Cooper-Frieze model is different from that studied by us. In their model, both in-
degrees and out-degrees are predetermined, whereas we require all out-degrees to be k
but the in-degrees are random.

The intuition behind Theorem 5 is that when two cycles share vertices, they contain
fewer vertices than arcs. So if we fix the “shape” of a pair of such cycles, the number of
ways to label them times the probability that they both exist is o(1). Thus whp cycles
in Vcn are vertex-disjoint and the total number of cycles has a distribution close to a sum
of independent indicator random variables.

In the following proof, instead of finding the exact εn, we derive implicit o(1) upper
bounds for probabilities and total variation distances which only requires that |Vn| ∈ In.

Lemma 4. Let C∗n ≡
∑

1≤`≤ωn C
∗
n,`. Then P

{
C∗n 6= C∗n

}
= o(1).
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Proof. Define (x)` ≡ x(x− 1) · · · (x− ` + 1). Then the number of all possible cycles of
length ` is (|Vcn|)`k`/`. (Note that we are also considering the labels on arcs, which makes
the counting easier.) And the probability that such a cycle exists is n−`. Recalling that
|Vcn| ∈ [e−τkn− n1/2+δ, e−τkn+ n1/2+δ], we have

E
[
C∗n,`

]
=

1

`
(|Vcn|)`k`

(
1

n

)`
≤
(
ke−τk

(
1 +O

(
n−1/2+δ

)))`
. (1)

Since ke−τk ≡ k − τk < 1 (Lemma A1), there exists a constant c1 < 1 such that the
above is less than c`1 for n large enough. Since C∗n 6= C∗n if and only if

∑
`>ωn

C∗n,` ≥ 1,

P
{
C∗n 6= C∗n

}
= P

{∑
`>ωn

C∗n,` ≥ 1

}
≤ E

[∑
`>ωn

C∗n,`

]
≤ O (cωn1 ) = o(1).

Since L∗n > ωn if and only if C∗n 6= C∗n, part (a) of Theorem 5 follows. From now on
let ωn = log log n. We show that:

Lemma 5. Let X and X` be as in Theorem 5. Then
∥∥Poi(EC∗n), X

∥∥
tv

= o(1). And for

all ` ≤ ωn,
∥∥Poi(EC∗n,`), X`

∥∥
tv

= o(1).

Proof. For all ` ≤ ωn, by (1) we have

EC∗n,` =
1

`

(
e−τkn+O

(
n1/2+δ

))
`
k`
(

1

n

)`
=

(ke−τk)`

`
(1 +O(`n−1/2+δ)).

Thus

EC∗n =
∑

1≤`≤ωn

E
[
C∗n,`

]
= log

(
1

1− ke−τk

)
+O

(
ωnn

−1/2+δ
)
.

Therefore EC∗n → EX and EC∗n,` → EX`, which implies the lemma.

Proof of Theorem 5. By the two previous lemmas, it suffices to show that∥∥C∗n,Poi(EC∗n)
∥∥
tv

= o(1),
∥∥C∗n,`,Poi(EC∗n,`)

∥∥
tv

= o(1) for all fixed `.

We prove this by using a theorem of Arratia et al. [4]. (A similar result is proved by
Barbour et al. [6]). The method is known as the Chen-Stein method because it was first
developed by Chen [11] who applied Stein’s theory [38] on probability metrics to Poisson
distributions.

Let C be the space of all possible cycles of length at most ωn in Dn,k[Vcn]. For α ∈ C, let
Bα ⊆ C be the set of cycles that are vertex-intersecting with α. Let 1α be the indicator
that a cycle α appears in Dn,k[Vcn]. Define

b1 ≡
∑
α∈C

∑
β∈Bα

E1αE1β, b2 ≡
∑
α∈C

∑
β∈Bα:β 6=α

E [1α1β] , b3 ≡
∑
α∈C

sα,

10



where
sα = E |E [1α|σ (1β : β ∈ C \ Bα)]− E1α| ,

and σ(·) denotes the sigma algebra generated by (·). Theorem 1 of Arratia et al. [4]
states that ∥∥C∗n, Poi(EC∗n)

∥∥
tv
≤ 2(b1 + b2 + b3).

If β ∈ C \ Bα, then α and β are vertex-disjoint. Thus 1α and 1β are independent and
sα = 0 for all α ∈ C, i.e., b3 = 0. It suffices to show that b1 and b2 are o(1).

Let |α| denote the length of a cycle α. Fix `1 ≤ ωn and `2 ≤ ωn. There are at most
|Vcn|`1k`1 cycles of length `1. For |α| = `1, there are at most `1|Vcn|`2−1k`2 cycles of length
`2 that share at least one vertex with α. Since (|Vcn|)` = (1 + o(1))(e−τkn)` for ` ≤ ωn,

∑
α∈C:|α|=`1

∑
β∈Bα:|β|=`2

E1αE1β ≤ (1 + o(1))
[
(e−τkn)`1k`1

] [
`1(e−τkn)`2−1k`2

]( 1

n

)`1+`2

= (1 + o(1))
1

e−τkn

[
`1(e−τkk)`1

] [
(e−τkk)`2

]
.

Therefore

b1 =
∑

1≤`1≤ωn

∑
1≤`2≤ωn

∑
α∈C:|α|=`1

∑
β∈Bα:|β|=`2

E1αE1β

≤ (1 + o(1))
1

e−τkn

∑
`1≥1

∑
`2≥1

[
`1(ke−τk)`1

] [
(ke−τk)`2

]
≤ (1 + o(1))

1

e−τkn

[∑
`1≥1

`1(ke−τk)`1

][∑
`2≥1

(ke−τk)`2

]

which is O (1/n) since both sums converge.

To compute b2, we upper bound the number of pairs of vertex-intersecting cycles
that could possibly appear in Dn,k[Vcn] at the same time. Let α and β be such a pair. Let
V (α), A(α), V (β), A(β) be the vertex set and (labeled) arc set of α and β respectively.
Let α ∪ β be the digraph of vertex set V = V (α) ∪ V (β) and arc set A = A(α) ∪B(β).
Assume that |V | = s and |A| = s + t. Note that as α and β share at least one vertex,
t ≥ 1. Since V ⊂ [n], we can relabel the s vertices in α∪β with [s] such that the order of
the vertex labels is maintained. The result is a digraph with vertex set [s] and s+ t arcs
labeled with [k]. There are at most (s2)s+tks+t such digraphs, since there are at most s2

choices of endpoints and k choices of labels for each of the s + t arcs. Each digraph of
this type corresponds to at most

(|Vcn|
s

)
≤ |Vcn|s pairs of cycles like α and β. Thus there
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are at most |Vcn|s(s2)s+tks+t such pairs. Summing over s and t, we have

b2 ≤
∑

1≤s≤2ωn

∑
1≤t≤2ωn

|Vcn|s(s2)s+tks+tE [1α1β]

≤
∑

1≤s≤2ωn

∑
1≤t≤2ωn

(
e−τkn+ n1/2+δ

)s
(2ωn)2×4ωnks+t

1

ns+t

≤ (2ωn)8ωn
∑

1≤s≤2ωn

∑
1≤t≤2ωn

(
n+ eτkn1/2+δ

)s
ns

(ke−τk)s
kt

nt
(2)

≤ O

(
1

n

)
(2ωnk)8ωn

∑
1≤s≤2ωn

∑
1≤t≤2ωn

(1 + eτkn−1/2+δ)2ωn (ke−τk < 1/2)

≤ O

(
1

n

)
(2ωnk)8ωn(2ωn)2

(
1 +O

(
n−1/2+δωn

))
→ 0,

where the last step we use that ωn = log log n.
Thus part (d) of Theorem 5 for C∗n is proved. We can prove part (c) for C∗n,` using

the same method by limiting C to contain only cycles of a fixed length `. Note that the
above inequality shows that the probability that there exist vertex-intersecting cycles in
Dn,k[Vcn] is o(1), thus part (b) is also proved.

The method used above can be easily adapted to prove similar results for undirected
cycles, like the following lemma which is needed in the study of spectra in Dn,k[Gcn]:

Lemma 6. Let ψn → ∞ be an arbitrary sequence. There exists a sequence εn = o(1)
such that for all fixed sets of vertices Vn with |Vn| ∈ In, we have:

(a) The probability that Dn,k[Vcn] contains an undirected cycle of length greater than ψn
is at most εn.

(b) The probability that Dn,k[Vcn] contains vertex-intersecting undirected cycles is at most
εn.

Proof. Let U` be the number of undirected cycles of length ` in Dn,k[Vcn]. Then

E [U`] ≤
1

`
(|Vcn|)`(2k)`

1

n`
≤
(
2ke−τk(1 + n−1/2+δ)

)`
,

where the 2 comes from the fact that each edge in an undirected cycle has two possible
directions. Since 2ke−τk = 2(k− τk) < 1 (Lemma A1), with exact the same argument of

Lemma 4, we can show that E
[∑

`>ψn
U`

]
= o(1) for all ψn →∞. Thus (a) is proved.

Now choose ψn = log log n. Again we can show that whp there are no vertex-
intersecting undirected cycles of length at most ψn by repeating the computation of
b2 in the proof of Theorem 5 with ke−τk replaced by 2ke−τk in (2).

12



3.3 Spectra outside the giant

In this section, we prove Theorem 3 (spectra outside the giant). Instead of working
on Gcn directly, we again prove similar results on a fixed set of vertices and then apply
Lemma 3 to finish the proof.

3.3.1 The tree-like structure of some spectra

We prove part (a) of Theorem 3. Let Vn ⊆ [n] with |Vn| ∈ In ≡ [νkn−n1/2+δ, νkn+n1/2+δ]
be a fixed set of vertices. For v ∈ Vcn ≡ [n] \ Vn, let S∗v be the spectrum of v in Dn,k[Vcn],
the sub-digraph induced by Vcn. The following lemma shows that whp every spectrum
in Dn,k[Vcn] induces a sub-digraph that is a tree or a tree plus one extra arc:

Lemma 7. We have

sup
Vn⊆[n]:|Vn|∈In

P
{
∪v∈Vcn [arc(Dn,k[S∗v ])− |S∗v | ≥ 1]

}
= o(1),

where arc(·) denotes the number of arcs.

Proof. For v ∈ Vcn, if arc(Dn,k[S∗v ]) ≥ |S∗v | + 1, then Dn,k[S∗v ] must contain at least two
undirected cycles. By Lemma 6, whp all undirected cycles in Dn,k[S∗v ] are vertex-disjoint.
Therefore, if Dn,k[S∗v ] contains two undirected cycles, then whp they are vertex-disjoint
and connected by an undirected path.

Let Xr,s,t be the number of pairs of undirected cycles of length r and s respectively
that are connected by an undirected path of length t. In such a structure the number
of arcs is r+ s+ t while the number of vertices is r+ s+ t− 1. Since |Vn| ∈ In, we have
|Vcn| = n− |Vn| ∈ Icn ≡ [e−τkn− n1/2+δ, e−τkn+ n1/2+δ]. Thus

EXr,s,t ≤ (|Vcn|)r+s+t−1(2k)r+s+t
(

1

n

)r+s+t
≤ O

(
1

n

)(
2ke−τk +

2k

n1/2−δ

)r+s+t
.

Summing over all possible r, s and t shows that

∑
1≤r≤n

∑
1≤s≤n

∑
1≤t≤n

EXr,s,t ≤ O

(
1

n

)∑
1≤r

∑
1≤s

∑
1≤t

(
2ke−τk +

2k

n1/2−δ

)r+s+t

≤ O

(
1

n

)(∑
1≤i

(
2ke−τk +

2k

n1/2−δ

)i)3

,

which is o(1) since the sum in the brackets converges.

3.3.2 The maximum size of spectra

This section proves part (b) of Theorem 3 (the sizes of spectra outside the giant).

13



Lemma 8. Let ε > 0 be a constant. Then

sup
Vn⊆[n]:|Vn|∈In

P

{∣∣∣∣maxv∈Vcn |S∗v |
log n

− 1

log(1/λk)

∣∣∣∣ > ε

}
= o(1),

where λk ≡ (k − τk)
(
τk
k−1

)k−1
.

The exploration of Dn,k[S∗v ] can be coupled with a colouring process. Initially, colour
all vertices in Vn green, all vertices in Vcn yellow, and all arcs white. Then:

(i) Colour the vertex v black, and colour the k arcs that start from v red. (Red arcs
start from vertices in S∗v but their endpoints are not determined yet.)

(ii) Pick an arbitrary red arc. Choose its endpoint uniformly at random from all the
n vertices. Colour this arc with the colour of its chosen endpoint vertex. (So a
yellow arc goes to a vertex that is not already in S∗v , a black arc goes to a vertex
that is already in S∗v .) If the chosen vertex is yellow, colour this vertex black and
colour all its arcs red.

(iii) If there are no red arcs left, terminate. Otherwise go to the previous step.

In the end, S∗v consists of all black vertices, and arcs that start from vertices in S∗v have
one of three colors: green arcs go to Vn; yellow arcs form a spanning tree of Dn,k[S∗v ]
rooted at v; black arcs connect vertices in S∗v but they are not part of the yellow spanning
tree, so they are in cycles in Dn,k[S∗v ]. Figure 2 depicts the colouring process.

Green

Red

Black

Yellow

Figure 2: The colouring process.

We use random variables Rt and Yt to track the number of red arcs and yellow vertices
after the t-th red arc is colored. Thus R0 = k and Y0 = |Vcn| − 1. When a red arc is
colored, if a yellow vertex is chosen as its endpoint, then the number of red arcs increases
by (k− 1) and the number of yellow vertices decreases by one. Otherwise the number of
red arcs decreases by one and the number of yellow vertices remains unchanged. Thus
for t ≥ 1,

Rt = Rt−1 + kξt − 1 = k
t∑
i=1

ξi − (t− k), and Yt = Yt−1 − ξt = |Vcn| − 1−
t∑
i=1

ξi,
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where ξt are independent Bernoulli Yt/n (the probability that a yellow vertex is chosen).
Let T ≡ min{t : Rt ≤ 0}. Then |S∗v | = T/k, since T is the total number arcs that have
been colored and |S∗v | is the total number of vertices that have been colored.

Let (ξt)t≥1, be i.i.d. Bernoulli (e−τk + n−1/2+δ). Since Yt/n ≤ |Vcn|/n ≤ e−τk + n−1/2+δ,
we have ξt � ξt, where � denotes stochastically greater than (see [36]). Therefore
there exists a coupling such that ξt ≥ ξt for all t almost surely. Let T t ≡ min{t :
k
∑t

i=1 ξi − (t− k) ≤ 0}. Then T ≥ T almost surely. (The random variable T is called
the total progeny of a Galton-Watson process with offspring distribution ξ1. For an
introduction to Galton-Watson processes see [13]). It is well know that if Eξ1 < 1, which
is true in this case, then ET = k/(1− Eξ1) = O(1). Thus ET = O(1).

Proof of the upper bound. Let ωn = b(1 + ε) log n/ log(1/λk)c+ 1. Since T ≥ T ,

P {T ≥ kωn} ≤ P
{
T ≥ kωn

}
≤ P

{∑kωn
i=1 ξi
kωn

≥ 1

kn

}

where kn = kωn/(ωn − 1). Hoeffding [21] showed that

P

{
Bin(m, p)

m
≥ p+ x

}
≤

{(
p

p+ x

)p+x(
1− p

1− p− x

)1−p−x
}m

.

where Bin(m, p) denotes a binomial (m, p) random variable. Recalling that Eξ1 = e−τk +

n−1/2+δ ≡ 1 − τk/k + n−1/2+δ and λk ≡ (k − τk)
(
τk
k−1

)k−1
, it follows from Hoeffding’s

inequality that P {T ≥ kωn} is at most[(
Eξ1

1/kn

)(
1− Eξ1

1− 1/kn

)kn−1
]ωn

=

[
(k − τk)

(
τk

k − 1

)k−1

+O(n−1/2+δ)

]ωn+O(1)

= O(λωnk )
(
1 +O

(
n−1/2+δ

))ωn
= O

(
n−(1+ε)

)
. (3)

Since k|S∗v | = T , by the union bound

P
{
∪v∈Vcn |S

∗
v | ≥ ωn

}
≤ nP

{
T ≥ kωn

}
= O

(
n−ε
)
.

Proof of the lower bound. Let ψn ≡ d(1 − ε) log n/ log(1/λk)e. To show that whp there
exists a v ∈ Vcn such that |S∗v | ≥ ψn, pick an arbitrary yellow vertex and run the colouring
process. If at least ψn vertices are colored black (success) in the process then terminate.
Otherwise (failure) pick another yellow vertex and repeat the colouring process until
one trial succeeds. If the colouring process is repeated for at most tn ≡ bn/(log n)3c
times, then at most an ≡ tnψn = O(n/(log n)2) vertices are colored black in the end.
Therefore, the probability that the number of red arcs increases after colouring one red
arc is at least (|Vcn| − an)/n.

Let (ξi)i≥1 be i.i.d. Bernoulli (|Vcn| − an − ψn)/n. Let T = min{t : k
∑t

i=1 ξi − (t −
k) ≤ 0}. Then in each of the first tn iterations, the probability of a success is at least
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P {T ≥ kψn} ≥ P {T = kψn}. (For a detailed proof, see van der Hofstad’s discussion of
the Erdős–Rényi model [39, chap. 4.2.2].) By the hitting-time theorem of Galton-Watson
processes [41],

P {T = kψn} =
1

ψn
P

{
k

kψn∑
i=1

ξi = k(ψn − 1)

}
.

Since
∑kψn

i=1 ξi is a binomial random variable, the above equals

1

ψn

(
kψn
ψn − 1

)(
|Vcn| − an − ψn

n

)ψn−1(
1− |V

c
n| − an − ψn

n

)kψn−(ψn−1)

≡ bn.

By Stirling’s approximation [17, pp. 407](
kψn
ψn − 1

)
= Θ(1)

(
kψn
ψn

)
=

1

Θ
(√

ψn
) [ k

(1− 1/k)k−1

]ψn
.

Recalling that an ≡ O (n/(log n)2) and ψn ≡ d(1− ε) log n/ log(1/λk)e, we have, in view
of |Vcn| = e−τkn+O

(
n1/2+δ

)
,(

|Vcn| − an − ψn
n

)ψn−1

=

(
e−τk −O

(
1

(log n)2

))ψn−1

= Θ
(
e−τkψn

)
,

and (
1− |V

c
n| − an − ψn

n

)kψn−(ψn−1)

=

(
1− e−τk +O

(
1

(log n)2

))kψn−(ψn−1)

= Θ

((τk
k

)(k−1)ψn
)
.

Recall that e−τk ≡ 1− τk/k. Therefore

λk ≡ (k − τk)
(

τk
k − 1

)k−1

= ke−τk
(

τk
k − 1

)k−1

=
k

(1− 1/k)k−1
e−τk

(τk
k

)k−1

.

Putting everything together, we have

bn = Θ

 1

ψn

1√
ψn

[
k

(1− 1/k)k−1
e−τk

(τk
k

)k−1
]ψn = Θ

(
λψnk

ψ
3/2
n

)
= Θ

(
n−1+ε

ψ
3/2
n

)
.

So the probability that all the first tn ≡ bn/(log n)3c trials fail is at most

(1− bn)tn ≤ exp {−bntn} = exp

{
Θ

(
− nε

(log n)9/2

)}
= o(1).
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By Lemma 2, whp Gn is reachable from all vertices. When this happens, On \ Gn
consists of vertices either on cycles in Dn,k[Gcn] or on paths from these cycles to Gn. Since
the number of such cycles and the length of the longest one of them are both Op(1),
Lemma 8 implies that |On| − |Gn| = Op(log n). Thus

|Gn| − νkn√
n

=
|On| − νkn√

n
−Op

(
log n√
n

)
d→Z,

which is the second part of Theorem 1.
In fact we can show that |On| − |Gn| = Op(1). This seems to be obvious since in
Dn,k[Vcn] the expected size of a spectrum is O(1) and the number of cycles is Op(1).
However, it is not trivial because 1[v is on a cycle] and |S∗v | are not independent. For a
proof using Cayley’s formula, see Lemma 9 in the next section (Section 3.3.3).

We can also use Lemma 8 to show that

maxv∈[n] |Sv| − |Gn|
log n

p→ 1

log(1/λk)
,

which finishes the last part of Theorem 1, i.e., (maxv∈[n] |Sv| − νkn)/σk
√
n

d→Z. Let An
be the event that every vertex can reach Gn. Assuming An happens, Gn ⊆ Sv for all
v ∈ [n]. Thus for all ε > 0,

P

{∣∣∣∣maxv∈[n] |Sv| − |Gn|
log n

− 1

log(1/λk)

∣∣∣∣ > ε

}
≤ P

{[∣∣∣∣maxv∈[n] |S ′v|
log n

− 1

log(1/λk)

∣∣∣∣ > ε

]
∩ An

}
+ P {Acn} = o(1).

Since |S1| ≤ maxv∈[n] |Sv| and whp |S1| ≥ |Gn|, we also recover Grusho’s central limit
law of |S1|.

3.3.3 The size of the middle layer

Lemma 9 and Corollary 1 imply that |On| − |Gn| = Op(1).

Lemma 9. Let ωn →∞ be an arbitrary sequence of nonnegative numbers. Then

sup
Vn⊆[n]:|Vn|∈In

P

 ∑
v∈C(Vcn)

|S∗v | ≥ ωn

 = o(1),

where C(Vcn) denotes the set of vertices on cycles in Dn,k[Vcn], and S∗v is the spectrum of
v in Dn,k[Vcn], the sub-digraph induced by Vcn.

Proof. By Theorem 5 and Lemma 7, in Dn,k[Vcn] whp: (a) there are at most
√
ωn vertices

on cycles, i.e., |C(Vcn)| ≤ √ωn; (b) every S∗v induces either a tree or a tree plus one extra
arc; (c) maxv∈Gcn |S∗v | = O(log n). Now assume all these events happen. If

∑
v∈C(Vcn) |S∗v | ≥
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Figure 3: The leftmost shaded part of this figure is an `-eye.

ωn, then (a) implies there is at least one vertex u ∈ C(Vcn) with |S∗u| ≥
√
ωn. By (b),

S∗u induces a sub-digraph that consists of exactly one cycle and isolated trees with their
roots on this cycle. If |S∗u| = `, we call the induced sub-digraph an `-eye. Note that by
(c) there are no `-eyes with ` > (log n)2.

Let S ⊆ Vcn with |S| = ` be a set of vertices. If S induces an `-eye De, then there are
` arcs that start and end at specific vertices in S decided by De, which happens with
probability (1/n)`. If S = S∗u for some vertex u ∈ S, call S a partial spectrum. For S to
be a partial spectrum, the other (k − 1)` arcs that start from S must end at Vn, which
happens with probability (|Vn|/n)(k−1)`. So the probability that S induces a fixed De
and S is a partial spectrum is (1/n)`(|Vn|/n)(k−1)`.

By Cayley’s formula [7], there are ``−1 ways that S can form a rooted tree. In such
a tree, there are at most `2 ways to add an extra arc to make it an `-eye. In a vertex-
labeled `-eye, there are at most k` ways to label the arcs. So the number of `-eyes can
be induced by S is less than ``−1`2k`. And there are

(|Vcn|
`

)
ways to choose S.

Let X` be the number of `-eyes induced by partial spectra. Recall that νk ≡ τk/k =
1−e−τk . Thus |Vn| ∈ In ≡ [νkn−n1/2+δ, νkn+n1/2+δ] implies that |Vcn| ≤ e−τkn+n1/2+δ.
So for ` ≤ (log n)2, by the above arguments,

EX` ≤
(
|Vcn|
`

)
``−1`2k`

(
1

n

)`( |Vn|
n

)(k−1)`

≤ (e−τkn+ n1/2+δ)`

(`/e)`
``+1k`

(
1

n

)` (τk
k

+ n−1/2+δ
)(k−1)`

=

[
e
(
e−τk + n−1/2+δ

)
k
(τk
k

+ n−1/2+δ
)k−1

]`
`

=
(
1 +O

(
`n−1/2+δ

))(
ke1−τk

(τk
k

)k−1
)`
`

≡
(
1 +O

(
`n−1/2+δ

))
ρ`k`.

By Lemma A1, ρk < 1. Since
√
ωn →∞,

∑
√
ωn≤`≤(logn)2

EX` ≤
[
1 +O

(
(log n)2

n1/2−δ

)] ∞∑
√
ωn≤`

`(ρk)
` = o(1).
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Thus whp there are no `-eyes induced by partial spectra with ` ∈ [
√
ωn, (log n)2].

3.3.4 The distance to the giant

This subsection proves part (c) of Theorem 3.

Lemma 10. For all ε > 0,

sup
Vn⊆[n]:|Vn|∈In

P

{∣∣∣∣maxv∈VcnW
∗
v

logk log n
− 1

∣∣∣∣ > ε

}
= o(1),

where W ∗
v ≡ minu∈Vn dist(v, u), i.e., W ∗

v is the length of the shortest path from v to Vn.

Let v ∈ Vcn be a vertex. If W ∗
v > 1, then all neighbors of v are in Vcn, and most

likely there are k of them. So P {W ∗
v > 1} ≈ (|Vcn|/n)k ≈ e−τkk. If W ∗

v > 2, then
the neighbors of v’s neighbors are all in Vcn, and most likely there are k2 of them.
So P {W ∗

v > 2} ≈ (|Vcn|/n)k+k2 ≈ e−τk(k+k2). Repeating this argument shows that
P {W ∗

v > x} ≈ exp{−τk(k + k2 . . . kx)} = e−τkΘ(kx), which is o(1/n) when x ≥ (1 +
ε) logk log n.

To make the above intuition rigorous, the colouring process defined in the previous
subsection needs to be slightly modified. Let v be the vertex where the process has
started. When choosing a red arc to colour, instead of choosing one arbitrarily from all
red arcs, choose one arbitrarily from those that are closest to v. Thus at the end, the
yellow arcs consist of not just a spanning tree but a breadth-first-search (bfs) spanning
tree of Dn,k[S∗v ]. If Vn (the set of green vertices) is contracted into a single green vertex,
then the green arcs together with yellow arcs form a dag. Let Tv denote this dag. Then
W ∗
v is the length of the shortest path from v to the green vertex contracted from Vn.

Figure 4 shows an example of Tv.

Green

Black

Yellow

Figure 4: An example of Tv.

Proof. Let ωn = b(1 + ε) logk log nc. Call the arcs whose endpoints are at distance
i to v the i-th layer of Tv. The event W ∗

v > ωn implies that the first ωn layers of
arcs in Tv are all yellow arcs and thus they form a tree of height ωn. By Lemma 7,
whp there are no v ∈ Vcn such that Dn,k[S∗v ] contains more than one black arc. Thus
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whp in every Tv all internal (non-leaf) vertices except at most one have out degree k.
Let An denote this event. Assuming An happens, W ∗

v > ωn implies that there are at
least Θ(kωn) = Θ(log n)1+ε yellow arcs in the first ωn layers of Tv. Thus in the colouring
process, the first Θ(log n)1+ε arcs choose their endpoints in Vcn. The probability that this
happens is at most (|Vcn|/n)Θ(logn)1+ε . Since |Vn| ∈ In, |Vcn| = n− |Vn| ≤ e−τkn+ n1/2+δ.
Then by the union bound,

P
{
∪v∈Vcn [W ∗

v > ωn]
}
≤
∑
v∈Vcn

P {[W ∗
v > ωn] ∩ An}+ P {Acn}

≤ n(|Vcn|/n)Θ(logn)1+ε + o(1)

≤ n(e−τk + n−1/2+δ)Θ(logn)1+ε + o(1) = o(1).

Thus whp maxv∈VcnW
∗
v ≤ ωn.

Let ψn = d(1 − ε) logk log ne. To show that whp there is a vertex v with W ∗
v ≥ ψn,

run the colouring process starting from an arbitrary yellow vertex v until either an arc
is colored black or green (failure), or the first ψn − 1 layers of Tv are colored yellow
(success). So to succeed, the first ψn − 1 layers of Tv form a full k-ary tree, i.e., the
first k + k2 + · · · + kψn−1 = Θ(kψn) = Θ(log n)1−ε arcs must be colored yellow. If the
process fails, we pick another yellow vertex and try again until one trial succeeds. Since
the colouring process stops before colouring the ψn layer of Tv, each trial colors at most
Θ(kψn) = Θ(log n)1−ε vertices black. If the process is tried at most dn/(log n)2e times,
then at most bn ≡ dn/(log n)2eO(log n)1−ε = O(n/(log n)1+ε) vertices are colored black.
Therefore, each arc has probability at least (|Vcn| − bn)/n to be colored yellow during
the first dn/(log n)2e trials. Since |Vn| ∈ In, |Vcn| = n− |Vn| ≥ e−τkn− n1/2+δ. Thus the
probability to succeed in one trial is at least(

|Vcn| − bn
n

)O(logn)1−ε

≥
[
e−τk −O

(
1

(log n)1+ε

)]O(logn)1−ε

= e−O(logn)1−ε .

Therefore, the probability that the first dn/(log n)2e trials fail is at most(
1− e−O(logn)1−ε

)dn/(logn)2e
≤ exp

{
−e−O(logn)1−ε n

(log n)2

}
= o(1).

Thus whp maxv∈VcnW
∗
v ≥ ψn.

3.3.5 The longest path outside the giant

This subsection proves (d) and (e) of Theorem 3.

Lemma 11. For all ε > 0, we have:

sup
Vn⊆[n]:|Vn|∈In

P

{∣∣∣∣m(Vcn)

log n
− 1

log(eτk/k)

∣∣∣∣ > ε

}
= o(1),
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where m(Vcn) denotes the length of the longest path in Dn,k[Vcn]; and

sup
Vn⊆[n]:|Vn|∈In

P

{∣∣∣∣d(Vcn)

log n
− 1

log(eτk/k)

∣∣∣∣ > ε

}
= o(1).

where d(Vcn) denotes the maximal distance between two connected vertices in Dn,k[Vcn].

Since m(Vcn) ≥ d(Vcn), it suffices to prove the upper bound for m(Vcn) and the lower
bound for d(Vcn).

Proof of the upper bound. Let ωn = (1 + ε) log n/ log(eτk/k). Let X` be the number
of labeled paths of length ` in Dn,k[Vcn]. There are less than |Vcn|`+1k` possible such
paths. Each of them exists with probability (1/n)`. Recall that |Vn| ∈ In implies
|Vcn| ≤ e−τkn+ n1/2+δ. Thus

EX` ≤ |Vcn|`+1k`
(

1

n

)`
≤
(
e−τkn+ n1/2+δ

) (
ke−τk + kn−1/2+δ

)`
.

Since ke−τk < 1 (Lemma A1), for n large enough,∑
ωn<`<|Vcn|

EX` ≤ n
∑
ωn<`

(ke−τk + kn−1/2+δ)` = O
(
n
(
ke−τk

)ωn)
= O

(
n−ε
)
.

Thus P {m(Vcn) > ωn} = O (n−ε).

Proof of the lower bound. Let ψn ≡ d(1− ε)log n/log(1/ke−τk)e. To show there are two
vertices at distance within [ψn,∞), pick an arbitrary yellow vertex v and run the colour-
ing process until either a vertex at distance ψn from v has been colored (success), or
d(log n)2e vertices have been colored (failure), or the process terminates because all ver-
tices that are reachable from v in Dn,k[Vcn] has been discovered (failure). If the process
fails, we pick another yellow vertex and try again until one trial succeeds.

If at most tn ≡ bn/(log n)4c trials are made, then at most d(log n)2etn = O (n/(log n)2)
vertices are colored. So in the first tn trials, when an arc is colored, the probability that
it is colored yellow is at least µn ≡ (|Vcn|−O (n/(log n)2))/n = e−τk−O (1/(log n)2). Let
(Zm)m≥0 be a Galton-Watson process with offspring distribution Bin(k, µn) and Z0 = 1.
In other words, Zm+1 =

∑Zm
j=1Xm,j, where (Xm,j)m≥0,j≥1 are i.i.d. Bin(k, µn). Then the

probability that one trial succeeds is at least P {Zψn > 0} minus the probability that in
a trial d(log n)2e vertices have been colored, which is O (n−1−ε) by (3) in Lemma 8.

Let ϕm(y) = EyZm , i.e., ϕm(y) is the probability generating function of Zm. Thus
P {Zm = 0} = ϕm(0). Since ke−τk < 1/2 (Lemma A1), for n large enough kµn < 1/2.
So we can apply Lemma A7 in the appendix to show that

ϕm(0) ≤ 1− (kµn)m +

(
1− 1

2m

)
(kµn)m+1 < 1− 1

2
(kµn)m, for all m ≥ 0.

Recalling that ψn ≡ d(1− ε)log n/log(1/ke−τk)e,

P {Zψn > 0} = 1− ϕψn(0) >
1

2

(
ke−τk −O

(
1

(log n)2

))ψn
= Ω

(
n−1+ε

)
.
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So the probability that one trial succeeds is Ω(n−1+ε) − O (n−1−ε) = Ω(n−1+ε). (The
O (n−1−ε) term is the probability that one trial colors too many vertices.) Thus the
probability that the first tn ≡ bn/(log n)4c trials fail is at most(

1− Ω
(
n−1+ε

))tn ≤ exp

{
−Ω

(
1

n1−ε

⌊
n

(log n)4

⌋)}
= exp

{
−Ω

(
nε

(log n)4

)}
= o(1).

Therefore whp d(Vcn) ≥ ψn.

4 Phase transition in strong connectivity

Now instead of assuming that k is fixed, let k →∞ as n→∞. Let K be a fixed integer.
We can construct Dn,k by first generating Dn,K and then adding arcs with labels in
{K + 1, . . . , k} into it. By Lemma 2, for all ε > 0, there exists a K depending only on ε
such that whp in Dn,K the largest closed scc has size at least (1− ε)n and is reachable
from all vertices. Since adding arcs can only increase the size of this scc, whp Dn,k has
a scc of size at least (1− ε)n that is reachable from all vertices.

In fact, if k increases fast enough, then whp Dn,k is strongly connected. More precisely,
Dn,k exhibits a phase transition for strong connectivity similar to the analogous event
in the Erdős–Rényi model [15].

Theorem 6. If k− log n→ −∞, then whp Dn,k is not strongly connected. If k− log n→
∞, then whp Dn,k is strongly connected.

If there is a vertex with in-degree zero, then obviously the digraph is not strongly
connected. Thus the following lemma proves the lower bound in Theorem 6.

Lemma 12. If k − log n→ −∞, whp Dn,k contains a vertex of in-degree zero.

Proof. Let ωn = log n−k. For vertex i ∈ [n], let Xi be the indicator that i has in-degree
zero. Let N =

∑n
i=1Xi. We use second moment method to show that N ≥ 1 whp.

To have X1 = 1, nk arcs need to avoid vertex 1 as their endpoints. Thus

EX1 =

(
1− 1

n

)nk
≥ e−nk(1/n+1/n2) = e−k(1+1/n) =

(
eωn

n

)1+1/n

.

Since by assumption ωn →∞, EN = nEX1 = eωn(1+1/n)/n1/n →∞.
To have X1X2 = 1, nk arcs need to avoid vertices 1 and 2 as their endpoints. Thus

EX1X2 = (1− 2/n)nk . Therefore

E [X1X2]

(E [X1])2
=

(1− 2/n)nk

(1− 1/n)2nk
=

(
n2 − 2n

n2 − 2n+ 1

)nk
=

(
1− 1

(n− 1)2

)nk
→ 1,

since nk/(n− 1)2 = o(1). Thus

1 ≤ E [N2]

(EN)2
=

EN + n(n− 1)E [X1X2]

(EN)2
≤ 1

EN
+

E [X1X2]

(EX1)2
→ 1.

Therefore P {N = 0} ≤ Var (N) /(EN)2 = E [N2] /(EN)2 − 1→ 0.
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Given a set of vertices S, if there are no arcs that start from Sc ≡ [n] \ S and end
at S, then call S a non-leaf. If Dn,k is not strongly connected, then there must exist
a non-leaf set of vertices S with |S| < n. Thus the following lemma implies the upper
bound in Theorem 6.

Lemma 13. If k − log n → +∞, whp there does not exist a non-leaf set of vertices S
with |S| < n.

Proof. By the argument at the beginning of this subsection, whp Dn,k contains a scc
of size at least n/2 that is reachable form all vertices. So if |S| ≥ n/2, then S contains
part of this scc and cannot be a non-leaf. Thus it suffices to prove the lemma for S
with |S| < n/2.

Let ωn = k − log n. For s ∈ [bn/2c], let Xs be the number of non-leaf sets of vertices
of size s. Thus

EXs =

(
n

s

)(
1− s

n

)k(n−s)
≤
(
n

s

)
e−ks(1−s/n). (4)

Therefore for s < n/ log n,

EXs ≤
ns

s!
e−ks(1−s/n) ≤ 1

s!

( n

ek(1−s/n)

)s
≤ 1

s!

(
n

(neωn)1−1/ logn

)s
≡ αsn

s!
.

By assumption ωn → ∞. Thus αn ≡ n1/ logn/eωn(1−1/ logn) = e1−ωn(1−1/ logn) = o(1).
Therefore, ∑

1≤s<n/ logn

EXs ≤
∑
1≤s

αsn
s!

= eαn − 1 = o(1).

On the other hand, it follows from (4) that for n/ log n ≤ s < n/2,

EXs ≤
(en
s

)s
e−ks(1−s/n) =

( en

sek(1−s/n)

)s
≤

(
en

n
logn

ek/2

)s

=

(
e log n

(neωn)1/2

)s
≡ βsn.

Since βn = e log n/(neωn)1/2 = o(1),∑
n/logn≤s<n/2

EXs ≤
∑
1≤s

βsn = O (βn) = o(1).

Thus P
{∑

1≤s<n/2Xs ≥ 1
}
≤
∑

1≤s<n/2 EXs = o(1).

5 The simple digraph model, the number of self-loops
and multiple arcs

A simple digraph is one in which there are no self-loops and there is no more than one
arc from one vertex to another. Let D∗n,k denote a simple k-out digraph with n vertices
chosen uniformly at random from all such digraphs. D∗n,k can be viewed as Dn,k restricted
to the event that Dn,k is simple. This section proves the following theorem:
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Theorem 7. The probability that Dn,k is simple converges to e−k−(k2) as n→∞.

Theorem 7 can be proved directly as follows. Let 1v be the indicator that the k arcs
starting from vertex v do not end at v and do not end at the same vertex. Then

P {1v = 1} =
(n− 1)(n− 2) · · · (n− k)

nk
= 1− k(k + 1)

2n
+O

(
1

n2

)
.

Since Dn,k is simple if and only if ∩nv=1[1v = 1] happens, we have

P {Dn,k is simple} = P {∩nv=1 [1v = 1]} =
n∏
v=1

P {1v = 1}

=

(
1− k(k + 1)

2n
+O

(
1

n2

))n
→ e−k(k+1)/2 = e−k−(k2).

However, we can say more about self-loops and multiple arcs between vertices. Let
I ≡ [n] × [k]. For (v, i) ∈ I, define the random variable 1v,i to be the indicator that
the arc with label i starting from vertex v forms a self-loop. Let J ≡ {(v, i, j) ∈
[n] × [k] × [k] : i < j}. For (v, i, j) ∈ J , define the random variable 1v,i,j to be the
indicator that the two arcs starting from vertex v with labels i and j both end at the
same vertex. Let Sn =

∑
α∈I 1α and Mn =

∑
α∈J 1α. Then [Sn = 0] ∩ [Mn = 0] if and

only if Dn,k is simple.

Lemma 14. Let S and M be two independent Poisson random variables of means k

and
(
k
2

)
respectively. Then (Sn,Mn)

d→ (S,M) as n→∞. In fact,

‖(Sn,Mn), (S,M)‖tv = O

(
1

n

)
.

Indeed the lemma implies that as n→∞,

P {Dn,k is simple} = P {Sn = Mn = 0} → P {S = 0}P {M = 0} = e−ke−(k2).

Remark. Bollobás [9] proved a theorem similar to Lemma 14 for the configuration
model (see also Bollobás [8, sec. 2.4]). Many authors have extended this result under
various conditions, see, e.g., McKay [30], McKay and Wormald [31], Janson [23, 24]. Our
proof uses Stein’s method, which may also be applied to self-loops and multiple edges
in the configuration model to get proofs shorter than previous ones.

Proof of Lemma 14. We use the Chen-Stein method [11]. Since the probability that an
arc forms a self-loop is 1/n,

ESn =
∑

(v,i)∈I

E1v,i = kn
1

n
= k.
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Thus ES = k = ESn. Since the probability that two arcs with the same start point have
the same endpoint is also 1/n,

EMn =
∑
v∈[n]

∑
1≤i<j≤k

E1v,i,j = n

(
k

2

)
1

n
=
k(k − 1)

2
.

Thus EM = k(k − 1)/2 = EMn.
For α ∈ I ∪ J , let

Bα = {β ∈ I ∪ J : 1β and 1α are dependent}.

(Note that 1α ∈ Bα.) Define

b1 ≡
∑

α∈I∪J

∑
β∈Bα

E [1α] E [1β] , b2 ≡
∑

α∈I∪J

∑
β∈Bα:α 6=β

E [1α1β] , b3 ≡
∑

α∈I∪J

sα,

where
sα = E |E [1α |σ (1β : β ∈ [I ∪ J ] \ Bα)]− E1α| .

By [11, thm. 2], if b1 + b2 + b3 → 0, then (Sn,Mn)
d→ (S,M). Since 1α is independent of

the random variables 1β with β ∈ [I ∪ J ] \ Bα, we have sα = 0 and thus b3 = 0.
For (v, i) ∈ I, 1v,i depends on the random variables 1v,r,s with 1 ≤ r < s ≤ k

and i ∈ {r, s}, of which there are k − 1. Thus |Bv,i| = 1 + (k − 1) = k < 2k. For
(v, i, j) ∈ J , 1v,i,j depends on 1v,i and 1v,j. It also depends on the random variables
1v,r,s with 1 ≤ r < s ≤ k and {r, s}∩{i, j} 6= ∅, of which there are 2(k−1)−1 = 2k−3.
Thus |Bv,i,j| = 2 + 2k − 3 < 2k. So for all α ∈ I ∪ J , |Bα| < 2k. Therefore

b1 =
∑
α∈I

∑
β∈Bα

E [1α] E [1β] +
∑
α∈J

∑
β∈Bα

E [1α] E [1β]

< nk × 2k × 1

n
× 1

n
+ n

(
k

2

)
× 2k × 1

n
× 1

n
= O

(
1

n

)
.

Consider (v, i) ∈ I. If β ∈ Bv,i ∩ I, then β = (v, i). If β ∈ Bv,i ∩ J , then β = (v, r, s)
for some (r, s) with i ∈ {r, s}. Then 1v,i1v,r,s = 1 if and only if the two arcs starting from
vertex v labeled r and s respectively both end at v. Thus E [1v,i1v,r,s] = 1/n2. Therefore

b2,I ≡
∑
α∈I

∑
β∈Bα:β 6=α

E [1α1β] =
∑
α∈I

∑
β∈Bα∩J

E [1α1β] < nk × 2k × 1

n2
= O

(
1

n

)
.

Consider (v, r, s) ∈ J . If (v, i) ∈ Bv,r,s, then (v, r, s) ∈ Bv,i. Thus by the above
argument E [1v,r,s1v,i] = 1/n2. If (v, i, j) ∈ Bv,r,s and (i, j) 6= (r, s), then |{r, s}∪{i, j}| =
3. So 1v,r,s1v,i,j = 1 iff the three arcs starting from vertex v with labels in {r, s} ∪ {i, j}
all end at the same vertex. Thus E [1v,r,s1v,i,j] = 1/n2. Therefore

b2,J ≡
∑
α∈J

∑
β∈Bα:β 6=α

E [1α1β] < n

(
k

2

)
× 2k × 1

n2
= O

(
1

n

)
.

Thus b2 ≡ b2,I + b2,J = O(1/n).
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Corollary 2. Let E be a set of digraphs. If Dn,k ∈ E whp, then D∗n,k ∈ E whp.

Proof. We have

P
{
D∗n,k /∈ E

}
= P {Dn,k /∈ E |Dn,k is simple} ≤ P {Dn,k /∈ En}

P {Dn,k is simple}
→ 0.

This corollary implies that all previous results in the form of “whp Dn,k . . . ” can be
automatic translated into “whp D∗n,k . . . ”. For example, the statement of Theorem 3
with Dn,k replaced by D∗n,k is still true.

Corollary 3. Let D∗∗n,k be a digraph chosen uniformly at random from all simple and
arc-unlabeled k-out digraphs with n vertices. If whp Dn,k has property P where P does
not depend on arc-labels, then whp D∗∗n,k has property P.

Proof. Note that: (a) for each digraph in the space of D∗∗n,k, there (k!)n ways to arc-label
it to get (k!)n different digraphs in the space of D∗n,k; (b) no two different arc-unlabeled
digraphs can be turned into the same digraph by arc-labeling. So there exists a (k!)n-
to-one surjective mapping from the space of D∗n,k to the space of D∗∗n,k. Thus D∗∗n,k can
be viewed as D∗n,k with arc labels removed. Since P does not depend on arc-labels, it
follows from Corollary 2 that whp D∗∗n,k has property P.

6 The typical distance

The typical distance Hn of Dn,k is the distance between two vertices v1 and v2 chosen
uniformly at random. If v1 cannot reach v2, then Hn = ∞. Addario-Berry et al. [1]

proved that conditioned on Hn <∞, Hn/ logk n
p→ 1. This section1 gives an alternative

proof using the path counting technique invented by van der Hofstad [40, chap. 3.5].

Theorem 8 (The typical distance). For all ε > 0,

P

{∣∣∣∣ Hn

logk n
− 1

∣∣∣∣ > ε

∣∣∣∣ Hn <∞
}

= o(1).

By Theorem 1, |Sv1|/n
p→ νk, where Sv1 is the spectrum of v1. Thus P {Hn <∞} =

P {v2 ∈ Sv1} → νk > 0. Therefore

P {Hn < (1− ε) logk n | Hn <∞} =
P {Hn < (1− ε) logk n}

P {Hn <∞}

∼ 1

νk
P {Hn < (1− ε) logk n},

1In a shorter version of this paper, this section is omitted.
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and

P {Hn > (1 + ε) logk n | Hn <∞} =
P {(1 + ε) logk n < Hn <∞}

P {Hn <∞}

∼ 1

νk
P {(1 + ε) logk n < Hn <∞} ≡

P {Bn}
νk

.

Thus it suffices to show that P {Hn < (1− ε) logk n} and P {Bn} are both o(1).

Lemma 15 (Lower bound of the typical distance). For all ε > 0,

P {Hn < (1− ε) logk n} = o(1).

Proof. Let N` denote the number of paths from v1 to v2 of length `. Consider such a
path without labels on internal vertices and arcs. There are at most n`−1 ways to label
its internal vertices and there are at most k` ways to label its arcs. And the probability
that such a labeled path appears is (1/n)`. Thus

EN` ≤ n`−1k`
(

1

n

)`
=
k`

n
.

Let ωn = (1− ε) logk n. Then∑
`<ωn

EN` ≤
∑
`<ωn

k`

n
=
O (kωn)

n
=
O (n1−ε)

n
= o(1).

Thus P {Hn < ωn} = P
{∑

`<ωn
N` ≥ 1

}
= o(1).

The rest of this section is organized as follows: Subsection 6.1 shows that if v1 can
reach v2 but only through a very long path, then it is very likely that v1 can reach a lot
of vertices and a lot of vertices can reach v2. Subsection 6.2 computes a lower bound of
the probability that there is a path of specific length from one large set of vertices to
another large set of vertices. Finally, subsection 6.3 shows that these results together
imply the upper bound in Theorem 8, i.e., P {Bn} = o(1).

6.1 Comparison to Galton-Watson processes

Let S+
m(v) and S−m(v) be the sets of vertices at distance exactly m from or to vertex v

respectively. Let S+
≤m(v) and S−≤m(v) be the sets of vertices at distance at most m from

or to vertex v respectively. The following proposition shows that for fixed m, we can
perfectly couple (|S+

t (v1)|, |S−t (v2)|)mt=0 with two independent Galton-Watson processes.
It is inspired by a similar result of the configuration model by van der Hofstad [40, sec.
5.2], but the coupling method used here is new.

Proposition 1. Let (St)t≥0 be a Galton-Watson process with a binomial offspring dis-
tribution Bin(kn, 1/n). For all fixed m ≥ 1, there exists a coupling[(

kt, Yt
)m
t=0

,
(
Y +
t , Y

−
t

)m
t=0

]
,
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of (kt, St)
m
t=0 and (|S+

t (v1)|, |S−t (v2)|)mt=0, such that

P
{(
kt, Yt

)m
t=0
6=
(
Y +
t , Y

−
t

)m
t=0

}
= o(1).

Proof. We construct an incremental sequence of random digraphs, denoted by (D[t]
n,k)t≥0,

through a signal spreading process. Let D[0]
n,k be a digraph of vertex set [n] that has no

arcs. Without loss of generality, let v1 = 1 and v2 = 2. At time 0, put a ⊕ signal at v1

and put a 	 signal at v2.
If a ⊕ signal reaches a vertex v at time t, then at time t + 1/3 the vertex v grows k

out-arcs labeled 1, . . . , k from itself and to k endpoints chosen independently and uar
from all the n vertices. Then the ⊕ signal splits into k ⊕ signals and each of them
picks a different newly-grown out-arc and travels along the arc’s direction to reach its
endpoint at time t+ 1.

If a 	 signal reaches a vertex v at time t, then at time t + 2/3 the vertex v grows a
random number X in-arcs from itself to X random vertices as follows: Let (Xi,j)i∈[n],j∈[k]

be i.i.d. Bernoulli 1/n random variables. If Xi,j = 1, then v grows an in-arc from itself
to vertex i with label j. Thus in total X ≡

∑
i∈[n],j∈[k] Xi,j in-arcs are grown from v.

Then the 	 signal splits into X 	 signals and each of them picks a different newly-grown
in-arc and travels against the arc’s direction to reach its starting vertex at time t+ 1. If
X = 0, then the 	 signal vanishes.

Let D[t]
n,k be the digraph generated in the above process at time t. Let Y+

t and Y−t be

the sets of vertices that are visited by ⊕ and 	 signals at time t respectively. Let Y+
≤t

and Y−≤t be the sets of vertices that have been visited by ⊕ and 	 signals before time
t+ 1 respectively. At time t, if a signal visits a vertex in [Y+

≤t−1∪Y−≤t−1] or if two signals
visit the same vertex, then we say a collision happens. Let T be the first time when a
collision happens.

Table 1 lists the types of events that make a collision happen. Three of them need
special attention for reasons to be clear soon. First, if multiple 	 signals visit the same
vertex v, then multiple arcs with the same label and v as the starting point may grow.
If this happens we pick an arbitrary arc among them and call the others duplicate.
Second, a ⊕ signal may visit a vertex in Y−≤T−1 through a newly-grown out-arc. Finally,
a 	 signal may visit a vertex in Y+

≤T−1 through a newly-grown in-arc. We also call the
newly-grown arcs being passed by in these two cases biased.

Signals visit the same vertex Signals visit Y+
≤t−1 Signals visit Y−≤t−1

⊕ ⊕ 	 ⊕ 	 	 ⊕ 	 ⊕ 	

Table 1: Events that lead to a collision. Three special types of events are marked.

We construct a random k-out graph D̂n,k as follows: First remove all duplicate and

all biased arcs in D[T ]
n,k. Then for each pair (v, i) ∈ [n]× [k], if vertex v does not have an

out-arc labeled i, then add such an out-arc with its endpoint chosen uar from [n]\Y−≤T−1.

Denote the result digraph by D̂n,k.
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The seemingly complicated D̂n,k is nothing but Dn,k in disguise. In Dn,k, the endpoints

of the arcs are chosen uar and simultaneously. In D̂n,k, the endpoints of the arcs are still
chosen uar but in several steps. First we mark the arcs whose end (start) vertices are

at distance t to v1 (from v2) for t = 1, . . . , T . To have D̂n,k
L
=Dn,k, obviously duplicate

arcs must be removed. The biased arcs also cause trouble as their endpoints are chosen
non-uniformly. For example, if at time T a ⊕ signal visits a vertex in Y−≤T−1, then an
in-arc is added to a vertex whose in-arcs have already been decided by time T −1. Thus
biased arcs must also be removed. Finally, we add arcs that are still missing in D̂n,k
and choose their endpoints uar from [n] \ Y−≤T−1, i.e., from these vertices whose in-arcs

have not yet been marked. Thus we have D̂n,k
L
=Dn,k. Let Y +

t and Y −t be the number

of vertices in D̂n,k at distance t from v1 and to v2 respectively. Then

(Y +
t , Y

−
t )mt=0

L
= (|S+

t (v1)|, |S−t (v2)|)mt=0.

A ⊕ signal always splits into k ⊕ signals after it arrives at a vertex. Thus at a
non-negative integer time t there are in total kt ⊕ signals. On the other hand, the
number of 	 signals at time t, denoted by Yt, is random. Each time a 	 signal splits, it
splits into Bin(kn, 1/n) signals. Because the splits are mutually independent, (Yt)t≥0 has
the same distribution as (St)t≥0, the Galton-Watson process with offspring distribution
Bin(kn, 1/n).

Assume that T > m. Then the part of D̂n,k within distance m from v1 or to v2 is

determined by D[m]
n,k . Thus for t ≤ m, in D̂n,k a vertex is at distance t from v1 if and only

if it has a ⊕ signal at time t and a vertex is at distance t to v2 if and only if it has a
	 signal at time time t. This implies that (kt, Yt)

m
t=0 =

(
Y +
t , Y

−
t

)m
t=0

. Thus to finish the
proof, it suffices to show the following lemma:

Lemma 16. For all fixed integers m ≥ 1, whp T > m.

The intuition is that since m is fixed, for t < m, most likely |Y+
≤t∪Y−≤t| is small. Thus

it is unlikely that a collision happens at time t+ 1. See the end of this subsection for a
detailed proof.

Corollary 4. Let ωn → ∞ be an arbitrary sequence. Let M, δ, ε be three arbitrary
positive numbers. Let ψn ≡ b(1 + ε) logk nc. Let

An(M,m) ≡
[
M ≤ |S+

m(v1)|
]
∩
[
M ≤ |S−m(v2)|

]
∩
[
|S−≤m(v2)| ≤ ωn

]
.

Then there exists m ≥ 1 such that

lim sup
n→∞

P {Acn(M,m) ∩ [ψn < Hn <∞]} < δ.

Proof. Let (kt, Yt)
m
t=0 be the coupling of (|S+

t (v1)|, |S−t (v2)|)mt=0 constructed in Proposition
1. Thus (Yt)t≥0 is a Galton-Watson process with Bin(kn, 1/n) offspring distribution,
i.e., Y0 = 1 and Yt =

∑Yt−1

i=1 Xt,i for t ≥ 1, where Xt,i’s are i.i.d. Bin(kn, 1/n). Since
EX1,1 = k > 1, the survival probability of this process is a constant η > 0 (see [39,
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thm. 3.1]). For the same reason, Yt/k
t → Y∞ almost surely for some random variable Y∞

(see [39, thm. 3.9]). Since E
[
X2

1,1

]
<∞, by the Kesten-Stigum Theorem [39, thm. 3.10],

P {Y∞ > 0} = η. Thus by the Bounded Convergence Theorem [13, thm. 1.5.3],

lim
m→∞

P {Ym > M} = lim
m→∞

P

{
Ym
km

>
M

km

}
= P {Y∞ > 0} = η.

For the same reason P {Ym ≥ 1} → η as m→∞. Thus

lim
m→∞

P {1 ≤ Ym < M} = lim
m→∞

(P {Ym ≥ 1} − P {Ym ≥M}) = 0.

Thus we can choose m large enough such that P {1 ≤ Ym < M} < δ/2 and that km ≥M .
Recall that Bn ≡ [ψn < Hn <∞]. When n is large enough, ψn > m. Thus Bn implies

that |S+
m(v1)| ≥ 1. Define the event

Cn ≡
[(
kt, Yt

)m
t=0

=
(
|S+
t (v1)|, |S−t (v2)|

)m
t=0

]
.

By Proposition 1, P {Cc
n} = o(1) as n→∞. Therefore

P {An(M,m)c ∩Bn} ≤ P {Cc
n}+ P {An(M,m)c ∩ Cn ∩Bn}

≤ o(1) + P

{
[km < M ] ∪ [1 ≤ Ym < M ] ∪

[
ωn <

m∑
t=0

Yt

]}

≤ o(1) + P {km < M}+ P {1 ≤ Ym < M}+ P

{
ωn <

m∑
t=0

Yt

}
= o(1) + 0 + δ/2 + o(1),

where the last equality is due to our choice of m and that E [
∑m

t=0 Yt] =
∑m

t=0 k
t =

O(1).

Proof of Lemma 16. Recall that Y+
t and Y−t are the sets of vertices that are reached at

time t by a ⊕ signal or 	 signal respectively. LetMm−1 = ∪m−1
t=0 [Y+

t ∪Y−t ]. Define event
Am ≡ ∩i∈[4]Em,i where Em,i’s are defined as follows:

• Em,1 — The out-arcs that grow from vertices in Y+
m−1 all end at different vertices

in [n] \ Mm−1. Thus at time m all ⊕ signals visit different vertices and these
vertices have never been visited by signals before.

• Em,2 — There are no in-arcs that grow from vertices in Y−m−1 that have starting
vertices inMm−1∪Y+

m. Thus at time m all 	 signals visit vertices that have never
been visited by signals before and that are not reached by ⊕ signals at time m.

• Em,3 — There are no two in-arcs that grow from vertices in Y−m−1 that have the
same starting vertex. Thus at time m all 	 signals reach different vertices.

• Em,4 — |Y−m| ≤ (log n)m.
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The event At implies that no collision happens at time t. Thus ∩mt=0At implies that
no collision has happened by time m, and thus T > m. We show by induction that
P {∩mt=0At} = 1− o(1).

Since |Y−0 | = 1 and there are no arc-growing before time 0, P {A0} = 1, which is the
induction basis. Now assume that P

{
∩m−1
t=0 At

}
= 1− o(1). Then

P {∩mt=0At} = P
{
Am | ∩m−1

t=0 At
}

P
{
∩m−1
t=0 At

}
= P

{
Am | ∩m−1

t=0 At
}

(1− o(1)).

Thus it suffices to show that

P
{
Acm | ∩m−1

t=0 At
}

= P
{

[∪i∈[4]E
c
m,i] | ∩m−1

t=0 At
}
≤
∑
i∈[4]

P
{
Ec
m,i| ∩m−1

t=0 At
}

= o(1).

The event ∩m−1
t=0 At implies that

|Mm−1| ≤
m−1∑
t=1

|Y+
t |+

m−1∑
t=1

|Y−t | ≤
m−1∑
t=1

kt +
m−1∑
t=1

(log n)t = O (log n)m.

For Em,1 to happen, the km arcs that grow out of Y+
m−1 must end at different vertices in

[n] \Mm−1. Thus

P
{
Em,1| ∩m−1

t=0 At
}

=
∏

0≤i<km

[
n− |Mm−1| − i

n

]
≥
[
1− O (log n)m

n

]km
= 1− o(1).

For Em,2 to happen, the vertices in Y−m−1 cannot grow in-arcs that have starting vertex
in in Mm−1 ∪ Y+

m. ∩m−1
t=0 At implies that |Y−m−1| ≤ (log n)m−1. Since deterministically

|Y+
m| = km, |Mm−1 ∪ Y+

m| = O (log n)m. Thus the number of in-arcs that need to not
grow at time m− 1/3 to make sure that Em,2 happens is at most

k|Y−m−1||Mm−1 ∪ Y+
m| = O (log n)2m.

Since an in-arc does not grow with probability 1− 1/n,

P
{
Em,2 | ∩m−1

t=0 At
}
≥
(

1− 1

n

)O(logn)2m

= 1− o(1).

Let Xv be the number of in-arcs that grow from Y−m−1 and that have starting vertex

v. Conditioned on Y−m−1, Xv
L
= Bin(k|Y−m−1|, 1/n). Since ∩m−1

t=0 At implies |Y−m−1| ≤
(log n)m−1,

P
{
Xv ≤ 1 | ∩m−1

t=0 At
}
≥ P

{
Bin

(
k(log n)m−1,

1

n

)
≤ 1

}
=

(
1− 1

n

)k(logn)m−1

+ k(log n)m−1 1

n

(
1− 1

n

)k(logn)m−1−1

= 1−O
(

(log n)2(m−1)

n2

)
.
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Since for two different vertices u and v, Xu and Xv depend on disjoint set of arcs,
(Xu)u∈[n] are mutually independent. Thus

P
{
Em,3| ∩m−1

t=0 At
}

= P
{
∩v∈[n][Xv ≤ 1] | ∩m−1

t=0 At
}

≥
(

1−O
(

(log n)2(m−1)

n2

))n
= 1− o(1).

Since (|Y−t |)t≥1 is a Galton-Watson process with a Bin(kn, 1/n) offspring distribution,
E|Y−m| = km. Thus P {|Y−m| > (log n)m} = o(1). Therefore

P
{
Ec
m,4| ∩m−1

t=0 At
}
≡ P

{
|Y−m| > (log n)m| ∩m−1

t=0 At
}
≤ P {|Y−m| > (log n)m}

P
{
∩m−1
t=0 At

} = o(1),

where the last equality is due to the induction assumption that P
{
∩m−1
t=0 At

}
= 1 −

o(1).

6.2 Path counting

For three disjoint sets of vertices A,B, C ⊆ [n], let N` denote the number of paths of
length ` that start from A and end at B, and that have all internal vertices in C. In the
next subsection, we use the second moment method to lower bound P {N` ≥ 1}, which
requires estimates of E [N`] and Var (N`). The following lemma does so by using the
path counting technique [40, chap. 3.5].

Proposition 2. Let ω, ` and M be three positive integers, possibly depending on n. Let
A,B, C ⊆ [n] be disjoint sets of vertices with |A| = |B| = M ≥ 1 and |C| ≥ n−ω. There
exist constants C1 and C2 such that

EN` ≥
k`M2

n

(
1− (ω + `)`

n

)
, (5)

and

Var (N`) ≤ EN` + C1
k2`M3

n2
+ C2

k2`M4`4

n3
. (6)

Proof of (5). Note that if n ≤ (ω + `)`, then (5) is trivially true. So we assume that
n > (ω+ `)`. We simplify by contracting A and B into to two special vertices va and vb.
The vertex va has out-degree kM and the vertex vb has probability M/n to be chosen
as the endpoint of each arc. Consider an unlabeled path of length ` ≥ 1 from va to
vb. There are kM ways to label the first arc. There are k`−1 ways to label the other
arcs. Recall that (x)y ≡ (x− 1)(x− 2) · · · (x− y + 1). There are (|C|)`−1 ways to label
the internal vertices of the path. The probability that a vertex-and-arc labeled path of
length ` from va to vb exists is (1/n)`−1(M/n). Thus

EN` = (kM)k`−1(|C|)`−1

(
1

n

)`−1(
M

n

)
≥ k`M2

n

(
1− ω + `

n

)`
≥ k`M2

n

(
1− (ω + `)`

n

)
,

where the last step is because (1− x)y ≥ 1− xy when x ≥ 0, y ≥ 1.
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Proof of (6). Let L be the space of all possible arc-and-vertex labeled paths of length `
from va to vb through C. In other words, if α ∈ C, then

α =
(
v

[α]
0 ≡ va, a

[α]
0 , v

[α]
1 , a

[α]
1 , . . . , v

[α]
`−1, a

[α]
`−1, v

[α]
` ≡ vb

)
,

where a
[α]
0 , . . . , a

[α]
`−1 are arc labels and v

[α]
1 , . . . , v

[α]
`−1 are different vertex labels in C. For

α ∈ L, let 1α be the indicator that α appears. Given two paths α, β ∈ L, call them
arc-disjoint if there does not exist an i such that v

[α]
i = v

[β]
i and a

[α]
i = a

[β]
i . If two

paths α and β are arc-disjoint, then 1α and 1β are independent, since they depend on
the endpoints of two disjoint sets of arcs. Let α ∼ β denote that α and β are not
arc-disjoint and that α and β can both appear simultaneously. Then

Var (N`) =
∑
α,β∈L

(E [1α1β]− E [1α] E [1β])

≤
∑
α,β∈L

1[α∼β] [E [1α1β]− E [1α] E [1β]]

≤ EN` +
∑
α,β∈L

1[α∼β]1[α 6=β]E [1α1β]

≡ EN` + I.

To bound I, we use a technique called path counting. Consider two paths α, β ∈ L
with α ∼ β and α 6= β. First colour all vertices and arcs in α and β white. Then colour
all vertices and arcs shared by α and β black. After this, α and β both contain the same
number, say m, of white paths separated by black paths (possibly a single black vertex).
Since both α and β start and end with black paths, each of them contains m+ 1 black
paths. Define:

1. ~xm+1 = (x1, . . . , xm+1), where xi ≥ 0 denotes the length of the i-th black path in
α.

2. ~sm = (s1, . . . , sm), where si > 0 denotes the length of the i-th white path in α.

3. ~tm = (t1, . . . , tm), where ti > 0 denotes the length of the i-th white path in β.

4. ~om+1 = (o1, . . . , om+1) records the order in which black paths appear in β. Note
that o1 ≡ 1, om+1 ≡ m+ 1, and (o2, . . . , om) is a permutation of {2, . . . ,m}.

Define the shape of α and β by Sh(α, β) ≡ (~xm+1, ~sm,~tm, ~om+1).
Let r be the number of arcs shared by α and β, i.e., r ≡

∑m+1
i=1 xi. Since α ∼ β and

α 6= β, 1 ≤ r < `. Thus there are `− r white arcs in α. Since each white path contains
at least one white arc, there are at most ` − r white paths in α, i.e., m ≤ ` − r. As α
and β must differ by at least one arc, m ≥ 1. Let Sm,r denote the set of shapes of two
paths in L that share r arcs and each contains m white paths. Then I can be expressed
as a sum over r, m and Sm,r by

I =
∑

1≤r<`

∑
1≤m≤`−r

∑
σ∈Sm,r

∑
α,β∈L

1[Sh(α,β)=σ]E [1α1β] ≡
∑

1≤m<`

∑
1≤r<`−m

∑
σ∈Sm,r

Jm,r,σ.
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x1
o1 = 1

x2
o2 = 2

x3
o3 = 4

x4
o4 = 3

x5
o5 = 5

s1 s2 s3 s4

t1

t2

t3
t4

β

va vb

α

Figure 5: A pair of paths and their shape.

Now fix m, r and a shape σ = (~xm+1, ~sm,~tm, ~om+1) ∈ Sm,r. Consider arcs in two paths
α, β ∈ L with S(α, β) = σ. Call those starting from va a-arcs, those ending at vb b-arcs,
and other arcs middle-arcs. Let za ≡ 1[x1=0] and zb ≡ 1[xm+1=0]. In other words, za is
the indicator that α and β do not share an a-arc, and zb is the indicator that they do
not share a b-arc. Then α and β contain 1 + za a-arcs and 1 + zb b-arcs. Since α and β
are both of length ` and they share r arcs, they contain 2`− r arcs in total. Thus they
contain 2`− r − (1 + za)− (1 + zb) = 2`− r − za − zb − 2 middle-arcs.

Recall that black paths are shared by α and β. Since the i-th black path is of length
xi, it contains xi + 1 black vertices. So the number of vertices shared by the two paths
is
∑m+1

i=1 (xi + 1) = r +m+ 1. Therefore in total there are 2(`+ 1)− r −m− 1 vertices
in the two paths, and among them 2`− r −m− 1 are internal vertices.

The above argument shows that, given two unlabeled path of the shape σ, there are at
most n2`−r−m−1 ways to choose the internal vertices. There are at most(kM)1+za ways
to label a-arcs. There are k2`−r−za−zb−2 ways to label middle-arcs. There are at most
k1+zb ways to label b-arcs. Thus

|{(α, β) ∈ L × L : Sh(α, β) = σ}| ≤ n2`−r−m−1(kM)1+zak2`−r−za−zb−2kzb+1

= n2`−r−m−1M1+zak2`−r.

And the probability that a pair of paths with shape σ does appear is(
1

n

)1+za ( 1

n

)2`−r−za−zb−2(
M

n

)1+zb

=
M1+zb

n2`−r .

Together,

Jm,r,σ ≡
∑
α,β∈L

1[Sh(α,β)=σ]E [1α1β] ≤ n2`−r−m−1M1+zak2`−rM
1+zb

n2`−r

=
k2`−rM2+za+zb

nm+1
≡ Km,r,za,zb . (7)

Let Sm,r,za,zb be the set of shapes with parameters m, r, za, zb. Then we have Sm,r =
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∪za,zb∈{0,1}Sm,r,za,zb , where the sets in the union are disjoint. Thus

I =
∑

1≤m<`

∑
za,zb∈{0,1}

∑
1≤r<`−m

∑
σ∈Sm,r,za,zb

Jm,r,σ

≤
∑

1≤m<`

∑
za,zb∈{0,1}

∑
1≤r<`−m

|Sm,r,za,zb|Km,r,za,zb

=
∑

za,zb∈{0,1}

∑
1≤r<`−m

|S1,r,za,zb|K1,r,za,zb +
∑

2≤m<`

∑
za,zb∈{0,1}

∑
1≤r<`−m

|Sm,r,za,zb |Km,r,za,zb

≡ I [1] + I [≥2].

By counting the choices of ~xm+1, ~sm,~tm, ~om+1, we can upper bound |Sm,r,za,zb|:

Lemma 17. If m ≥ za + zb, then

|Sm,r,za,zb | = (r + 1)m−za−zb
(
`− r − 1

m− 1

)(
`− r − 1

m− 1

)
(m− 1)!. (8)

If m < za + zb, then |Sm,r,za,zb| = 0.

Proof of Lemma 17. First consider m ≥ 2, which implies that m ≥ za + zb. When
za = 1, x1 = 0. When zb = 1, xm+1 = 0. Thus the number of ways to choose ~xm+1

equals the number of ways to choose m+ 1− za − zb ≥ 1 ordered non-negative integers
such that they sum to r, which is well known to be (r + 1)m−za−zb , which explains the
first factor in (8). Similarly the second term and the third term are the numbers of ways
to choose ~sm and ~tm respectively. The last term is the number of ways to choose ~om+1

since o2, . . . , om is a permutation of {2, . . . ,m}.
Now assume m = 1. If za+zb ≤ m = 1, the above argument still works. If za+zb > 1,

then za = zb = 1. In other words, the two paths do not share arcs at the beginning
and at the end, and they must meet at least one internal vertex. So in this shape, there
must be at least two white sub-paths in each of the two paths, i.e., m ≥ 2, which is a
contradiction. Therefore, S1,r,1,1 = ∅.

Lemma 18. I [1] ≤ 6k2`M3/n2.

Proof of Lemma 18. By (7) and the above lemma,

∑
1≤r<`−1

|S1,r,0,0| ×K1,r,0,0 =
∑

1≤r<`−1

(r + 1)

[(
`− r − 1

0

)]2

0!
k2`−rM2

n2

≤ k2`M2

n2

∑
1≤r

r + 1

kr
≤ k2`M2

n2

[∑
1≤r

1

2r
+
∑
1≤r

r

2r

]

=
k2`M2

n2

(
1 +

1

2
+
∑
2≤r

r

2r

)
≤ 4

k2`M2

n2
,
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where the last step is because
∑

2≤r r/2
r ≤

∫∞
1
x/2xdx ≤ 2. Similarly,∑

1≤r<`−1

|S1,r,0,1| ×K1,r,0,1 =
∑

1≤r<`−1

|S1,r,1,0| ×K1,r,1,0

=
∑

1≤r<`−1

(r + 1)0

[(
`− r − 1

0

)]2

0!
k2`−rM3

n2

≤ k2`M3

n2

∑
1≤r

1

kr

≤ k2`M3

n2

∑
1≤r

1

2r
=
k2`M3

n2
.

Also by Lemma 17, S1,r,1,1 = ∅. Thus

I [1] ≡
∑

za,zb∈{0,1}

∑
1≤r<`−1

|S1,r,za,zb| ×K1,r,za,zb

≤ 4
k2`M2

n2
+ 2

k2`M3

n2
+ 0 ≤ 6

k2`M3

n2
.

Lemma 19. I [≥2] = 4`4k2`M4/n3.

Proof of Lemma 19. By Lemma 17, for r ∈ [1, `),∑
za,zb∈{0,1}

|Sm,r,za,zb| ×Km,r,za,zb

=
∑

za,zb∈{0,1}

(r + 1)m−za−zb
[(
`− r − 1

m− 1

)]2

(m− 1)!
k2`−rM2+za+zb

nm+1

≤ `m
`2(m−1)

(m− 1)!

k2`−r

nm+1

∑
za,zb∈{0,1}

M2+za+zb

≤ `3m−2k2`−r

(m− 1)!nm+1
4M4.

Thus ∑
1≤r<`−m

∑
za,zb∈{0,1}

|Sm,r,za,zb| ×Km,r,za,zb ≤
∑

1≤r<`−m

`3m−2k2`−r

(m− 1)!nm+1
4M4

≤ `3m−2k2`

(m− 1)!nm+1
4M4

∑
1≤r

1

kr

≤ `3m−2k2`

(m− 1)!nm+1
4M4.
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Therefore,

I [≥2] ≡
∑

2≤m<`

∑
1≤r<`−m

∑
za,zb∈{0,1}

|Sm,r,za,zb| ×Km,r,za,zb

≤
∑
2≤m

`3m−2k2`

(m− 1)!nm+1
4M4

≤ `k2`4M4

n2

∑
2≤m

`3(m−1)

nm−1(m− 1)!

≤ `k2`4M4

n2

(
exp

{
`3

n

}
− 1

)
≤ 4

`4k2`M4

n3
.

By Lemma 18 and Lemma 19,

I = I [1] + I [≥2] ≤ 6
k2`M3

n2
+ 4

`4k2`M4

n3
.

Thus Var (N`) ≤ E [N`] + I = E [N`] + 6k2`M3/n2 + 4`4k2`M4/n3.

6.3 Finishing the proof of Theorem 8

Proof of the upper bound of the typical distance. We can assume ε < 1/2. Recall that
ψn ≡ b(1 + ε) logk nc and that Bn = [ψn < Hn <∞]. As argued at the beginning of this
section, to finish the proof of Theorem 8, it suffices to show that P {Bn} = o(1).

Let ωn ≡ ψn. Let M,m be two positive integers which are picked later. Recall
that S+

i (v) and S−i (v) are the sets of vertices at distance exactly i from or to vertex v
respectively, and that S+

≤i(v) and S−≤i(v) are the sets of vertices at distance at most i
from or to v respectively. The following argument shows that by properly choosing M
and m, the probability that there exists a path of length exactly ψn − 2m from S+

m(v1)
to S−≤m(v2) is at least 1− δ for n large enough, where δ > 0 is arbitrary and fixed.

Figure 6: S+
≤m−1(v1),S+

m(v1), and S−≤m(v2).

Let the event An(M,m) be defined as in Corollary 4, i.e.,

An(M,m) ≡
[
M ≤ |S+

m(v1)|
]
∩
[
M ≤ |S−m(v2)|

]
∩
[
|S−≤m(v2)| ≤ ωn

]
.
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Since each vertex has out-degree exactly k ≥ 2, deterministically,

|S+
≤m−1(v1)| ≤ 1 + k + · · ·+ km−1 < km, |S+

m(v1)| ≤ km.

Since ψn > 2m for n large enough, Bn implies S+
≤m(v1) and S−≤m(v2) are disjoint. Thus

the event An(M,m)∩Bn implies that (S+
≤m−1(v1),S+

m(v1),S−m(v2),S−≤m−1(v2)) ∈ A, where
A is a set of quadruples of disjoint sets of vertices defined by

A ≡ {(S1,S2,S3,S4) : v1 ∈ S1; v2 ∈ S4;

|S1| < km;M ≤ |S2| ≤ km;M ≤ |S3|; |S3 ∪ S4| ≤ ωn}.

For ~S = (S1,S2,S3,S4) ∈ A, define the event

A′n( ~S) ≡
[
S+
≤m−1(v1) = S1

]
∩
[
S+
m(v1) = S2

]
∩
[
S−m(v2) = S3

]
∩
[
S−≤m−1(v2) = S4

]
.

Thus [Bn ∩ Am(M,m)] ⊆ ∪ ~S∈A[Bn ∩ A′n( ~S)] and the events in the union are disjoint.

Now fix a ~S ∈ A. Let A ~S and B ~S be arbitrary subsets of S2 and S3 respectively with
|A ~S | = M and |B ~S | = M . Let N ~S be the number of paths of length ψn − 2m that start
from A ~S and end at B ~S , and that contain internal vertices only in C ~S ≡ [n] \ ∪i∈[4]Si.
Thus there are |C ~S | = n − | ∪i∈[4] Si| ≥ n − (ωn + 2km) vertices that can be internal
vertices of these paths. By (5) of Proposition 2,

EN ~S ≥
kψn−2mM2

n

(
1− (ωn + 2km + ψn − 2m)(ψn − 2m)

n

)
≥ k(1+ε) logk(n)−1−2mM2

n

(
1− 2ψ2

n

n

)
≥ nεM2

k2m+1

1

2
,

for n large enough. By (6) of Proposition 2,

Var (N ~S) ≤ EN ~S + C1
k2(ψn−2m)M3

n2
+ C2

k2(ψn−2m)M4(ψn − 2m)4

n3

≤ EN ~S + C1
n2(1+ε)M3

n2k4m
+ C2

n2(1+ε)M4ψ4
n

n3k4m

≤ EN ~S + C1
n2εM3

k4m
+ C3

M4

k4m

(log n)4

n1−2ε
,

where C3 is a constant that does not depend on M or m. Thus

P {N ~S = 0} ≤
Var (N ~S)

(EN ~S)2 ≤
2k2m+1

nεM2
+

C1n
2εM3k−4m

(nεM22−1k−2m−1)2 +
C3M

4(log n)4n2ε−1k−4m

(nεM22−1k−2m−1)2

≤ 2k2m+1

nεM2
+

4k2C1

M
+

4k2C3(log n)4

n
.

Later m is chosen solely depending on M . Thus we can pick M large enough such that
for n large enough, P {N ~S = 0} ≤ δ/2 for all ~S ∈ A.
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If Hn > ψn, then there cannot exist paths of length ψn − 2m from S+
m(v1) to S−m(v2).

Thus Bn ∩ A′n( ~S) implies that [N ~S = 0] ∩ A′n( ~S). A crucial observation is that

P
{
N ~S = 0

∣∣∣A′n( ~S)
}
≤ P {N ~S = 0} .

This is becauseA′n( ~S) implies that arcs starting from vertices in C ~S cannot choose vertices
in S−≤m−1(v2) = S4 as their endpoints. Whereas when we compute P {N ~S = 0} without
any condition, arcs starting from vertices in C ~S are allowed to choose all vertices as their
endpoints. Thus some of these arcs are possibly “wasted” by choosing their endpoints
in S4. This increases the probability that N ~S = 0. Thus

P
{
Bn ∩ A′n( ~S)

}
≤ P

{
[N ~S = 0] ∩ A′n( ~S)

}
= P

{
N ~S = 0

∣∣∣A′n( ~S)
}

P
{
A′n( ~S)

}
≤ P {N ~S = 0}P

{
A′n( ~S)

}
≤ δ

2
P
{
A′n( ~S)

}
.

Therefore

P {Bn ∩ An(M,m)} ≤
∑
~S∈A

P
{
Bn ∩ A′n( ~S)

}
≤ δ

2

∑
~S∈A

P
{
A′n( ~S)

}
≤ δ

2
P
{

(S+
≤m−1(v1),S+

m(v1),S−m(v2),S−≤m−1(v2)) ∈ A
}
≤ δ

2
.

By Corollary 4, we can choose m depending on M such that for n large enough,
P {Bn ∩ Acn(M,m)} < δ/2. Thus

lim sup
n→∞

P {Bn} = lim sup
n→∞

(P {Bn ∩ An(M,m)}+ P {Bn ∩ Acn(M,m)}) ≤ δ.

7 Extensions

Addario-Berry et al. [1] also proved that the diameter of the giant component divided by
log n converges in probability to 1/ log(k) + 1/ log(1/λk). Recall that the longest path
outside the giant divided by log n converges in probability to 1/ log(1/λk). This seems
to be a strong indication that it might be possible to derive a new proof for the diameter
of the giant.

Recall that D∗n,k is a simple k-out digraph with n vertices chosen uniformly at random
from all such digraphs. Section 5 proved that if whp Dn,k has property P, then whp
D∗n,k has property P. But results like Theorem 1, the central limit law of the one-in-core,
cannot be transferred to D∗n,k automatically. We believe that it might be possible to
achieve get the same result for D∗n,k following the line of Janson and Luczak’s treatment
of the configuration model [25].

A natural generalization of Dn,k is to have a deterministic out-degree sequence, as in
the directed configuration model, instead of requiring each vertex to have out-degree
exactly k. With some constraints on the out-degree sequence, most of our results should
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hold for this generalized model. Furthermore, we could let each vertex choose its out-
degree independently at random from an out-degree distribution. Again by adding some
restrictions on the out-degree distribution, most of our results should still hold.

The problem of generating a uniform random surjective function with fixed domain
size is an open problem. Theorem 1 implies a simple algorithm for choosing a [km]→ [m]
surjective function uniformly at random. Let n = dm/νke. Then we generate a Dn,k. If
|On| = m, i.e., if the one-in-core in Dn,k contains m vertices, then Dn,k[On] is equivalent
to a uniform random sample of a [km]→ [m] surjective function. Otherwise we try again
until |On| = m. Theorem 1 shows that P {|On| = m} = Θ(1/

√
m). Thus the expected

number of Dn,k needed to be generated is Θ(
√
m). Since generating a Dn,k takes Θ(m)

time, the expected running time of the whole algorithm is Θ(m3/2). But we believe that
Θ(m) should be achievable.
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Appendix

1. Inequalities for constants

Lemma A1. Assume that k ≥ 2.

(a) There exists exactly one τk > 0 such that 1− τk/k − e−τk = 0;

(b) 0 < k − τk < 1/2;

(c) 1/2 < 1− 1
2k
< νk ≡ τk/k < 1;

(d) λk ≡ (k − τk)
(
τk
k−1

)k−1
< λ′k ≡ (k − τk)e1−k+τk < 1;

(e) γk ≡
(

k
eτk

)k
(eτk − 1) < 1;

(f) ρk ≡ ke1−τk
(
τk
k

)k−1
< 1;

(g) λk = Θ(ke−k) as k →∞.

Proof. Let η(x) = 1 − x/k − e−x. Since η′′(x) = −e−x < 0, η(x) is strictly concave.
Since η(k − 1/2) > 0, and η(k) < 0, η(x) = 0 must have exactly one positive solution
and this solution must be in (k− 1/2, k). Thus (a) and (b) are proved. (c) follows since
τk/k > 1 − 1/k ≥ 1/2. For (d) note that λk < λk

′ as 1 − x < e−x for all x 6= 0. For
λ′k < 1 note that

log λk
′ = log(k − τk) + 1− (k − τk) = log [1− (1− (k − τk))] + 1− (k − τk) < 0,

since log(1− x) < −x for all x ∈ (0, 1).
For (e), first use τk/k ≡ 1− e−τk to get

γk =
1

ek(1− e−τk)k
eτk(1− e−τk) = eτk−k(1− e−τk)1−k.

Then use ke−τk ≡ k − τk to get

log γk = τk − k + (1− k) log(1− e−τk)
= (τk − k) + log(1− e−τk)− k log(1− e−τk)
< (τk − k)− e−τk + k(e−τk + e−2τk)

= (τk − k) + (k − τk) + e−τk(k − τk − 1) < 0,
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since −x > log(1− x) > −x− x2 for all x ∈ (0, 1/2) and e−τk = 1− νk ∈ (0, 1/2).
For (f), use τk < k from (a) to get

τk ≡ k(1− e−τk) < k(1− e−k). (9)

Therefore,
τk
k
≡ 1− e−τk < 1− exp

{
−k
(
1− e−k

)}
.

Again by (a), τk > k − 1/2. Thus

τk ≡ k(1− e−τk) > k(1− e−k+ 1
2 ). (10)

Therefore,

ke−τk < k exp
{
−k
(

1− e−k+ 1
2

)}
.

The above bounds imply that

ρk ≡ ke1−τk
(τk
k

)k−1

< k exp
{

1− k
(

1− e−k+ 1
2

)} (
1− exp

{
−k
(
1− e−k

)})k−1
.

Using this bound, numeric computations show that ρ2 < 0.945651. When k ≥ 3, the
above upper bound is less than

k exp
{

1− k
(

1− e−
5
2

)}
,

which takes its maximal value at k = 3 for k ∈ [3,∞). This maximal value is about
0.52. Thus ρk < 1 for all k ≥ 2.

By (9) and (10), k − τk = ke−k+O(1) and τk/k = 1− e−k+O(1) as k →∞. Therefore

λk ≡ (k − τk)
(

τk
k − 1

)k−1

= (k − τk)
(τk
k

)k−1
(

k

k − 1

)k−1

= ke−k+O(1)
(
1− e−k+O(1)

)k−1
e(1 + o(1)) = ke−k+O(1).

Thus (g) is proved.

2. The sizes of k-surjections

In this section we prove Lemma 1. Recall that Ks is the number of k-surjections of size
s in Dn,k. We first deal the case that s is small:

Lemma A2. P {K1 ≥ 1} ≤ 1/nk−1 ≤ 1/n.

Proof. A single vertex is a k-surjection if and only if all its k arcs are self-loops. Thus

P {K1 ≥ 1} ≤
∑
v∈[n]

P {v has only self-loops} = n

(
1

n

)k
≤ 1

nk−1
≤ 1

n
.
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Lemma A3. P
{∑

2≤s≤anKs ≥ 1
}

= o (1/n), for all fixed a ∈
(
0, e−1/(k−1)

)
.

Proof. We can choose ε ∈ (0, 1) such that 2(k − 1)(1 − ε) > 1 since k ≥ 2. Let
J = {2, . . . , banc}. Then

P

{∑
s∈J

Ks ≥ 1

}
≤
∑
s∈J

∑
S⊆[n]:|S|=s

P {S is closed}

=
∑
s∈J

(
n

s

)( s
n

)ks
≤
∑
s∈J

(en
s

)s ( s
n

)ks
(Stirling’s approximation)

=
∑

2≤s≤nε

[
e
( s
n

)k−1
]s

+
∑

nε<s<an

[
e
( s
n

)k−1
]s

≤

[
e

(
nε

n

)k−1
]2 ∑

2≤s+2

[
e

(
nε

n

)k−1
]s

+
∑
nε<s

(
e× ak−1

)s
= O

(
n−2(k−1)(1−ε))+O

(
(eak−1)n

ε)
,

where both terms are o(1/n) due to our choice of ε and a.

When s is large, we need to take into account the probability that S is surjective. Let{
x
y

}
denote Stirling’s number of the second kind, i.e., the number of ways to put x balls

into y unordered bins such that there are no empty bins [17, pp. 64]. Then

P {S is surjective | S is closed} =

{
ks
s

}
s!

sks
,

where the numerator is the number of ways to choose endpoints for the ks arcs in S
so that minimum in-degree is one, and the denominator is the total number of ways to
choose endpoints for ks arcs in S. Thus

P {S is a k-surjection} = P {S is surjective | S is closed}P {S is closed}

=

{
ks
s

}
s!

sks

( s
n

)ks
=

{
ks
s

}
s!

nks
.

Good [19] established an asymptotic estimation of Stirling’s numbers of the second kind{
ks

s

}
∼ (ks)!

s!

(eτk − 1)s

τkks
√

2πks(1− ke−k)
.

Applying this and Stirling’s approximation for factorials, we have

P {S is a k-surjection} ∼ (ks)!

s!

(eτk − 1)s

τkks
√

2πks(1− ke−k)
s!

nks

∼ 1√
1− ke−τk

[( s
n

)k
γk

]s
, (11)

where γk ≡ (k/eτk)
k (eτk − 1) < 1 (see Lemma A1).
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Lemma A4. There exists a constant b ∈ (νk, 1) such that P
{∑

bn≤s≤nKs ≥ 1
}

=
o (1/n).

Proof. Let b > νk be a constant decided later. If |S| = s ∈ [bn, n], then by (11)

P {S is a k-surjection} = O

([( s
n

)k
γk

]s)
≤ O (γsk) ≤ O

(
γbnk
)
.

Since b > νk > 1/2 (Lemma A1),(
n

s

)
≤
(
n

bn

)
= O

(
1√
n

[
1

bb(1− b)1−b

]n)
.

Therefore

P {Ks ≥ 1} ≤
(
n

s

)
P {S is a k-surjection} ≤ O

([
γbk

bb(1− b)1−b

]n)
.

Since the quantity in the square brackets goes to γk < 1 as b→ 1, we can pick a b close
enough to one such that P

{∑
bn≤s≤nKs ≥ 1

}
= o (1/n).

Let a ∈ (0, νk) and b ∈ (νk, 1) be two constants such that the upper bounds in
Lemma A3 and A4 hold. If |S| = xn with x ∈ (a, b) and xn integer-valued, then by (11)
and Stirling’s approximation

EKxn =

(
n

xn

)
P {S is a k-surjection}

∼ 1√
2πx(1− x)n

[
1

(x)x (1− x)1−x

]n
1√

1− ke−τk
(
xkγk

)xn
=

1√
2π(1− ke−τk)n

g (x) [f (x)]n (12)

where

g(x) ≡ 1√
x(1− x)

, f(x) ≡
[

xk−1γk
(1− x)(1−x)/x

]x
.

Lemma A5. For all fixed a ∈ (0, νk), b ∈ (νk, 1) and δ ∈ (0, 1/2), P
{∑

s∈J Ks ≥ 1
}

=

o(1/n), where J = [an, νkn− n
1
2

+δ] ∪ [νkn+ n
1
2

+δ, bn].

Proof. Let h(x) ≡ log f(x). Lemma A6 shows that as x→ νk,

h(x) = −(x− νk)2

2σ2
k

+O
(
|x− νk|3

)
,

and that h(x) is strictly increasing on (a, νk) and strictly decreasing on (νk, b). It follows
from |s/n − νk| > n−1/2+δ that h (s/n) ≤ −n2δ−1/2σ2

k + O
(
n3δ−3/2

)
. As for g(x), it is

46



bounded on (a, b). Thus by (12) and Markov’s inequality

log(n2P {Ks ≥ 1}) ≤ log(n2EKs)

= log
(
n2O

(
n−1/2

)
f
( s
n

)n)
= O (log n) + nh

( s
n

)
≤ O (log n)− n2δ

2σ2
k

+O
(
n3δ−1/2

)
,

which goes to −∞. In other words, P {Ks ≥ 1} = o (1/n2) . So P
{∑

s∈J Ks ≥ 1
}

=
o (1/n).

Lemma 1 follows immediately from Lemma A2, A3, A4, and A5.

3. Special functions

Lemma A6. Let f(x), g(x) and h(x) be defined as in the previous subsection. Let νk,
τk and σk be as in Lemma A1. Then

(a) As x→ νk, g (x) = g(νk) +O (|x− νk|) = (1 +O (|x− νk|)) /(σk
√

1− ke−τk).

(b) h(x) and f(x) are strictly increasing on (1− 1
k
, νk) and strictly decreasing on (νk, 1).

(c) As x→ νk,

h(x) = h(νk) +O(|x− νk|3) = −(x− νk)2

2σ2
k

+O(|x− νk|3),

which implies that

f(x) = eh(x) = exp

{
−(x− νk)2

2σ2
k

}
+O(|x− νk|3).

Proof. For (a), recall that σ2
k ≡ τk/(ke

τk(1 − ke−τk)). Thus σ2
k(1 − ke−τk) = νk(1 − νk).

Then g(νk) = 1/
√
νk(1− νk) = 1/σk

√
1− ke−τk . Since g′(x) is bounded around νk, by

Taylor’s theorem,

g(x) = g(νk) +O(|x− νk|) = (1 +O (|x− νk|))
1

σk
√

1− ke−τk
, as x→ νk.

Let r(x) = log
(
f(x)1/x

)
= h(x)/x. Using τk/k ≡ 1− e−τk ≡ νk shows that

γk =

(
1

eνk

)k
eτkνk = νk

−k+1e−k+τk = νk
−k+1(e−τk)(k−τk)/τk = νk

−k+1(1− νk)(1−νk)/νk .
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Then r(νk) = log
(
νk
k−1(1− νk)(νk−1)/νkγk

)
= log(1) = 0,

r′(x) =
k

x
+

1

x2
log(1− x), and r′′(x) = − k

x2
− 2 log(1− x)

x3
− 1

x2(1− x)
.

Therefore r′(νk) = 0 and r′′(νk) = −1/(νkσ
2
k).

Since h(x) = xr(x),

h′(x) = r(x) + xr′(x), h′′(x) = 2r′(x) + xr′′(x) =
k

x
− 1

x(1− x)
.

Thus h(νk) = 0, h′(νk) = 0 and h′′(νk) = −1/σ2
k. Also recalling that 1 − 1

k
< 1 − 1

2k
<

νk < 1 (Lemma A1), h(x) is strictly concave on (1− 1
k
, 1), reaching maximum at νk. Thus

(b) is proved. The two asymptotic equations in (c) follow from Taylor’s theorem.

4. Probability generating functions of Galton-Watson processes

Lemma A7. Let µ ∈ (0, 1
2k

) be a constant where k ≥ 2. Let (Zm)m≥0 be a Galton-
Watson process with Z0 ≡ 1 and offspring distribution Bin(k, µ). Let ϕm(y) ≡ EyZm.
Then

ϕm(0) ≤ 1− (kµ)m +

(
1− 1

2m

)
(kµ)m+1.

Proof. We use induction. Let cm = 1− 1/2m. For m = 1,

ϕ1(y) = EyZ1 = (1− µ(1− y))k.

Since µ > 0 and k ≥ 2, by Taylor’s theorem,

ϕ1(0) = (1− µ)k ≤ 1− kµ+
(kµ)2

2
= 1− kµ+ c1(kµ)2.

It is well known that for m > 1, ϕm(y) = ϕ1(ϕm−1(y)) (see [13]). Assuming the lemma
holds for m, then

ϕm+1(0) = ϕ1(ϕm(0)) = (1− µ (1− ϕm(0)))k

≤
(
1− µ

(
(kµ)m − cm(kµ)m+1

))k
≤ 1− kµ

(
(kµ)m − cm(kµ)m+1

)
+
k2

2
µ2
(
(kµ)m − cm(kµ)m+1

)2

= 1− (kµ)m+1 + cm(kµ)m+2 +
(kµ)m

2
(1− cmkµ)2(kµ)m+2

≤ 1− (kµ)m+1 + cm+1(kµ)m+2,

since kµ < 1/2 and cm+1 = cm + 1/2m+1.
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