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ON THE TOTAL VARIATION DISTANCE BETWEEN THE BINOMIAL

RANDOM GRAPH AND THE RANDOM INTERSECTION GRAPH

JEONG HAN KIM, SANG JUNE LEE, AND JOOHAN NA

Abstract. When each vertex is assigned a set, the intersection graph generated by the sets is the graph
in which two distinct vertices are joined by an edge if and only if their assigned sets have a nonempty
intersection. An interval graph is an intersection graph generated by intervals in the real line. A
chordal graph can be considered as an intersection graph generated by subtrees of a tree. In 1999,
Karoński, Scheinerman and Singer-Cohen [Combin Probab Comput 8 (1999), 131–159] introduced a
random intersection graph by taking randomly assigned sets. The random intersection graph G(n,m; p)
has n vertices and sets assigned to the vertices are chosen to be i.i.d. random subsets of a fixed set M
of size m where each element of M belongs to each random subset with probability p, independently of
all other elements in M . Fill, Scheinerman and Singer-Cohen [Random Struct Algorithms 16 (2000),
156–176] showed that the total variation distance between the random graph G(n,m; p) and the Erdös-
Rényi graph G(n, p̂) tends to 0 for any 0 ≤ p = p(n) ≤ 1 if m = nα, α > 6, where p̂ is chosen so that
the expected numbers of edges in the two graphs are the same. In this paper, it is proved that the
total variation distance still tends to 0 for any 0 ≤ p = p(n) ≤ 1 whenever m ≫ n4.

1. Introduction

The intersection graph on V := {1, . . . , n} generated by a collection {L1, . . . , Ln} of sets is the graph
on V in which two distinct vertices i and j are adjacent if and only if their corresponding sets Li and
Lj have a nonempty intersection. In 1945, Szpilrajn-Marczewski [29] observed that every graph may
be represented as an intersection graph. Later, Erdős, Goodman and Pósa [12] showed that every
graph with n vertices can be represented as an intersection graph generated by subsets of a set of n2/4
elements. An interval graph is an intersection graph generated by intervals in the real line. A chordal
graph turned out to be an intersection graph generated by subtrees of a tree [14]. In general, a class of
graphs is called an intersection class of a family F of sets if each graph in the class is an intersection
graph generated by sets in F . Scheinerman [27] found a necessary and sufficient condition for a class
of graphs to be an intersection class of a family F of sets. Intersection graphs have been applied to
phylogeny problems in biology [17], seriation problems in psychology [18], and contingency tables in
statistics [21], etc. For more details, see [24].

In 1999, Karoński, Scheinerman and Singer-Cohen [20] introduced the random intersection graph,
which is the intersection graph generated by independent and identically distributed (i.i.d.) random
subsets L1, ..., Ln of M = {1, ...,m}. Fill, Scheinerman and Singer-Cohen [13] considered conditions
under which the random intersection graph is essentially the binomial random graph (that is, the
Erdős-Rényi random graph with independently chosen edges) with the same expected number of
edges. Let G(n,m; p) denote the random intersection graph generated by i.i.d. random subsets
L1, ..., Ln whose distributions are binomial with parameters (m, p), i.e., for a subset A of M , Pr[Li =

A] = p|A|(1 − p)m−|A|. Fill, Scheinerman and Singer-Cohen were interested in how close G(n,m; p)
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is to G(n, p̂) in terms of total variation distance, where p̂ is chosen so that the expected numbers of
edges in the two graphs are the same, i.e.,

p̂ := 1− (1− p2)m.

The total variation distance between two (graph-valued) random variables X and Y is defined by

TV (X,Y ) =
1

2

∑

G

∣

∣

∣
Pr [X = G]− Pr [Y = G]

∣

∣

∣
,

where the sum is taken over all possible values of X and Y .

Theorem 1.1 ([13, Theorem 10]). Let α > 6 be a constant and m = nα. Then for any 0 ≤ p =
p(n) ≤ 1,

TV
(

G(n,m; p), G(n, p̂)
)

= o(1).

For 3 < α ≤ 6, Rybarczyk [26] proved a weaker result. Namely, for any monotone property A,
Pr[G(n,m; p) ∈ A] and Pr[G(n, p̂) ∈ A] are essentially the same. The exact statements of the theorems
there are rather complicated.

A random intersection graph has received a lot of attention due to a great diversity of applications
in areas such as epidemics [9], circuit design [20], network user profiling [23] and analysis of complex
networks [3, 4, 7, 10]. For more information, we refer the reader to the survey papers [5, 6, 28]. For
instance, G(n,m; p) is applicable for gate matrix circuit design, which is related to the optimization
problem of finding a permutation of the order of gate lines that minimizes the number of horizontal
tracks required to lay out the circuit. The problem is NP-hard in general, but it is solvable in O(n) time
when G is an interval graph [16]. Karoński, Scheinerman and Singer-Cohen [20] studied conditions for
which G(n,m; p) is an interval graph with high probability.

When Li’s are uniformly distributed in the class of subsets of M of the same size, the random
intersection graph generated by the Li’s is called a uniform random intersection graph. An application
to security of wireless sensor networks [2, 8, 11, 25] is one of the main motivations for studying the
uniform random intersection graph. The random intersection graph can be generalized in the way that
the vertices i and j are adjacent if Li and Lj have at least s ≥ 1 common elements. The generalization
is applicable for cluster analysis [4, 7, 15].

The random intersection graph G(n,m; p) may be defined using an n×m random matrix R(n,m; p)
whose rows are indexed by i ∈ V and columns are indexed by a ∈ M . Each entry of the matrix is 1
or 0 with probability of p and 1 − p, respectively, independently of all other entries. The row vector
indexed by i ∈ V corresponds to the subset Li of M . On the other hand, the column vector indexed
by a ∈ M corresponds to the set Va of all vertices i ∈ V with a ∈ Li. The graph G(n,m; p) may be
alternatively constructed by taking the edge set to be the union of edge sets of the complete graphs
on Va for all a ∈ M .

The main difference between G(n,m; p) and G(n, p̂) are the complete graphs induced by the column
vectors with three or more 1’s. In particular, the triangles formed by the columns with exactly three
1’s play an important role. Those triangles are to be called artifact triangles. Roughly speaking,
if mp2 is large, then p̂ is close to 1 so that both of G(n,m; p) and G(n, p̂) are almost the complete
graphs with high probability. On the other hand, if mp2 is small, then the expected number of artifact

triangles is
(n
3

)

mp3(1 − p)n−3 = O( n3

m1/2 (mp2)3/2), which goes to 0, provided m ≫ n6. Theorem 1.1
was proved based upon this observation.

In this paper, we will show that the total variation distance is still small enough even if there
are some artifact triangles. It is actually small as long as the expected number of pairs of distinct
artifact triangles with a common edge is small. If the expected number is not small, the total variation
distance may be small when both of G(n,m; p) and G(n, p̂) are almost the complete graphs with high
probability. Based on these two facts, we infer that if m ≫ n4 then the total variation distance is
always small for any p: It turns out that the expected number is O(n4m2p6). To have the total
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variation distance small for all p, it is required that mp2 is large when n4m2p6 = n4

m (mp2)3 is not

small, which holds if m ≫ n4.

Theorem 1.2. For m ≫ n4 and 0 ≤ p = p(n) ≤ 1, we have that

TV
(

G(n,m; p), G(n, p̂)
)

= o(1).

In the next section, we give the outline of the proof of Theorem 1.2. The proof will be divided into
four parts, which will be proved in Sections 2-5.

2. Preliminaries and Outline of proof of Theorem 1.2

If p ≥
(

3 logn
m

)1/2
, both of G(n,m; p) and G(n, p̂) are the complete graphs with probability 1−O

(

1
n

)

.

Indeed, for each edge e,

Pr[e 6∈ G(n,m; p)] = (1 − p2)m ≤ e−mp2 ≤
1

n3
,

and hence G(n,m; p) is the complete graph with probability 1−O
(

1
n

)

. Since the expected numbers of

edges in G(n,m; p) and G(n, p̂) are the same, G(n, p̂) is the complete graph with probability 1−O
(

1
n

)

as well. Therefore,

TV
(

G(n,m; p), G(n, p̂)
)

= O
( 1

n

)

.

In the rest of the paper, we assume that

0 ≤ p ≤
(3 log n

m

)1/2
.

As described in the introduction, the random intersection graph G(n,m; p) may be constructed using
an n × m random matrix R(n,m; p) whose rows are indexed by v ∈ V and columns are indexed by
a ∈ M . For fixed a ∈ M , the probability of Va := {v ∈ V : a ∈ Lv} being a fixed k-subset of
V is pk(1 − p)n−k for integer k ≥ 2. Hence Va is the k-subset for some a ∈ M with probability
1− (1− pk(1− p)n−k)m, which will be approximated by

p
k
:= 1− e−mpk(1−p)n−k

.

Also, G(n,m; p) will be approximated by another random graph G(n, (p
k
)), which is to be defined

below.
For 0 ≤ p∗ ≤ 1, let Hk(n, p

∗) be a random collection of k-subsets of V to which each k-subset belongs
with probability p∗, independently of all other k-subsets. For H ⊆ V , let K(H) be the complete graph
on H. Then, for a collection H of subsets of V , let K(H) denote the graph on V whose edge set is the
union of edge sets of the complete graphs K(H) on H ∈ H. Notice that K(H2(n, p

∗)) is the binomial
random graph G(n, p∗). For p

k
defined above, let G(n, (p

k
)) be the random graph on V whose edge

set is the union of edge sets of K(H2(n, p2)),K(H3(n, p3)), . . . ,K(Hk(n, pk)), . . ..

For m ≫ n4 and p ≤
(

3 logn
m

)1/2
, the probability of

⋃

k≥5

Hk(n, pk) being nonempty is upper bounded

by
∑

k≥5

(

n

k

)

p
k
≤

∑

k≥5

nkmpk = O
(n5 log3 n

m3/2

)

= O
( log3 n

n

)

.

Thus, for G(n, p2 , p3 , p4) = G(n, (p2 , p3 , p4 , 0, . . .)),

TV
(

G(n, (p
k
)), G(n, p2 , p3 , p4)

)

≤ Pr
[

⋃

k≥5

Hk(n, pk) 6= ∅
]

= O
( log3 n

n

)

.

We will further approximate G(n, p2 , p3 , p4) by G(n, p2), which is the main contribution of this paper.
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Summarizing all, since the total variation distance between G(n,m; p) and G(n, p̂) is upper bounded
by the sum of TV(G(n,m; p), G(n, (p

k
))), TV(G(n, (p

k
)), G(n, p2 , p3 , p4)), TV(G(n, p2 , p3 , p4), G(n, p2))

and TV(G(n, p2), G(n, p̂)), it is enough to show that each total variation distance tends to 0. For the

second one is O
(

log3 n
n

)

described as above, we will prove that the other three total variation distances

tend to 0 in Sections 3, 4 and 5, respectively.

3. total variation distance between G(n,m; p) and G(n, (p
k
))

To prove that the total variation distance between G(n,m; p) and G(n, (p
k
)) tends to 0, we will use

a coupling argument. For two random variables X and Y , a coupling (X ′, Y ′) of X and Y is a vector
of random variables such that the marginal distributions of (X ′, Y ′) are the distributions of X and
Y , respectively. The total variation distance between X and Y is upper bounded by the probability
of X ′ 6= Y ′ for any coupling (X ′, Y ′) of X and Y . On the other hand, there always exists a coupling
(X ′, Y ′) so that the total variation distance of X and Y is equal to the probability of X ′ 6= Y ′.

Lemma 3.1. [22, Chapter I, Theorem 5.2] Let X and Y be random variables. Then any coupling
(X ′, Y ′) of X and Y satisfies

TV(X,Y ) ≤ Pr[X ′ 6= Y ′].

Moreover, there exists a coupling for which the equality holds, i.e.,

TV(X,Y ) = Pr[X ′ 6= Y ′].

Using an appropriate coupling between a binomial random variable and a Poisson random vari-
able, we will prove the following proposition, which may be applied for the case m ≫ n2 log n. The
proposition is essentially the same as Lemma 5 in [26]. We prove it for the sake of completeness.

Proposition 3.2. Let m ≫ n2 log n, 0 ≤ p ≤ (3 lognm )1/2 and p
k
= 1 − e−mpk(1−p)n−k

for integers
k ≥ 2. Then

TV
(

G(n,m; p), G(n, (p
k
))
)

= O
(n2 log n

m

)

.

Proof. Let X be the number of columns of the matrix R(n,m; p) with two or more 1’s, or equivalently,
the number of a ∈ M with |Va| ≥ 2. Since

Pr[|Va| = k] =

(

n

k

)

pk(1− p)n−k =: r
k

for any fixed a ∈ M , the random variable X has the binomial distribution with parameters m and
q2 :=

∑

k≥2 rk , i.e.,

Pr[X = ℓ] =

(

m

ℓ

)

(q2)
ℓ(1− q2)

m−ℓ.

The random graph G(n,m; p) may be constructed as follows: Take i.i.d. random complete graphs

K(1), ...,K(h), ... on subsets of V , where the number of vertices in K(1) is k ≥ 2 with probability r
k
/q2 ,

and then, once the number is given to be k, every k-subset of V is equally likely to be the vertex set
of K(1). In other words, for a k-subset U of V with k ≥ 2, the probability of U being the vertex set

of K(1) is
r
k
q2

(n
k

)−1
. (As

∑

k≥2
r
k
q2

= 1, the random complete graph K(1) is well-defined.) The edge set

of G(n,m; p) is the union of edge sets of X random complete graphs K(1), ...,K(X).

We now take a Poisson random variable Y with mean mq2 that is coupled with X so that Pr[X 6=
Y ] = TV(X,Y ). Let GY be the graph whose edge set is the union of edge sets of K(1), ...,K(Y ). Then

TV(G(n,m; p), GY ) ≤ Pr[G(n,m; p) 6= GY ] ≤ Pr[X 6= Y ] = TV(X,Y ).

On the other hand, GY has the same distribution as G(n, (p
k
)). Indeed, for each subset U of

V with |U | ≥ 2, let Z(U) be the number of i = 1, 2, ..., Y such that the vertex set of K(i) is U .
Then, it is well-known that for k = |U |, Z(U)’s are independent Poisson random variables with mean
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mq2 ·
r
k
q2

(n
k

)−1
= mpk(1 − p)n−k, and hence Pr[Z(U) > 0] = 1 − e−mpk(1−p)n−k

= p
k
. Since the edge

set of GY is the union of edge sets of the complete graphs on U with Z(U) > 0, GY has the same
distribution as G(n, (p

k
)).

The desired bound follows from the fact that the total variation distance between the binomial
random variable X with parameters m, q2 and the Poisson random variable Y with mean mq2 is not
more than q2 [1, Theorem 2.4], and

q2 =
∑

k≥2

(

n

k

)

pk(1− p)n−k ≤
∑

k≥2

nkpk = O
(

n2p2
)

= O
(n2 log n

m

)

.

�

4. total variation distance between G(n, p2 , p3 , p4) and G(n, p2)

In this section, we prove that the total variation distance between G(n, p2 , p3 , p4) and G(n, p2) tends
to 0. This is the main contribution of the paper. Intuitively, if there are no artifact triangles (and
no columns with at least four 1’s) with high probability, then G(n, p2 , p3 , p4) and G(n, p2) should be
almost the same. We will show that TV(G(n, p2 , p3 , p4), G(n, p2)) is still small enough even if there are
few artifact triangles. As mentioned earlier, it actually turns out that the distance is small enough if
the expected number of pairs of distinct artifact triangles with a common edge is small. When the
expected number is not small, the total variation distance tends to 0 provided that mp2 is sufficiently
large. Keeping this in mind, we prove the following proposition.

Proposition 4.1. Let m ≫ n4, 0 ≤ p ≤ (3 lognm )1/2 and p
k
= 1− e−mpk(1−p)n−k

for k ≥ 2. Then

TV
(

G(n, p2 , p3 , p4), G(n, p2)
)

= O(ε),

where

ε := max
{ 1

log n
,

1

log(m/n4)

}

. (1)

For simplicity, we write G(n,p4) for G(n, p2 , p3 , p4). It is not difficult to check that

TV
(

G(n,p4), G(n, p2)
)

=
∑

G∈G

(

Pr[G(n, p2) = G]−min
{

Pr[G(n,p4) = G],Pr[G(n, p2) = G]
}

)

, (2)

where G is the set of all graphs on V . In order to bound the total variation distance, we consider a
lower bound of Pr[G(n,p4) = G]. Since G(n,p4) = K(H4(n, p4)) ∪ K(H3(n, p3)) ∪ G(n, p2), we may
write Pr[G(n,p4) = G] as the sum of

Pr
[

H4(n, p4) = Q, H3(n, p3) = T, G \ (K(T ) ∪K(Q)) ⊆ G(n, p2) ⊆ G
]

(3)

over all possible T and Q. Let H3(G) and H4(G) be the collections of all K3’s and K4’s in G that are
regarded as collections of 3-subsets and 4-subsets of V , respectively. Then,

Pr[G(n,p4) = G] =
∑

Q⊆H4(G)
T⊆H3(G)

p|Q|
4

(1− p4)
(n4)−|Q|p|T |

3
(1− p3)

(n3)−|T |p|G|−|K(Q)∪K(T )|
2

(1− p2)
(n2)−|G|

= Pr[G(n, p2) = G]
∑

Q⊆H4(G)
T⊆H3(G)

p|Q|
4

(1− p4)
(n4)−|Q|p|T |

3
(1− p3)

(n3)−|T |p−|K(Q)∪K(T )|
2

,

where |G| is the number of edges in G. Let G \K(Q) be the graph obtained from G by removing the
edges of the graph K(Q). For each Q ⊆ H4(G), taking only the case that T ⊆ H3(G \K(Q)) yields
that

Pr[G(n,p4) = G]

Pr[G(n, p2) = G]
≥

∑

Q⊆H4(G)

p|Q|
4

(1− p4)
(n4)−|Q|p−|K(Q)|

2

∑

T⊆H3(G\K(Q))

p|T |
3

(1− p3)
(n3)−|T |p−|K(T )|

2
. (4)
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In the case that the expected number
(n
3

)

p3 = Θ(n3mp3) of artifact triangles is small, say p ≤ ε
nm1/3 ,

one may take T,Q = ∅ in the lower bound of (4) to obtain

Pr[G(n,p4) = G] ≥ Pr[G(n, p2) = G](1− p4)
(n4)(1− p3)

(n3),

and then (2) gives that

TV
(

G(n,p4), G(n, p2)
)

≤
∑

G∈G

Pr[G(n, p2) = G]
(

1− (1− p4)
(n4)(1− p3)

(n3)
)

= O(ε)

as
(n
3

)

p3 = Θ(n3mp3) = O(ε) and
(n
4

)

p4 = Θ(n4mp4) = O(ε). If m = nα for α > 6, then this holds for

all p ≤
(

3 logn
m

)1/2
since ε

nm1/3 ≥
(

3 logn
m

)1/2
, which essentially implies the result of [13].

We now assume that
ε

nm1/3
< p ≤

(3 log n

m

)1/2
.

For any set G∗ of graphs on V, using (2), we have that the total variation distance is at most

Pr[G(n, p2) /∈ G∗] +
∑

G∈G∗

(

Pr[G(n, p2) = G]−min
{

Pr[G(n,p4) = G],Pr[G(n, p2) = G]
}

)

.

Therefore it should be enough to consider the graphs G satisfying

|H3(G)| ≈

(

n

3

)

p3
2
and |H4(G)| ≈

(

n

4

)

p6
2
,

the exact meaning of which will be defined later.
We first give an intuition behind the proof that will be given later. Recalling (4), it turns out that

∑

T⊆H3(G\K(Q))

p|T |
3

(1− p3)
(n3)−|T |p−|K(T )|

2
≤

∑

t≥0

∑

T⊆H3(G)
|T |=t

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

<
∼

∑

t≥0

(
(n
3

)

p3
2

t

)

pt
3
(1− p3)

(n3)−tp−3t
2

. (5)

Since

(
(

n
3

)

p3
2

t

)

≤

(
(

n
3

)

t

)

p3t
2
, it follows that

∑

t≥0

(
(n
3

)

p3
2

t

)

pt
3
(1− p3)

(n3)−tp−3t
2

≤
∑

t≥0

(
(n
3

)

t

)

pt
3
(1− p3)

(n3)−t = 1.

Similarly,
∑

Q⊆H4(G)

p|Q|
4

(1− p4)
(n4)−|Q|p−|K(Q)|

2
<
∼ 1.

Therefore, the lower bound of (4) is close to 1 only when all the upper bounds are quite tight. In
particular, to have the inequality (5) tight, we need that |K(T )| = 3t for most collections T of t
triangles in G for t ≈

(n
3

)

p3 unless p2 is almost 1. If t is not close to
(n
3

)

p3 , then the summands
are small enough to be negligible. Note that |K(T )| = 3t means that there is no pair of triangles
in H3(n, p3) = T with a common edge. We consider two cases below depending upon whether the
expected number of pairs of artifact triangles Θ(

(n
4

)(m
2

)

p6) = Θ(n4m2p6) is small or not.
We will prove the following two lemmas, from which the main proposition easily follows. Recall

that ε = max
{

1
logn ,

1
log(m/n4)

}

and p
k
= 1− e−mpk(1−p)n−k

.
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Lemma 4.2. Suppose that

m ≫ n4 and
ε

nm1/3
< p ≤

ε

n2/3m1/3
.

Then

TV
(

G(n, p2 , p3 , p4), G(n, p2)
)

= O(ε).

Lemma 4.3. Suppose that

m ≫ n4 and
ε

n2/3m1/3
< p ≤

(3 log n

m

)1/2
.

Then

TV
(

G(n, p2 , p3 , p4), G(n, p2)
)

= O(ε).

(If m/n4 is too large, e.g., m = n5, then there is no such p, so the conclusion is trivially true. On the
other hand, if it is not too large, e.g., m = n4 log log n, then there are p satisfying the conditions.)

Before we prove Lemmas 4.2 and 4.3, three preliminary lemmas are introduced.

Lemma 4.4. For m ≫ n4 and ε
nm1/3 < p ≤ ε

n2/3m1/3 , suppose that a graph G on V satisfies

(i) |H3(G)| ≥ (1− δ)
(n
3

)

p3
2
, where δ := 1

ε

(

1−p2
n2p2

+
1−p2
n3p3

2

)1/2
,

(ii) the number I(G) of diamond graphs (i.e., K4 minus one edge) in G is at most n4p5
2
/ε.

Then the number of sets T such that T ⊆ H3(G), |T | = t and |K(T )| = 3t is at least

(1−O(ε))

(
(

n
3

)

t

)

p3t
2

for 0 ≤ t ≤ t0 :=
n3mp3

ε
,

where the constant in O(ε) is independent of G and t.

Proof. Let Xt(G) be the number of sets T such that T ⊆ H3(G), |T | = t and |K(T )| = 3t. We infer
that

Xt(G) ≥

(

|H3(G)|

t

)

− I(G)

(

|H3(G)|

t− 2

)

=

(

1−
t(t− 1)I(G)

(|H3(G)| − t+ 2)(|H3(G)| − t+ 1)

)(

|H3(G)|

t

)

≥

(

1−
t2
0
I(G)

(|H3(G)| − t0)
2

)(

|H3(G)|

t

)

.

Since |H3(G)| = Ω(n3p32) , we have that

t2
0

|H3(G)|
= O

(n3m2p6

ε2p32

)

= O
( n3

ε2m
+

n3m2p6

ε2

)

= O
(ε2

n

)

, (6)

where the second equality follows from p2 = Θ
(

mp2

1+mp2

)

and the third equality follows from p ≤ ε
n2/3m1/3 .

In particular |H3(G)| ≫ t0, and hence

Xt(G) ≥
(

1−
2t2

0
I(G)

|H3(G)|2

)

(

|H3(G)|

t

)

.

It is easy to check from (6) that

2t2
0
I(G)

|H3(G)|2
=

2I(G)

|H3(G)|
·

t2
0

|H3(G)|
= O

( n4p5
2

εn3p3
2

·
ε2

n

)

= O(ε)
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and
(

|H3(G)|

t

)

≥
(

1−
t0

|H3(G)|

)t0 |H3(G)|t

t!
≥

(

1−O
(ε2

n

)) |H3(G)|t

t!
≥ (1−O(ε))(1 − δ)t0

(
(n
3

)

t

)

p3t
2

as |H3(G)| ≥ (1− δ)
(n
3

)

p3
2
. Since p2 = Θ

(

mp2

1+mp2

)

and p ≤ ε
n2/3m1/3 yield

(δt0)
2 = O

(n4mp4

ε4
+

n3

ε4m

)

= O
((n4

m

)1/3
+

1

n

( n4

ε4m

))

= O(ε2), (7)

the desired lower bound for Xt(G) follows. �

The same argument gives the next lemma regarding H4(G).

Lemma 4.5. For m ≫ n4 and ε
n2/3m1/3 < p ≤

(

3 logn
m

)1/2
, suppose that a graph G on V satisfies

|H4(G)| ≥

(

1−
1

εn

)(

n

4

)

p6
2
.

Then the number of Q ⊆ H4(G) with |Q| = q and |K(Q)| = 6q is at least

(1−O(ε))

(
(

n
4

)

q

)

p6q
2

for 0 ≤ q ≤ q0 :=
n4mp4

ε
,

where the constant in O(ε) is independent of G and t.

Remark. The expected number of columns of the matrix R(n,m; p) with four or more 1’s is Θ(n4mp4).
The parameter q0 is chosen to be substantially, but not extremely, bigger than the expected number
Θ(n4mp4).

Proof. Let Yq(G) be the number of Q ⊆ H4(G) with |Q| = q and |K(Q)| = 6q. Observe that the

number of pairs of K4 in the complete graph on V sharing at least an edge is at most
(n
4

)(n
2

)(4
2

)

≤ n6.
Thus

Yq(G) ≥

(

|H4(G)|

q

)

− n6

(

|H4(G)|

q − 2

)

=
(

1−
q(q − 1)n6

(|H4(G)| − q + 2)(|H4(G)| − q + 1)

)

(

|H4(G)|

q

)

≥
(

1−
q20n

6

(|H4(G)| − q0)2

)

(

|H4(G)|

q

)

.

Since mp2 ≥ m
(

ε
n2/3m1/3

)2
= ε2

(

m
n4

)1/3
→ ∞, we have that p2 = 1− o(1) and

|H4(G)| ≥
(

1−
1

εn

)

(

n

4

)

p6
2
= (1− o(1))

(

n

4

)

.

Therefore q0 = n4mp4

ε = O(ε log2 n) implies that

q2
0
n6

(|H4(G)| − q0)
2
= O(ε),

and hence

Yq(G) ≥ (1−O(ε))

(

|H4(G)|

q

)

.

Since
q2
0

|H4(G)| = O
(

ε2 log4 n
n4

)

= O(ε) and
q0
εn = O

(

log2 n
n

)

= O(ε), we have that

(

|H4(G)|

q

)

≥
(

1−
q0

|H4(G)|

)q0 |H4(G)|q

q!
≥ (1−O(ε))

(

1−
1

εn

)q0
(
(n
4

)

q

)

p6q
2

≥ (1−O(ε))

(
(n
4

)

q

)

p6q
2
,
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which gives the desired lower bound for Yq(G). �

Lemma 4.6. For δ = 1
ε

(

1−p2
n2p2

+
1−p2
n3p3

2

)1/2
, let G3 be the set of all graphs G on V satisfying

|H3(G)| ≥ (1− δ)

(

n

3

)

p3
2

and I(G) ≤ n4p5
2
/ε,

recalling that I(G) denotes the number of diamond graphs as in Lemma 4.4, and let G4 be the set of
all graphs G in G3 satisfying

|H4(G)| ≥

(

1−
1

εn

)(

n

4

)

p6
2
.

Then for m ≫ n4 we have

Pr[G(n, p2) ∈ G3] = 1−O(ε) for
ε

nm1/3
< p ≤

(3 log n

m

)1/2

and

Pr[G(n, p2) ∈ G4] = 1−O(ε) for
ε

n2/3m1/3
< p ≤

(3 log n

m

)1/2
,

where the constants in O(ε) are independent of p.

Proof. For X3 := |H3(G(n, p2))|, Chebyshev’s inequality gives that

Pr
[

X3 < (1− δ)

(

n

3

)

p3
2

]

≤ Pr
[

|X3 − E[X3]| > δ

(

n

3

)

p3
2

]

≤
Var[X3]

δ2
(n
3

)2
p6
2

= O(ε2)

as E[X3] =
(n
3

)

p3
2
and Var[X3] = O

(

(n4p5
2
+ n3p3

2
)(1 − p2)

)

. Moreover, Markov’s inequality implies
that

Pr
[

I(G(n, p2)) >
n4p5

2

ε

]

≤ ε

since E [I(G(n, p2))] =
(n
4

)

6 · p5
2
≤ n4p5

2
. Therefore,

Pr[G(n, p2) /∈ G3] ≤ Pr
[

X3 < (1− δ)

(

n

3

)

p3
2

]

+ Pr
[

I(G(n, p2)) >
n4p5

2

ε

]

= O(ε).

Similarly, for X4 = |H4(G(n, p2))|, it is not hard to see that

E[X4] =

(

n

4

)

p6
2
and Var[X4] = O

(

n6
)

as p2 = 1− o(1) for p > ε
n2/3m1/3 , and Chebyshev’s inequality yields that

Pr
[

X4 <
(

1−
1

εn

)

(

n

4

)

p6
2

]

≤ Pr
[

|X4 − E[X4]| >
1

εn

(

n

4

)

p6
2

]

≤
ε2n2Var[X4]

(n
4

)2
p12
2

= O(ε2).

Therefore,

Pr[G(n, p2) /∈ G4] ≤ Pr[G(n, p2) /∈ G3] + Pr
[

X4 <
(

1−
1

εn

)

(

n

4

)

p6
2

]

= O(ε).

�

Now we prove the main lemmas.
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Proof of Lemma 4.2. Equality (2) and Lemma 4.6 imply that the total variation distance between
G(n,p4) and G(n, p2) is at most

Pr[G(n, p2) /∈ G3] +
∑

G∈G3

(

Pr[G(n, p2) = G]−min
{

Pr[G(n,p4) = G],Pr[G(n, p2) = G]
}

)

= O(ε) +
∑

G∈G3

(

Pr[G(n, p2) = G]−min
{

Pr[G(n,p4) = G],Pr[G(n, p2) = G]
}

)

.
(8)

Taking Q = ∅ in (4), we have that

Pr[G(n,p4) = G] ≥ Pr[G(n, p2) = G](1 − p4)
(n4)

∑

T⊆H3(G)

p|T |
3

(1− p3)
(n3)−|T |p−|K(T )|

2

= (1−O(ε)) Pr[G(n, p2) = G]
∑

T⊆H3(G)

p|T |
3

(1− p3)
(n3)−|T |p−|K(T )|

2

as
(n
4

)

p4 = Θ(n4mp4) = O(ε). For G ∈ G3, Lemma 4.4 gives that

∑

T⊆H3(G)

p|T |
3

(1− p3)
(n3)−|T |p−|K(T )|

2
≥

t0
∑

t=0

∑

T⊆H3(G)
|T |=t,|K(T )|=3t

pt
3
(1− p3)

(n3)−tp−3t
2

≥ (1−O(ε))

t0
∑

t=0

(
(

n
3

)

t

)

pt
3
(1− p3)

(n3)−t,

and

Pr[G(n,p4) = G]

Pr[G(n, p2) = G]
≥ (1−O(ε))

t0
∑

t=0

(
(

n
3

)

t

)

pt
3
(1− p3)

(n3)−t.

Since t0 = n3mp3/ε = Θ(n3p3/ε), Markov’s inequality yields that

t0
∑

t=0

(
(n
3

)

t

)

pt
3
(1− p3)

(n3)−t = 1− Pr
[

Bin
(

(

n

3

)

, p3

)

> t0

]

= 1−O(ε),

where Bin(n′, p′) is the binomial random variable with parameters n′ and p′. Therefore,

Pr[G(n,p4) = G] ≥ (1−O(ε)) Pr[G(n, p2) = G] for G ∈ G3,

which together with (8) implies that TV
(

G(n,p4), G(n, p2)
)

= O(ε), provided

m ≫ n4 and
ε

n2/3m1/3
< p ≤

(3 log n

m

)1/2
.

�

Proof of Lemma 4.3. As in the proof of Lemma 4.2, it follows from (2) and Lemma 4.6 that

TV
(

G(n,p4), G(n, p2)
)

≤ O(ε) +
∑

G∈G4

(

Pr[G(n, p2) = G]−min
{

Pr[G(n,p4) = G],Pr[G(n, p2) = G]
}

)

. (9)
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Let Q ⊆ H4(G), and we write G\Q for G\K(Q) for brevity. For G ∈ G4, the sum in the lower bound
of (4) restricted to the cases |T | ≤ t0 = n3mp3/ε and |Q| ≤ q0 = n4mp4/ε gives

Pr[G(n,p4) = G]

Pr[G(n, p2) = G]
≥

q0
∑

q=0

∑

Q⊆H4(G)
|Q|=q,|K(Q)|=6q

pq
4
(1− p4)

(n4)−qp−6q
2

t0
∑

t=0

∑

T⊆H3(G\Q)
|T |=t

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

.

Lemma 4.5 and Markov’s inequality imply that
q0
∑

q=0

∑

Q⊆H4(G)
|Q|=q,|K(Q)|=6q

pq
4
(1− p4)

(n4)−qp−6q
2

≥ (1−O(ε))

q0
∑

q=0

(
(

n
4

)

q

)

pq
4
(1− p4)

(n4)−q

= (1−O(ε))
(

1− Pr
[

Bin
(

(

n

4

)

, p4

)

> q0

])

= 1−O(ε),

where Bin(n′, p′) is a binomial random variable with parameters n′ and p′. Therefore,

Pr[G(n,p4) = G]

Pr[G(n, p2) = G]
≥ (1−O(ε)) min

Q⊆H4(G)
|Q|≤q0

t0
∑

t=0

∑

T⊆H3(G\Q)
|T |=t

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

. (10)

For T ⊆ H3(G), let I∗(T ) be the number of pairs of distinct triangles in T with a common edge.
(It is a bit different from the definition I(·) in Lemma 4.4.) For an edge e, let dT (e) be the number of
triangles in T which contain e. Then

3|T | − |K(T )| =
∑

e:dT (e)≥2

(dT (e)− 1) ≤
∑

e:dT (e)≥2

(

dT (e)

2

)

= I∗(T ).

For a fixed Q ⊆ H4(G) with |Q| ≤ q0 , we will show that the number of T ⊆ H3(G \ Q) with
|T | = t ≤ t0 = n3mp3/ε and I∗(T ) ≤ r := n4m2p6/ε3 is at least

(1−O(ε))

(
(n
3

)

t

)

p3t
2
. (11)

Then
t0
∑

t=0

∑

T⊆H3(G\Q)
|T |=t

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

≥

t0
∑

t=0

∑

T⊆H3(G\Q)
|T |=t,I∗(T )≤r

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

≥ (1−O(ε))pr
2
·

t0
∑

t=0

(
(

n
3

)

t

)

pt
3
(1− p3)

(n3)−t

≥ (1−O(ε))pr
2
,

where the last inequality follows from Markov’s inequality. Since pr
2
= (1 − e−mp2(1−p)n−2

)r ≥ 1 −

O(re−mp2) and

re−mp2 =
n4m2p6

ε3
e−mp2 =

n4

ε3m
· (mp2)3e−mp2 = O(ε),

we have that pr
2
= 1−O(ε) and

t0
∑

t=0

∑

T⊆H3(G\Q)
|T |=t

pt
3
(1− p3)

(n3)−tp−|K(T )|
2

≥ 1−O(ε).

This together with (10) and (9) completes the proof of Lemma 4.3.
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It remains to prove (11). For t ≤ t0, we take the uniform random collection R = R(t) of triangles
that is equally likely to be T for every T ⊆ H3(G \ Q) with |T | = t. In other words, for every
T ⊆ H3(G \Q) with |T | = t,

Pr[R = T ] =

(

|H3(G \Q)|

t

)−1

.

Since the number of sets T ⊆ H3(G\Q) with |T | = t containing a diamond graph is less than or equal

to I(G)
(|H3(G\Q)|

t−2

)

, we have that

E[I∗(R)] ≤ I(G)

(

|H3(G \Q)|

t− 2

)(

|H3(G \Q)|

t

)−1

≤
I(G)t20

(|H3(G \Q)| − t0)
2 ,

where I(G) is defined in Lemma 4.4. For G ∈ G4, since K(Q) has at most 6|Q| ≤ 6q0 = 6n4mp4

ε =

O(ε log2 n) edges and each edge in G is contained in at most n triangles in H3(G),

|H3(G \Q)| ≥ |H3(G)| − 6q0n = |H3(G)| −O(εn log2 n) = Θ(n3). (12)

As t0 = n3mp3

ε ≪ n3 and I(G) ≤ I(Kn) = 6
(n
4

)

≤ n4,

E[I∗(R)] = O
(I(G)t20

n6

)

= O
( t2

0

n2

)

= O
(n4m2p6

ε2

)

and Markov’s inequality gives that

Pr [I∗(R) > r] ≤
ε3E[I∗(R)]

n4m2p6
= O(ε).

The number Z of T ⊆ H3(G \Q) with |T | = t and I∗(T ) ≤ r satisfies

Z = (1−O(ε))

(

|H3(G \Q)|

t

)

.

Now we estimate
(|H3(G\Q)|

t

)

. Since G ∈ G4 and p2 = 1− o(1), it is obtained similarly to (12) that

|H3(G \Q)| ≥ |H3(G)| − 6q0n =
(

1− δ −O
( q0
n2

))

(

n

3

)

p3
2
,

and then
(

|H3(G \Q)|

t

)

≥
(

1− δ −O
( q0
n2

))t0
(

1−O
( t0
n3

))t0

(

n
3

)t

t!
p3t
2

≥
(

1− t0δ −O
(t0q0
n2

))(

1−O
( t2

0

n3

))

(
(n
3

)

t

)

p3t
2
.

As in (7), δt0 = O(ε), and it is easy to check that

t0q0
n2

=
n5m2p7

ε2
= O

(n5 log7/2 n

ε2m3/2

)

= O(ε) and
t20
n3

=
n3m2p6

ε2
= O

(n3 log3 n

ε2m

)

= O(ε).

Therefore, we have that

Z = (1−O(ε))

(

|H3(G \Q)|

t

)

≥ (1−O(ε))

(
(

n
3

)

t

)

p3t
2
.

This completes the proof of (11). �
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5. total variation distance between G(n, p2) and G(n, p̂)

For the random graphs G(n,m; p), G(n, (p
k
)), G(n, p2 , p3 , p4) and G(n, p2), we have so far considered

the total variation distance between the consecutive pairs of them. Finally, a good upper bound for
the total variation distance between G(n, p2) and G(n, p̂) easily follows from an upper bound for the
total variation distance between two binomial distributions Bin(N, p) and Bin(N, q). As a corollary
of Theorem 2.2 in [19], we may have

Corollary 5.1. Let N be a positive integer, and p and q be real numbers satisfying 0 < p < q < 1.

For δ satisfying (q − p)N = δ
√

p(1− p)N , i.e., δ = (q − p)
√

N
p(1−p) , we have

TV
(

Bin(N, p),Bin(N, q)
)

≤ δ + 3δ2.

Recalling p2 = 1 − e−mp2(1−p)n−2
, p̂ = 1 − (1 − p2)m and ε = max

{

1
logn ,

1
log(m/n4)

}

, we have the last

inequality needed.

Corollary 5.2. Suppose that m ≫ n4 and p ≤
(

3 logn
m

)1/2
. Then

TV
(

G(n, p2), G(n, p̂)
)

= O(ε).

Proof. Let p =
√

c
m for 0 < c ≤ 3 log n. Since p2 = Θ

(

mp2

1+mp2

)

= Θ
(

c
1+c

)

and

p̂− p2 = e−mp2(1−p)n−2
− em log(1−p2) ≤ e−mp2(enmp3 − e−mp4) = O(nmp3e−mp2),

we have that

(p̂ − p2)

√

(n
2

)

p2(1− p2)
= O

( n2mp3

emp2
√

p2(1− p2)

)

= O
((n4

m

)1/2 c(1 + c)

ec

)

= O(ε).

Therefore, Corollary 5.1 implies that

TV
(

G(n, p2), G(n, p̂)
)

≤ TV
(

Bin
(

(

n

2

)

, p2

)

,Bin
(

(

n

2

)

, p̂
))

= O(ε).

�

6. Concluding remark

Fill, Scheinerman and Singer-Cohen [13] showed that the total variation distance between G(n,m; p)
and G(n, p̂) tends to 0 for m = nα, α > 6. In this paper, we improve the result. Namely, the total
variation distance still goes to 0 for m ≫ n4. If m ≫ n4 then the expected number of pairs of artifact
triangles with a common edge is small enough, or both of the two random graphs are complete graphs
with high probability. This is the main ingredient of the proof of Theorem 1.2.

Our result naturally gives rise to the question whether the condition m ≫ n4 is tight. We initially
believed that the total variation distance between G(n,m; p) and G(n, p̂) is not close to 0 if m is
smaller than n4. However, the more we try to prove it, the more we feel that our initial belief is
baseless. It would not be extremely surprising even if the total variation distance tends to 0 for some
m much less than n4.
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