
ar
X

iv
:1

60
5.

06
07

2v
2

 [
cs

.D
S]

 1
0

Ja
n

20
17

ONLINE PURCHASING UNDER UNCERTAINTY

ALAN FRIEZE AND WESLEY PEGDEN

Abstract. Suppose there is a collection x1, x2, . . . , xN of independent uniform [0, 1] ran-
dom variables, and a hypergraph F of target structures on the vertex set {1, . . . , N}. We
would like to purchase a target structure at small cost, but we do not know all the costs xi

ahead of time. Instead, we inspect the random variables xi one at a time, and after each
inspection, choose to either keep the vertex i at cost xi, or reject vertex i forever.

In the present paper, we consider the case where {1, . . . , N} is the edge-set of a complete
graph (or digraph), and the target structures are the spanning trees of a graph, spanning
arborescences of a digraph, the paths between a fixed pair of vertices, perfect matchings,
Hamilton cycles or the cliques of some fixed size.

1. Introduction

Suppose we inspect independent and uniform [0, 1] random variables x1, x2, . . . , xN one at a
time. After each ith inspection, we decide to pay the cost xi to purchase the index i, or pass.
If we must purchase some i, what is the minimum expected cost of an optimal strategy? This
problem is closely related to the well-studied and well-generalized secretary problem (see for
example [8], [2] and [16]), and is attributed by Ferguson [10] to Cayley [5]. It was solved by
Moser [19]. (In Section 3, we will see that an optimum strategy pays asymptotically 2

N
in

expectation.)

The focus of the present paper concerns the more general problem, where we must purchase
not just one i, but a set I belonging to some target hypergraph F on the vertex set {1, . . . , N}.
We query the costs xi in some order, and since we imagine that querying xi makes its
availibility unstable in some way, we must again decide on each step whether to purchase
the queried xi, or pass on xi forever. We are interested in the minimum expected cost paid
by an optimal algorithm which always succeeds at purchasing every element of at least one
hyper-edge of F , which we call the purchase price of F .

Presumably, the order in which the xi’s are examined should have a large effect on the
expected price paid for structures. We will in fact concern ourselves with three distinct
models, in which we have progressively less control over the order of inspection.

Purchaser Ordered Online Model – POM: In this model, at each step, we are allowed
to inspect any uninspected xi to see if we wish to purchase it. It is therefore an on-line
model where we choose the order of the items.

Research supported in part by NSF Grants DMS1362785, CCF1522984 and a grant(333329) from the
Simons Foundation.

Research supported in part by NSF grant DMS1363136.
1

http://arxiv.org/abs/1605.06072v2

2 ALAN FRIEZE AND WESLEY PEGDEN

Randomly Ordered Online Model – ROM: In this model the xi are presented to us in
random order xi1 , . . . , xiN . At each step t we learn the index it and the associated cost xit ,
and must decide immediately whether or not to purchase ei.

Adversarially Ordered Online Model – AOM In this model, the order of inspections is
determined by an adaptive adversary. (The adversary does not know the costs of uninspected
xi’s.)

Note that when evaluating the purchase price of F , the expected cost is computed just over
a probability space of weights for POM and AOM, but in a product space of weights and
edge-orderings, for ROM.

Surprisingly, for the problems we consider, we achieve have upper bounds in ROM which are
close to our POM lower bound. In particular, the effect of optimum control over the order of
inspection (versus random order) is small for these problems. We will also show that some
of the upper bounds in ROM can also be achieved even in AOM. On the other hand, there
will be cases where there is a substantial gap between what can be achieved in these models.

For most of the paper xi will be the cost of the edge ei of the complete graph (or digraph)
on n vertices, in which case N =

(
n
2

)
(or n(n− 1)). Each hyper-edge of F will correspond to

a particular desired graphical structure. As an example, suppose that the hyper-edges of F
correspond to the edge-sets of paths between vertices 1 and 2. A minimum cost hyper-edge
of F corresponds to a shortest path between vertices 1 and 2 in Kn. We know that w.h.p.1

this is asymptotically logn
n

[17]. We will prove (see Theorem 1.3) that even in the POM
framework, an optimal strategy to purchase such a path pays much more in expectation.

We will begin our discussion though with something closely related to the famous “secretary
problem”. In section 3 we consider the particularly simple case of determining the purchase
price ρN,k where F is the complete k-uniform hypergraph on N vertices; in other words,
the task is simply to purchase any k items. (Note that the Sn symmetry of the hypergraph
means that POM and ROM are equivalent for this hypergraph.) This case will arise as a
tool in many of our more complicated analyses. We call this the k-purchase problem.

Theorem 1.1. For k ≥ 1 we have

(1) ρN,k ≈
ck
N

where c1 = 2 and ck = ck−1 + 1 +
√

1 + 2ck−1 for k ≥ 2.

Here we use the notation an ≈ bn to indicate that limn→∞ an/bn = 1.

The following corollary will be needed in the proof of Theorem 1.9. We only need it for
k = 1, although we claim it for arbitrary k.

Corollary 1.2. If we replace uniform [0, 1] by a distribution that has a density f(x) =
Dx+ o(x) as x → 0 then we simply replace ck

N
by Dck

N
.

With these tools available, we examine the cost of finding a shortest path between two
specified vertices.

1A sequence of events En, n = 1, 2, . . . is said to occur with high probability (w.h.p.) if limn→∞ Pr(En) = 1.

ONLINE PURCHASING UNDER UNCERTAINTY 3

Theorem 1.3. The POM and ROM purchase prices of a path between vertices 1 and 2 in

Kn are both n−2/3±o(1). The AOM price is Ω(n−1/2).

This stands in stark contrast to the length ≈ logn
n

we could achieve if we were allowed to
examine all the edges ahead of time.

A similarly stark increase in cost occurs when we aim for the seemingly simple target of a
triangle. Although for arbitrary ω → ∞, a uniform [0, 1] weighting of Kn has a triangle of
cost O

(
ω
n

)
, w.h.p., we prove:

Theorem 1.4. The POM and ROM purchase prices of a triangle in Kn are both n−4/7±o(1).

The AOM price is Ω(n−1/2).

We can generalize the ROM upper bound in Theorem 1.4 to the problem of purchasing a
copy of a clique Kr. We will prove that if κROM

r,n is the expected cost of purchasing a copy of
Kr, r ≥ 3 in ROM, then

Theorem 1.5.

κROM
r,n ≤ O

(
1

ndr+o(1)

)

d3 =
4
7
, d4 =

2
9
and dr =

1
11·2r−5−1

, i ≥ 5.

We note that the distribution of the minimum cost of a clique when are allowed to examine
all the edges is of the order n−2/(k−1), see [14].

Despite these examples, purchasing a structure in our model is not always so prohibitively
costly, compared with the minimum weight structure available. In particular, recall that the
minimum cost spanning tree for a uniform [0, 1] weighting of Kn has asymptotic length ζ(3)
w.h.p. [11]

Theorem 1.6. Let βPOM
n , βROM

n be the purchase price of a spanning tree in the POM and

ROM models, respectively. Then, for n large, we have

ζ(3) < 1.38 ≤ βPOM

n ≤ βROM

n < 2ζ(3).

Furthermore, the AOM price is O(1).

We will give a short proof that βPOM
n ≥ 1.25 in Section 7.1.2. The bound βPOM

n ≥ 1.38 is
due to prior work of Aldous, Angel and Berestycki [1] which is incomplete. (Although their
paper considers the ROM problem, the proof of their lower bound is valid for βPOM

n also.)
We have included a sketch of their proof in Section 7.1.3.

For our next result, let us consider the setting where F is the hypergraph of perfect matchings
on the edge-set of the complete bipartite graph Kn,n.

Theorem 1.7. Letting µPOM
n , µROM

n , µAOM
n be the POM, ROM and AOM purchase prices of

perfect matchings on Kn,n, we have

2 . µPOM

n ≤ µROM

n . µAOM

n . 4c3,

4 ALAN FRIEZE AND WESLEY PEGDEN

where c3 is as in Theorem 1.1. Here a . b denotes a ≤ (1 + o(1))b.

After this we turn to the non-bipartite case.

Theorem 1.8. If νPOM
n , νROM

n , νAOM
n are the POM, ROM and AOM purchase prices of a

perfect matching in Kn, we have

2 . νPOM

n ≤ νROM

n . νAOM

n . 4c3.

We can also purchase a Traveling Salesperson tour at constant expected cost:

Theorem 1.9. If hPOM
n , hROM

n , hAOM
n are the POM, ROM and AOM purchase prices of a

Hamilton cycle in Kn, then

c2 . hPOM

n ≤ hROM

n . hAOM

n . 200.

In Theorems 1.6, 1.7, 1.8, 1.9, we prove the purchase prices are Θ(1), but we do not determine
an asymptotic constant. In our final example, we can determine such a constant.

In particular, we consider the case where the underlying set of F is the set of n(n − 1)

directed edges in the complete digraph ~Kn, and the target sets are the arborescences ; i.e.,
directed rooted spanning trees, such that every edge is oriented towards the root.

Theorem 1.10. If αPOM
n , αROM

n are the POM and ROM purchase prices of an arborescence

in ~Kn, then

lim
n→∞

αPOM

n = lim
n→∞

αROM

n = 2.

Furthermore, in the AOM model we can w.h.p. construct an arborescence of cost O(1).

Note that the w.h.p result does not necessarily imply an O(1) purchase price for the arbores-
cence in the AOM model. An interesting open question is whether limn→∞ αAOM

n = 2 as
well.

As a final result, we prove w.h.p results for the Traveling Salesperson Problem (TSP) on the

complete digraph ~Kn. Again, it is not clear that this implies results for the purchase price
(expected value).

Theorem 1.11. In the directed case of the TSP we have that w.h.p.

4 . HPOM

n ≤ HROM

n . HAOM

n . 4c2,

where Hmodel is the cost of the tour we can find w.h.p in the model.

2. Preliminaries

For reference we use the following: Let B(n, p) denote the binomial random variable with
parameters n, p. Then for 0 ≤ ε ≤ 1 and α > 0, we have the following Chernoff bounds:

Pr(B(n, p) ≤ (1− ε)np) ≤ e−ε2np/2.(2)

Pr(B(n, p) ≤ (1 + ε)np) ≤ e−ε2np/3.(3)

ONLINE PURCHASING UNDER UNCERTAINTY 5

We will also make use of a simple application of the Azuma-Hoeffding martingale tale in-
equality, often referred to as McDiarmid’s inequality [18]. Let Z = Z(Y1, Y2, . . . , YN) where
Y1, Y2, . . . , YN are independent random variables. Suppose that if Y = (Y1, Y2, . . . , YN) and
Y′ = (Y ′

1 , Y
′
2 , . . . , Y

′
N) differ in only one coordinate that |Z(Y)− Z(Y′)| ≤ c. Then for any

u > 0 we have

(4) Pr(|Z −EZ| ≥ u) ≤ 2 exp

{
− u2

2Nc2

}
.

3. Purchasing any k items

The symmetry of the k-uniform hypergraph means that the order in which we inspect the
variables xi is irrelevant. Thus, we suppose they are simply given in some fixed order
xN , xN−1, . . . , x1. In other words, in this context, there is essentially no difference between
any of the three models under consideration. At step i (beginning with i = N), we examine
xi, and either accept i and pay xi, or reject i and continue to step i − 1. The process ends
after k acceptances. Note that since we are required to purchase k items, we will have to pay
all of xℓ, xℓ−1, . . . , x1 to accept ℓ, . . . , 1 if only k− ℓ items have been accepted before index ℓ
is reached.

Our goal is to minimize the expected total cost; we denote this expected value by ρN,k.

3.1. The case k = 1. We write ρN := ρN,1 for the expected cost in this case. When we
inspect xN , an optimum strategy to minimize our total expected cost is to accept xN if and
only if xN < ρN−1, since ρN−1 is the expected cost when we reject xN . This simple dynamic
will allow us to prove the case k = 1 of Theorem 1.1 by analyzing the process recursively.

Proof. Let Z denote the cost of the element selected by the optimal strategy so that ρN =
E(Z). Then we have the following recurrence:

ρN = E(Z | xN ≤ ρN−1)Pr(xN ≤ ρN−1) + E(Z | xN > ρN−1)Pr(xN > ρN−1)(5)

=
ρ2N−1

2
+ ρN−1(1− ρN−1)

= ρN−1

(
1− ρN−1

2

)
.(6)

We can now easily get an upper bound on ρN by induction. Clearly, ρ1 = 1/2 and if
ρN−1 ≤ 2/N for some N > 1 then we see from (6) that,

ρN ≤ 2

N

(
1− 1

N

)
≤ 2

N + 1
.

For a corresponding lower bound let εN = A/N where A = 10 suffices. We have checked
numerically that ρN ≥ 2(1 − εN−1)/(N − 1) for N ≤ 3(A + 1) = 33. Now assume that
N ≥ 3(A + 1) and ρN−1 ≥ 2(1 − εN−1)/(N − 1). Then, because x(1 − x/2) increases

6 ALAN FRIEZE AND WESLEY PEGDEN

monotonically in [0, 1],

ρN ≥ 2(1− εN−1)

N − 1
− (1− εN−1)

2

(N − 1)2

=
2(1− εN)

N
+

2(εN − εN−1)

N − 1
+

2(1− εN)

N(N − 1)
− (1− εN−1)

2

(N − 1)2

=
2(1− εN)

N
− 2A

N(N − 1)2
+

2(N −A)

N2(N − 1)
− (N − 1−A)2

(N − 1)4

≥ 2(1− εN)

N
− 2A

N(N − 1)2
+

2(N − A)

N2(N − 1)
− (N − A)2

N2(N − 1)2

=
2(1− εN)

N
+

N2 − 2(A+ 1)N − (A2 − 2A)

N2(N − 1)2

≥ 2(1− εN)

N
,

since N ≥ 3(A+ 1). �

3.2. The case k ≥ 2. We now complete the proof of Theorem 1.1.

Proof. We replace (5) by

ρk,N = E (min {xN + ρk−1,N−1, ρk,N−1})

= E (xN + ρk−1,N−1 | xN < ρk,N−1 − ρk−1,N−1)Pr(xN < ρk,N−1 − ρk−1,N−1)

+ ρk,N−1Pr(xN ≥ ρk,N−1 − ρk−1,N−1)

=

(
ρk,N−1 − ρk−1,N−1

2
+ ρk−1,N−1

)
(ρk,N−1 − ρk−1,N−1) + ρk,N−1(1− (ρk,N−1 − ρk−1,N−1))

= ρk,N−1 −
(ρk,N−1 − ρk−1,N−1)

2

2
.

(7)

Suppose inductively that ρk,N−1 ≤ ck
N
, ρk−1,N−1 ≤ ck−1

N
. Then, (7) and ρk,N−1 ≥ ρk−1,N−1

implies that

ρk,N = ρk,N−1

(
1− ρk,N−1

2
+ ρk−1,N−1

)
−

ρ2k−1,N−1

2
(8)

≤ ck
N

− (ck − ck−1)
2

2N2

≤ ck
N + 1

+
2ck − (ck − ck−1)

2

2N2

=
ck

N + 1
.

ONLINE PURCHASING UNDER UNCERTAINTY 7

Here the form of (8) implies that we should put ρk,N−1, ρk−1,N−1 at their upper bounds to
maximize the RHS.

For a lower bound, let εN = 1/N1/2 and assume inductively that

ρk,N−1 ≥ (1− εN−1) ck/(N − 1), ρk−1,N−1 ≥ (1− εN−1) ck−1/(N − 1).

We will first prove that

(9) ρk,k =
k

2
≥
(
1− 1

k1/2

)
ck
k

for k ≥ 2, which will allow us a base for our induction.

If we let 1 + 2ck = d2k then (1) implies that

(10) d2k = 1 + 2ck = 1 + 2(ck−1 + 1 + dk−1) = d2k−1 + 2dk−1 + 2 = (dk−1 + 1)2 + 1.

Since d1 > 1, this implies that

dk > k.

On the other hand, (10) and (1 + x)1/2 ≤ x1/2 + 1
2x

implies that

dk ≤ dk−1 + 1 +
1

2(dk−1 + 1)2
≤ dk−1 + 1 +

1

2k2
.

It follows from this that

dk ≤ k +

∞∑

r=1

1

2r2
< k + 1 which implies that ck ≤

k2

2

(
1 +

2

k

)
.

We can see therefore that (9) holds if
(
1 + 2

k

) (
1− 1

k1/2

)
≤ 1. This holds for k ≥ 2 and the

proof of (9) is complete.

We now use induction on N with N = k as the base case. Referring to (7), the function
f(x, y) = x− (x− y)2/2 is monotone increasing in x for x ≤ 1 + y and in y for y ≤ x. Thus
we can substitute our lower bounds for ρk,N−1 and ρk−1,N−1 and use 2ck = (ck− ck−1)

2 to get

ρk,N ≥ (1− εN−1)
ck

N − 1
− (1− εN−1)

2

2(N − 1)2
(ck − ck−1)

2

= (1− εN−1)
ck

N − 1
− (1− εN−1)

2ck
(N − 1)2

=
(1− εN)ck

N
+

(εN − εN−1)ck
N

+
(1− εN−1)ck
N(N − 1)

− (1− εN−1)
2ck

(N − 1)2

=
(1− εN)ck

N
+ ckg(N),

8 ALAN FRIEZE AND WESLEY PEGDEN

where

g(x) =

√
1/x−

√
1/(x− 1)

x
+

1−
√
1/(x− 1)

x(x− 1)
− (1−

√
1/(x− 1))2

(x− 1)2

=
1−

√
1 + 1

x−1

x3/2
+

(
1− 1√

x−1

x− 1

)(
1

x
−

1− 1√
x−1

x− 1

)

≥ − 1

2x3/2(x− 1)
+

(
√
x− 1− 1)(x−

√
x− 1)

x(x− 1)5/2

≥ x(2
√
x− 1− 5) + 2 +

√
x− 1

2x5/2(x− 1)

≥ 0 for x ≥ 7.

By direct evaluation ρk,N ≥ (1− εN)ck/N for 2 ≤ k < N ≤ 6. �

We will need the following estimates for ck as k grows:

Lemma 3.1. If k ≥ 1 then

k2

2
≤ ck ≤ 2k2.

Proof. c1 = 2 and then we inductively have for k > 1,

ck ≤ 1 + 2(k − 1)2 +
√

1 + 4(k − 1)2

= 1 + 2(k − 1)2 + 2(k − 1)

(
1 +

1

4(k − 1)2

)1/2

≤ 1 + 2(k − 1)2 + 2(k − 1)

(
1 +

1

8(k − 1)2

)

≤ 2k2 − 2k +
5

4
≤ 2k2.

This confirms the upper bound.

Similarly,

ck ≥ 1 +
(k − 1)2

2
+
(
1 + (k − 1)2

)1/2

≥ 1 +
k2

2
− k +

1

2
+ k − 1

≥ k2

2
.

�

ONLINE PURCHASING UNDER UNCERTAINTY 9

3.3. Purchasing at least one and two on average. In this section, we consider a peculiar
variant of the purchasing problem. In this variant, we consider uniform costs x1, . . . , xN as
before, and still must decide on the spot to accept or reject an index. Now, however, the
total number of accepted indices is not required to be fixed. Instead, as a random variable
(depending on the costs x1, . . . , xN), the number νN of accepted indices is required to satisfy:

(1) νN ≥ 1
(2) E(νN) = 2.

We call this the average-two-purchase problem and we consider this problem merely for
technical reasons; it will arise in our analysis of the purchase price of spanning trees in
Section 7.1.2. Let φN denote the minimum expected total cost of items purchased under
these constraints. (The minimum is taken over all strategies which ensure that νN satisfies
the two conditions above.)

Theorem 3.2.

φN &
2.5

N
.

Proof. The first item accepted must cost & 2/N in expectation, else we can improve the
upper bound for k = 1 in Theorem 1.1.

Let 1 ≤ T ≤ N be the random variable equal to the step on which the first item is accepted.
We are required to purchase, on average, one item from among xT+1, xT+2, . . . , xN ; let C
denote the optimum expected cost to do this. (C depends on the distribution of T .)

Evidently C is at least the optimum expected cost to purchase an average of one item from
x1, . . . , xN , and an optimum strategy for this task is to accept any item seen which has cost
≤ 1

N
. Indeed, this strategy accepts an average of exactly one item, and each rejection of an

item of cost ≤ 1
N

requires that the strategy is modified to sometimes accept some items of
cost greater than 1

N
to compensate; so that the expected total cost 1

2N
can only be increased.

Thus C ≥ 1
2N

, and consequently,

φN &
2

N
+

1

2N
.

�

3.4. Proof of Corollary 1.2. Using ρ̂k,N to denote the expected minimum cost in this
context, we write

ρ̂k,N =

(
ρ̂k,N−1 − ρ̂k−1,N−1

2
+ ρ̂k−1,N−1

)(
D(ρ̂k,N−1 − ρ̂k−1,N−1) +O

(
k

N

))

+ ρ̂k,N−1

(
1−D(ρ̂k,N−1 + ρ̂k−1,N−1) +O

(
k

N

))
.

We then carry out the analysis of Section 3.2 with ρN,k replaced byDρ̂N,k, making adjustment
for the error terms.

10 ALAN FRIEZE AND WESLEY PEGDEN

4. Shortest Paths

In this section, we prove Theorem 1.3. We again contrast this with the fact that Janson [17]
proved that offline, the shortest distance is ≈ logn

n
w.h.p.

4.1. Upper Bound. We compute our upper bound in the ROM model. Let α = 2/3 and
k = 1/ log log n. We partition the edge set of Kn into X, Y, Z where X is the first N/3
edges and Y is the next N/3 edges and Z is the final N/3 edges in the given order. Then
partition X into X1, X2, . . . , Xk where each set is of size N/(3k) and where Xi+1 follows Xi

in the random order. Similarly partition Y into Y1, Y2, . . . , Yk. Next let p = n−1+α/k. Now
let G(Xi) denote the graph induced by edges in Xi that are of cost at most p, i = 1, 2, . . . , k.
Define G(Yi), i = 1, 2, . . . , k similarly, as well as G(Z).

Let S0 = {1} and S ′
1 be the set of neighbors of vertex 1 in G(X1). We can determine S ′

1 in the
ROM model. Let ε = n−α/3k and S1 be the first (1 − ε)nq members of S ′

1, where q = p/3k,
assuming that there are at least this many neighbors. Observe that |S ′

1| is distributed as
Bin(n− 1, q) and so from the Chernoff bound (2) we see that for ℓ = 1 we have

(11) Pr(|S ′
ℓ| ≤ ((1− ε)nq)ℓ) ≤ exp

{
− nq

3n2α/3k

}
= o(n−3).

We now inductively define sets Sℓ of size ((1 − ε)nq)ℓ for ℓ = 2, . . . , k. Given Sℓ, we let

S ′
ℓ+1 be the set of vertices not in S≤ℓ =

⋃ℓ
i=1 Si which are neighbors of Sℓ in G(Xℓ+1). Now

|S ′
ℓ+1| is distributed as the binomial Bin(n − m1, (1 − (1 − q)m2), where m1 = |S≤ℓ| and

m2 = |Sℓ|. Then since (1 − q)m2 ≤ 1 −m2q + (m2q)
2 we see that |S ′

ℓ+1| has expectation at

least (n −m1)m2q(1 −m2q)/3k. Putting 1 − δ = (1−ε)nqm2

(n−m1)m2q(1−m2q)
≤ 1 − ε/2 (using ℓ < k)

we again see from (2) that (11) holds with ℓ replaced by ℓ + 1. In which case we, can let
Sℓ+1 be the first ((1 − ε)nq)ℓ+1 members of S ′

ℓ+1. This completes the induction and we see
that the construction of S1, S2, . . . , Sk succeeds with probability 1− o(n−3).

Let Eℓ be a set of |Sℓ+1| edges joining Sℓ to Sℓ+1 in Γα. Let T be the tree with vertex set⋃k
i=1 Sℓ and edge set

⋃k−1
ℓ=1 Eℓ.

T can be constructed in our model. We simply check the edges between Sℓ and [n] \ S≤ℓ as
we see them and accept edges if they (i) have cost at most p, and (ii) connect Sℓ to a new
vertex, (iii) we have accepted fewer than ((1 − ε)nq)ℓ+1 edges of this sort. The cost of the
edges of T will be

O((nq + (nq)2 + · · ·+ (nq)k)p) = O(nα+α/k−1).

If n ∈ T then we are done. Otherwise we build a corresponding tree rooted T ′ rooted at n.

Because |Sk|, |S ′
k| ≥

(
1−ε
3k

)k
nα = nα−o(1) w.h.p., we see that w.h.p. there will be at least

|Sk||S ′
k|/4 edges joining Sk, S

′
k in G(Z). Then, with failure probability at most(

1− (logn)2

|Sk||S′

k|

)|Sk||S′

k|/4
= o(n−3) we can find an edge in Z between Sk and S ′

k of cost at most

(log n)2/|Sk| |S ′
k| = O(n−2α+o(1)). Putting things together, we get a total cost of

O(nα+α/k−1) +O(n−2α) = O(n−2/3+O(1/k)),

with probability 1− o(n−3).

ONLINE PURCHASING UNDER UNCERTAINTY 11

We have explained the algorithm in terms of events that happen w.h.p. To get a bound on
expectation, we have to also deal with the unlikely cases. So, we always check to see that the
next edge to be considered is essential for connecting vertex 1 to vertex n. if it is, we take
this edge and an arbitrary path P joining these two vertices. The cost of P is at most n and
we need to construct it only with probability o(n−3). This adds o(n−2) to the expectation
and completes our proof of the upper bound.

4.2. Lower Bound – POM. We now compute a lower bound in the POM model. Consider
an algorithm for finding a short path from vertex 1 to vertex n. We let C1(t) and C2(t) be the
components of the purchased graph at step t which contain the vertices 1 and n, respectively.
(Thus, for each t, C1(t) and C2(t) are random variables depending on x1, . . . , x(n2)

.

Observe that any algorithm which finds a path from 1 to n finishes its task by choosing
an edge e∗ from C1(t) to C2(t) for some step t. We will thus analyze the cost of building
components C1(t) and C2(t) in terms of their size, and also the cost of the final edge e∗. We
begin by considering the cost of e∗.

Cost of e∗: To bound the cost of e∗ from below, we will even give the algorithm extra infor-
mation, revealing the costs of all edges between C1(t) and C2(t) as soon as their endpoints
belong to the respective components; in particular, we will assert that even the minimum
cost edge between these two sets is not too small. As such, from the standpoint of choosing
an inexpensive e∗, we view the algorithm’s task as simply producing by time t0 components
C1(t0), C2(t0) between which there exists an edge e∗ of small cost.

We thus let e1, e2, . . . , eℓ = e∗ be a sequence of edges consisting of all edges between C1(t0)
and C2(t0), ordered such that if ei appears before ej (in the sense that ei but not ej joins
the sets C1(t) and C2(t) for some t) then i < j. This is a sequence of independent (and
unconditioned) uniform [0, 1] random variables. We will simply argue that no term ej in this
sequence can be much less than 1

j
.

Indeed, for any sequence ξ1, ξ2, . . . , of independent uniform [0, 1] random variables, we have
for any n that

(12) Pr

(
∃k : kξk ≤

1

(logmax {k, n})2
)

≤
∞∑

k=1

1

k(logmax {k, n})2 = O

(
1

log n

)
.

Thus w.h.p. we have that the minimum mℓ = minj≤ℓ{ej} satisfies

(13) mℓ ≥
1

ℓ log2 n
≥ 1

|C1(t0)||C2(t0)|(logn)2
.

Cost of C,C ′: For this we argue that if Em denotes the event that there is a sub-tree of Kn

with at least m ≫ logn vertices and total cost ≤ m/3n then

(14) Pr(Em) ≤
∑

k≥m

(
n

k

)
kk−2 (m/3n)k−1

k!
≤ 3n

m

∑

k≥m

1

k2

(me

3k

)k
= O

(
nem

3mm3

)
= o(1).

12 ALAN FRIEZE AND WESLEY PEGDEN

Explanation: We choose our tree of Kn with k vertices in
(
n
k

)
kk−2 ways. Then we use the

fact that if η1, η2, . . . , ηM are independent [0, 1] random variables and ζ ≤ 1 then Pr(η1 +
η2 + · · ·+ ηM ≤ ζ) = ζM/M !.

It follows from (13) and (14) that w.h.p. the algorithm must pay at least

min
ab≥n1/2

{
1

ab(log n)2
+

a+ b

3n

}
= Ω

(
1

n2/3(log n)2

)
.

Here a = |C|, b = |C ′| and we minimize over ab ≥ n1/2, say, because if ab ≤ n1/2 then we
already pay n−1/2−o(1) in expectation from (13).

4.3. Lower Bound – AOM. We now compute a lower bound in the AOM model. Our
strategy is to place the edges X incident with vertices 1, n last in the sequence. Suppose
now that after we have seen all edges except those in X we have purchased components
C1, C2, . . . , Cm in the subgraph induced by the vertices [2, n − 1]. The expected cost of
purchasing an edge between 1 and Cj is at least (2 − o(1))/|Cj|, by Theorem 1.1. We can
assume therefore that at least one component is of size at least n1/2. But then we have that
w.h.p.

every tree of size n1/2 has cost at least 1/10n1/2.

Indeed, let k = n1/2 and Cn = 1/10n1/2. Then, if p(T) denotes the price of tree T ,

Pr(∃T : p(T) ≤ Cn) ≤
(
n

k

)
kk−2 Ck−1

n

(k − 1)!
≤ 1

Cnk

(
ne2Cn

k

)k

= o(1).

Explanation: The factor Ck−1
n

(k−1)!
is the probability that the sum of k−1 independent uniform

[0, 1] random variables is at most Cn.

It follows that it costs at least (1 − o(1))/10n1/2 in expectation to purchase a path from 1
to n in the AOM model.

This completes the proof of Theorem 1.3.

5. Triangles and Paths of Length Two

In this section, we prove Theorem 1.4. We first observe that the expected number of triangles

of total length λ is bounded by
(
n
3

)
λ3

6
≈ (λn)3

6
. And then another calculation shows via the

Chebyshev inequality that if λn → ∞ then there will be a triangle of cost λ w.h.p. As
we will see, it will not be possible to find such a triangle w.h.p., instead we will show that
if τPOM

n , τROM
n are the expected minimum cost of a triangle constructible in the POM and

ROM settings, then
1

n4/7 log n
≤ τPOM

n ≤ τROM
n ≤ 10

n4/7
.

Our proof of this inequality will follow from an analysis of the problem of purchasing a large
collection of paths of length 2; we will see that such a feat is sufficient, and in some sense
also necessary, to purchase a low-cost triangle.

ONLINE PURCHASING UNDER UNCERTAINTY 13

5.1. Paths of length Two. We will prove the following:

Theorem 5.1. Let κPOM
ℓ,n , κROM

ℓ,n denote the expected cost of purchasing ℓ = o(n) paths of

length two in the POM and ROM settings, respectively. Then

(
ℓ

16n(logn)4

)4/3

≤ κPOM
ℓ,n ≤ κROM

ℓ,n ≤ 6

(
ℓ

n

)4/3

.

5.1.1. Obtaining ℓ = o(n) paths of length two: Upper Bound. Our goal in this section is to
show how to find ℓ distinct paths of length two. We will subsequently use the case k = 1 of
Theorem 1.1 to close one of these to a triangle at expected cost order 1/ℓ.

The first N/3 edges will be considered to be colored red, the next N/3 will be considered to
be colored blue and the final N/3 edges will be considered to be colored green. We will use a
parameter k and its value will be revealed shortly. We choose k = o(n) disjoint red edges by
examining the red edges and accepting the first k of cost at most 10k/n2. Then we choose
ℓ blue edges incident with the selected red edges by examining the relevant blue edges and
accepting the first ℓ edges of cost at most 2ℓ/kn. The Chernoff bounds imply that we will
succeed with superpolynomial probability if k, ℓ = nΩ(1). Success will mean the creation of
ℓ paths of length two.

The expected cost of creating ℓ paths of length two with this strategy is at most

(15)
5k2

n2
+

2ℓ2

kn
.

We choose k to minimize (15). This gives k = (ℓ2n/5)1/3 ≫ ℓ and a total cost of at most
6(ℓ/n)4/3, as claimed in Theorem 5.1.

If we ever get the stage where it is impossible to obtain either a triangle or ℓ paths of length
two without the inclusion of the next edge, regardless of cost, then we abort the above
procedure and choose any triangle still available. This will cost at most 3 and the effect on
the expectation is negligible.

We will assume from now on in our approach to proving an upper bound, that we will always
check as to whether or not the next edge must be chosen in order to be able to construct the
required object. In which case, we take it and build an object regardless of cost. It will be
apparent that this happens with such low probability that it makes a negligible contribution
to the expectation.

Remark 5.2. If we replace the underlying graph Kn by Gn,p, p constant then it is straight-
forward to see that we can carry out the same construction at an extra cost of a factor 1/p
in expectation and w.h.p.

5.1.2. Obtaining (logn)5 ≤ ℓ = o(n) paths of length two: Lower Bound. We consider the
cost of producing ℓ paths of length two. One natural way of producing many paths of length
two is to create a collection of edge disjoint stars (i.e., trees with only one vertex of degree
greater than 1). Most of our analysis in this section is aimed at constraining (from below)
the cost of purchasing such a collection of stars. We begin by arguing that this will suffice

14 ALAN FRIEZE AND WESLEY PEGDEN

to give a lower bound in general; i.e., that any strategy to produce many paths of length 2
is in some sense not too far from a strategy to produce many disjoint stars.

To make this reduction, let us consider a modified game: in particular, let us suppose that
whenever we choose to purchase an edge, we must also assign it an orientation. Our goal is
to purchase (and orient) a set of edges to ensure that

S =
∑

v

(
outdeg(v)

2

)

is large. Observe that any strategy in the modified game which achieves that S = ℓ for some
ℓ can be translated into a strategy in the standard game which purchases ℓ paths of length
2 at the same expected cost, while purchasing only edge disjoint stars. In particular, our
analysis later will thus give a lower bound on the cost in the modified game of achieving
that S = ℓ.

On the other hand, we argue that for any algorithm A for the standard game to purchase
ℓ edges at small expected cost, there is a strategy in the modified game to ensure that
S ≥ ℓ/16. Indeed, to see this, we consider two cases.
Case 1: A produces at least ℓ/2 paths from large stars.

Here a large star is a star with more than L = (log n)2 edges. Let there be di stars with i
edges. We have that

n∑

i=L+1

di

(
i

2

)
≥ ℓ

2
.

In conjunction with Lemma 5.3 below, this implies that the cost is at least

n∑

i=L+1

dii
2

3n
≥ ℓ

4n
≫
(
ℓ

n

)4/3

,

and the expected cost is already above our lower bound.
Case 2: A produces at least ℓ/2 paths from small stars.

We translate A into a strategy for the modified game by orienting each purchased edge
randomly. A path of length two is said to be good if both edges are oriented away from the
center vertex, so that S is simply the number of good paths. The expected number of good
paths is at least ℓ/8. Also, switching the orientation of an edge can only change the number
of good paths by at most 2L. It follows from McDiarmid’s inequality (4) that

Pr(S ≤ ℓ/16) ≤ 2 exp

{
− ℓ2

128ℓL2

}
.

This reduction allows us to focus on strategies in the standard game which restrict themselves
to purchasing edge disjoint stars. As a first step, we rule out the relevance of large stars, by
showing that all large stars are quite expensive (even offline).

Lemma 5.3. W.h.p. every star with k > L = (logn)2 edges has cost at least ξk = k2/3n.

ONLINE PURCHASING UNDER UNCERTAINTY 15

Proof. The probability that there is a star of smaller cost than claimed is at most

n

n−1∑

k=L+1

(
n− 1

k

)
ξkk
k!

≤ n

n−1∑

k=L+1

(
neξk
k2

)k

= o(1).

We have used the fact that if Z1, . . . , Zr are independent uniform [0, 1] random variables
then Pr(Z1 + · · ·+ Zr ≤ θ) ≤ θr/r!. �

Suppose next that there are ki, 1 ≤ i ≤ L ≤ ℓ1/2 edges such that when the algorithm
purchases them they are added to a star with i − 1 edges already for i = 1, 2, . . . , L. Call
these type i edges. If i = 1 then then these edges are the first of their stars. When i ≥ 2 and
such an edge is added, i− 1 new paths of length two are created. Thus

ℓ

16
≤

L∑

i=2

(i− 1)ki ≤ ℓ+ L ≤ 2ℓ,

where the upper bound follows from the fact that we can stop purchasing edges once we
have at least ℓ.

The expected cost of constructing these stars is at least

(16) a0

L∑

i=1

k2
i

ki−1n
,

where k0 = n and a0 is an absolute constant.

Explanation of (16): We can assume that the ki edges of type i are chosen before any
edges of type i + 1. This provides the largest choice for each edge and thus gives a lower
bound. That said, the expected cost of adding ki edges to ki−1 vertices, by choosing from
Ω(ki−1n) edges is as claimed in (16).

We are therefore left with considering the following optimization problem, where xi = ki/n
and λ = ℓ/16n:

(17) Minimize
L∑

i=1

x2
i

xi−1

subject to
L∑

i=2

(i− 1)xi ≥ λ and 1 = x0 ≥ x1 ≥ x2 ≥ · · · ≥ xL.

Observe now that

L∑

i=2

(i− 1)xi ≤ L2x2 which implies that x2 ≥
λ

L2
.

Going back to (17), we have a lower bound of

Minimum: x2
1 +

x2
2

x1

subject to x2 ≥
λ

L2
.

So optimizing with respect to x1 for a given value of x2 we get a lower bound of

x
4/3
2

(
2−2/3 + 21/3

)
≥
(

λ

L2

)4/3

=

(
ℓ

16L2n

)4/3

,

16 ALAN FRIEZE AND WESLEY PEGDEN

as required in Theorem 5.1.

5.1.3. Creating a Triangle: Upper Bound. We use the green edges and the case k = 1 of
Theorem 1.1 to find a triangle by selecting a low cost edge joining the paths of length two.
Notice that by construction, no two paths of length two have the same endpoints. Thus the
expected cost of creating a triangle is at most

(18) 6

(
ℓ

n

)4/3

+
6

ℓ
.

We have a cost of 6/ℓ because only 1/3 of the paths of length two can be completed by a
green edge. Optimizing our choice of ℓ = (3/4)3/7n4/7 in (18) gives us the required upper
bound in Theorem 1.4.

Remark 5.4. As in Remark 5.2 we can replace Kn by Gn,p, p constant, at a cost of a factor
1/p in expectation and w.h.p.

5.1.4. Creating a Triangle: Lower Bound in POM. For the lower bound we suppose that our
algorithm creates ℓ paths of length two before adding an edge that closes a triangle. This
gives us a lower bound of

(
ℓ

16L2n

)4/3

+
1

ℓ(logn)2
≥ 1

n4/7(logn)2
.

Note that the term 1
ℓ(logn)2

arises as in (12).

5.2. Creating a Triangle: Lower Bound in AOM. The adversary’s strategy is to first
present all of the edges incident with vertex 1. Suppose that we accept the edges {1, v} , v ∈ A
where |A| = k. The expected cost of these edges is ≈ ck/n. The adversary will now present
all edges within A. We have two choices now. We can accept one of the edges within A and
create a triangle at expected cost

Ω

(
ck
n

+
2c1
k2

)
= Ω

(
k2

n
+

1

k2

)
= Ω

(
1

n1/2

)
.

Failing this we will have to build our triangle without using vertex 1. The adversary now
presents the edges incident with vertex 2 that have not been presented, and so on. We can

assume inductively that this costs Ω
(

1
(n−1)1/2

)
in expectation and we are done.

This completes the proof of Theorem 1.4.

6. Complete Graphs Upper Bound in ROM

Recall that Ar,n is the expected cost of purchasing a copy of Kr, r ≥ 3 and we will prove
that Ar,n = O(n−dr+o(1)). We have already proved that we can take d3 = 4/7 and we start
an induction from here.

We consider the first N/2 edges to be colored red and the remaining N/2 edges to be colored
blue. We use Theorem 1.1 and the red edges to construct a star K1,ℓ centered at vertex 1,

ONLINE PURCHASING UNDER UNCERTAINTY 17

at a cost of (2+o(1))cℓ
n

≤ (4+o(1))ℓ2

n
. Here ℓ is to be determined. We then use the blue edges to

find a low cost copy of Kr in the red neighborhood of 1 at a cost of Ar,ℓ. We need to be a
little careful here as the graph induced by the blue edges is disturbed as Gℓ,1/2 i.e. is not Kℓ.
(Note that this would not be an issue in the POM mode, as we could let the red edges be
those incident with vertex 1.) Our inductive assumption is that we can find w.h.p. a copy
of Kr in Gℓ,p of cost ℓ−dr+o(1), provided p is a constant independent of ℓ, n. The base case
will be triangles as claimed in Remark 5.4. Thus,

(19) Ar+1,n ≤ min
ℓ

{
(4 + o(1))ℓ2

n
+

1

ℓdr+o(1)

}
.

We optimize (19) by choosing ℓ = n1/(dr+2+o(1) which gives

Ar+1,n ≤ 1

ndr+o(1)/(dr+2)
.

This gives us Theorem 1.5 with

dr+1 =
dr

dr + 2
.

Because d3 = 4/7, we get d4 = 2/9 and d5 = 1/10. Putting dr =
1

11×2r−5−1
we get

1

dr+1
= 1 + 22× 2r−5 − 2 = 11× 2r−4 − 1.

This completes the proof of Theorem 1.5.

7. Spanning Trees and Arborescences

7.1. Spanning Trees. In this section we will prove Theorem 1.6.

7.1.1. Spanning Tree Upper Bound. We describe an algorithm that finds a tree of expected
cost strictly less than 2ζ(3). It can be improved, but our result is not tight and we try for
simplicity here. The upper bound that we compute here is in the ROM model.

To begin we choose 0 < α < 1 and β where αβ > 1.

Algorithm BUYTREE:

Step 1 Let E1 = {e1, e2, . . . , eαN}. We go through E1 in order and accept an edge if its
length Xe ≤ β/n and it does not make a cycle with already accepted edges. Let F1

be the forest induced by the accepted edges.
Step 2 E1 induces a graph Γ1 that is distributed as Gn,m where m ≈ γn/2, γ = αβ. So

w.h.p. Γ1 and hence F1 has a giant (tree) component

(20) C1 of size asymptotically equal to

(
1− x

γ

)
n and 0 < x < 1 and xe−x = γe−γ .

This follows from Erdős and Rényi [9]. See also Chapter 2 of [13].

18 ALAN FRIEZE AND WESLEY PEGDEN

Outside of C1 there will w.h.p. be νk components of size k where

(21) |νk − n
kk−2

k!
γk−1e−γk| ≤ n2/3 for k = 1, 2, . . . , O(logn).

This also follows from [9]
Complete the building of the tree by using the case k = 1 of Theorem 1.1 and the

edges of E(Kn) \E1 to select a single cheap edge from each small component to the
giant C1. We can do this in the ROM model, attacking each 1-purchasing problem
separately.

Let us carefully examine the expected cost of the tree found by the above algorithm. We
break this into P1 + P2 where Pi is the expected cost of the edges added in Step i=1,2. We
observe first that

(22) P1 =
β(|F1|)
2n

≈ β

2

(
1− x

γ
+

x2

2γ

)
.

Explanation of (22): We claim that in Step 1, Algorithm BUYTREE purchases the fol-
lowing number of edges asymptotically:

(23) n

(
1− x

γ
+

x2

2γ

)
.

The expected cost of each edge is β
2n

and so verifying (23) will verify (22). For this we rely
on the following identities:

1

γ

∞∑

k=1

kk−1

k!
(γe−γ)k =

{
1 γ < 1.
x
γ

γ > 1.
(24)

1

γ

∞∑

k=1

kk−2

k!
(k − 1)(γe−γ)k =

{
γ
2

γ < 1.
x2

2γ
γ > 1.

(25)

When γ < 1, equation (24) is derived from the fact that the expected number of vertices on
tree components is asymptotically n. When γ > 1 we replace (γe−γ)k by (xe−x)k to get the
value x/γ.

When γ < 1, equation (25) is derived from the fact that the expected number of edges on
tree components is asymptotically γn/2. When γ > 1 we replace (γe−γ)k by (xe−x)k to get
the value x2/2γ.

We see from (24) that the number of edges in the giant component C1 is w.h.p. asymptotically

equal to n
(
1− x

γ

)
. We then see from (25) that w.h.p. the number of edges selected that

are in small trees is asymptotically equal to nx2/2γ. There are w.h.p. o(n) edges in F1 that
are obtained as spanning trees of small components with s vertices and ≥ s edges.

As for the cost of Step 2, we have that

(26) P2 ≈
2

(1− α)
(
1− x

γ

)
∞∑

k=1

kk−3

k!
γk−1e−γk.

ONLINE PURCHASING UNDER UNCERTAINTY 19

Explanation of (26): The algorithm seeks a low cost edge between each small tree T in F1

to the giant component C1. Observe first that there are w.h.p.

m1 ≈ (1− α)|C1|(n− |C1|)
edges between C1 and C̄1 = [n]\C1. Indeed, for a given small constant ε > 0 and set S ⊆ [n]
with εn ≤ |S| ≤ (1 − ε)n let ē(S) be the number of edges in Gn,(1−α) that belong to S : S̄,
the edges of Kn between S and S̄. Then the Chernoff bounds (2), (3) imply that
(27)

Pr(|ē(S)− (1− α)|S|(n− |S|)| ≥ n3/2 logn) ≤ 2 exp

{
− n3(log n)2

3|S|(n− |S|)(1− α)

}
≤ e−n(logn)2 .

The RHS of (27) can be inflated by 2n to account for all possible choices of S and so w.h.p.
m1 is as claimed.

Note next that these m1 edges are distributed uniformly over the set of |C1|(n− |C1|) edges
in Kn with one endpoint in |C1|. This is because given the fact that there are no Γ1 edges
between C1 and C̄1, we can interchange E1 edges with non-E1 edges within S : S̄ without
changing F1. So, each such set of m1 edges is equally likely. Under these circumstances, the
number of edges between a small tree of size k and C1 is distributed as a hypergeometric
with mean (1−α)k|C1|±O(n1/2 log n), given (27). As such, this will be concentrated around
its mean (see Section 6 of Hoeffding [15]). Thus, using the case k = 1 of Theorem 1.1, we
see that the expected cost of connecting a tree with k vertices to C1 is at most ≈ 2

(1−α)k|C1| .

Equation (26) now follows from (20) and (21).

Putting α = 0.69 and β = 3.5 gives a total cost of less than 2.31 which is less than 2ζ(3).
This verifies the upper bound in Theorem 1.6.

This bound can be improved by

(1) Using a sequence α1, β2, α2, β2, . . . ,
(2) Using edges between small components in Step 2.

Finally, in the AOM model, we can appeal to Theorem 1.9 and find a Hamilton path at
expected cost O(1).

7.1.2. Spanning Tree Lower Bound. In this section, we use the result of Theorem 3.2 to
obtain a lower bound on the expected cost of purchasing a spanning tree. Suppose we have
an algorithm A. We apply it first to the edges contained in S1 = [n + 1] \ {x} where x is
chosen uniformly at random from [n + 1]. Suppose that A produces a spanning tree T1 of
S1. Now use the algorithm of Section 3.2 to find two edges e1, e2 from x to S1 to create a
set of edges T2. Now consider a fixed vertex v. Its degree in the random unicyclic graph T2

is at least one and averages two. Applying Theorem 3.2 we see that the expected cost of T2

is at least 1.25, since the cost of each edge is counted exactly twice here. It follows that the
expected cost of T1 is at least 1.25−O(1/N) and the lower bound in Theorem 1.6 follows.

7.1.3. Improved Spanning Tree Lower Bound. The proof we outline here is from Aldous,
Angel and Berestycki [1]. It sharpens the lower bound in Theorem 3.2. Consider an online

20 ALAN FRIEZE AND WESLEY PEGDEN

algorithm. As in the proof of Theorem 3.2, let T be the index of the first selected item and
let qk = Pr(T > k) be the probability that the first k edges are all rejected. This sequence
is decreasing from q0 = 1 to qn = 0. The threshold θk for accepting the k’th edge is given by
θk = qk−1−qk

qk−1

. Conditional on {T ≥ k}, the expected cost of accepting item k equals θ2k/2.

On the event {T = k} let ak be the conditional expected number of subsequent edges
accepted. The conditional expected cost of the subsequent edges is at least ak× ak

2(n−k)
, since

we must accept edges of cost ≤ ak
n−k

to get ak edges on average. Thus

E (total cost) ≥
n∑

k=1

(qk−1 − qk)

(
qk−1 − qk
2qk−1

+
a2k

2(n− k)

)
.

Any choice of

(28) 1 = q0 ≥ q1 ≥ . . . ≥ qn = 0; 0 ≤ ak ≤ n− k, 1 ≤ k ≤ n

is feasible, and the constraint E |S| = 2 becomes the constraint

(29)

n∑

k=1

(qk−1 − qk)ak = 1.

Thus if φn is as in Theorem 3.2 then

φn ≥ min

n∑

k=1

(qk−1 − qk)

(
qk−1 − qk
2qk−1

+
a2k

2(n− k)

)

minimized over (qk) and (ak) satisfying (28), (29). A somewhat difficult analysis gives
φn ≥ 2.73747.

This completes the proof of Theorem 1.6.

7.2. Spanning Arborescence. In this section, we prove Theorem 1.10.

7.2.1. Spanning Arborescence Upper Bound in ROM. We let ε = 1/ logn and consider the

first (1− ε)n(n− 1) edges of ~Kn to be colored red and the remaining εn(n− 1) edges to be
colored blue. Then for each vertex v we use the red edges and case k = 1 of Theorem 1.1 to
construct a random mapping digraph Df with vertex set [n] and edges {(v, f(v) : v ∈ [n])}
where f(v) is v’s selection. The total expected cost of these edges is ≈ 2.

Remark 7.1. It will be important to examine the correlation between the edges of the
digraph Df and the blue edges. What we claim is that one can see from the construction of
f(v) for v ∈ [n] that if there are kv blue edges directed out of v, then these form a uniform

random choice from
(
[n]\{v}

kv

)
. Furthermore, Bv, Bw will be independent if v 6= w.

It is known, see Chapter 15 of [13] or Chapter 14 of [4] that if Z is the number of components
of Df then E(Z) ≈ Var(Z) ≈ 1

2
logn. Thus, the Chebyshev inequality implies that Z is

concentrated around its mean. We will however need an upper bound on Z that holds with
probability 1 − o(1/n3). It is known (see e.g. Theorem 15.1 of [13]) that the probability

ONLINE PURCHASING UNDER UNCERTAINTY 21

generating function (p.g.f.) Gn of Z is given by Gn(x) = E(xZ) = x(x+1)···(x+n−1)
n!

. So, for
any positive integer u we have that

Pr(Z ≥ u) = Pr(2Z ≥ 2u) ≤ E(2Z)

2u
=

2 · 3 · · · (2 + n− 1)

2un!
=

(n + 1)!

2un!
=

n+ 1

2u
.

We take u = (log n)2 and find that Pr(Z ≥ (logn)2) = o(n−3) as required.

The digraph Df consists of Z digraphs D1, D2, . . . , DZ , each of which can be described as a
directed cycle Ci, i = 1, 2, . . . , Z with oriented trees attached to each vertex of each cycle.
The edges of the trees are oriented towards the cycle. We first delete an edge (xi, yi) from
each cycle. We are now left with Z trees rooted at X = {ρ1, ρ2, . . . , ρZ}. We will use the
blue edges to merge the trees into a spanning arborescence. We do this by adding a blue
edge from the root of one of the trees to a vertex in another tree. This has the effect of
reducing the number of trees by one.

We go through the blue edges in the given random order. Suppose we have examined t− 1
blue edges. LetX(t) denote the current set of roots of components. We stop when |X(t)| = 1.
For ρ ∈ X(t) we let Vρ denote the set of vertices of the tree that contains ρ. If the tth edge
e = (ρ, σ) is such that (i) ρ ∈ X , (ii) σ /∈ Vσ and (iii) the cost xe ≤ n−3/4 then we purchase
e and reduce X(t) by one. If we are successful in reducing |X(t)| to one, in this way, then
we will entail an additional cost of (log n)2 × n−3/4, which is negligible.

Now suppose that |X(t)| = k and that the components are T1, T2, . . . , Tk and the tree sizes
are m1, m2, . . . , mk. Then the probability that the tth blue edge e = (ρ, σ) is good i.e. joins
a root to a vertex in a different tree is at least

n− 2−m1

n11/4
+ · · ·+ n− 2−mk

n11/4
=

k − 1

n7/4
− 2k

n11/4
≥ k − 1

2n7/4
.

To see this, observe that there is a 1/n chance that ρ is the root of T1. There is then the
probability that τ /∈ T1 is at least (n − 2 −m1)/(n − 2) (-2 as opposed to -1 from avoiding
f(ρ).) Finally, there is an n−3/4 chance that the cost is at most n−3/4.

So, with probability 1 − o(n−3), the number of blue edges needed is dominated by the
sum Υ of ℓ = (log n)2 independent geometric random variables with success probabilities
λk =

k−1
2n7/4 , k = 2, 3, . . . , (log n)2. The geometric random variable Geo(λ) has p.g.f. λx

1−(1−λ)x
.

The p.g.f. of Υ is therefore
∏ℓ

k=1
λkx

1−(1−λk)x
. So, for any u > 0,

Pr(Υ ≥ u) = Pr

((
1 +

1

4n7/4

)Υ

≥
(
1 +

1

4n7/4

)u
)

≤

(
1 +

1

4n7/4

)−u ℓ∏

k=2

λk

(
1 + 1

4n7/4

)

1− (1− λk)
(
1 + 1

4n7/4

) ≤ exp
{
− u

5n7/4

} ℓ∏

k=2

1

1− 1
λk(4n7/4+1)

≤ exp
{
− u

5n7/4

} ℓ∏

k=2

(
1 +

1

k − 1

)
≤ exp

{
− u

5n7/4
+ 1 + log ℓ

}
.

Putting u = 100 logn we see that with probability 1 − o(n−3), we only need O(n7/4 log n)
blue edges. On the other hand we have Ω(n2/ logn) available, with this probability.

22 ALAN FRIEZE AND WESLEY PEGDEN

Finally, in the AOM model, we can appeal to the directed case of Theorem 1.9 and find a
Hamilton path at cost O(1), w.h.p.

7.2.2. Spanning Arborescence Lower Bound in RAM. For the lower bound we color the edges
red and blue as in Section 7.2.1. Then if we want to solve the one-purchase problem of Section
3.1, we assume the edges out of vertex 1 have the costs x1, x2, . . . , xN where N is the blue
out-degree of vertex 1. An algorithm for finding an arborescence will provide a solution
to the one-purchase problem, unless 1 is the root of the arborescence, which happens with
probability 1/n. In this case we just purchase a red edge of cost ≤ 2 logn/n. If the expected
cost of the arborescence found was c < 2, then we would have a solution to the one-purchase
problem with expected cost at most c+ 2 logn/n2.

This completes the proof of Theorem 1.10.

8. Perfect matchings

We deal with bipartite and non-bipartite separately.

8.1. Perfect Matchings in Kn,n. In this section, we prove Theorem 1.7.

8.1.1. Perfect Matching Lower Bound. For the lower bound observe that if µn ≤ c < 2 for
some constant c then the average cost of each edge in an optimal algorithm is at most c/n.
But then, just as in Section 7.2.2, we could use this to give an algorithm to improve the
upper bound for k = 1 in Theorem 1.1. Given x1, x2, . . . , xn we would simply make these
values the costs of the edges incident to vertex 1 ∈ U . The matching edge incident with
vertex 1 would have expectation c/n.

8.1.2. Perfect Matching Upper Bound. For the upper bound we will use the following result
of Walkup [20]: Suppose that we label the partition of the vertex set of Kn,n as U, V .
Let Bk−out denote the random bipartite graph where each vertex independently chooses k
random neighbors from the opposite part of the bipartition giving a graph with 2kn−O(1)
distinct edges in expectation. Note that Bk−out is chosen uniformly from some set of bipartite
digraphs Ωk. Then

Pr(B3−out does not have a perfect matching) = o

(
1

n

)
.

Walkup actually proved that B2−out has a perfect matching w.h.p., but the failure probability
is too high for our application.

To apply this result, we build something close to B3−out as follows: As we see an edge, we
color it red or blue with probability 1/2. A vertex v ∈ U uses the red edges incident with it
and the algorithm of Theorem 1.1 to choose three edges incident with it. A vertex w ∈ V

ONLINE PURCHASING UNDER UNCERTAINTY 23

uses the blue edges incident with it and the algorithm of Theorem 1.1 to choose three edges
incident with it. Let H be the bipartite graph created.

The expected total cost of the edges in H is ≈ 2n× c3/(n/2) = 4c3

as claimed in Theorem 1.7. It will have a perfect matching with probability 1− o(1/n).

There is a small point to clarify. The bipartite graph produced by the algorithm is B3−out

with the condition that no edge is chosen by both of its endpoints. The expected number of
edges chosen twice in B3−out is at most n2 × (2/n)2 = 6. By computing higher moments we
see that the probability no edge is chosen twice is ≈ e−6 and so the probability there is no
perfect matching in the algorithm’s graph is at most e6 + o(1) times the probability there is
no perfect matching in B3−out.

This completes the proof of Theorem 1.7.

8.2. Perfect Matchings in Kn. We can assume that n = 2m is even. We can then look
for a perfect matching between [1, m] and [m+ 1, 2m]. For this we can use the approach of
Section 8.1.2 and this will give us an upper bound of ≈ 4c3. For a lower bound we can use
≈ n/2 × 2/(n/2) = 2, since we could use any algorithm for finding a perfect matching to
find a solution to the one-purchase problem in Section 3.1 as we did for the lower bound in
Section 1.7.

This completes the proof of Theorem 1.8.

9. The Traveling Salesperson Problem

9.1. TSP Upper Bound. For this we first replace Walkup’s result by the following: let
Gk−out be the random graph constructed by allowing each vertex to independently choose k
random neighbors. It is known, Bohman Frieze [3] that w.h.p. Gk−out is Hamiltonian w.h.p.
if k ≥ 3. We want this probability to be 1 − o(1/n) and to be sure of this we can use the
result of Frieze [12] where we take k = 10.

We then write the uniform [0, 1] random variables Xe as Xe = min {Ze,j : j = 1, 2, . . . , 10}
where the Ze,j are independently distributed as the random variable Z ∈ [0, 1] where Pr(Z ≥
x) = (1 − x)10. Assume first that when we examine an edge, we see these 10 values. Next,
for j = 1, 2, . . . , 10 we use Corollary 1.2 to choose an edge ev,j for each v ∈ [n]. The
edges chosen will create a graph distributed as G10−out and the total cost will be at most
≈ 10× 10× 2 = 200. The first 10 arises because we do this for 10 values of j. The next 10
arises because the density of Z near zero is 10x+ o(x) and the 2 arises because c1 = 2.

Of course when we examine an edge, we only see one value, ξ say. To get around this, we
generate another 9 values of Z, viz. Z2, Z3, . . . , Z10, but we condition here on Zj ≥ ξ, j =
2, 3, . . . , 10.

24 ALAN FRIEZE AND WESLEY PEGDEN

9.2. TSP Lower Bound. For a lower bound, we see that we could use an algorithm for
finding a low cost Hamilton cycle to find a solution to the 2-purchase problem in Theorem
1.1.

This completes the proof of Theorem 1.9.

9.3. Directed case of TSP. In this case we replace the results of [3], [12] by the result of
Cooper and Frieze [7]. We show in this paper that w.h.p. the random digraph G2−in,2−out

is Hamiltonian. Here each vertex independently chooses 2 random out-neighbors and 2
random in-neighbors. To apply this, we replace each uniform edge-cost Xe.e = (u, v) by
min {Ze,j : j = 1, 2, . . . , 4} where the Ze,j are independently distributed as the random vari-
able Z ∈ [0, 1] where Pr(Z ≥ x) = (1 − x)4. We will then use Ze,1, Ze,2 to give 2 random
out-neighbors to u and Ze,3, Ze,4 to give 2 random in-neighbors to v. The rest of the argu-
ment is as for the undirected case. For the lower bound we see that each vertex chooses
an in-neighbor and an out-neighbor. For the upper bound we replace ≈ 10 × 10 × 2 by
≈ 2×2× c2. We cannot claim a bound in terms of expectation because the proofs in [7] and
the related [6] do not give a small enough probability of failure.

This completes the proof of Theorem 1.11.

10. Final Remarks

We have described several problems that can be analyzed within our framework. It would
be of some interest to

(1) Tighten the bounds, especially for minimum spanning trees.
(2) Replace Kn by other graphs.
(3) Exend the analysis to hypergraph structures.

Acknowledgement: We thank Colin Cooper for his comments and his contribution to the
proof of Theorem 1.1.

References

[1] D. Aldous, O. Angel and N. Berestycki, Online Random Weight Minimal Spanning Trees and a Sto-
chastic Coalescent, unpublished manuscript, 2008.

[2] M. Babaioff, N. Immorlica and R. Kleinberg, Matroids, secretary problems and on-line mechanisms,
Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms (2007) 434-443.

[3] T. Bohman and A.M. Frieze, Hamilton cycles in 3-out, Random Structures and Algorithms 35 (2009)
393-417.

[4] B. Bollobás, Random Graphs, First Edition, Academic Press, London 1985, Second Edition, Cambridge
University Press, 2001.

[5] A. Cayley, Mathematical questions with their solutions, The Educational Times 23 (1875) 18-19. See
The Collected Mathematical Papers of Arthus Cayley 10 (1896) 587-588, Cambridge University Press.

[6] C. Cooper and A.M. Frieze, Hamilton cycles in a class of random directed graphs Journal of Combina-

torial Theory B 62 (1994) 151-163
[7] C. Cooper and A.M. Frieze, Hamilton cycles in random graphs and directed graphs, Random Structures

and Algorithms 16 (2000) 369-401.

ONLINE PURCHASING UNDER UNCERTAINTY 25

[8] E.B. Dynkin, The optimum choice of the instant for stopping a Markov process, Sov. Math. Dokl. 4
(1963).

[9] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5
(1960) 17-61.

[10] T.S. Ferguson, Who solved the secretary problem?, Statistical Science 4 (1989) 282-296.
[11] A.M. Frieze, On the value of a minimum spanning tree problem, Discrete Applied Mathematics 10 (1985)

47-56.
[12] A.M. Frieze, Finding hamilton cycles in sparse random graphs, Journal of Combinatorial Theory B 44

(1988) 230-250.
[13] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, Cambridge,

2015.
[14] A.M. Frieze, W. Pegden and G.B. Sorkin, On the distribution of the minimum weight clique, to appear.
[15] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American

Statistical Association 58 (1963) 13-30.
[16] G. Kamath and D. Karger, http://www.gautamkamath.com/writings/matroidsec.pdf.
[17] S. Janson, One, two and three times logn/n for paths in a complete graph with random weights,

Combinatorics, Probability and Computing 8 (1999) 347-361.
[18] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, ed. J. Siemons,

London Mathematical Society Lecture Notes Series 141, Cambridge University Press, 1989.
[19] L. Moser, On a problem of Cayley, Scripta Mathematica 22 (1956) 289-292.
[20] D.W. Walkup, Matchings in random regular bipartite graphs, Discrete Mathematics 31 (1980) 59-64.

Department of Mathematical Sciences,, Carnegie Mellon University,, Pittsburgh PA 15213.

