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OPTIMIZATION ON SPARSE RANDOM HYPERGRAPHS AND SPIN GLASSES

SUBHABRATA SEN

Abstract. We establish that in the large degree limit, the value of certain optimization problems on sparse
random hypergraphs is determined by an appropriate Gaussian optimization problem. This approach was
initiated in [DMS16] for extremal cuts of graphs. The usefulness of this technique is further illustrated by
deriving the optimal value for Max q-cut on Erdős-Rényi and random regular graphs, Max XORSAT on
Erdős-Rényi hypergraphs, and the min-bisection for the Stochastic Block Model.

1. Introduction

The study of combinatorial optimization problems on random instances has a long and rich history—
noteworthy examples include the traveling salesman problem (see [Ste97] and the references therein),
shortest path problem [Jan99] , minimum weight spanning tree [BFM98, CFI+16, Fri85, FRT00, Jan95,
Ste87], minimum weight matching [Ald01, FJ15, LW04, NPS05, W0̈5, W0̈9] etc. These problems reveal a
number of fascinating characteristics, and have attracted the attention of specialists in statistical physics,
probability and computer science. Historically, statistical physicists have often studied these problems
using non-rigorous techniques, leading to striking predictions [MP87, MPV86, Par98]. Subsequent search
for rigorous proofs has directly motivated the development of powerful new tools, thus enriching the subject.
Some of these problems are algorithmically intractable in the worst case. The study of random instances
has also indirectly inspired new algorithmic breakthroughs for these problems in the average case and has
provided a useful benchmark for comparison.

A special class of optimization problems on graphs comprise finding extreme cuts. These problems
are fundamental in combinatorics and theoretical computer science. They are also critical for a number
of practical applications [DPS02, PT95] . Of particular interest is the MaxCut problem which seeks to
partition the vertices of a graph G = (V,E) into V = V1 ∪ V2 such that the number of edges between
V1 and V2 is maximized. For random MaxCut, instances are usually chosen from Erdős-Rényi or random
regular graph ensembles. Recall that an Erdős-Rényi random graph Gn ∼ G(n, d/n) has V = [n], the edges
being added independently with probability d/n, whereas a random regular graph Gn ∼ GR

n(d) is drawn
at random from the set of all d-regular graphs on n vertices. [DMS16] studies this problem in the large
degree limit, and establishes that for Gn ∼ G(n, d/n) or Gn ∼ GR

n(d), with high probability as n→ ∞,

MaxCut(Gn)

n
=
d

4
+ P∗

√
d

4
+ od(

√
d),

where P∗ is the ground state energy of the Sherrington-Kirkpatrick model (we refer to [DMS16] for a
definition of the constant P∗). The first step in the proof is a comparison of the optima on sparse Erdős-
Rényi graphs with large degrees to that of a Gaussian optimization problem on the complete graph.
Subsequently, it is established that up to lower order corrections in d, the MaxCut has the same behavior on
Erdős-Rényi and random regular graphs. In this paper, we generalize the results in [DMS16] substantially,
while simultaneously simplifying the proofs. Before introducing a general framework, we discuss a concrete
example which illustrates the usefulness of this approach.
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2 SUBHABRATA SEN

A XOR-satisfiability (XORSAT ) problem is specified by the number of variables n, and set of m clauses
of the form xia(1) ⊕ · · · ⊕ xia(p) = ba, for a ∈ {1, · · · ,m}. Here ba ∈ {0, 1}, ⊕ denotes mod-2 addition and
{x1, · · · , xn} is a set of n-boolean variables. We consider random instances of the XORSAT problem, where
each sub-collection {xi1 , · · · , xip} of variables is included independently with probability d(p − 1)!/np−1,
and ba ∼ Ber(1/2) i.i.d. for each equation a ∈ {1, · · · ,m}. We say that an instance of the problem is
satisfiable if there is an assignment of values to the variables {x1, · · · , xn} which satisfies all the equations.
Otherwise, the instance is un-satisfiable. This problem has been studied by many authors in the past
(see [DGM+10, IKKM15] and references therein for further motivations and applications). It is well known
[DM02, DGM+10] that there exists a threshold d∗ = d∗(p), independent of n, such that for d < d∗, a random
instance is satisfiable with high probability, while for d > d∗, it is unsatisfiable with high probability.

Suppose we fix d > d∗(p) so that we are in the unsatisfiability regime. We wish to determine the
maximum proportion of equations which can be typically satisfied in a random XORSAT instance. We refer
to Section 2.1 for background on this problem. The next lemma makes some progress in this direction. We
set S(n, p, d) to be the maximum number of satisfiable equations in an instance of random XORSAT with
parameters n, p, d.

Lemma. For d > d∗(p) sufficiently large, with high probability as n→ ∞,

S(n, p, d)
n

=
d

2p
+

Pp

2

√
d

p
+ od(

√
d). (1.1)

Pp is an explicit constant defined in Section 2.1. Here and henceforth in the paper, a sequence of random

variables Zn = od(
√
d) with high probability if and only if there exists a deterministic function f(d) =

od(
√
d) such that P[|Zn| ≤ f(d)] → 1 as n→ ∞.

The Lemma above follows, in part from a general result which we introduce next. Consider a finite
alphabet X and fix a function f : X p → R which is symmetric in its arguments, i.e., f(x1, · · · , xp) =
f(xπ(1), · · · , xπ(p)) where π is any permutation of {1, · · · , p}. Throughout the paper, {(i1, · · · , ip) : 1 ≤
i1 6= i2 6= · · · 6= ip ≤ n} will denote subsets of {1, 2, · · · , n} with size p. We note that in particular, the
indices in any fixed subset are all distinct.

Definition 1.1 (Symmetric Arrays). An array of real numbers {ai1,i2,··· ,ip : 1 ≤ i1 6= · · · 6= ip ≤ n} is
called symmetric if for any permutation π, ai1,··· ,ip = aπ(i1),··· ,π(ip). A symmetric array of random variables
{Xi1,··· ,ip : 1 ≤ i1 6= · · · 6= ip ≤ n} is defined similarly.

We are interested in the following optimization problem

Vn =
1

n
max
σ∈An

∑

i1 6=···6=ip

Ai1,··· ,ipf(σi1 , · · · , σip), (1.2)

where An ⊂ X n and {Ai1,··· ,ip} is a symmetric array of random variables such that {Ai1,··· ,ip : 1 ≤ i1 <
i2 < · · · < ip ≤ n} are independent and uniformly bounded. (1.2) arises naturally in many contexts—
see Section 2 for concrete applications. Recall that a p-uniform hypergraph G = (V,E), where V is the
set of vertices and the edge set E consists of p-subsets of V . In particular, a 2 uniform hypergraph is a
graph G = (V,E). Typically, the variables Ai1,··· ,ip represent symmetric (random) weights on the edges
of a sparse random hypergraph. Consider symmetric, non-negative, bounded kernels κ, κ1 and κ2, and a
positive constant d > 0. Throughout, we assume that the kernels are symmetric maps from N

p to R+. We
will assume that |Ai1,··· ,ip | ≤ BU and

P[Ai1,··· ,ip 6= 0] = d
κ(i1, · · · , ip)

np−1
, E[Ai1,··· ,ip ] = d

κ1(i1, · · · , ip)
np−1

, E[A2
i1,··· ,ip ] = d

κ2(i1, · · · , ip)
np−1

.

In most of our applications, the kernels κ, κ1 and κ2 are constants. The parameter d is intrinsically related
to the degree of a vertex in the hypergraph. We are specifically interested in the case when the parameter
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d is a large constant independent of n. Consider also the following “gaussian” optimization problem.

Tα
n =

1

n
max
σ∈An

∑

i1 6=···6=ip

Ji1,··· ,ip
n(p−1)/2

f(σi1 , · · · , σip). (1.3)

subject to
1

np

∑

i1 6=···6=ip

κ1(i1, · · · , ip)f(σi1 , · · · , σip) = α.

{Ji1,··· ,ip} is a symmetric array of random variables such that {Ji1,··· ,ip : 1 ≤ i1 < i2 < · · · < ip ≤ n} are
independent N (0, κ2(i1, · · · , ip)). Our main result relates these two optimal values, up to a small error
when d is large.

Theorem 1.1. For d sufficiently large, with high probability as n→ ∞,

Vn = E[max
α

(αd + Tα
n

√
d)] + od(

√
d). (1.4)

The maximum over an empty set should be interpreted to be −∞ in the statement of Theorem 1.1. The
event A occurs with high probability(w.h.p.) if P[A] → 1 as the problem size n → ∞. Theorem 1.1
relates the value of the optimization problem (1.2) to its gaussian analogue (1.3), which is often more
tractable and thus furnishes us with a powerful general method to systematically study a large class
of optimization problems, thereby generalizing the first part of the argument in [DMS16]. Indeed, this
principle is extremely robust and independent of the function f in the objective. From the statistical
physics viewpoint, Theorem 1.1 rigorously establishes a connection between the optimal value of problems
on sparse graphs to the ground state of disordered spin-glass models. Even in cases where the ground state
energy cannot be rigorously evaluated, one can hope to use probabilistic tools to derive bounds on these
quantities, possibly improving on the bounds derived by purely combinatorial techniques.

For a p-uniform hypegraph G, we define the “adjacency matrix” {A(i1, · · · , ip) : 1 ≤ i1 6= · · · 6= ip ≤ n}
such that

A(i1, · · · , ip) =
{

1
(p−1)! if {i1, · · · , ip} ∈ E,

0 o.w.

The optimization problems (1.2) have been typically studied on sparse random Erdős-Rényi hypergraphs
where Ai1,··· ,ip denotes the adjacency matrix of the hypergraph. This special case is recovered by setting
κ1 = 1, κ2 = 1/(p− 1)! in the setup above. Throughout the rest of this section, whenever we refer to (1.2),
we will assume implicitly this specific choice of the kernels. Another class of random instances which are
of natural interest comprise the corresponding optimization problems on random regular hypergraphs. Let
Gn(p, d) = ([n], E) denote a random p-uniform d-regular hypergraph on n-vertices. As usual, the degree
of a vertex v ∈ [n] denotes the number of hyper-edges e ∈ E with v ∈ e. We implicitly assume that p|nd
and note that GR(n, d) = Gn(2, d). As above, we seek the optimum value (1.2) and denote this value by
V R

n . Our next result derives a Gaussian surrogate for this value. To this end, define

Sα
n =

1

n
max
σ∈An

[ ∑

i1,··· ,ip

Ji1,··· ,ip
n(p−1)/2

f(σi1 , · · · , σip)−
p

np−1

∑

i1,··· ,ip
Gi1f(σi1 , σi2 , · · · , σip)

]
. (1.5)

subject to
1

np

∑

i1,··· ,ip
f(σi1 , · · · , σip) = α,

where {Ji1,··· ,ip} is a symmetric array of random variables defined as follows. Let {Vi1,··· ,ip : 1 ≤ i1, · · · , ip ≤
n} be an array of i.i.d N (0, 1) random variables and we define Ji1,··· ,ip =

√
p

p!

∑
π Vπ(i1),··· ,π(ip), where π is a

permutation of {1, · · · , p}. This array will be referred to as a “standard symmetric p-tensor” of Gaussian

variables. Further, Gi =
∑

m2,··· ,mp

Ji,m2,··· ,mp

n(p−1)/2 .
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Theorem 1.2. For d sufficiently large, with high probability as n→ ∞, we have,

V R

n = Emax
α

[dα+
√
dSα

n ] + od(
√
d). (1.6)

[DMS16] deduced a similar Gaussian surrogate for the MaxCut on random d-regular graphs for large d.
However, the proof is tailor made for the MaxCut and Theorem 1.2 considerably generalizes this result. It
is interesting to note that the Gaussian surrogate for the optimization problem on the sparse Erdős-Rényi
random hypergraphs (1.4) and d-regular random hypergraphs (1.5) are not always the same. However,
the next proposition derives sufficient conditions which ensure that the optimal values are the same, up to
lower order correction terms in d. Moreover, a priori, it is unclear how to optimize (1.4). We observe that
the objective in RHS of (1.4) consists of two terms— a deterministic term, which is in general of order d,

and the random contribution, which is in general of order
√
d. If d is large, one expects that the optimum

would be attained by first constraining σ to maximize the deterministic term, and then maximizing the
random term subject to this constraint. We can actually formalize this idea under suitable assumptions
on the function f .

To this end, we introduce some notation. For each configuration σ ∈ X n, we define the vector m(σ) =
(mk(σ) : k ∈ X ), where mk(σ) =

∑n
i=1 1(σi = k)/n denotes the proportion of spins in σ which are of type

k. We denote the |X | − 1 dimensional simplex by Sim = {a = (a1, · · · , a|X |) : ai ≥ 0,
∑

i ai = 1}. Now,
given any function f : X p → R, we define the smooth function Ψ : Sim → R,

Ψ(a) =
∑

j1,··· ,jp∈X
f(j1, · · · , jp)aj1 · · · ajp . (1.7)

Note that Ψ may also be thought of as a function of the independent variables (a1, · · · , a|X |−1) and in

this case, we shall denote the function as Ψ̄. This will allow us to exploit smoothness properties of Ψ.
Finally, consider the following criteria.

(C1) For all σ ∈ An, n ≥ 1, there exists some constant η such that for all j ∈ X ,
∑

j2,··· ,jp
f(j, j2, · · · , jp)mj2(σ) · · ·mjp(σ) = η + rj(σ),

where the residual vector r(·) = (rj(·) : j ∈ X ) satisfies supσ∈An
‖r(σ)‖∞ = od(1).

(C2) Assume An = X n, Ψ(m) is maximized at some m∗ = (m∗
i : i ∈ X ) ∈ Sim such that m∗

i > 0 for all
i ∈ X . Further, we assume that −∇2Ψ̄(m) � cI for some constant c > 0 in a neighborhood of m∗.

Recall that the optimum value Vn for Erdős-Rényi hypergraphs (1.2) corresponds to the special choice
κ1 = 1 and κ2 =

1
(p−1)! . The following result compares this optimum to that on regular hypergraphs.

Proposition 1.2. Under the conditions (C1) or (C2), Vn − V R

n = od(
√
d). Moreover, under the condition

(C2), for d sufficiently large,

Vn = dΨ(m∗) +
√
dE[TΨ(m∗)

n ] + od(
√
d).

Remark 1.1. We note that Proposition 1.2 along with [DMS16, Lemma 2.4] re-derives the main results
in [DMS16] in a relatively straightforward manner. While it is arguable that the proof of Proposition 1.2 is
similar to those in [DMS16], we believe that this proposition is conceptually simpler, and clearly illustrates
the basic principles at work.

The rest of the paper is structured as follows. Section 2 covers certain applications of Proposition 1.2
and reports some follow up work. Theorem 1.1 is proved in Section 4 while the proof of Theorem 1.2 is
in Section 5. Finally, we prove Proposition 1.2 in Section 6. Throughout the paper, C,C0, C1 are used to
denote universal constants independent of the problem size n. These constants may change from line to
line.
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2. Examples

In this section, we illustrate the usefulness of Proposition 1.2 by deriving the optimal value in some
examples. We study the random max XORSAT problem in Section 2.1, the max q-cut of sparse random
graphs in Section 2.2, and the minimum bisection of the stochastic block model in Section 2.3. Some
avenues for future research are discussed in Section 2.4. The proofs of the results are deferred to Section 3.

2.1. Max XORSAT on Erdős-Rényi random hypergraphs. An instance of the Boolean k-SAT prob-
lem consists of a boolean CNF formula (AND of ORs) in n-variables with k-literals per clause. The decision
version of this problem seeks to find an assignment of values to variables such that all clauses evaluate to
TRUE. It is a canonical NP hard problem arising from theoretical computer science [Kar72]. The search for
hard instances has motivated the study of random k-SAT problems. This area has witnessed an explosion
of activity in the last decade due to confluence of ideas from computer science, statistical physics and
mathematics. Statistical Physicists anticipate certain intriguing attributes in random instances of these
problems based on predictions from non-rigorous replica and cavity methods (see [KMSZ07] and references
therein). It was conjectured that in random k-SAT and a wide variety of general Constraint Satisfaction
Problems (CSPs), there is a sharp phase transition as the number of constraints grows— a “typical” prob-
lem is satisfiable with high probability below this threshold while above this threshold, it is unsatisfiable
with high probability. It is an outstanding mathematical challenge to rigorously establish these predictions.
Recently, significant progress has been achieved in this regard [DSS15, DSS16, DSS13, SSZ16].

[CGHS04] initiated a study of the natural optimization version of the k-SAT, where one wishes to max-
imize the number of satisfied clauses. They established a phase transition for this problem (see [CGHS04]
for the exact random ensemble used)— below the satisfiability threshold all the clauses are satisfied, while
above this threshold, the minimum number of unsatisfiable clauses is Θ(n). A natural question in this di-
rection is to determine the maximal number of satisfiable clauses in a random CSP above the satisfiability
threshold. In this paper, we answer this question for the random XORSAT problem, in the large degree
limit.

To state our result, we need to introduce some notation from [Pan13]. On the binary hypercube
{−1,+1}n, fix β > 0, h ∈ R and consider the Gaussian process Hn(σ) = βH ′

n(σ) + βh
∑

i σi, where

H ′
n(σ) =

∑

i1,··· ,ip

Gi1,··· ,ip
n(p−1)/2

σi1 · · · σip ,

with {Gi1,··· ,ip : 1 ≤ i1, · · · , ip ≤ n} an array of i.i.d. N (0, 1) random variables. H ′
n is a centered Gaussian

process with covariance

Cov(H ′
n(σ),H

′
n(σ

′)) = nβ2
(〈σ, σ′〉

n

)p
.

The process {Hn(σ) : σ ∈ {±1}n} is usually referred to as the p-spin model in the spin glass literature. It
was conjectured by Parisi and later proved by Talagrand [Tal06] and Panchenko [Pan14] that the following
limit exists with probability 1.

Fp(β, h) := lim
n→∞

1

n
log

∑

σ∈{±1}n
exp(Hn(σ)) = inf

µ∈Pr([0,1])
P(µ;β, h). (2.1)

Here Pr([0, 1]) denotes the space of all probability measures on [0, 1] and P(·;β, h) is the Parisi functional,
defined as

P(µ;β, h) = uµ(0, βh) −
p(p− 1)β2

2

ˆ 1

0
tp−1µ([0, t])dt,
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where uµ(·, ·) solves the Parisi PDE

∂tuµ(t, x) +
p(p− 1)β2

2

(
∂xxuµ(t, x) + µ([0, t])(∂xuµ(t, x))

2
)
= 0 (t, x) ∈ (0, 1) ×R,

uµ(1, x) = log cosh(x).

See [JT15] and references therein for regularity properties of the PDE and uniqueness of solutions. Using

continuity in β, it is easy to see that limβ→∞ Fp(β, h)/β exists and we define Pp = limβ→∞
Fp(β,0)

β . Recently,

Auffinger and Chen [AC16] have derived a direct ‘zero temperature’ variational representation for Pp. We
refer the reader to [AC16] for further details. Having introduced this notation, we re-state our result for
the convenience of the reader. Recall the satisfiability threshold d∗(p) introduced above.

Lemma 2.1. For d > d∗(p) sufficiently large, with high probability as n→ ∞,

S(n, p, d)
n

=
d

2p
+

Pp

2

√
d

p
+ od(

√
d). (2.2)

2.2. Max q-cut in Erdős-Rényi and random regular graphs. Consider the random graph G(n, d/n).
These graphs are typically sparse with O(n) edges and the degree of a typical vertex concentrates around d.
The Max q-cut problem seeks to divide the vertices into q-groups such that the number of edges among the
parts is maximized. The case q = 2 is usually referred to as the MaxCut problem on graphs. This class of
problems has attracted significant attention from the Theoretical Computer Science and the Mathematics
communities. We refer to [DMS16] for a survey on the existing results for Maxcuts on sparse Erdős-Rényi
or random d-regular graphs. The q-cut has received less attention. [COMS03] studied the Max q-cut and
the performance of the Goemans-Williamson SDP relaxation on sparse Erdős-Rényi random graphs. For
an Erdős-Rényi random graph Gn ∼ G(n, d/n), they prove that there exist constants 0 < C1 < C2 such
that with high probability as n→ ∞,

d

2

(
1− 1

q

)
+ C1

√
d ≤ MaxCut(Gn, q)

n
≤ d

2

(
1− 1

q

)
+ C2

√
d.

This problem may be formulated as in (1.2) as follows. Each q-partition may be encoded by an assignment
of “spin” variables σi ∈ X = [q] = {1, · · · , q}, which indicates the membership of the vertex to one of the
groups in the partition. In statistical physics terminology, the value of Max q-Cut is closely related to the
ground state of the Antiferromagnetic Potts model. The next result specifies the asymptotic value of the
Max q-cut on sparse Erdős-Rényi random graphs. To state the result, we introduce some notation from
[Pan15]. We define

Γq = {γ : γ is a (q − 1)× (q − 1) symmetric positive semidefinite matrix},
Π = {π : [0, 1] → Γq : π is left continuous , π(x) ≤ π(x′) for x ≤ x′},

where π(x) ≤ π(x′) means that π(x′) − π(x) ∈ Γq. Next, we define Πq = {π ∈ Π : π(0) = 0, π(1) =
diag(1/q, · · · , 1/q)}. Given γ ∈ Γq, we define an expansion map U : Γq → Γq+1 as follows. For 1 ≤ k, k′ ≤
(q − 1), U(γ)kk′ = γk.k′. Otherwise, we set, for 1 ≤ k ≤ (q − 1),

U(γ)q,k = U(γ)k,q =
1

q
−

∑

k′

γk,k′, , U(γ)q,q = −
(
1− 2

q

)
+

∑

k,k′

γkk′.

It is easy to note that U is non-decreasing and thus for any π ∈ Π, U(π) : [0, 1] → Γq is left-continuous
and non-decreasing.

Armed with the notation introduced above, we define the “Parisi functional” in this context. For
some r ≥ 1, consider two sequences x−1 = 0 ≤ x0 ≤ · · · ≤ xr = 1 and a monotone sequence in Γq,
0 = γ0 ≤ · · · ≤ γr = diag(1/q, · · · , 1/q). We can associate to any such pair a discrete path in Πq such that

π(x) = γv, xv−1 < x ≤ xv (2.3)
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for 0 ≤ v ≤ r with π(0) = 0. Given such a discrete path, we consider a sequence of independent Gaussian
vectors zv = (zv(k))k≤q for 0 ≤ v ≤ r with covariances Cov(zv) = 2(U(γv)−U(γv−1)). For any λ ∈ Rq and
β ≥ 0, we set

Xr = log
∑

k≤q

exp
(
β

r∑

v=1

zv(k) +
∑

k′≤(q−1)

λk′1(k = k′)
)
. (2.4)

Recursively, for 0 ≤ v ≤ r − 1, we define

Xv =
1

xv
logEv exp(xvXv+1), (2.5)

where Ev[·] denotes the expectation with respect to zv+1. If xv = 0, we set Xv = Ev[Xv+1]. Noting X0 is
non-random, we set Φ(β, λ, r, x, γ) := X0. Finally, we define the Parisi functional

P(β, λ, r, x, γ) = Φ(β, λ, r, x, γ) − 1

q

q−1∑

k=1

λk −
β2

2

r−1∑

v=0

xv

(
‖U(γv+1)‖2HS − ‖U(γv)‖2HS

)
, (2.6)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm of a matrix. It is easy to see [Pan13, Pan15] that P∗(q) :=
limβ→∞

1
β infr,λ,x,γ P(β, λ, r, x, γ) exists. This allows us to state the following Lemma for this example.

Lemma 2.2. If Gn ∼ G(n, d/n) or Gn ∼ GR(n, d) then as n→ ∞, for d sufficiently large,

MaxCut(Gn, q)

n
=
d

2

(
1− 1

q

)
+ P∗(q)

√
d

2
+ od(

√
d). (2.7)

2.3. Min bisection in the stochastic block model. The planted bisection model or stochastic block
model has been extensively studied in computer science to determine the average case behavior of graph
bisection heuristics. Given a fixed subset S ⊂ [n] = {1, · · · , n} with |S| = n/2 (we will assume throughout
that n is even) and a > b > 0, the random graph G(n, a/n, b/n) = ([n], En) has a vertex set [n], and edges
are added independently with

P[(i, j) ∈ En] =

{
a/n if {i, j} ⊆ S or {i, j} ⊆ Sc,

b/n if i ∈ S, j ∈ Sc or i ∈ Sc, j ∈ S.
(2.8)

This model has also been studied extensively in the statistics literature as a testbed for estimation
strategies which recover the true community assignments. Recently, the model attracted intense study due
some outstanding conjectures by physicists [DKMZ11]. These conjectures have been established due the
efforts of Mossel, Neeman, Sly [MNS13] and Massoulie [Mas14]. The last few years has witnessed frantic
activity in this research area and thus instead of attempting to survey the existing literature, we will point
the reader to the excellent survey in [GV15] for an overview of the existing results.

In a different direction, CS studies about the performance of bisection algorithms on the planted bisection
model have established that for (a − b) large, the planted bisection is the minimal bisection— however,
for (a − b) small, the planted bisection ceases to be the minimum bisection. This leaves open the basic
question:

What is the bisection width of a graph drawn from the planted bisection model?

This question was partially answered by Coja Oghlan et. al. [COCKS15] who established that for (a− b)
sufficiently large, the problem can be solved using a local “warning propagation” algorithm originally
introduced in the study of random CSPs. It turns out to be more natural to parametrize this model in terms
of the average degree d = (a+b)/2 and the Signal-to-Noise-Ratio (SNR) parameter ξ = (a−b)/

√
2(a+ b) >

0. For example, given the graph, “non-trivial” inference about the correct community memberships is
possible if and only if ξ > 1 [MNS13, Mas14]. The next lemma estimates the bisection width of the sparse
block model in the regime when the average degree d is large, while the SNR parameter ξ is of a constant
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order. To state our result, we again need to introduce some quantities relevant in this context. It was
established in [Che14] that for a GOE matrix J = (Jij)1≤i,j≤n and ξ > 0

F̃ (β) := lim
n→∞

1

n
log

∑

σ∈{±}n
exp

(
β
( ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

))

exists and that F̃ (β) = maxµ∈[−1,1]

(
F2(

√
2β, ξ√

2
) − βµ2

)
, where F2 is defined in (2.1). It is easy to see

that limβ→∞ F̃ (β)/β exists and we set C∗ = limβ→∞
F̃ (β)
β . Denoting the minimum bisection of a graph G

as mcut(G), we have the following result.

Lemma 2.3. Let Gn ∼ G(n, a/n, b/n). Assume that d is sufficiently large. Then we have, as n→ ∞,

1

n
mcut(Gn) =

d

4
− C∗√d+ o(

√
d). (2.9)

Remark 2.1. We note that a similar strategy has been used in [MS16] to analyze the performance of some
semidefinite programs in this context.

2.4. Follow up work. Since the submission of the initial draft, some subsequent papers have used this
framework and similar ideas to study combinatorial problems. We take this opportunity to briefly review
these new results. In a joint work of Aukosh Jagannath, Justin Ko and the author [JKS18], this framework
is crucially used to study the MAX q-cut on inhomogeneous random graphs. Similarly, in a joint work
of Aukosh Jagannath and the author[JS17], these results are crucial for establishing sharp comparison
inequalities between unbalanced cuts on sparse Erdős-Rényi and random regular graphs.

[Pan16] studies the value of the random MAX k-SAT problem in the large degree limit using some related
ideas. The MAX 3-SAT problem had been studied earlier in this setup by [LP01] using non-rigorous replica
methods. [CP18] uses similar ideas en route to establishing disorder chaos in some diluted models. As a
consequence, one can establish the proliferation of the near optimizers in these problems. [CGPR17] use
some associated ideas to establish the sub-optimality of a class of local algorithms on a class of hypergraph
MAX-CUT type problems.

3. Proofs of Examples

Proof of 2.1: We first express this problem in the setup of (1.2). To this end, we note that each
variable xi, 1 ≤ i ≤ n, may be equivalently encoded by a spin variable σi taking values in the finite
alphabet X = {−1,+1}. The total number of equations will be denoted by m. We also encode each ba,
a ∈ {1, · · · ,m} to take values in {−1,+1}. Thus P[ba = −1] = P[ba = +1] = 1/2 for each a ∈ {1, · · · ,m}.
We set f(σ1, · · · , σp) = σ1 · · · σp and we note that the maximum number of satisfiable clauses may be
expressed as

S(n, p, d) = m

2
+

1

2p
max
σ∈Xn

∑

i1 6=···6=ip

Ai1,··· ,ipbi1,··· ,ipf(σi1 , · · · , σip),

where A is the adjacency matrix of the corresponding p-uniform hypergraph. Therefore, this optimization
problem is covered by the framework introduced in (1.2). In this case, we have, κ ≡ (p − 1)!, κ1 ≡ 0 and
κ2 = 1/(p − 1)!. Applying Theorem 1.1, we have, with high probability as n→ ∞,

S(n, p, d)
n

=
d

2p
+

√
d

2np
E

[
max
σ∈Xn

∑

i1 6=···6=ip

Ji1,··· ,ip
n(p−1)/2

σi1 · · · σip
]
, (3.1)
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where {Ji1,··· ,ip} is a standard symmetric Gaussian p-tensor. Now, Ji1,··· ,ip =
√
p

p!

∑
π Gπ(i1),··· ,π(ip), where

{Gi1,··· ,ip} is an array of iid standard Gaussian entries. This implies that

S(n, p, d)
n

=
d

2p
+

1

2

√
d

p

1

n
E

[
max
σ∈Xn

∑

i1,··· ,ip

Gi1,··· ,ip
n(p−1)/2

σi1 · · · σip
]
+ o(1).

The desired result follows immediately from the definition of Pp introduced above.
Proof of Lemma 2.2: We will use the condition (C2) of Proposition 1.2. To this end, we note that in

this case An = [q]n, and setting f(x, y) = 1(x 6= y), we have, Vn/2 = MaxCut(Gn, q)/n. In this case,
Ψ(m) =

∑
imi(1 − mi). It is easy to see that this function attains its unique maximum (1 − 1/q) at

m∗ = 1/q. Finally, we have,

Ψ̄(m) =

q−1∑

i=1

mi(1−mi) +
( q−1∑

i=1

mi

)(
1−

q−1∑

i=1

mi

)
= 2

q−1∑

i=1

mi −
q−1∑

i=1

m2
i −

( q−1∑

i=1

mi

)2
.

This immediately implies −∇2Ψ̄(m) = I + 11T ≻ I. This verifies condition (C2). For p ∈ Sim, we set,

Σ(p) = {σ ∈ [q]n :

n∑

i=1

1(σi = k) = npk, 1 ≤ k ≤ q}.

Therefore, Proposition 1.2 implies that

MaxCut(Gn, q)

n
=
d

2

(
1− 1

q

)
+

√
d

2n
E

[
max

σ∈Σ(1/q)

∑

i,j

Jij√
n
1(σi 6= σj)

]
+ od(

√
d).

=
d

2

(
1− 1

q

)
+

√
d

2n
E

[
max

σ∈Σ(1/q)

∑

i,j

Jij√
n
1(σi = σj)

]
+ od(

√
d), (3.2)

where the last equation uses [
∑

i,j Jij/
√
n]/n

P→ 0 as n → ∞ and (Jij){1≤i,j≤n} =d (−Jij){1≤i,j≤n}, with

=d denoting equality in distribution. Finally, an application of [Pan15] implies that as n→ ∞,

1

n
E

[
max

σ∈Σ(1/q)

∑

i,j

Jij√
n
1(σi = σj)

]
→ P∗(q).

Plugging this back into (3.2) immediately concludes the proof.
Proof of Lemma 2.3: This example is not exactly in the framework of the general problem introduced

in Theorem 1.1. However, we will establish that the same techniques are invaluable in this case. Without
loss of generality, we assume that S = {1, 2, · · · , n/2}. We can encode each partition by an assignment
of spins σ = (σ1, · · · , σn) ∈ {±1}n. The constraint that the two halves must be of equal size enforces
that

∑
i σi = 0. In this case, we have, denoting the adjacency matrix of G(n, a/n, b/n) by A and setting

Acen = A− E[A],

mcut(Gn)

n
=

1

2n
min

{σ:σi=0}

∑

i,j

Aij1(σi 6= σj)

=
1

2n
min

{σ:
∑

σi=0}

∑

i,j

{d
n
1(σi 6= σj) +

ξ

n

√
dχij1(σi 6= σj) +Acen

ij 1(σi 6= σj)
}
, (3.3)

where χij = 1 if both i, j ∈ S or both i, j ∈ Sc and χij = −1 otherwise. We note that for each σ ∈ {−1,+1}n
satisfying

∑
i σi = 0,

∑
i,j 1(σi 6= σj) = n2/2. Therefore, we have, from (3.3)

mcut(Gn)

n
=
d

4
+

√
d

2n
min

{σ:∑ σi=0}

∑

i,j

{ ξ
n
χij +

Acen
ij√
d

}
1(σi 6= σj). (3.4)
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We note that for boolean variables, we have, 1(σi 6= σj) = (1 − σiσj)/2. Further, we observe that
∑

i,j χij = 0 and Var(
∑

i,j A
cen
ij ) = O(n) which implies that 1

n

∑
i,j A

cen
ij

P→ 0 as n → ∞. We set vi = 1 if

i ∈ S and vi = −1 otherwise, such that χij = vivj . Thus we have, from (3.4),

mcut(Gn)

n
=
d

4
−

√
d

4n
max

{σ:
∑

σi=0}

[ ξ
n
〈v, σ〉2 + 1√

d

∑

i,j

Acen
ij σiσj

]
. (3.5)

At this point, we employ the following comparison principle, which is the analogue of Theorem 1.1 in this
context. The proof is similar to Theorem 1.1 and thus we will simply sketch the proof later in the section.
It might be useful to study the proof of Theorem 1.1 before reading the proofs below.

Theorem 3.1. With high probability as n→ ∞, we have,

mcut(Gn)

n
=
d

4
−

√
d

4n
E

[
max

{σ:
∑

σi=0}

{ ξ
n
〈v, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
+ od(

√
d),

where (Jij) is a standard GOE matrix.

Applying Theorem 3.1, we have,

mcut(Gn)

n
=
d

4
−

√
d

4n
E

[
max

{σ:
∑

σi=0}

{ ξ
n
〈v, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
+ od(

√
d)

=
d

4
−

√
d

4n
E

[
max
σ∈Cn

{ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
+ od(

√
d),

where Cn = {σ :
∑n/2

i=1 σi =
∑n

i=n/2+1 σi}. Finally, the proof can be completed by an application of the

following lemma.

Lemma 3.1. We have, as n→ ∞,

1

n
E

[
max
σ∈Cn

{ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
=

1

n
E

[
max

σ∈{±1}n

{ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
+ o(1). (3.6)

It remains to establish Theorem 3.1 and Lemma 3.1. We first outline the proof of Theorem 3.1 and defer
the proof of Lemma 3.1 to the end of the section.

Proof of Theorem 3.1: Given any symmetric matrix M and for any configuration σ ∈ {±1}n satisfying∑
i σi = 0, we define,

H(σ,M) =
∑

i,j

Mijσiσj, Φ(β,M) = log
[ ∑

σ:
∑

σi=0

exp(βH(σ,M))
]
.

We define the symmetric Gaussian matrix B = ξ
nvv

T + J√
n
, where J = (Ji,j) is a standard GOE matrix.

We will establish
∣∣∣
1

nβ
E

[
Φ(β,

ξ

n
vvT +

Acen
G√
d
)
]
− 1

nβ
E

[
Φ(β,B)

]∣∣∣ ≤ Cβ2√
d

(3.7)

for some constant C > 0. The thesis follows subsequently by using Lemma 4.3 with |X | = 2. To this end,
we proceed in two steps, and define an intermediate Gaussian random matrix

D(ξ) =
ξ

n
vvT +U , (3.8)
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where U = UT ∈ Rn×n is a Gaussian random matrix with {Uij}1≤i≤j≤n independent zero-mean Gaussian
random variables with

Var(Uij) =

{
a[1− a/n]/(nd) if {i, j} ⊆ S or {i, j} ⊆ Sc,

b[1− b/n]/(nd) if i ∈ S, j ∈ Sc or i ∈ Sc, j ∈ S,
(3.9)

and Uii = 0. By triangular inequality
∣∣∣∣
1

n
EΦ

(
β,
ξ

n
vvT +Acen

G /
√
d
)
− 1

n
EΦ

(
β,B

)∣∣∣∣ ≤
∣∣∣∣
1

n
EΦ

(
β,
ξ

n
vvT +Acen

G /
√
d
)
− 1

n
EΦ

(
β,D

)∣∣∣∣

+

∣∣∣∣
1

n
EΦ

(
β, k;D

)
− 1

n
EΦ

(
β, k;B

)∣∣∣∣ . (3.10)

The proof of (3.7) follows therefore from the next two results.

Lemma 3.2. With the above definitions, if n ≥ (15d)2, then
∣∣∣∣
1

n
EΦ

(
β,
ξ

n
vvT +

Acen

√
d

)
− 1

n
EΦ

(
β,D

)∣∣∣∣ ≤
2β3√
d
. (3.11)

Lemma 3.3. With the above definitions, there exists an absolute constant n0 such that, for all n ≥ n0,
∣∣∣∣
1

nβ
EΦ

(
β,B

)
− 1

nβ
EΦ

(
β,D

)∣∣∣∣ ≤ 5

√
a− b

d
. (3.12)

The proof of Lemma 3.2 is the same as that of Lemma 4.2 and will thus be omitted. Lemma 3.3 is
proved in [MS16, Lemma E.2] and will thus be omitted. Finally, we prove Lemma 3.1.

Proof of Lemma 3.1: Trivially, we have E[maxσ∈{±1}n{ ξ
n〈1, σ〉2+

∑
i,j

Jij√
n
σiσj}] ≥ E[maxσ∈Cn{ ξ

n〈1, σ〉2+∑
i,j

Jij√
n
σiσj}]. To derive the opposite bound, we proceed as follows. Let

σ∗ = argmax{±1}n
[ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

]
= argmax{±1}n

∑

i,j

Mijσiσj .

where M = (Mi,j) is a symmetric matrix, {Mi,j : i < j} are independent N (ξ/n, 1/n) random variables.
The definition of σ∗ implies that σ∗i = sign(

∑
j Mijσ

∗
j ). Thus setting fi =

∑
j Mijσ

∗
j , we have,

∑

i,j

Mi,jσ
∗
i σ

∗
j =

∑

i

|fi|.

Now, elementary bounds on the spectral norm of a one-rank perturbed random matrix [FP07] implies
that with probability 1,

∑
i |fi| ≤ C(ξ)n for some universal constant C(ξ) independent of n. Finally this

implies that with probability 1, the set R∗ = {i ∈ [n] : |fi| ≤ 10C(ξ)} has size at least 9n/10. We
define m∗ = 1

n

∑
i 1(σ

∗
i = 1). By the symmetry of the problem, given m∗, σ∗ is uniformly distributed on

{σ :
∑

i 1(σi) = nm∗}. Thus
∑n/2

i=1 1(σi = 1) = H, where H ∼ Hypergeometric(n,m∗, n/2). It is easy

to see that Var[H|m∗] . n and therefore, by Chebychev inequality, with high probability, |∑n/2
i=1 1(σi =

1) −∑n
i=n/2+1 1(σi = 1)| . √

n log n. Thus with high probability, we can flip at most O(
√
n log n) bits of

σ∗ to get a configuration in Cn. We will necessarily flip these coordinates from R∗ and denote the set of
flipped indices by W . Let the derived configuration be σ⋆. Then we have

|
∑

i,j

Mijσ
∗
i σ

∗
j −

∑

i,j

Mi,jσ
⋆
i σ

⋆
j | = 2 |

∑

i∈W

∑

j∈W c

Mi,jσ
∗
i σ

∗
j | ≤ 20C(ξ)|W |+ 2

∑

i,j∈W
|Mi,j |.

We have,
∑

i,j∈W |Mi,j | . ξ log n+
∑

i,j∈W |Jij |/
√
n, where {Jij : i < j} are independent standard Gaussian

random variables. With high probability, |W | ≤ C
√
n log n for some constant C > 0 arbitrarily large. We
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will show that maxS⊂[n],|S|≤C
√
n logn

∑
i<j∈S |Jij |/

√
n = o(n) with high probability. To this end, we note

that for a fixed S, we have, by Markov’s inequality,

P

[ ∑

i<j∈S

|Jij |√
n

≥ δn

]
≤ exp(−√

nδn)E[e
|J |]C

2n logn ≤ exp(−c√nδn) (3.13)

whenever δn ≫ n1/2+δ for any δ > 0. The desired claim now follows by a union bound over at most 2n

possible S. Finally we have,

E

[
max
σ∈Cn

{ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
≥ E

[∑

i,j

Mijσ
⋆
i σ

⋆
j

]
≥ E

[
max

σ∈{±1}n

{ ξ
n
〈1, σ〉2 +

∑

i,j

Jij√
n
σiσj

}]
− o(n)

thereby completing the proof.

4. Proof of Theorem 1.1

We prove Theorem 1.1 in this section. We mainly use the Lindeberg interpolation strategy, which has
been widely used to prove universality in probability. We define

H1(σ) =
1√
d

∑

i1 6=i2 6=···6=ip

Ai1,··· ,ipf(σi1 , · · · , σip).

H2(σ) =
∑

i1 6=i2 6=···6=ip

[√
d
κ1(i1, · · · , ip)

np−1
+
Ji1,··· ,ip
n(p−1)/2

]
f(σi1 , · · · , σip),

where Ji1,··· ,ip ∼ N (0, κ2(i1, · · · , ip)) are independent random variables for i1 < i2 < · · · < ip and for any

permutation π, Ji1,··· ,ip = Jπ(i1),··· ,π(ip). We note that Vn =
√
d
n maxσ∈An H1(σ). Our first lemma establishes

that Vn is concentrated tightly around its expectation.

Lemma 4.1. We have, as n→ ∞, Vn − E[Vn]
P→ 0 .

Proof. To control the variance of Vn, we use the Efron-Stein inequality. We note that if we replace Ai1,··· ,ip
by an independent copy A′

i1,··· ,ip ,

E[(Ai1,··· ,ip −A′
i1,··· ,ip)

2] ≤ 2E[A2
i1,··· ,ip ] =

2κ2(i1, · · · , ip)
np−1

.

This implies, by Efron-Stein inequality [BLM13]

Var[max
σ∈An

H1(σ)] ≤
‖f‖∞
d

∑

1≤i1 6=···6=ip≤n

κ2(i1, · · · , ip)
np−1

= O(n).

This immediately implies that Var(Vn) = O(1/n). ✷

Thus it suffices to work with the expected values. We define

e1,n =
1

n
E

[
max
σ∈An

H1(σ)
]
, e2,n =

1

n
E

[
max
σ∈An

H2(σ)
]

We introduce the following smooth approximation of the maximum values.

Φ1(β) =
1

n
E

[
log

∑

σ∈An

exp(βH1(σ))
]
, Φ2(β) =

1

n
E

[
log

∑

σ∈An

exp(βH2(σ))
]
. (4.1)

We can derive the following bound on the difference of Φ1 and Φ2.
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Lemma 4.2. There exists a constant D > 0 independent of n such that

1

β
|Φ1(β)− Φ2(β)| ≤

Dβ2√
d
. (4.2)

We note that Φi(β)/β → ei,n for i = 1, 2 as β → ∞. The following lemma gives us a quantitative version
of this statement, valid uniformly for all n.

Lemma 4.3. We have, for i = 1, 2, for all n sufficiently large,
∣∣∣
Φi(β)

β
− ei,n

∣∣∣ ≤ log |X |
β

.

The proofs of Lemmas 4.2 and 4.3 will be deferred to the end of this section. We complete the proof of
Lemma 1.1 using these results. To this end, we note that using Lemma 4.3, we have,

|e1,n − e2,n| ≤
Dβ2√
d

+ 2
log |X |
β

.

Thus choosing β = d1/4−δ for some 0 < δ < 1/4, we have |e1,n − e2,n| = od(
√
d). Now, we have, from (1.2)

Vn =
1

n
max
σ∈An

∑

i1,··· ,ip
Ai1,··· ,ipf(σi1 , · · · , σip)

= E[ max
σ∈An(α)

[αd+ Tα
n

√
d]] + od(

√
d),

where An(α) = {σ ∈ An : 1
np

∑
i1 6=···6=ip

κ(i1, · · · , ip)f(σi1 , · · · , σip) = α}. This completes the proof of the

lemma.

4.1. Proof of Lemma 4.2. We will use the following version of the Lindeberg invariance principle [Cha05].

Lemma 4.4. Let F : R
N → R be three times continuously differentiable. Let X = (X1, · · · ,XN )

and Z = (Z1, · · · , ZN ) be two vectors of independent random variables satisfying E[Xi] = E[Zi] and
E[X2

i ] = E[Z2
i ] for all 1 ≤ i ≤ N . Then we have,

|E[F (X)] − E[F (Z)]| ≤ 1

6
S3 max

1≤i≤N
‖∂3i F‖∞,

where S3 =
∑N

i=1[E|Xi|3 + E|Zi|3] and ‖∂3i F‖∞ = sup | ∂3

∂x3
i
F (x)|.

Given M = {Mi1,··· ,ip : 1 ≤ i1 6= i2 6= · · · 6= ip ≤ n}, define

H(σ,M) =
∑

i1 6=···6=ip

Mi1,··· ,ipf(σi1 , · · · , σip)

G(M) =
1

nβ
E

[
log

∑

σ∈An

exp(βH(σ,M))
]
.

Therefore, setting A = { 1√
d
Ai1,··· ,ip : 1 ≤ i1 < · · · < ip ≤ n} and J = {

√
d
κ1(i1,···ip)

np−1 +
Ji1,··· ,ip
n(p−1)/2 : 1 ≤ i1 <

· · · < ip ≤ n}, we have, by a slight abuse of notation,

Φ1(β)

β
= E[G(A)],

Φ2(β)

β
= E[G(J)].

An application of Lemma 4.4 yields

1

β
|Φ1(β)− Φ2(β)| ≤

1

6
S3 max

i1,··· ,ip
‖∂3i1,··· ,ipG‖∞.
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Let 〈·〉 denote the expectation with respect to the Gibbs measure µM(σ) ∝ exp(βH(σ,M)) under the
weight sequence M. Direct computation yields, for i1 < i2 < · · · < ip,

∂i1,··· ,ipG =
p!

n
〈f〉,

∂2i1,··· ,ipG =
β(p!)2

n
[〈f2〉 − 〈f〉2],

∂3i1,··· ,ipG =
β2(p!)3

n
[〈f3〉 − 3〈f2〉〈f〉+ 2〈f〉3].

Thus we have, maxi1,··· ,ip ‖∂3i1,··· ,ipG‖∞ ≤ 6β2(p!)3

n ‖f‖3∞. Finally, we have,

S3 =
∑

i1<···<ip

[ 1

d3/2
E|Ai1,··· ,ip |3 + E|

√
d
κ1(i1, · · · , ip)

np−1
+
Ji1,··· ,ip
n(p−1)/2

|3
]
= I + II.

We bound each term separately. To bound the first term, we note,

I ≤ 1

d3/2

∑

i1<···<ip

E|Ai1,··· ,ip |3 ≤
BU

d3/2

∑

i1<···<ip

d
κ2(i1, · · · , ip)

np−1
.

n√
d
.

Finally, to bound the second term, we note that,

II .
np

n3(p−1)
+

np

n3(p−1)/2
.
n3/2

np/2
+ o(1) = on(n).

This completes the proof.

4.2. Proof of Lemma 4.3. Let H : X n → R be any function and for any subset of configurations
An, define the “partition function” Zn(β) =

∑
σ∈An

exp(βH(σ)). Further, define the Gibbs measure

µβ,n(σ) = exp(βH(σ))/Zn(β) and the log-partition function φn(β) =
1
n logZn(β). Now, we observe that

∂

∂β

φn(β)

β
= − 1

nβ2
S(µβ,n),

where S(µβ,n) = −∑
σ∈An

µβ,n(σ) log µβ,n(σ) is the entropy of the distribution µβ,n. Now, we have,

S(µβ,n) ≤ log |An|, where | · | denotes the cardinality of the configuration space. Finally, noting that

|An| ≤ |X |n, we immediately have, ∂
∂β

φn(β)
β ∈ [− log |X |

β2 , 0]. This immediately implies

|ei,n(α)−
Φi(β)

β
| = |

ˆ ∞

β

∂

∂t

(Φi(t)

t

)
dt| ≤ log |X |

β
.

This completes the proof.

5. Proof of Theorem 1.2

First, we study a modified optimization problem on Erdős-Rényi hypergraphs, which will be crucially
related to the behavior of the original problem (1.2) on regular instances. To this end, consider the p-
uniform Erdős-Rényi hypergraph constructed as follows. The hypergraph has vertex set V = {1, · · · , n},
and each p-subset of V is added independently to the set of hyperedges with probability (p−1)!(d−C

√
d log d)

np−1 .
We denote the adjacency matrix of this hypergraph as AH . Given any function f : X p → R which is
symmetric in its arguments, consider the optimization problem

Vn(AH) =
1

n
max
σ∈An

[ d

np−1

∑

i1,i2,··· ,ip
f(σi1 , · · · , σip) +

∑

i1,··· ,ip
Acen

H (i1, · · · , ip)f̄(σi1 , · · · , σip)
]
, (5.1)

f̄(σi1 , · · · , σip) = f(σi1 , · · · , σip)−
p

np−1

∑

l2,··· ,lp
f(σi1 , σl2 , · · · , σlp),
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where we set Acen
H = AH − E[AH ]. The next lemma lemma approximates the value of this optimization

problem using an appropriate Gaussian surrogate.

Lemma 5.1. For d sufficiently large, as n→ ∞, with high probability,

Vn(AH) = Emax
α

[dα + Sα
n

√
d] + od(

√
d), (5.2)

with Sα
n as defined in (1.5).

The proof is similar to Theorem 1.1, and is therefore omitted.
Next, we initiate the study of (1.2) on p- uniform, d-regular instances, and first observe that we can

equivalently work with the hypergraph version of the configuration model [Bol80]. The probability that the
hypergraph is simple is lower bounded by O(1) [CFMR96]. Thus, for our purposes, it suffices to establish
the result for the configuration model.

We recall the usual construction of the random d regular, p uniform hypergraph under the configuration
model. A multi-hypergraph G = (V,E), where V is the set of vertices, and E is the set of hyperedges. In
a p- uniform multi-hypergraph, each e ∈ E is a subset of size p from V , with possible repetitions. We will
assume throughout that p|nd. Under the configuration model, we consider nd objects, labeled as

L = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ d}.
We refer to the objects {(i, j) : 1 ≤ i ≤ d} as the “clones” of vertex i. Consider also the set of half-edges

C = {(a, k) : 1 ≤ a ≤ nd

p
, 1 ≤ k ≤ p}.

By a d-regular, p- uniform hypergraph drawn from the configuration model, we refer to a uniform random
matching υ : C → L (formally, the matching is a random bijection between the sets C and L ). In this
case, we set V = {1, 2, · · · , n} and define E = {{υ((a, k)) : 1 ≤ k ≤ p}, 1 ≤ a ≤ nd

p }. We refer to the

hyperedge {υ((a, k)) : 1 ≤ k ≤ p} as the hyperedge a.
The main challenge in the analysis of the uniform d-regular hypergraph stems from the dependence in

the hyperedges. Our main idea, similar to the one introduced in [DMS16], is to relate the optimal value

(1.2) on the regular hypergraph to (5.1), up to od(
√
d) corrections. Theorem 1.2 then follows directly from

Lemma 5.1.
Proof of Theorem 1.2: The main idea is to “find” an Erdős-Rényi hypergraph, with slightly smaller

average degree, “embedded” in the uniform d regular p-uniform hypergraph, and relate the optimization
problem on the larger graph to a modified problem on the smaller embedded graph. We formalize this
idea in the rest of the proof. During the proof, we will sometimes construct hypergraphs which are not p
uniform, in that they have an hyperedge with less than p elements. We note that this slight modification
does not affect our conclusions in any way.

We will crucially use the following two stage construction of the configuration model. Throughout, we
define the vertex set V = {1, · · · , n}. Let C > 0 be a large constant, to be chosen later. Let Xi ∼
Pois(d − C

√
d log d) i.i.d. for some C > 0 sufficiently large and we set Zi = (d −Xi)+. Recall the clones

{(i, j) : 1 ≤ j ≤ d} used in the construction of the configuration model. For 1 ≤ i ≤ n, we color the clones
{(i, j) : 1 ≤ j ≤ Zi} by the color BLUE, and the rest are colored RED. The multi-hypergraph G1 is formed
by a uniform random matching υ between L and C , and is thus distributed as a configuration model.
Consider the set of hyperedges a in G1 such that {υ(a, k) : 1 ≤ k ≤ p} are RED clones and denote the sub
hypergraph induced by these hyperedges as GR = (V,E(GR)). Similarly, the sub hypergraph induced by
the hyperedges a in G1 such that {υ(a, k) : 1 ≤ k ≤ p} has at least one BLUE clone will be denoted by GB.
We will now delete all the {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ d} clones colored BLUE, and delete the half-edges
{a : 1 ≤ a ≤ nd

p } in G1 such that {υ((a, k)) : 1 ≤ k ≤ p} has at least one BLUE clone. Assume that this

operation creates u = lp + r, 0 ≤ l ≤ nd
p , r < p unmatched RED clones in G1. We add new half-edges

{(a, k) : nd
p + 1 ≤ a ≤ nd

p + l, 1 ≤ k ≤ p} ∪ {(ndp + l + 1, k) : 1 ≤ k ≤ r} and match the new half-edges

uniformly to the unmatched RED clones in G1. We refer to the sub-graph induced by the new hyperedges



16 SUBHABRATA SEN

{a : nd
p + 1 ≤ a ≤ nd

p + l + 1} as G̃R = (V,E(G̃R)) and define G2 as the multi hypergraph with vertex

set V and hyperedges E(GR) ∪E(G̃R). We establish in Lemma 5.3 that G2 is equivalently obtained using
a random matching between the RED clones {(i, j) : 1 ≤ i ≤ n,Zi + 1 ≤ j ≤ d} clones and p-uniform
hyperedges with the same number of half-edges. Let AG1 and AG2 denote the adjacency matrices of the
multi-hypergraphs respectively— thus for j = 1, 2, (p−1)!AGj (i1, · · · , ip) counts the number of {i1, · · · , ip}
hyperedges present in Gj .

The cornerstone of the proof is the following lemma. We defer the proof for ease of exposition.

Lemma 5.2. We have, with high probability as n→ ∞, for d sufficiently large,

V R
n =

1

n
max
σ∈An

[ d

np−1

∑

i1,i2,··· ,ip
f(σi1 , · · · , σip) +

∑

i1,··· ,ip
Acen

G2
(i1, · · · , ip)f̄(σi1 , · · · , σip)

]
+ od(

√
d), (5.3)

where we set Acen
G2

= AG2 − E[AG2 ], and f̄ is the same as in (5.1).

Given Lemma 5.2, we complete the proof as follows. We will establish that up to od(
√
d) corrections, the

value of the RHS of (5.3) is equal to that on an Erdős-Rényi hypergraph with average degree d−C
√
d log d.

This step is accomplished by direct graph comparison arguments. To this end, note that for any two p-
hypergraphs G1 = (V,E1), G2 = (V,E2), denoting the optimal value (1.2) as Vn(Gi), i = 1, 2 respectively,
we have, |Vn(G1)− Vn(G2)| . |E1∆E2|/n.

Consider first the Poisson Cloning hypergraph Gclon(n, p, d−C
√
d log d) [Kim06] constructed as follows.

Let U1, · · · , Un be i.i.d. Pois( (p−1)!(d−C
√
d log d)

np−1

(n−1
p−1

)
) random variables and consider the set of clones

L1 = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ Ui}.
Set U =

∑n
i=1 Ui := l1p+ r1, for some l1 ≥ 0, and 0 ≤ r1 < p. Consider the set of half-edges

C1 = {(a, k) : 1 ≤ a ≤ l1, 1 ≤ k ≤ p} ∪ {(l1 + 1, k) : 1 ≤ k ≤ r1}.
Given L1 and C1, let υ1, let υ1 be a uniformly random matching υ1 : C1 → L1. The multi hypergraph
Gclon(n, p, d−C

√
d log d) has vertex set V = {1, · · · , n} and hyperedges E = {{υ1((a, k)) : 1 ≤ k ≤ p} : 1 ≤

a ≤ l1}} ∪ {{υ1((l1 +1, k)) : 1 ≤ k ≤ r1}}. [Kim06, Theorem 1.1] establishes that this model is contiguous

to the Erdős-Rényi hypergraph with edge probabilities (p− 1)!(d−C
√
d log d)/np−1, and thus it suffices to

compare the RHS of (5.3) to that on the Poisson cloning model. The proof is then complete, by appealing
to Lemma 5.1.

To facilitate the comparison between G2 and Gclon(n, p,), we use the intermediate hypergraph Gint,

constructed as follows. Let W1, · · · ,Wn be i.i.d. Pois(d − C
√
d log d), and similar to the construction of

Gclon(n, p,), consider the set of clones

L2 = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤Wi}.
Let

∑
iWi = l2p+ r2, for some l2 ≥ 0, r2 < p, and consider the set of half-edges

C2 = {(a, k) : 1 ≤ a ≤ l2, 1 ≤ k ≤ p} ∪ {(l2 + 1, k) : 1 ≤ k ≤ r2}.
Similar to the construction of Gclon(n, p,), we let υ2 be a uniform random matching υ2 : C2 → L2. We
define Gint to be a multi hypergraph with vertex set V = {1, · · · , n} and hyperedges E = {{υ2((a, k)) :
1 ≤ k ≤ p} : 1 ≤ a ≤ l2}} ∪ {{υ2((l2 + 1, k)) : 1 ≤ k ≤ r2}}.

To compare Gint and Gclon(n, p,),note that Ui is stochastically smaller than Wi, and therefore, we can
couple the (Ui,Wi) pairs such that Ui ≤ Wi for all 1 ≤ i ≤ n. We use a two-stage construction, similar to
that outlined for the configuration model, to couple Gint and Gclon(n, p,). To this end, we color the clones
{(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ Ui} with the color RED, while the remaining clones are colored BLUE. The multi
hypergraph obtained by the matching υ2 : C2 → L2 obtains the graph G

int. Now, we delete all half-edges a
such that {υ2((a, k))} has at least one BLUE clone. Finally, we add extra half-edges to match the RED clones
which have been left un-matched by the deletion procedure. Using Lemma 5.3, we immediately observe that
the graph obtained is distributed as Gclon(n, p, d−C

√
d log d). This coupling of Gclon(n, p, d−C

√
d log d) and
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Gint ensures that E[|E(Gclon)∆E(Gint)|] = Od(1). Thus E
∑

i1,··· ,ip |AGclon(i1, · · · , ip) − AGint(i1, · · · , ip)| .
Od(1) implying that for our purposes, we can restrict ourselves to Gint.

Next, we use the same two stage construction to couple Gint and G2. Note that the construction of
G2 and Gint are very similar, and the number of clones in each model can be coupled exactly as long as
Pois(d − C

√
d log d) ≤ d. We choose C > 0 sufficiently large and note that in this case, the coupling

produces hypergraphs which differ in nod(
√
d) hyperedges (here we use the normal approximation to the

Poisson for d large). Thus, setting Vn(G
clon) to be the value in (5.3) with AGclon instead of AG2 , we see

that with high probability as n → ∞, |V R

n − Vn(G
clon)| = od(

√
d). Finally, we appeal to the contiguity of

the Erdős-Rényi hypergraph and the Poisson cloning model hypergraph ensembles [Kim06, Theorem 1.1]
to conclude that Lemma 5.1 holds for Vn(G

clon), and thus immediately implies the desired result.
It remains to prove Lemma 5.2.
Proof of Lemma 5.2: We note that,

AG1 = AG2 +M, (5.4)

where M = AGB
−A

G̃R

. Thus we have, using (1.2) and (5.4),

V R

n =
1

n
max
σ∈An

{ ∑

i1,··· ,ip
AG2(i1, · · · , ip)f(σi1 , · · · , σip) +

∑

i1,··· ,ip
E[M(i1, · · · , ip)]f(σi1 , · · · , σip)

+
∑

i1,··· ,ip
M cen(i1, · · · , ip)f(σi1 , · · · , σip)

}
, (5.5)

where M cen =M − E[M ]. We claim that

1

n
sup
σ∈An

∣∣∣
∑

i1,··· ,ip

[
M cen(i1, · · · , ip)−

p

np−1
(Zi1 − E[Zi1 ])

]
f(σi1 , · · · , σip)

∣∣∣ = od(
√
d). (5.6)

We use (5.4), (5.5) and (5.6), along with the observation that E[AG2 ] + E[M ] = E[AG1 ] = d/np−1 + o(1),
to conclude

V R

n =
1

n
max
σ∈An

[ d

np−1

∑

i1,i2,··· ,ip
f(σi1 , · · · , σip) +

∑

i1,··· ,ip
Acen

G2
(i1, · · · , ip)f(σi1 , · · · , σip)

+
p

np−1

∑

i1,··· ,ip
(Zi1 − E[Zi1 ])f(σi1 , · · · , σip)

]
+ od(

√
d). (5.7)

To complete the proof, we note that

Zi = d−
∑

l2,··· ,lp
AG2(i, l2, · · · , lp) + o(1). (5.8)

Thus
∑

i1,··· ,ip
(Zi1 − E[Zi1 ])f(σi1 , · · · , σip) = −

∑

i1,··· ,ip

∑

l2,··· ,lp
Acen

G2
(i1, l2, · · · , lp)f(σi1 , · · · , σip) + o(n)

= −
∑

i1,l2,··· ,lp
Acen

G2
(i1, l2, · · · , lp)

∑

i2,··· ,ip
f(σi1 , · · · , σip) + o(n) (5.9)

Plugging (5.9) back into (5.7) completes the proof.
It remains to prove (5.6). To this end, for each σ ∈ An, we have, using (5.5)
∑

i1,··· ,ip
M cen(i1, · · · , ip)f(σi1 , · · · , σip) =

∑

i1,··· ,ip

[
Acen

GB
(i1, · · · , ip)−Acen

G̃R

(i1, · · · , ip)
]
f(σi1 , · · · , σip). (5.10)
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We will handle each term separately and prove

1

n
sup
σ∈An

∣∣∣
∑

i1,··· ,ip

[
Acen

GB
(i1, · · · , ip)−

p

np−1
(Zi1 − E[Zi1 ])

]
f(σi1 , · · · , σip)

∣∣∣ = od(
√
d). (5.11)

1

n
sup
σ∈An

∣∣∣
∑

i1,··· ,ip
Acen

G̃R

(i1, · · · , ip)f(σi1 , · · · , σip)
∣∣∣ = od(

√
d). (5.12)

Equations (5.11) and (5.12) automatically imply (5.6).
Proof of (5.11): We note,

∑

i1,··· ,ip
Acen

GB
(i1, · · · , ip)f(σi1 , · · · , σip) =

∑

i1,··· ,ip
(AGB

(i1, · · · , ip)− E[AGB
(i1, · · · , ip)|Z])f(σi1 , · · · , σip)

+
∑

i1,··· ,ip
(E[AGB

(i1, · · · , ip)|Z]− E[AGB
(i1, · · · , ip)])f(σi1 , · · · , σip), (5.13)

where Z = (Z1, · · · , Zn) is the vector of BLUE clones. Let E = {∑i Zi ≤ nE[Z1] + C
√
n log n} for some

constant C > 0 suitably large, such that P[Ec] = o(1).

P

[ 1
n

sup
σ∈An

∣∣∣
∑

i1,··· ,ip
(AGB

(i1, · · · , ip)− E[AGB
(i1, · · · , ip)|Z])f(σi1 , · · · , σip)

∣∣∣ > ∆
]

≤ qn max
σ∈An

E

[
1EP

[ 1
n

∣∣∣
∑

i1,··· ,ip
(AGB

(i1, · · · , ip)− E[AGB
(i1, · · · , ip)|Z])f(σi1 , · · · , σik)

∣∣∣ > ∆|Z
]]

+ o(1)

≤ 2qn exp
(
− 1

2C2
0

n2∆2

nE[Z1] + C
√
n log n

)
+ o(1), (5.14)

where (5.14) is derived as follows. Given Z, we enumerate the nd clones such that the BLUE clones have
the smallest values. Now, we form the hypergraph sequentially, where at each step, we choose the clone of
smallest value and match it to (p−1) randomly chosen unmatched clones. This gives us the natural filtration
F0 ⊂ F1 ⊂ · · · ⊂ Fnd/p, where F0 = σ(Z) and Fi is the canonical sigma algebra formed after exposing the
first i hyperedges. Now, we form the Doob martingale Zk = E[

∑
i1,··· ,ip AGB

(i1, · · · , ip)f(σi1 , · · · , σip)|Fk]

such that Z0 = E[
∑

i1,··· ,ip AGB
(i1, · · · , ip)f(σi1 , · · · , σip)|Z]. We note that setting n0 = nE[Z1]+C

√
n log n,

we have, Zn0 =
∑

i1,··· ,ip AGB
(i1, · · · , ip)f(σi1 , · · · , σip). (5.14) now follows using Azuma-Hoeffding inequal-

ity, provided we establish that there exists a constant C0 such that |Zk−Zk−1| ≤ C0 a.s. This follows from
straight forward adaptation of the argument in [Wor99, Theorem 2.19] and establishes that this probability

is o(1) for ∆ = od(
√
d). This allows us to neglect this term in (5.13). To control the second term in (5.13),

we note that

AGB
(i1, · · · , ip) = AGB,1(i1, · · · , ip) +

p∑

j=2

AGB,j(i1, · · · , ip), (5.15)

where (p − 1)!AGB,j(i1, · · · , ip) counts the number of hyperedges on vertices i1, · · · , ip with exactly j BLUE

clones. We show that the contribution due to {AGB,j : j ≥ 2} can be neglected for our purposes. De-
fine Sj(i1, · · · , ip) = {S ⊂ {i1, · · · , ip}, |S| = j}, where {i1, · · · , ip} should be interpreted as a multiset.
Therefore, we have, for i1, · · · , ip distinct,

E[AGB,j(i1, · · · , ip)|Z] =
∑

S∈Sj(i1,··· ,ip)

∏
l∈S Zl

∏
l∈Sc(d− Zl)

(nd− 1)(nd− 2) · · · (nd− p+ 1)
,
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This implies

∑

i1,··· ,ip
E[AGB,j(i1, · · · , ip)|Z] ≤ C(p, j)

(
∑

i Zi)
j(
∑

i(d− Zi))
p−j

(nd)p−1
+ o(n), (5.16)

where C(p, j) is a universal constant dependent on p, j and independent of n. Therefore, on the event E ,

1

n
sup
σ∈An

∣∣∣
p∑

j=2

∑

i1,··· ,ip

(
E[AGB,j(i1, · · · , ip)|Z]− E[AGB,j(i1, · · · , ip)]

)
f(σi1 , · · · , σip)

∣∣∣

≤ ‖f‖∞
n

p∑

j=2

∑

i1,··· ,ip

[
E[AGB,j(i1, · · · , ip)|Z] + E[E[AGB,j(i1, · · · , ip)|Z]]

]

≤ ‖f‖∞
p∑

j=2

C(p, j)
[ (E[Z1])

j

dj−1

]
+ o(1) = od(

√
d)

for j ≥ 2. This allows us to neglect this term in (5.11). Finally, we are left with the first term in (5.15).
We have,

E[AGB,1(i1, · · · , ip)|Z] =
p∑

j=1

Zij

∏
l 6=j(d− Zil)

(nd− 1) · · · (nd− p+ 1)
(5.17)

Therefore, using the law of large numbers, we have, with high probability,

1

n

∑

i1,··· ,ip
(E[AGB,1(i1, · · · , ip)|Z]− E[AGB,1(i1, · · · , ip)])f(σi1 , · · · , σip)

=
1

np

∑

i1,··· ,ip

p∑

j=1

(Zij − E[Zij ])f(σi1 , · · · , σip) + od(
√
d). (5.18)

This completes the proof of (5.11).
Proof of (5.12): To this end, setting Y = (Y1, · · · , Yn) as the number of RED clones of the ith vertex free

at the second stage of matching, we have, as in (5.13),
∑

i1,··· ,ip
Acen

G̃R

(i1, · · · , ip)f(σi1 , · · · , σip) =
∑

i1,··· ,ip
(AG̃R

(i1, · · · , ip)− E[AG̃R
(i1, · · · , ip)|Y])f(σi1 , · · · , σip)+

+
∑

i1,··· ,ip
(E[A

G̃R

(i1, · · · , ip)|Y]− E[A
G̃R

(i1, · · · , ip)])f(σi1 , · · · , σip). (5.19)

The contribution due to the first term in (5.19) can be shown to be od(
√
d) similar to (5.14) using Azuma’s

inequality as under the event E , ∑i Yi ≤ (p− 1)(n
∑

i E[Zi]+C
√
n log n). Next, we will control the second

term in (5.19). To this end, we have,

E[A
G̃R

(i1, · · · , ip)|Y] =
Yi1 · · ·Yip

(
∑

i Yi − 1) · · · (∑i Yi − p+ 1)
=

∏p
j=1(E[Yij |Z] + εij )∏p−1

j=1(
∑

i Yi − j)
, (5.20)

where we express Yi = E[Yi|Z] + εi for 1 ≤ i ≤ n. We will establish that there exists ∆ = od(
√
d) such that

P

[ 1
n

∑

i1,··· ,ip

∣∣∣E[AG̃R
(i1, · · · , ip)|Y]− E[AG̃R

(i1, · · · , ip)]
∣∣∣ > ∆

]
= o(1). (5.21)

Consider the event E1 = {(p − 1)
∑

i Zi − nC0p(p − 1)2 log d/
√
d ≤ ∑

i Yi ≤ (p − 1)
∑

i Zi} ∩ E , for some
constant C0 > 0 sufficiently large. Given the counts of BLUE clones Z = (Z1, · · · , Zn), the probability that
a hyper-edge contains at least two BLUE clones is less than P[Bin(p − 1,

∑
i Zi/(nd−

∑
i Zi)) > 0] := p(Z).
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Thus the number of hyper-edges in G1 having at least two BLUE clones is stochastically dominated by
Bin(

∑
i Zi, p(Z)). We note that with high probability, Bin(

∑
i Zi, p(Z)) ≤ nC0(p − 1) log d/

√
d with high

probability for some constant C0 > 0. Finally, each hyperedge contains at most p BLUE clones. This implies
P[E1] = 1− o(1) as n→ ∞. Thus we have, setting

Ξ =
1

n

∑

i1,··· ,ip

∣∣∣E[AG̃R

(i1, · · · , ip)|Y]− E[A
G̃R

(i1, · · · , ip)]
∣∣∣,

P[|Ξ| > ∆] ≤ P[|Ξ| > ∆, E1] + o(1). Therefore, it suffices to prove that P[|Ξ| > ∆, E1] = o(1) for some

∆ = od(
√
d) chosen suitably. Henceforth in the proof, for conciseness of notation, we will use [a]p−1 =

(a− 1) · · · (a− p+ 1). From (5.20), we have, setting δ(d) = C0p(p− 1)2 log d√
d
,

Yi1Yi2 · · ·Yip
[(p− 1)nE[Z1] + o(n)]p−1

1E1 ≤ E[AG̃R
(i1, · · · , ip)|Y]1E1 ≤ Yi1 · · ·Yip

[(p− 1)nE[Z1]− nδ(d)]p−1
1E1 .

We will establish that on the event E1,
1

n

∑

i1,··· ,ip

∣∣∣
Yi1Yi2 · · ·Yip

[(p − 1)nE[Z1] + o(n)]p−1
− Yi1 · · ·Yip

[(p − 1)nE[Z1]− nδ(d)]p−1

∣∣∣ ≤ ∆1 (5.22)

for some ∆1 = od(
√
d). Further, we show that on the event E1,

Ξ1 =
1

n

∑

i1,··· ,ip

∣∣∣
Yi1Yi2 · · ·Yip

[(p − 1)nE[Z1] + o(n)]p−1
− E

[ Yi1Yi2 · · ·Yip
[(p− 1)nE[Z1] + o(n)]p−1

1E1
]∣∣∣ ≤ ∆2 (5.23)

for some ∆2 = od(
√
d). We note that triangle inequality along with (5.22) and (5.23) implies that on the

event E1, Ξ ≤ 2∆1+∆2+1/n
∑

i1,··· ,ip E[AG̃R

(i1, · · · , ip)1Ec
1
], and thus (5.21) follows, provided we establish

that

1

n

∑

i1,··· ,ip
E[A

G̃R

(i1, · · · , ip)1Ec
1
] → 0. (5.24)

(5.24) is derived as follows.

1

n

∑

i1,··· ,ip
E[AG̃R

(i1, · · · , ip)1Ec
1
] =

1

n
E

[ (
∑

i Yi)
p

[
∑

i Yi]p−1
1Ec

1

]
≤ dE

[( ∑
i Yi∑

i Yi − p+ 1

)2p−2]
P[Ec

1 ] . P[Ec
1 ],

where the inequalities are respectively derived by using Cauchy-Schwarz inequality and that
∑

i Yi/(
∑

i Yi−
p+ 1) ≤ p as

∑
i Yi ≥ p.

Thus it remains to bound (5.22) and (5.23). We first establish (5.22). On the event E1,
1

n

∑

i1,··· ,ip

Yi1 · · ·Yip
[(p − 1)nE[Z1] + o(n)]p−1

∣∣∣1− [(p − 1)nE[Z1] + o(n)]p−1

[(p− 1)nE[Z1]− nδ(d)]p−1

∣∣∣

≤ 1

n
(n(p − 1)E[Z1] + o(n))(1 + o(1))

∣∣∣1− [(p− 1)nE[Z1] + o(n)]p−1

[(p − 1)nE[Z1]− nδ(d)]p−1

∣∣∣ . (p− 1)δ(d) = od(
√
d).

Finally, we come to (5.23). We express Yi =
∑d−Zi

j=1 1j(i), where 1j(i) = 1 if and only if the jth RED clone
of vertex i is included in an hyper-edge with at least one BLUE clone. Thus we have, by symmetry, that
E[Yi|Z] = (d− Zi)p0(Z), where p0(Z) = P[11(i) = 1|Z]. We note that,

p0(Z) = 1− [nd−∑
i Zi]p−1

[nd]p−1
. (5.25)



OPTIMIZATION ON SPARSE RANDOM HYPERGRAPHS AND SPIN GLASSES 21

Next, we have,

Var(Yi|Z) =
∑

1≤j≤d−Zi

Var(1j |Z) +
∑

1≤j 6=j′≤d−Zi

Cov(1j(i),1
′
j(i)|Z)

= (d− Zi)p0(Z)(1− p0(Z)) + (d− Zi)(d − Zi − 1)(q0(Z)− p0(Z)
2), (5.26)

where we set q0(Z) = P[11 = 12 = 1|Z]. We note that, on the event E1, using (5.25),

q0(Z) = 2p0(Z)− 1 +
[nd−∑

i Zi − 1]2(p−1)

[nd− 1]2(p−1)
+ o(1) = p0(Z)

2 +O(1/n). (5.27)

This proves that Var(Yi|Z) = Θ(E[Z1]) and therefore, by Cauchy-Schwarz inequality, on the event E1,
1
n

∑n
i=1 E[|εi||Z] ≤ u(d) = od(

√
d), where Yi = E[Yi|Z] + εi. To control Var(

∑
i |εi||Z), note that a

calculation similar to (5.27) proves that the indicators {1j(i) : 1 ≤ i ≤ n, 1 ≤ j ≤ d−Zi} are approximately
independent, which enforces that Var(

∑
i |εi||Z) = Θ(n). Thus we have, for some ∆3 > 2u(d), using

Chebychev inequality,

P

[ 1
n

∑

i

|εi| > ∆3, E1
]
≤ E

[
1E

Var(
∑

i |εi||Z)
n2u(d)2

]
= o(1).

To establish (5.23), we start by decomposing

Yi1 · · ·Yip = ((d− Zi1)p0(Z) + εi1) · · · ((d− Zip)p0(Z) + εip)

:= (p0(Z))
p

∏

1≤j≤p

(d− Zij ) + T1 = dpp0(Z)
p + T11 + T1. (5.28)

The contribution due to the first term cancels due to the Law of Large numbers. For any term in T11, we
have, on the event E1, for some j ≥ 1, the contribution is bounded by

dp−jp0(Z)
p( 1n

∑
i Zi)

j

(E[Z1])p−1
≤ (E[Z1])

j+1

dj
= od(

√
d).

Finally, the contribution due to any term in T1 is dominated as follows. Fix an integer j ≤ p− 1. Then
we have an upper bound of the form

(E[Z1])
p−j( 1n

∑
i |εi|)j

(E[Z1])p−1
= od(

√
d)

whenever j ≥ 1. This completes the proof.
Finally, we finish the section by establishing the validity of the two-step construction used frequently in

our argument.

Lemma 5.3. Consider N = m + n labelled balls, m-RED and n-BLUE. Assume that p|m,n. The following
two-step procedure obtains a uniform random partition of the m-RED balls into groups of size p.

1. Group the N balls at random into blocks of size p.
2. Remove the BLUE balls and re-match the RED balls left unmatched as a result into groups of size p.

Proof of Lemma 5.3: Let SN,p = N !
(p!)N/p(N/p)!

denote the total number of ways to partition the N -balls

into groups of size p. Given a fixed partition P of the RED balls, it can be obtained using the two step
procedure as follows. We choose s groups formed at the first stage of matching, while the remaining
(m/p−s) groups are formed at the second stage. This implies, setting P to be random matching obtained
by the two-step procedure,

P[P = P ] =
∑

s

(
m/p

s

)
A(s)

SN,p

(p!)m/p−s(m/p− s)!

(m− ps)!
=

(p!)m/p(m/p)!

m!

1

SN,p

∑

s

A(s)

(
m

ps

)
(ps)!

(p!)ss!
,

where A(s) denotes the number of ways to group the remaining N − ps balls into p-size groups such that
no group has all RED balls. Now, we note that any random partition of the N balls can be obtained by
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first choosing ps RED balls to be grouped among themselves and subsequently grouping the remaining balls
such that no block has all RED balls. This implies

1

SN,p

∑

s

A(s)

(
m

ps

)
(ps)!

(p!)ss!
= 1,

which immediately completes the proof.

6. Proof of Proposition 1.2

For computing the Gaussian surrogate in the Erdős-Rényi case, one can sum over all unrestricted tuples
{(i1, · · · , ip) : 1 ≤ i1, · · · , ip ≤ n} in (1.3), with {Ji1,··· ,ip} being the standard symmetric p-tensor, at the
cost of incurring a o(1) error. For notational convenience, we assume in this Section that we indeed work
with this slightly modified value. Recall that the Erdős-Rényi case corresponds to the specific choice of
the kernels κ1 = 1 and κ2 =

1
(p−1)! . Moreover, we recall that a sequence of random variables {Xn} = od(1)

if there exists a deterministic function f(d) = o(1) as d→ ∞ such that P[|Xn| ≤ f(d)] → 1 as n→ ∞.
Note that (1.3) and (1.5) imply that with high probability as n→ ∞,

|Vn − V R

n | ≤ p
√
dE

[
max
σ∈An

∣∣∣
1

np

∑

i1,··· ,ip
Gi1f(σi1 , · · · , σip)

∣∣∣
]
+ od(

√
d). (6.1)

The proof for sufficiency of (C1) is comparatively straightforward. Indeed, we have, for each σ ∈ An,

1

np−1

∑

i2,··· ,ip
f(σi1 , · · · , σip) =

∑

k2,··· ,kp
f(σi1 , k2, · · · , kp)mk2(σ) · · ·mkp(σ) = η + rσi1

(σ).

Plugging this expression into (6.1), we have,

1

np

∑

i1,··· ,ip
Gi1f(σi1 , · · · , σip) =

η

n

∑

i1

Gi1 +
1

n

∑

i1

Gi1ri1(σ).

Therefore, we have, under (C1)

E

[
max
σ∈An

∣∣∣
1

np

∑

i1,··· ,ip
Gi1,··· ,ipf(σi1 , · · · , σip)

∣∣∣
]
≤ |η|E

[ 1
n

∣∣∣
∑

i1

Gi

∣∣∣
]
+ od(1)E

[ 1
n

∑

i1

|Gi1 |
]

(6.2)

It remains to bound each of these terms. Note that marginally, each Gi ∼ N (0, σ2) for some σ2 = O(1)
and Cov(Gi, Gj) = O(1/n). It follows that Var(

∑
i1
Gi1) = O(n) and thus E[|∑i1

Gi1/n|] → 0. This

controls the first term.To control the second term, observe that E[
∑

i |Gi|] = nσ
√

2/π and thus the term
is od(1).

It remains to check the validity of the thesis under the condition (C2). Without loss of generality, we
can and will assume that X = {1, · · · , q} for some q ≥ 1. Applying Theorem 1.1, we have,

Vn = E[max
α

(dα + Tα
n

√
d)] + od(

√
d), (6.3)

where α, Tα
n are defined as

Tα
n =

1

n
max
σ∈[q]n

∑

i1,i2,··· ,ip

Ji1,··· ,ip
n(p−1)/2

f(σi1 , · · · , σip), subject to
1

np

∑

i1,··· ,ip
f(σi1 , · · · , σip) = α, (6.4)

and J = (Ji1i2···ip) is the standard symmetric Gaussian p-tensor. Throughout this proof, we set

Hf (σ) =
∑

i1,i2,··· ,ip

Ji1,··· ,ip
n(p−1)/2

f(σi1 , · · · , σip).
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We observe that the collection of random variables {Hf (σ) : σ ∈ Sn} forms a centered Gaussian process on
qn elements. The following lemma bounds the expectation and variance of the supremum of this Gaussian
process.

Lemma 6.1. There exists universal constants C1, C2 > 0 such that

E

[
max
σ∈[q]n

Hf (σ)
]
≤ C1n, Var

(
max
σ∈[q]n

Hf (σ)
)
≤ C2n.

Proof of Lemma 6.1: Consider any centered Gaussian process {Zs : s ∈ S} with |S| <∞ and Var(Zs) ≤
τ2 for all s ∈ S. Then it is well known that E[maxs∈S Zs] ≤

√
2τ2 log |S|. Further, it is known that

Var(maxs Zs) ≤ maxsVar(Zs) ≤ τ2 [Hou95]. In this case, we have a centered Gaussian process {Hf (σ) :
σ ∈ [q]n} such that |S| = qn and Var(Hf (σ)) . n. This completes the proof.

Given Lemma 6.1, we return to proof of Proposition 1.2. The constraint in (6.4) may be expressed in
terms of the empirical distribution of spins of each type. Recall the function m defined in the Introduction.
For each p = (p1, · · · , pq) with p ∈ Sim := {a : aj ≥ 0,

∑
j aj = 1}, we set,

Σ(p) = {σ ∈ [q]n : m(σ) = p}.
Recall the definition of Ψ from (1.7) and note that the deterministic constraint may be expressed as
Ψ(m(σ)) = α. We define

T1(n, d) = max
m∈Sim

(
dΨ(m) +

√
d

n
max

σ∈Σ(m)
Hf (σ)

)
.

Thus the constrained optimization problem (6.3) may be re-expressed as

Vn = E[T1(n, d)] + od(
√
d).

Now, we assume that Ψ(m) is maximized at m∗. We define

T2(n, d) = dΨ(m∗) +

√
d

n
max

σ∈Σ(m∗)
Hf (σ).

Trivially, we have T1(n, d) ≥ T2(n, d). Thus we have the lower bound

lim inf E[T1(n, d)] ≥ dΨ(m∗) +
√
d lim inf E

[ 1
n

max
σ∈Σ(m∗)

Hf (σ)
]
. (6.5)

To derive a matching upper bound we proceed as follows. Note that

E[T1(n, d)− T2(n, d)] = E[(T1(n, d)− T2(n, d))1F ] + E[(T1(n, d)− T2(n, d))1Fc ]

for any event F . Using Cauchy-Schwarz inequality,

|E[(T1(n, d)− T2(n, d))1Fc ]| ≤
√

E[(T1(n, d)− T2(n, d))2]P[Fc].

The following lemma derives an upper bound on E[(T1(n, d) − T2(n, d))
2].

Lemma 6.2. There exists a universal constant C1, depending on d, independent of n, such that

E[(T1(n, d)− T2(n, d))
2] ≤ C1.

We defer the proof to the end of the section for ease of exposition. As a result, for any event F such that
P[Fc] → 0 as n→ ∞, we have

E[T1(n, d)− T2(n, d)] = E[(T1(n, d)− T2(n, d))1F ] + o(1). (6.6)

Consider the event F =
{∑

i p
∗
i (1−p∗i ) ≥ Ψ(m∗)− A√

d

}
, where A > 0 is sufficiently large, to be specified

later. We will establish that for A > 0 sufficiently large, P[Fc] = o(1) as n→ ∞. To this end, we observe,

Fc ∩
{

max
σ∈Σ(m∗)

Hf (σ) ≥ −C
√
n log n

}
⊆

{
max
σ

Hf (σ) ≥
An

2
− C

√
n log n

}
.
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Then we have,

P[Fc] ≤ P

[
max
σ

Hf (σ) ≥
An

2
− C

√
n log n

]
+ P

[
max

σ∈Σ(m∗)
Hf (σ) < −C

√
n log n

]
. (6.7)

We show that each term in the RHS of (6.7) is o(1). To bound the first term, we note that Lemma 6.1
implies

E

[
max
σ

Hf (σ)
]
≤ C1n, Var

[
max
σ

Hf (σ)
]
≤ C2n. (6.8)

Thus we have, by applying a traditional concentration bound on the suprema of a Gaussian process
[BLM13],

P

[
max
σ

Hf (σ) ≥
An

2
− C

√
n log n

]
≤ exp

(
− C0

(An
2 − C

√
n log n− E[maxσHf (σ)])

2

n

)

for some universal constant C0 > 0. Thus using (6.8), we note that if A is chosen sufficiently large, the
probability decays to zero as n→ ∞.

We bound the second term using Chebychev inequality. To this end, we note from (6.8) that the variance
of the maxima is O(n) while the expectation of the supremum is non-negative and therefore

P

[
max

σ∈Σ(m∗)
Hf (σ) < −C

√
n log n

]
≤ Var(maxσHf (σ))

C2n log n
= o(1).

This ensures that for A chosen sufficiently large, P[Fc] = o(1).
Using (6.6), we see that it suffices to bound E[(T1(n, d)−T2(n, d))1F ]. We set σ∗ = argmax T1(n, d) and

the corresponding empirical distribution of spins p∗ = (p∗1, · · · , p∗q). Further, we fix a function ψ : [q]n →
Σ(m∗) which maps every σ ∈ [q]n to the configuration set Σ(m∗) by changing the minimum number of
coordinates for each configuration. On the event F , we have, setting p∗i = m∗

i + εi,
∑

i εi = 0 and using
Taylor’s theorem and (C2), we have, for d ≥ d(f), and some ξ∗ on the segment joining p∗,m∗,

A√
d
≥ |Ψ̄(p∗)− Ψ̄(m∗)| = |(p∗ −m∗)T∇2Ψ̄(ξ∗)(p∗ −m∗)| =⇒ ‖p∗ −m∗‖22 ≤

A

c
√
d
.

Using Cauchy-Schwarz inequality, we have, ‖p∗ − m∗‖1 ≤ √
Aq/(

√
cd1/4). The ℓ1 distance between two

discrete probability vectors is equivalent to the TV distance, and thus it is easy to see that there exists a
constant C0 > 0 such that we can re-label at most nC0/d

1/4 spins in σ∗ to get the configuration σ∗∗ ∈ Σ(m∗)
chosen earlier. On the event F , using the definition of T2(n, d), we have,

T2(n, d) ≥ dΨ(m∗) +

√
d

n
Hf (σ

∗∗) ≥ T1(n, d)− e, (6.9)

where we set e =
√
d
n

[
Hf (σ

∗)−Hf (σ
∗∗)

]
. On the event F , we have,

e ≤
√
d

2n
max

{σ:‖p(σ)−Σ(m∗)‖1≤ C0

d1/4
}

[ ∑

i1,··· ,ip

Ji1i2···ip
n(p−1)/2

(
f(σi1 , · · · , σip)− f(ψ(σ)i1 , · · · , ψ(σ)ip)

)]
.

We note that (f(σi1 , · · · , σip)−f(ψ(σ)i1 , · · · , ψ(σ)ip) 6= 0 if and only if (σi1 , · · · , σip) 6= (ψ(σ)i1 , · · · , ψ(σ)ip).
The number of such terms is bounded by C1n

p/d1/4 for some constant C1. Thus the variance of each

Gaussian is bounded by C1n/d
1/4. Now using the bound on the expected suprema of a Gaussian process

described above, we get that the RHS is od(
√
d). Thus E[e1F ] = od(

√
d). This establishes that E[T1(n, d)−

T2(n, d)] = od(
√
d).

Now we look at the d-regular problem. The same argument goes through in this case and we see that the
optimal value may be attained (up to o(

√
d) corrections) by restricting to the configuration space Σ(m∗).



OPTIMIZATION ON SPARSE RANDOM HYPERGRAPHS AND SPIN GLASSES 25

We note that Ψ(·) is a smooth function which is maximized at m∗. We set up the Lagrangian

Ξ = Ψ(m)− λ(
∑

i

mi − 1)−
∑

i

µimi.

Setting ∇Ξ = 0, we have, ∇Ψ(m) = λ1 + µ, where µ = (µ1, · · · , µq). Using the complimentary slackness
conditions, we have µi = 0 for all i ≤ q. It is easy to see now that at the stationary point, condition (C1)
is satisfied. Thus (C1) is satisfied for all σ ∈ Σ(m∗). The argument outlined in the first part of the proof
now enforces the desired conclusion.

It remains to prove Lemma 6.2. We will first need a lemma which bounds the second moment of the
supremum of the Gaussian process {Hf (σ) : σ ∈ [q]n}.

Lemma 6.3. There exists a universal constant C > 0, depending on f , such that

E

[(
max
σ∈[q]n

Hf (σ)
)2]

≤ Cn2.

Proof of Lemma 6.3: We note that

E

[(
max
σ∈[q]n

Hf (σ)
)2]

= E
2
[
max
σ∈[q]n

Hf (σ)
]
+Var

(
max
σ∈[q]n

Hf (σ)
)
.

and bound each term on the RHS using Lemma 6.1.
Given Lemma 6.3, we complete the proof of Lemma 6.2 next.

Proof of Lemma 6.2: We observe

E[(T1(n, d) − T2(n, d))
2] ≤ 2

[
E[T1(n, d)

2] + E[T2(n, d)
2]
]
.

We bound each term on the RHS separately. First, observe that ‖Ψ‖∞ ≤ ‖f‖∞ and thus

T2(n, d) = dΨ(m∗) +

√
d

n

[
max

σ∈Σ(m∗)
Hf (σ)

]

|T2(n, d)| ≤ d‖f‖∞ +
√
d
∣∣∣
1

n
max

σ∈Σ(m∗)
Hf (σ)

∣∣∣.

Therefore,

E[T2(n, d)
2] ≤ 2

[
d2‖f‖2∞ +

d

n2
E

[(
max

σ∈Σ(m∗)
Hf (σ)

)2]]
= O(1)

where the final bound follows using Lemma 6.3. It remains to bound E[(T1(n, d))
2]. To this end, we observe

that for all m ∈ Sim,

dΨ(m) +

√
d

n

[
max

σ∈Σ(m)
Hf (σ)

]
≤ d‖f‖∞ +

√
d

n

[
max
σ∈[q]n

Hf (σ)
]

≤ d‖f‖∞ +

√
d

n

∣∣∣ max
σ∈[q]n

Hf (σ)
∣∣∣+

√
d

n

∣∣∣ min
σ∈[q]n

Hf (σ)
∣∣∣.

Similarly, we have,

dΨ(m) +

√
d

n

[
max

σ∈Σ(m)
Hf(σ)

]
≥ −d‖f‖∞ +

√
d

n
min
σ∈[q]n

Hf (σ)

≥ −d‖f‖∞ −
√
d

n

∣∣∣ min
σ∈[q]n

Hf (σ)
∣∣∣−

√
d

n

∣∣∣ max
σ∈[q]n

Hf (σ)
∣∣∣.
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Combining, we have,

− d‖f‖∞ −
√
d

n

∣∣∣ min
σ∈[q]n

Hf (σ)
∣∣∣−

√
d

n

∣∣∣ max
σ∈[q]n

Hf (σ)
∣∣∣

≤ max
m∈Sim

[
dΨ(m) +

√
d

n

[
max

σ∈Σ(m)
Hf (σ)

]]

≤ d‖f‖∞ +

√
d

n

∣∣∣ max
σ∈[q]n

Hf (σ)
∣∣∣+

√
d

n

∣∣∣ min
σ∈[q]n

Hf (σ)
∣∣∣

Thus we obtain the bound on the absolute value
∣∣∣ max
m∈Sim

[
dΨ(m) +

√
d

n

[
max

σ∈Σ(m)
Hf (σ)

]∣∣∣ ≤ d‖f‖∞ +

√
d

n

∣∣∣ max
σ∈[q]n

Hf (σ)
∣∣∣+

√
d

n

∣∣∣ min
σ∈[q]n

Hf (σ)
∣∣∣.

We have, by Cauchy-Schwarz,

E[(T1(n, d))
2] ≤ 3

[
d2‖f‖2∞ +

d

n2
E

[(
max
σ∈[q]n

Hf (σ)
)2]

+
d

n2
E

[(
min
σ∈[q]n

Hf (σ)
)2]]

Finally, we note that minσ∈[q]n Hf (σ)
d
= −maxσ∈[q]n Hf (σ). This reduces the bound on the second term

to

E

[(
T1(n, d)

)2]
≤ 3

[
d2‖f‖2∞ +

2d

n2
E

[(
max
σ∈[q]n

Hf (σ)
)2]]

The proof is now complete upon using Lemma 6.3.
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