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Abstract

A classic result of Erdős, Gyárfás and Pyber states that for every coloring of the edges
of Kn with r colors, there is a cover of its vertex set by at most f(r) = O(r2 log r) vertex-
disjoint monochromatic cycles. In particular, the minimum number of such covering cycles
does not depend on the size of Kn but only on the number of colors. We initiate the study
of this phenomenon in the case where Kn is replaced by the random graph G(n, p). Given
a fixed integer r and p = p(n) ≥ n−1/r+ε, we show that with high probability the random
graph G ∼ G(n, p) has the property that for every r-coloring of the edges of G, there is a
collection of f ′(r) = O(r8 log r) monochromatic cycles covering all the vertices of G. Our
bound on p is close to optimal in the following sense: if p ≪ (log n/n)1/r, then with high
probability there are colorings of G ∼ G(n, p) such that the number of monochromatic
cycles needed to cover all vertices of G grows with n.

1 Introduction

In this paper, we consider a question of the following type: For a certain class of graphs
G, is it true that the vertex set of every r-edge-colored graph G ∈ G can be covered with
a number of monochromatic paths or cycles1 that only depends on the number of colors
r?

The study of such questions dates back to the 1960s, when Gerencsér and Gyárfás [7]
observed that every 2-coloring of the edges of the complete graph Kn contains two vertex-
disjoint monochromatic paths that together cover all vertices of the graph. Later Gyárfás
[9] conjectured that the analogous statement for r colors should also be true, namely, that
every r-edge-colored Kn can be covered with r vertex-disjoint monochromatic paths. He
made a step towards this conjecture by showing that there is always a cover that uses
O(r4) (not necessarily disjoint) monochromatic paths. The case r = 3 was only recently
resolved by Pokrovskiy [19] and for r ≥ 4 the conjecture remains open.

Strengthening Gyárfás’ result, Erdős, Gyárfás and Pyber [6] showed that the vertices
of every r-colored Kn can be covered by O(r2 log r) vertex-disjoint monochromatic cycles.
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It is worth noting that their proof is one of the first applications of the absorbing method,
a technique that has turned out to be extremely useful for embedding-type problems.
This was subsequently improved to O(r log r) cycles by Gyárfás, Ruszinkó, Sárközy and
Szemerédi [12]. For r = 2, Lehel conjectured that, just like for paths, the vertices can
be covered by two vertex-disjoint monochromatic cycles of different colors. This was
eventually established by Bessy and Thomassé [3]. Some generalizations of these results
concerning more complicated graphs other than paths or cycles were obtained in [8, 21].
Similar properties of host graphs other than complete graphs were also studied: complete
bipartite graphs are considered in [9, 13, 17], complete graphs with only few edges missing
in [11], graphs with large minimum degree in [2, 5, 18] and graphs with small independence
number in [20]. For further results and research directions we refer the reader to the recent
survey by Gyárfás [10].

In this paper, we consider the same problem in the setting of the binomial random
graph model G(n, p). The study of covering G(n, p) by monochromatic pieces was initiated
by Bal and DeBiasio [1], who showed that if p = Ω̃(n−1/3) then with high probability
(w.h.p), G ∼ G(n, p) has the property that every 2-coloring of the edges of G contains two
vertex-disjoint monochromatic trees that cover its vertex set. They proposed a conjecture
that already p ≫ (log n/n)1/2 suffices, which was recently verified by Kohayakawa, Mota
and Schacht [15]. Here we continue this line of research by studying random analogs of
the theorems of Gyárfás [9] and Erdős, Gyárfás and Pyber [6]. Our main result reads as
follows:

Theorem 1.1. Fix ε > 0 and an integer r ≥ 2. If p = p(n) > n−1/r+ε, then G ∼ G(n, p)
w.h.p has the property that for every r-coloring of the edges of G, there is a collection of
at most (100r)8 log r monochromatic cycles covering all the vertices of G.

Although we believe that it should be possible to choose the cycles so that they are
vertex-disjoint, our result does not give this. We remark that the bound on p in the
theorem is almost best possible. Indeed, a result of Bal and DeBiasio [1, Theorem 1.7]
shows that for p ≪ (log n/n)1/r w.h.p there exists an r-coloring of G ∼ G(n, p) which
requires an unbounded number of monochromatic components (and in particular, cycles)
to cover all vertices. Their coloring is based on the fact that such a G contains an
independent set X of unbounded size with the property that every vertex has at most
r − 1 neighbors in X . Now one can color all edges outside of X with the color r, and for
every v ∈ V (G) \ X color the edges from v to X using each of the colors from [r − 1] at
most once. It is not difficult to verify that every monochromatic component can cover
at most one vertex of X , and so at least |X | such components are needed to cover the
whole graph. With this in mind, it seems likely that (log n/n)1/r is the correct order
of magnitude of the threshold for the property of always having a cover by a bounded
number of monochromatic cycles.

We remark that Theorem 1.1 is an example of the more general phenomenon that suf-
ficiently dense – but still very sparse – random graphs G(n, p) often have global properties
that are remarkably similar to those of the (much denser) complete graph Kn. Transfer-
ring classic results about complete graphs to the random graph setting is an active line
of research with some of the milestones achieved only recently (see the survey by Conlon
[4]).

Structure of the paper The paper is organized as follows. In the next section we
give the proof of Theorem 1.1, assuming two key lemmas: the first one shows that we
can cover all but O(1/p) vertices, while the other one takes care of the remaining vertices.
In Section 3 we collect some tools and properties of random graphs that are used in the
proof of these lemmas. The two lemmas are then proved in Sections 4 and 5, respectively.
In the last section we discuss some open problems and future research directions.
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Notation We use the common notation [r] = {1, . . . , r} for the first r positive integers.
Instead of saying that a set has size r, we sometimes say that it is a r-set. We occasionally
write A = B1 ·∪ · · · ·∪ Bt to mean that B1, . . . , Bt form a partition of A. For a, b > 0, we
write a ± b to denote the interval [a − b, a + b].

If G is a graph, we let NG(v) denote the neighborhood of v, that is, NG(v) = {w :
{v, w} ∈ E(G)}. Similarly, if A ⊆ V (G), then NG(A) =

⋃

v∈A NG(v) is the neighborhood
of A. On the other hand, we denote by N∗

G(A) =
⋂

v∈A NG(v) the common neighborhood
of A. For subsets A, B ⊆ V (G) and a vertex v ∈ V (G), we write NG(v, B), NG(A, B) and
N∗

G(A, B) for the sets NG(v)∩B, NG(A)∩B and N∗
G(A)∩B, respectively. If A, B ⊆ V (G)

are disjoint, we write eG(A, B) for number of edges with one endpoint in A and another
in B. If it is clear which graph G we are talking about, we omit the subscript G in the
above notations.

Given a coloring of the edges of G with colors {1, . . . , r}, we define Gi to be the
spanning subgraph of G containing the edges of color i. In this setting, we abbreviate
NGi

(v), NGi
(A, B), N∗

Gi
(A), etc. by Ni(v), Ni(A, B), N∗

i (A), and so on. So for example
Ni(v, B) is the neighborhood of v in the set B via edges of color i.

The vertex set of the random graph G(n, p) is understood to be [n]. We say that
G ∼ G(n, p) satisfies some property with high probability (w.h.p) if the property holds
for G with probability tending to 1 as n tends to infinity.

We routinely omit floor and ceiling signs if they are not essential.

2 Proof of Theorem 1.1

Theorem 1.1 states that if the edges of G ∼ G(n, p) (where p > n−1/r+ε) are colored with
r colors, then there are O(r8 log r) monochromatic cycles covering all its vertices. We use
the following strategy to find such cycles.

Our first step is to partition the vertex set of G into s = (101r)4 disjoint sets whose
sizes differ by at most 1:

V (G) = W1 ·∪ · · · ·∪ Ws,

where each Wi has size at most n/(100r)4. Next, we consider one particular set Wi

and try to find O(r4 log r) monochromatic cycles in G that cover all the vertices in Wi.
Importantly for our proof method, these cycles can (and will) use vertices outside of Wi.
Since there are s = O(r4) sets, finding such cycles for each Wi independently results
in a cover of all vertices by O(r8 log r) cycles (although many vertices might be covered
multiple times).

We cover the vertices in the set Wi in two steps: first, we cover all but O(1/p) vertices,
and then we cover the remaining ones. Here the quantity 1/p comes into play as the
“threshold” size of a set X to expand to all other vertices (note that each vertex has
roughly np neighbors). Indeed, the proof of the first step relies on the fact that every
vertex set of size Ω(1/p) is adjacent to Ω(n) other vertices. On the other hand, it is key to
our second step that the individual neighborhoods of O(1/p) vertices are almost disjoint.
In any case, our arguments for the two steps are entirely different, so it is natural to split
the proof accordingly. More precisely, we establish the following two lemmas.

Lemma 2.1. For every integer r ≥ 2, there is a constant K = K(r) > 0 such that
the following holds. Let W ⊆ [n] be a fixed set of at most n/(100r)4 vertices, and let
G ∼ G(n, p) where p = p(n) ≫ (log n/n)1/2. Then w.h.p for every r-coloring of the edges
of G, there is a collection of 3r2 vertex-disjoint monochromatic cycles that cover all but
at most K/p vertices of W .

Lemma 2.2. Let r ≥ 2 be a fixed integer and let ε, K > 0 be some constants. Let W ⊆ [n]
be a fixed set of at most n/2 vertices, and let G ∼ G(n, p) where p = p(n) ≥ n−1/r+ε. Then
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w.h.p in every r-coloring of the edges of G, every subset Q ⊆ W of size at most K/p can
be covered by 400r4 log(4r2) monochromatic cycles.

Observe that while Lemma 2.1 provides an approximate cover of one fixed set W ,
Lemma 2.2 applies to all small subsets Q ⊆ W simultaneously. We note that Lemma 2.1
applies to a somewhat larger probability range than we actually need it to be; also, the
lemma gives vertex-disjoint cycles, but we do not really use this fact.

Combining the two lemmas, we immediately get that w.h.p each fixed set Wi can be
covered by 3r2 + 400r2 log(4r2) monochromatic cycles. By the union bound, this is true
for each of the constantly many sets W1, . . . , Ws, and so we can cover all of V (G) using

s(3r2 + 400r4 log(4r2)) ≤ (101r)4 · 1000r4 log r ≤ (100r)8 log r

monochromatic cycles. This completes the proof of Theorem 1.1, although of course we
still have to prove Lemmas 2.1 and 2.2.

3 Tools and preliminaries

In the proof of Lemma 2.2 we use the following generalization of the result of Erdős,
Gyárfás and Pyber [6] to graphs with a given independence number:

Theorem 3.1 (Sárközy [20]). If the edges of a graph G with independence number α are
colored with r colors then G contains a collection of at most 25(αr)2 log(αr) vertex-disjoint
monochromatic cycles covering the vertex set of G.

Of course, we cannot apply this directly to G ∼ G(n, p) because α(G) is w.h.p un-
bounded (unless p is very close to 1). Instead, we will use it to find cycle covers in a
certain auxiliary graph. To turn the cycles from the auxiliary graph into real cycles in G,
we use a generalization of Hall’s criterion, due to Haxell [13], for the existence of saturat-
ing matchings in hypergraphs (see Section 5). Given a family E of subsets of some ground
set V , the vertex cover number τ(E) is the smallest size of a set X ⊆ V intersecting every
set in E .

Theorem 3.2 (Haxell [13]). Let {Hi = (V, Ei)}i∈I be a family of r-uniform hypergraphs
on the same vertex set, for some positive integer r. If τ(

⋃

i∈I′ Ei) > (2r − 1)(|I′| − 1) for
every I ′ ⊆ I, then there is a family of hyperedges {ei}i∈I such that ei ⊆ Ei and ei ∩ej = ∅
for every i 6= j ∈ I.

3.1 A Ramsey-type lemma

Next, let Km
k denote the complete k-partite graph with parts of size m. The proof of

Lemma 2.1 relies on the following auxiliary result:

Lemma 3.3. Let m ≥ 1 and k ≥ 2 be integers, and assume that G is a graph whose
complement is Km

k -free. Then G contains a collection of at most k − 1 vertex-disjoint
cycles covering all but at most 2k2m + k3 vertices.

The case k = 2 of Lemma 3.3 states that if a graph does not have a large bipartite
hole then it contains a large cycle. This was proved with a slightly smaller leftover by
Krivelevich and Sudakov [16]. We remark that the number of cycles given by the lemma
is best possible if one wants a leftover that can be bounded by a function of m and k.
This can be seen by considering the disjoint union of k − 1 cliques of size n/(k − 1): the
complement of such a graph does not contain a Km

k for any m ≥ 1 and yet any collection
of k − 2 cycles must necessarily leave n/(k − 1) vertices uncovered. Although it does not
matter for the present paper, it would be interesting to see how much the size of the
leftover in Lemma 3.3 can be reduced.
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We start the proof of Lemma 3.3 with the following claim, which is essentially already
contained in [16], included here for completeness:

Claim 3.4. Let G be a graph with at least m ≥ 1 vertices. Then there is a (possibly
empty) path P in G and subsets D, U ⊆ V (G) such that |D| = m, e(D, U) = 0, and

V (G) = D ·∪ V (P ) ·∪ U.

Proof. Let G = (V, E) where |V | ≥ m. To prove the claim, we analyze the depth-first-
search (DFS) algorithm when run on G. The state at the i-th step of this algorithm can
be described by disjoint sets Di, Ui ⊆ V and a possibly empty path Pi in G. The set Di

contains the discarded vertices from which the DFS has already back-tracked. The set Ui

represents the set of unexplored vertices, that is, of those vertices that have not yet been
visited by the DFS algorithm. The path Pi contains the vertices that have been visited,
but are not discarded yet. The initial state of the algorithm is (D0, P0, U0) = (∅, (), V ):
all vertices are unexplored. Given the state (Di, Pi, Ui) at the i-th step, the next state
(Di+1, Pi+1, Ui+1) is obtained using the following rules:

1. (Terminate) If Pi = () and Ui = ∅:
The algorithm terminates (there is no next state).

2. (Restart) If Pi = () and Ui 6= ∅:
Choose an arbitrary vertex w ∈ Ui and set (Di+1, Pi+1, Ui+1) = (Di, (w), Ui \ {w}).

3. (Explore) If Pi = (v1, . . . , vℓ) is non-empty and Ui ∩ N(vℓ) 6= ∅:
Choose an arbitrary vertex w ∈ Ui ∩ N(vℓ);
the next state is (Di, (v1, . . . , vℓ, w), Ui \ {w}).

4. (Back-track) If Pi = (v1, . . . , vℓ) is non-empty but Ui ∩ N(vℓ) = ∅:
The next state is (Di ∪ {vℓ}, (v1, . . . , vℓ−1), Ui).

Note that at every step of the algorithm, the sets Di, V (Pi), Ui form a partition of
V . It is also easy to see that the algorithm eventually terminates – indeed, the value
|Di| − |Ui| increases by exactly one in each step and is capped at |V |. As the initial
state is (D0, P0, U0) = (∅, (), V ) and the terminal state is (V, (), ∅), and because in every
round, |Di| can increase only by at most 1, we see that there is a state (Di, Pi, Ui) where
|Di| = m (≤ |V |).

The required path is then P = Pi and the required sets are D = Di and U = Ui. Note
that since vertices are moved to Di only if they no longer have any neighbors in Ui, we
have e(Di, Ui) = 0 for all i ≥ 0 and in particular e(D, U) = 0.

It will be convenient to first prove Lemma 3.3 under the additional assumption that
the given graph G contains a Hamiltonian path.

Claim 3.5. Let m ≥ 1 and k ≥ 2 be integers, and let G be a graph whose complement is
Km

k -free. If G contains a Hamiltonian path, then G contains a collection of at most k − 1
vertex-disjoint cycles covering all but at most km vertices of G.

Proof. We prove the claim by induction on k. Let n = |V (G)|. We may assume n > km,
as otherwise the statement is trivially satisfied. Let P = (v1, . . . , vn) be a Hamiltonian
path in G.

In the base case k = 2, let S1 = {v1, . . . , vm} and S2 = {vn−m+1, . . . , vn} be the sets
containing the first and the last m elements of the path P , respectively. As n > 2m,
the sets S1 and S2 are disjoint. Since the complement of G does not contain a complete
bipartite graph Km

2 , there must be an edge between S1 and S2. Together with P , such
an edge forms a cycle containing all but at most 2m vertices.

Let us now assume that the claim holds for all k′ < k, for some k ≥ 3. Consider the
set S1 = {v1, . . . , vm} consisting of the first m vertices of the path P . Let m < i ≤ n be
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the largest index i such that vi has a neighbor in S1, and let S = {v1, . . . , vi}. Then G[S]
clearly contains a cycle that covers all but at most m vertices from S. Moreover, there
is no edge between S1 and S2 = V (P ) \ S = {vi+1, . . . , vn}, and so, as the complement
of G is Km

k -free, the complement of G[S2] is Km
k−1-free. By induction G[S2] contains

k − 2 vertex-disjoint cycles that cover all but at most (k − 1)m vertices from S2. In
total, there are k − 1 vertex-disjoint cycles that cover all but at most km vertices from
S ∪ S2 = V (G).

Next, we have the following simple observation:

Claim 3.6. Let m ≥ 1 and k ≥ 2 be integers, and let G be a graph whose complement is
Km

k -free. Let S1, . . . , Sk ⊆ V (G) be disjoint sets of size at least m + k − 1. Then for some
i 6= j there are two disjoint edges between Si and Sj.

Proof. The fact that the complement of G does not contain a Km
k means that for every

choice of disjoint subsets S′
1, . . . , S′

k of size at least m each, we can find an edge going
from S′

i to S′
j for some i 6= j. So let us start with S1, . . . , Sk of size at least m+k −1, find

such an edge, and remove its endpoints from the sets Si and Sj. As long as the remaining
sets (with the endpoints removed) still have size at least m, we can repeat this procedure.
Eventually some Si will only have m − 1 vertices left. This means that we have removed
k disjoint edges touching Si, each going to some Sj with i 6= j. Then by the pigeonhole
principle, two of these edges must go to the same Sj.

Proof of Lemma 3.3. Fix a graph G = (V, E) on n = |V | vertices and suppose that the
complement of G does not contain a copy of Km

k . We start by proving a slightly weaker
statement:

G contains
(

k
2

)

vertex-disjoint cycles covering all but at most k2m vertices. (1)

The proof of (1) is by induction on k. We first prove the base case k = 2. By Claim 3.4,
we can find a path P and sets D, U ⊆ V such that |D| = m, e(D, U) = 0, and V =
D ·∪ V (P ) ·∪ U . Since the complement of G is Km

2 -free, it follows that |U | < m, and so
|V (P )| ≥ n − |D| − |U | > n − 2m. Now G[V (P )] is a graph that contains a Hamiltonian
path, and whose complement is Km

2 -free. Thus, by Claim 3.5, it contains a cycle covering
all but at most 2m vertices of G[V (P )], i.e., all but at most 4m vertices of G. This
completes the proof for k = 2.

For the induction step, assume that k ≥ 3 and that (1) holds for k−1. Using Claim 3.4
we find a path P and sets D, U such that |D| = m, e(D, U) = 0, and V = D ·∪ V (P ) ·∪ U .
As the complement of G is Km

k -free, and since there are no edges going between D and U ,

the complement of G[U ] is Km
k−1-free. By induction, there is a collection of

(

k−1
2

)

vertex-
disjoint cycles in G[U ] that covers all but at most (k − 1)2m vertices from U . Moreover,
as G[V (P )] is a graph with a Hamiltonian path whose complement is Km

k -free, we can use
Claim 3.5 to obtain k − 1 vertex-disjoint cycles in G[V (P )] covering all but at most km
vertices of G[V (P )]. In total, we have a collection of k − 1 +

(

k−1
2

)

=
(

k
2

)

vertex-disjoint
cycles in G covering all but at most (k − 1)2m + km + m ≤ k2m vertices, establishing (1).

All in all, we have collection of
(

k
2

)

vertex-disjoint cycles covering all but at most k2m
vertices. We reduce the size of this collection as follows. If the collection contains a cycle
shorter than m+k −1, we remove this cycle from the collection, increasing the number of
uncovered vertices by at most m+k−1. Otherwise, if there are at least k cycles C1, . . . , Ck

of length at least m+k−1 left, then we apply Claim 3.6 to a set Si of m+k−1 consecutive
vertices from each cycle Ci. The claim provides two edges that merge two of these cycles
into a single one, while increasing the size of the leftover by at most 2(m + k − 1). If we
repeat this until the collection contains at most k − 1 cycles, then we end up with k − 1
vertex-disjoint cycles covering all except at most k2m +

(

k
2

)

2(m + k − 1) ≤ 2k2m + k3

vertices, as required.
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3.2 Properties of random graphs

In this section we collect some properties of random graphs that are used throughout the
proof. The following Chernoff-type bounds on the tails of the binomial distribution are
used throughout.

Lemma 3.7 ([14, Theorem 2.1]). Let X ∼ Bin(n, p) be a binomial random variable. Then

• Pr [X < (1 − a)np] < e−a2np/2 for every a > 0, and

• Pr [X > (1 + a)np] < e−a2np/3 for every 0 < a < 3/2.

The next result says that w.h.p a random graph contains approximately the expected
number of edges between any two sufficiently large vertex sets.

Lemma 3.8. Fix 0 < α, β < 1 and let C = 6/(α2β) and D = 9/α2. Then for every
p = p(n) ∈ (0, 1), the random graph G ∼ G(n, p) satisfies the following property w.h.p:
For any two disjoint subsets X, Y ⊆ V (G) satisfying either of

1. |X |, |Y | ≥ D(log n)/p, or

2. |X | ≥ C/p and |Y | ≥ βn,

we have
e(X, Y ) ∈ (1 ± α)|X ||Y |p.

Proof. For fixed sets X and Y , the quantity e(X, Y ) follows the binomial distribution
Bin(|X ||Y |, p), so we can apply Lemma 3.7 to get

Pr
[

e(X, Y ) /∈ (1 ± α)|X ||Y |p
]

≤ 2e−α2|X||Y |p/3.

Hence the probability that there exist sets X, Y ⊆ V (G) such that |X | ≥ |Y | ≥ D(log n)/p
and e(X, Y ) /∈ (1 ± α)|X ||Y |p is at most

∑

D log n

p
≤y≤x≤n

(

n

x

)(

n

y

)

2e−α2xyp/3 ≤
∑

D log n

p
≤y≤x≤n

e2x log ne−x·α2D(log n)/3

≤
∑

D log n

p
≤y≤x≤n

e−x log n ≤ n2e− log2 n = o(1),

using D = 9/α2 > 1. Similarly, the probability that there are subsets X, Y ⊆ V (G) such
that|X | ≥ C/p, |Y | ≥ βn, and e(X, Y ) /∈ (1 ± α)|X ||Y |p is at most

n
∑

x=C/p

n
∑

y=βn

(

n

x

)(

n

y

)

2e−α2xyp/3 ≤
n

∑

x=C/p

n
∑

y=βn

22ne−α2Cβn/3 = o(1),

for C ≥ 6/α2β.

The following lemma studies how the common neighborhoods of given vertex pairs
intersect an arbitrary set.

Lemma 3.9. For every p = p(n) ∈ (0, 1), the random graph G ∼ G(n, p) satisfies the
following property w.h.p: For every family L of ℓ disjoint pairs of vertices, and for every
set Y of 3ℓ vertices that is disjoint from each pair in L, we have

∑

{v,w}∈L
|N(v, Y ) ∩ N(w, Y )| ≤

{

72ℓ log n if ℓ ≤ 6 log n/p2,

2ℓ|Y |p2 otherwise.
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Proof. Fix sets L and Y as in the statement of the lemma. Since the pairs in L are
pairwise disjoint and disjoint from Y , the sum

Q(L, Y ) =
∑

{v,w}∈L
|N(v, Y ) ∩ N(w, Y )|

has the same distribution as a sum of ℓ|Y | = 3ℓ2 independent Bernoulli random variables
with probability p2. In other words, Q(L, Y ) ∼ Bin(3ℓ2, p2). Therefore, for ℓ ≤ 6 log n/p2

we have

Pr[Q(L, Y ) > 72ℓ log n] ≤
(

3ℓ2

72ℓ log n

)

(p2)72ℓ log n ≤
( e · 3ℓ2p2

72ℓ log n

)72ℓ log n

≤ (e/4)72ℓ log n ≤ e−6ℓ log n,

where the last inequality follows from (e/4)12 ≤ 1/e. Otherwise, if ℓ > 6 log n/p2 then we
can apply the Chernoff bound (Lemma 3.7) to get

Pr[Q(L, Y ) > 2ℓ|Y |p2] ≤ e−ℓ|Y |p2/3 = e−ℓ2p2 ≤ e−6ℓ log n.

Taking a union-bound over all choices of L and Y , we obtain that the probability that for
some L and Y the desired upper bound does not hold is at most

n
∑

ℓ=1

(

n2

ℓ

)(

n

3ℓ

)

e−6ℓ log n ≤
n

∑

ℓ=1

n2ℓ+3ℓe−6ℓ log n =
n

∑

ℓ=1

n−ℓ → 0,

completing the proof.

Our last tool shows that the common neighborhoods of not too many distinct small
sets are close to disjoint.

Lemma 3.10. Let r ≥ 2 be a fixed integer and let ε̃ = ε̃(n) ∈ (0, 1). Let p = p(n) ∈ (0, 1)
and let L ⊆ [n] be a fixed set of at least 50r log n/(ε̃pr) vertices. Then G ∼ G(n, p) w.h.p
satisfies the following property: For every family of at most ε̃/p different sets X1, . . . , Xt ⊆
[n] \ L of size r, we have

∣

∣

∣

t
⋃

i=1

N∗(Xi, L)
∣

∣

∣
∈ (1 ±

√
ε̃)t|L|pr.

Proof. Let X1, . . . , Xt be a fixed family of t ≤ ε̃/p different r-sets contained in [n] \ L.
We consider the random set W =

⋃t
i=1 N∗(Xi, L). Note that W contains each vertex

of L independently with the same probability, so |W | ∼ Bin(|L|, q) for some probability
q. We will use the inclusion-exclusion principle (Bonferroni’s inequality) to estimate the
expectation of |W |, and then apply Chernoff bounds to get concentration.

Let Ai = N∗(Xi, L). Then, according to Bonferroni’s inequality, we have

t
∑

i=1

|Ai| −
∑

1≤i<j≤t

|Ai ∩ Aj | ≤
∣

∣

∣

t
⋃

i=1

Ai

∣

∣

∣
= |W | ≤

t
∑

i=1

|Ai|.

Here E[|Ai|] = E[|N∗(Xi, L)|] = |L|pr and E[|Ai∩Aj |] = E[|N∗(Xi∪Xj , L)|] = |L|p|Xi∪Xj |.
In particular, E[|Ai ∩ Aj |] ≤ |L|pr+1. Thus, on the one hand we have

E[|W |] ≤
t

∑

i=1

E[|Ai|] = t|L|pr,
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and on the other hand,

E[|W |] ≥
t

∑

i=1

E[|Ai|] −
∑

1≤i<j≤t

E[|Ai ∩ Aj |] ≥ t|L|pr −
(

t

2

)

|L|pr+1 ≥ t|L|pr − tε̃|L|pr/2,

using t ≤ ε̃/p in the last inequality. Hence

(1 − ε̃/2)t|L|pr ≤ E[|W |] ≤ t|L|pr,

so in particular, q ≥ (1 − ε̃/2)tpr ≥ tpr/2. Then by a Chernoff bound, i.e., Lemma 3.7
with a =

√
ε̃/2, we get

Pr[|W | 6∈ (1 ±
√

ε̃)t|L|pr] ≤ 2e−ε̃t|L|pr/24 ≤ e−2tr log n,

using |L| ≥ 50r log n/(ε̃pr) in the last inequality. Finally, a union-bound over all choices
of X1, . . . , Xt shows that the property in the lemma fails with probability bounded by

ε̃/p
∑

t=1

(

n

r

)t

e−2tr log n ≤
∞

∑

t=1

e−tr log n ≤
∞

∑

t=1

n−t → 0.

4 Approximate covering – proof of Lemma 2.1

Let W be a fixed set of at most n/(100r)4 vertices and let G ∼ G(n, p), where p = p(n) ≫
(log n/n)1/2. Consider some coloring of the edges of G with r colors. Our goal is to find
3r2 vertex-disjoint monochromatic cycles that cover all but at most K/p vertices of W ,
for some sufficiently large constant K = K(r).

Let U = V (G) \ W . It is convenient to work with different colors separately, so we
partition W into r sets

W = W1 ·∪ · · · ·∪ Wr

such that v ∈ Wi if the most commonly used color on edges between v and U is i:

v ∈ Wi =⇒ |Ni(v, U)| = max
j∈[r]

|Nj(v, U)|.

Recall here that Ni(v, U) is the set of vertices in U joined to v by an edge of color i.
Next, for every i ∈ [r], we define an auxiliary graph Hi on Wi where two vertices

v, w ∈ Wi are connected by an edge if and only if

|Ni(v, U) ∩ Ni(w, U)| ≥ np2

(50r)4
.

The main idea is to apply Lemma 3.3 on Hi to find a small collection of “auxiliary
cycles” covering most of Wi. Then we will use Hall’s condition to turn each such auxiliary
cycle into a cycle in Gi (the subgraph of G of edges in color i) that covers the same vertices
in Wi. We thus have two claims:

Claim 4.1. Let c = 384r. Then w.h.p each auxiliary graph Hi contains 3r − 1 vertex-
disjoint cycles covering all but at most 18r2c/p + (3r)3 vertices of Hi.

Claim 4.2. The following holds w.h.p: For every choice of ki ≤ 3r − 1 vertex-disjoint
cycles Ci

1, . . . , Ci
ki

in each auxiliary graph Hi, the graph G contains k1 + · · · + kr vertex-

disjoint monochromatic cycles covering all the sets V (Ci
j).

From these two claims, Lemma 2.1 follows immediately with K = r·18r2 ·384r+27r4 ≤
(20r)4. It remains to prove the two claims.

9



Proof of Claim 4.1. In light of Lemma 3.3, it is enough to show that the complement of

each Hi is K
c/p
3r -free. There is an easy intuition as to why this is the case: in G, each

vertex of W is adjacent to about p|U | vertices in U , so we expect a subset of size c/p
to expand to almost the whole U . As a vertex from Wi has at least p|U |/r neighbors in
U in color i, this suggests that a subset of c/p vertices of Wi should have at least |U |/r
neighbors in this color i. But then if we take a bit more than r sets of this size, then their
i-colored neighborhoods overlap significantly, so there should be two sets with linearly
many common neighbors in color i. This readily implies that some two vertices in Hi are
joined by an edge. We will now make this argument precise.

First, w.h.p G satisfies the properties of Lemma 3.8 with α = 1/4 and β = 1/(4r).
Let c = C3.8(1

4 , 1
4r ) = 384r be the corresponding constant given by Lemma 3.8. Then

Lemma 3.8 states that w.h.p any two disjoint subsets X, Y ⊆ V (G) such that |X | ≥ c/p
and |Y | ≥ n/(4r) satisfy

e(X, Y ) ≤ 5

4
|X ||Y |p. (2)

Next, every vertex v ∈ W has e(v, U) ∼ Bin(|U |, p) neighbors in U , thus Lemma 3.7

shows that the probability of e(v, U) /∈ (1 ± r−2)p|U | is at most 2e−|U|p/(3r4) = e−Ω(np),
using |U | ≥ n/2. As p > 1/

√
n, a union bound over all vertices of W gives that w.h.p

e(v, U) ∈ (1 ± r−2)p|U | for every v ∈ W . By the definition of Wi, it follows that w.h.p we
have

ei(v, U) ≥ e(v, U)/r ≥ p|U |/(r + 1) for every v ∈ Wi. (3)

In the following, fix some i ∈ [r]. We will show that properties (2) and (3) already imply

that the complement of Hi is K
c/p
3r -free. In other words, we show that if X1, . . . , X3r ⊆ Wi

are disjoint sets of size c/p, then there exist j 6= j′ such that eHi
(Xj , Xj′) > 0.

Fix any such sets, and let Yj = Ni(Xj , U) denote the set of vertices in U that have a
neighbor in Xj in color i. We first show that

|Yj | > |U |/(2r) for every j ∈ [3r]. (4)

First, by (3) we have

ei(Xj , Yj) = ei(Xj , U) ≥ |Xj ||U |p/(r + 1).

Suppose that |Yj | ≤ |U |/(2r) and choose an arbitrary set Yj ⊆ Y ′
j ⊆ U of size |U |/(2r) ≥

n/(4r). Then by (2), we have

ei(Xj , Yj) ≤ e(Xj, Y ′
j ) ≤ 5

4
|Xj||Y ′

j |p =
5

8r
|Xj ||U |p < |Xj ||U |p/(r + 1),

which is a contradiction. This establishes (4).
Now we can bound how much these colored neighborhoods intersect using Bonferroni’s

inequality:
∑

1≤j<j′≤3r

|Yj ∩ Yj′ | ≥
(

3r
∑

j=1

|Yj |
)

− |U | ≥ |U |/2,

using (4) for the last inequality. In particular, we must have |Yj ∩Yj′ | ≥ |U |/(3r)2 for some
j 6= j′. Note that Yj ∩ Yj′ can also be written as the union of the common neighborhoods
Ni(v, U) ∩ Ni(w, U) over all pairs of vertices v ∈ Xj and w ∈ Xj′ . But then for some
choice of v and w, the size of this is at least the average:

|Ni(v, U) ∩ Ni(w, U)| ≥ |U |
(3r)2

· 1

|Xj ||Xj′ | =
|U |p2

(3r)2c2
≥ np2

(50r)4

using |U | ≥ n/2 and c = 384r. Thus v and w are connected by an edge in Hi and so
eHi

(Xj , Xj′) > 0, which is what we set out to prove.
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Proof of Claim 4.2. First note that w.h.p G satisfies the conclusion of Lemma 3.9, which
says that for every family L of ℓ disjoint pairs of vertices, and for every set Y of 3ℓ vertices
that is disjoint from each pair in L, we have

∑

{v,w}∈L
|N(v, Y ) ∩ N(w, Y )| ≤

{

72ℓ log n, if ℓ ≤ 6 log n/p2

2ℓ|Y |p2, otherwise.
(5)

This property will be enough to deduce the claim.
Let Ei =

⋃

j∈[ki] E(Ci
j) be the edge set of the given cycles in the auxiliary graph Hi,

and let E =
⋃

i∈[r] Ei. We define an auxiliary bipartite graph B with parts U and E where

an edge vw ∈ Ei is joined to a vertex u ∈ U if and only if u ∈ Ni(v, U) ∩ Ni(w, U). We
will use Hall’s condition to show B contains a matching covering E . In other words, we
will show that there exists an injection f : E → U such that for every vw ∈ Ei, the vertex
f(vw) ∈ U is a common neighbor of both v and w in color i. This will immediately
imply the statement of Claim 4.2, because we can then convert every cycle Ci

j in Hi

into a monochromatic cycle in G by replacing each edge vw of Ci
j by an i-colored path

(v, f(vw), w). The injectivity of f ensures that the cycles we get are vertex-disjoint.
To verify Hall’s condition, we need to show that for every subset L ⊆ E we have

|NB(L)| ≥ |L|. We instead prove the somewhat different statement that for every subset
L ⊆ E consisting of pairwise disjoint edges in E we have |NB(L)| ≥ 3|L|. This second
statement actually implies the first: as E is a disjoint union of cycles, every set of edges
L′ ⊆ E contains a subset L ⊆ L′ of size at least |L′|/3 such that the edges in L are
vertex-disjoint, and so

|NB(L′)| ≥ |NB(L)| ≥ 3|L| ≥ |L′|.
So take any set of pairwise disjoint edges L ⊆ E and suppose for contradiction that

NB(L) is properly contained in some set Y ⊆ U of size 3|L|. Recall that every vertex pair
vw ∈ L is also an auxiliary edge in some Hi, so v and w have at least np2/(50r)4 common
neighbors in U in color i. By definition, these common neighbors are also neighbors of
the pair vw in B, so they are contained in Y . Hence

np2|L|
(50r)4

≤
∑

vw∈L
|N(v, Y ) ∩ N(w, Y )|.

Note that since |Y | = 3|L|, we can apply (5) to the sum on the right-hand side. There
are now two cases, depending on the size of L.

If |L| ≤ 6 log n/p2, then by (5)

np2|L|
(50r)4

≤
∑

vw∈L
|N(v, Y ) ∩ N(w, Y )| ≤ 72|L| log n,

contradicting our assumption that np2 ≫ log n.
If |L| > 6 log n/p2, then by (5)

np2|L|
(50r)4

≤
∑

vw∈L
|N(v, Y ) ∩ N(w, Y )| ≤ 2|L||Y |p2,

and thus |Y | ≥ n/(2 · (50r)4) > 3n/(100r)4 ≥ 3|W | ≥ 3|L|, which contradicts the assump-
tion that |Y | = 3|L|. This concludes the proof of the claim.

5 Covering a set of size O(1/p) – proof of Lemma 2.2

Let r, ε, K > 0 be constants, where r ≥ 2 is an integer. Consider a subset W ⊆ [n] of size
at most n/2 and let G ∼ G(n, p) for p = p(n) > n−1/r+ε. We need to show that w.h.p
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every subset Q ⊆ W of size at most K/p can be covered using at most 400r4 log(4r2)
monochromatic cycles.

5.1 Proof overview

The main idea of the proof is the following: We define an edge-colored auxiliary graph
H on the vertex set W , where two vertices v, w ∈ W are joined by an edge of color i if
they are “robustly connected” by monochromatic paths of color i, whose interior vertices
belong to U = V (G)\W . This auxiliary graph should have two properties. First, we want
the independence number of H to be bounded by a function of r, as this will imply, via
the result of Sárközy (Theorem 3.1), that every induced subgraph H [Q] can be covered
by a number of monochromatic cycles in H [Q] that depends only on r. Second, we want
the notion of “robustly connected” to be sufficiently strong to allow us to convert such
a cover of H [Q] by auxiliary monochromatic cycles into a cover of Q by monochromatic
cycles in G, at least if |Q| ≤ K/p.

It is instructive to note that this task would be significantly easier for p ≫ n−1/(r+1).
In this case we could define H by saying that v, w ∈ W are joined by an edge of
color i if there are many (i.e., Ω(npr+1)) vertices in the i-colored common neighborhood
Ni(v, U)∩Ni(w, U). It is not hard to see that if p ≫ (log n/n)1/(r+1), then this graph has
independence number at most r. Indeed, the high density implies that every set X ⊆ W
of r + 1 vertices has a large common neighborhood N∗(X, U) in U (of size ≈ npr+1). Of
course, for every vertex in N∗(X, U), at least two of the edges coming from X must have
the same color (by the pigeonhole principle). This in turn implies that some two vertices
in X will have a large common neighborhood in the same color, so H [X ] contains an edge.
We could then apply Theorem 3.1 to cover H [Q] with few disjoint monochromatic cycles,
and, as in the proof of Lemma 2.1, use Hall’s condition to turn each of these auxiliary
cycles into a monochromatic cycle in G by replacing each auxiliary edge with a path of
length 2 in G in the same color.

Unfortunately, when p is smaller than n−1/(r+1) a typical set of r + 1 vertices does not
have any common neighbor, and the graph H as defined in the previous paragraph might
have unbounded independence number. We overcome this issue by using slightly longer
paths to create monochromatic cycles in G. So here the edges of H will correspond to
short monochromatic paths whose lengths are possibly greater than 2. We now describe
informally how we are going to do this, assuming for simplicity that r = 2, i.e., that there
are only two colors, called red and blue.

To define H , consider an arbitrary set X̂ ⊆ W consisting of 3 vertices u, v, w (see
Figure 1). Since we assume p > n−1/r+ε = n−1/2+ε, any two vertices in X̂ will have
Θ(np2) common neighbors in U . Let Z1 be the set of common neighbors of u and v in U
(and keep the vertex w for later). If there are Ω(np2) vertices x ∈ Z1 that have an edge
to both u and v in the same color, then we add an edge in that color in H between u
and v. However, it could be that most vertices in Z1 are connected to u and v by edges
of different colors (i.e., there is a red edge to u and a blue edge to v, or vice-versa). In
this case, we can find many vertices in Z1 which are of the “majority color profile”, that
is, we can find a set S1 ⊆ Z1 of Ω(np2) common neighbors of u and v such that either
every vertex x ∈ S1 has a red edge to u and a blue edge to v, or every vertex x ∈ S1 has
a blue edge to u and a red edge to v. In any case, we can relabel X̂ = {vfree, vred, vblue}
such that every vertex in S1 is connected by a red edge to vred and by a blue edge to vblue

(and vfree will just be the vertex w).
We now define the set Z2 of all vertices in U that have an edge to both vfree and a

vertex in S1. The properties of G(n, p) will make sure that this set is about as large as
expected: |Z2| = Ω(n2p4). If there are Ω(n2p4) vertices in Z2 that have an edge to both
vfree and a vertex of S1 in the same color – say, both are blue – then we add a blue edge
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Figure 1: Building towers when r = 2.

to H between vfree and vblue. And of course, if both edges are red, then we add a red edge
between vfree and vred. This way an edge of color i corresponds to many i-colored paths
of length 3 between the two involved vertices. However, as before, it could be that most
vertices in Z2 are connected to vfree and S1 in both colors. Then, again, there must be a
majority color profile of such vertices, and we can find a subset S2 ⊆ Z2 of size Ω(n2p4)
such that every vertex in S2 has either a blue edge to vfree and a red edge to a vertex of
S1, or the other way around. The important observation is that it is again possible to
relabel the vertices X̂ = {vfree, vred, vblue} such that every vertex in S2 is now connected
by a blue path to vblue and by a red path to vred (for example, if every vertex in S2 has
a blue edge to S1 and a red edge to vfree, we exchange the identities of vred and vfree).

If we continue like this, the following pattern emerges: starting from a set X̂ of three
vertices, either we are able to place an edge in H between two vertices in X̂, or we get
a sequence S1, S2, S3, . . . of larger and larger sets (|Si| will be around (np2)i) such that
every vertex in Si is connected by a red path to some vred ∈ X̂ and by a blue path to
some vblue ∈ X̂. This statement is formalized in Claim 5.5 below.

Now take any set X of 6 vertices, and split it into two sets X̂ and X̂ ′ of three vertices
each. If H contains an edge inside X̂ or X̂ ′, then X is not independent. Otherwise, since
p > n−1/2+ε, we see that after about m = 1/ε iterations of the above procedure, we reach
a set Sm from X̂ and a set S′

m from X̂ ′, both of size much larger than (log n)/p, such that
every vertex in the set Sm (S′

m) is connected in both colors to the set X̂ (X̂ ′). In G(n, p)
there are many edges between any two sets of size larger than (log n)/p (see Lemma 3.8),
in particular, we can find many (say) red edges between Sm and S′

m. But then there is a
vertex in X̂ that is connected to a vertex in X̂ ′ by many red paths, and we can add a red
edge connecting these vertices to H . This gives us an H that has independence number
at most 5 such that an i-colored edge in H corresponds to many i-colored paths between
the two vertices in G.

The same general approach works if there are more than two colors. In the rest of this
section, we explain the details of the above outline to get a real proof, and show how to
turn the auxiliary cycles in H [Q] into monochromatic cycles in G.

5.2 Towers, cascades, and the auxiliary graph

Without loss of generality, we may assume that p = n−1/r+ε where ε = 1/qr for some
large integer q such that r does not divide q − 1. (So we have p = n−(q−1)/qr = n−(q−1)ε.)
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Let us fix a partition of U = V (G) \ W into 1/ε levels of the same size:

U = L1 ·∪ · · · ·∪ L1/ε,

where |Lk| = ε|U |. For notational convenience, we also define L0 = W . As this partition
does not depend on the choice of Q ⊆ W , we may fix it before exposing G. Set

µ =
|Lk|pr

2rr
= Θ(nrε), (6)

and let m ∈ N be such that m − 1 < q−1
r < m. Note that this implies m ≤ 1/ε, and

µm−1 = O(n−ε/p) and µm = Ω(nε/p). (7)

Indeed, µm−1 ≤ µ(q−2)/r = O(n(q−1)ε−ε) and µm ≥ µq/r = Ω(n(q−1)ε+ε).
Next, we describe the structures needed for the proof. The point of the argument

we sketched in Section 5.1 was to find monochromatic paths from a vertex v through a
sequence of sets (Ss, . . . , Sf ) (see Figure 1). We will call such a monochromatic piece a
tower on v. Due to technical reasons, the formal definition below needs to include some
auxiliary sets, as well.

Definition 5.1 (Towers). Let 1 ≤ s ≤ f ≤ m, let i ∈ [r] be a color and v ∈ L0. We
call a sequence of sets (Ss−1, Ss, . . . , Sf ) an i-tower on v if there is a sequence of sets
Ts, . . . , Tf ⊆ L0 of size r − 1 such that the following properties hold:

(T1) Sk ⊆ Lk and |Sk| = µk for all k ∈ {s − 1, . . . , f},

(T2) Ss ⊆ Ni(v) ∩ N(Ss−1) ∩ N∗(Ts),

(T3) Sk ⊆ Ni(Sk−1) ∩ N∗(Tk) for all k ∈ {s + 1, . . . , f},

(T4) v ∈ Ts if s > 1, and S0 = {v} with v /∈ T1 if s = 1.

We say that (Ts, . . . , Tf ) is a witness sequence for the tower (Ss−1, . . . , Sf ).

Note that in the case r = 2 that we discussed in Section 5.1, the vfree of step i will
be the witness Ti+1 that “generates” Si+1 from Si. For example, in Figure 1, (u, S1) is
a red tower on u with witness sequence (v), (v, S1, S2) is a blue tower on v with witness
sequence (u, w), (S1, S2, S3) is a red tower on w with witness sequence (w, u), and (S2, S3)
is a blue tower on u with witness sequence (u).

In general, if (Ss−1, Ss, . . . , Sf ) is an i-tower on v, then it follows from (T2) and
(T3) that every vertex in Sf is reachable from v by a path in color i passing through
each Ss, . . . , Sf−1 exactly once. Property (T4), the set Ss−1 and the witness sequence
Ts, . . . , Tf are needed to establish some pseudorandom properties of the sets Ss, . . . , Sf ,
such as expansion.

To define our auxiliary graph, we need one additional structure, a cascade that we
define on a pair of vertices in L0. As we will see later, it guarantees that the two vertices
are connected by monochromatic paths in a very robust way (Claim 5.9).

Definition 5.2 (Cascades). Let i ∈ [r] be a color. We say that two vertices v, w ∈ L0 are
connected by an i-cascade if there is an i-tower (Sv

sv−1, Sv
sv

, . . . , Sv
f ) on v and an i-tower

(Sw
sw−1, Sw

sw
, . . . , Sw

f ) on w for some 1 ≤ sv, sw ≤ f ≤ m, such that either

(C1) Sv
f = Sw

f , or

(C2) f = m and ei(Rv, Rw) ≥ e(Rv, Rw)/r, where Rv = Sv
m \ Sw

m and Rw = Sw
m \ Sv

m.

Note that there is no need to impose any conditions on the disjointness of the sets in
(C2). This is because if Rv and Rw are small then Sv

m and Sw
m have a significant overlap,

so the situation is similar to (C1).
We now define the auxiliary graph H on the vertex set L0 by adding an edge of color

i between two vertices v, w ∈ L0 if v and w are connected by an i-cascade. There are two
central claims:
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Claim 5.3. W.h.p, H has independence number at most 4r.

Claim 5.4. W.h.p, for every monochromatic cycle C in H of length at most K/p, there
is a monochromatic cycle C∗ (of the same color) in G such that V (C) ⊆ V (C∗).

From these two claims, Lemma 2.2 follows easily:

Proof of Lemma 2.2. Suppose that G ∼ G(n, p) is such that the two properties in Claims
5.3 and 5.4 hold (this happens w.h.p), so H has independence number at most 4r. Let Q ⊆
L0 be an arbitrary set of size at most K/p. As the independence number of H [Q] is also
bounded by 4r, we can apply Theorem 3.1 to find a collection of at most 25(αr)2 log(αr) ≤
400r4 log(4r2) vertex-disjoint monochromatic cycles in H [Q] covering Q.

We know that every cycle in the collection has length at most |Q| ≤ K/p, so we can
replace each such cycle C by a monochromatic cycle C∗ in G that covers the vertex set
of C (using the property in Claim 5.4). This gives a collection of at most 400r4 log(4r2)
monochromatic cycles in G covering the whole set Q.

5.3 Proof of Claim 5.3

We first prove an auxiliary claim:

Claim 5.5. W.h.p, for every set X̂ = {x1, . . . , x2r−1} of 2r − 1 distinct vertices in L0,
one of the following two statements holds:

(i) there are two vertices v, v′ ∈ X̂ and a color i ∈ [r] such that v and v′ are connected
by an i-cascade, or

(ii) there exists a subset X = {v1, . . . , vr} ⊆ X̂ and for each i ∈ [r] an i-tower (Si
si−1, Si

si
, . . . , Si

m)
on vi, such that S1

m = · · · = Sr
m.

Proof. First, note that w.h.p the property in Lemma 3.10 holds with ε̃ = 1/4 simultane-
ously for every set L = Lk where k ∈ [m]. This is because |Lk| = Θ(n) ≫ log n/(ε̃pr)
and m is a constant. Thus, we may assume the following property: for every k ∈ [m] and
every list of t ≤ ε̃/p distinct r-sets X1, . . . , Xt ⊆ [n] \ Lk, we have

∣

∣

∣

t
⋃

i=1

N∗(Xi, Lk)
∣

∣

∣
≥ t|Lk|pr/2. (8)

This property will be enough to imply Claim 5.5.
To prove the claim, assume X̂ = {x1, . . . , x2r−1} does not satisfy (i), that is, no two

vertices in X̂ are connected by an i-cascade for some i ∈ [r]. We show that for every
k ∈ [m]

there is a set Xk = {v1, . . . , vr} ⊆ X̂ and an i-tower
(Si

si−1, Si
si

, . . . , Si
k) on each vi such that S1

k = · · · = Sr
k.

(9)

Note that X = Xm then satisfies (ii).
We prove (9) by induction on k. For the base case k = 1, let X1 = {x1, . . . , xr} ⊆ X̂ .

Let Z1 = N∗(X1, L1) be the common neighborhood of X1 in L1. By (8) applied to the
single r-set X1, we have

|Z1| = |N∗(X1, L1)| ≥ |L1|pr/2 = µrr .

Let us say that a vertex z ∈ Z1 has the color pattern (i1, . . . , ir) if for each a ∈ [r], the edge
zxa has color ia. There are rr different color patterns, so we can find a subset S1 ⊆ Z1 of
size |S1| = µ such that all vertices in S1 have the same color pattern (i1, . . . , ir).

Let Sa
0 = {xa} for every a ∈ [r], and Sa

1 = S1. We now claim that (Sa
0 , S1) is an

ia-tower on xa, for every a ∈ [r]. For this, choose T a
1 = X1 \ {xa}, and let us check the
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conditions (T1)–(T4) separately. First, (T1) requires that |Sa
0 | = 1, |Sa

1 | = µ, Sa
0 ⊆ L0

and S1 ⊆ L1, all of which are true. For (T2) note that Sa
1 ⊆ Nia

(xa) ∩ N(Sa
0 ) ∩ N∗(T a

1 )
holds because every vertex in Sa

1 lies in the common neighborhood of X1 = T1 ∪ Sa
0 and

has an edge of color ia to xa. The condition (T3) is vacuous in this case. Finally, for (T4),
note that Sa

0 = {xa} and xa /∈ T a
1 hold by definition.

If ia = ib for some distinct a, b ∈ [r], then xa and xb are connected by an ia-cascade
(condition (C1)), contrary to our assumption. So all r different colors appear in the
color pattern (i1, . . . , ir), and by relabeling the vertices in X1 = {x1, . . . , xr} as X1 =
{v1, . . . , vr} so that via

= xa, we get the required i-tower on each vi, proving (9) for
k = 1.

Now suppose that (9) holds for some k − 1 ≥ 1, and let us prove that it holds for k, as
well. By the induction hypothesis, there is a set of vertices Xk−1 = {v1, . . . , vr} ⊆ X̂ and
an i-tower (Si

si−1, Si
si

, . . . , Si
k−1) on each vi such that S1

k−1 = · · · = Sr
k−1 =: Sk−1, where

by (T1) we have |Sk−1| = µk−1. Let X ′ = X̂ \ Xk−1 = {w1, . . . , wr−1} be the remaining
r − 1 vertices (recall that X̂ has size 2r − 1).

Next, we define Zk ⊆ Lk as the set of all common neighbors of the sets X ′ ∪ {v} for
v ∈ Sk−1, i.e.,

Zk =
⋃

v∈Sk−1

N∗(X ′ ∪ {v}, Lk).

Here we have µk−1 ≤ µm−1 ≤ ε̃/p (see (7)) distinct r-sets, so (8) gives

|Zk| =
∣

∣

∣

⋃

v∈S′

k−1

N∗(X ′ ∪ {v}, Lk)
∣

∣

∣
≥ µk−1|Lk|pr/2 = µkrr .

Each vertex z ∈ Zk is connected to wj for every j ∈ [r − 1] and has a neighbor in Sk−1.
Fix one such neighbor w′

z ∈ Sk−1 (chosen arbitrarily) and define the color pattern of z to
be (i1, . . . , ir) if the edge zwj has color ij for every j ∈ [r − 1] and zw′

z has color ir. Once
again, there are rr such patterns, so there is a subset Sk ⊆ Zk of |Sk| = µk vertices that
all have the same pattern (i1, . . . , ir).

We first note that for every j ∈ [r − 1], the sequence (Sk−1, Sk) is an ij-tower on wj

with the witness sequence (Tk), where Tk = X ′. Verifying the conditions (T1)–(T3) is
the same as in the k = 1 case, and (T4) again holds by definition: wj ∈ Tk. Similarly,
(Sir

sir −1, Sir
sir

, . . . , Sir

k−1, Sk) is an ir-tower on the vertex vir
∈ Xk−1. For this, we take

a witness sequence T ir
sir

, . . . , T ir

k−1 of the tower (Sir

sir −1, Sir
sir

, . . . , Sir

k−1) and extend it by

setting T ir

k = X ′; the conditions (T1)–(T4) are then easy to check using the fact that

(Sir

sir −1, Sir
sir

, . . . , Sir

k−1) is already an ir-tower on vir
: for (T1), we already have |Sk| = µk,

whereas for (T3), we know that every z ∈ Sk is in the common neighborhood of X ′, and
is also connected to Sk−1 by an ir-colored edge, so Sk ⊆ Nir

(Sir

k−1) ∩ N∗(T ir

k ). Every
other requirement holds by induction.

If ia = ib for some distinct a, b ∈ [r], then two vertices in Xk = {w1, . . . , wr−1, vir
} ⊆ X̂

are connected by an ia-cascade (again by condition (C1)), which we had ruled out. So all
r colors appear in (i1, . . . , ir) exactly once, and thus we can relabel the vertices in Xk as
v1, . . . , vr to get the desired i-towers on the (new) vi’s.

Proof of Claim 5.3. Recall that H is the graph on vertex set L0 where we add an edge
vw in color i whenever v and w are connected by an i-cascade in G.

Assume that G satisfies the property in Claim 5.5, as it does w.h.p, and let X ⊆ L0 be
a set of 4r − 2 vertices. We show that X contains two distinct vertices connected by an i-
cascade, for some i ∈ [r]. For this, split X into two disjoint sets X̂, X̂ ′ of 2r−1 vertices each.
If either set contains two vertices connected by an i-cascade for some i ∈ [r], then we are
done. Otherwise, by Claim 5.5, there are subsets {v1, . . . , vr} ⊆ X̂ and {v′

1, . . . , v′
r} ⊆ X̂ ′

and an i-tower (Si
si−1, Si

si
, . . . , Si

m) on vi and another i-tower (S′i
s′

i
−1, S′i

s′

i

, . . . , S′i
m) on v′

i
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for every color i ∈ [r], such that S1
m = · · · = Sr

m =: Sm and S′1
m = · · · = S′r

m =: S′
m. Let

i ∈ [r] be a color such that ei(R, R′) ≥ e(R, R′)/r, where R = Sm \ S′
m and R′ = S′

m \ Sm.
Then v = vi and v′ = v′

i are connected by an i-cascade, and we are again done.

5.4 Proof of Claim 5.4

Let us recall the statement: given, say, a red cycle C of size O(1/p) in the auxiliary graph
H , we want to find a red cycle C∗ in G that covers all the vertices of C. We use the
following strategy.

For each edge e in C, we have a cascade on top of it, so we know that there are
many short (of length at most 2m + 1) red paths connecting the endpoints of e, all
with internal vertices in U . Let us denote the set of internal vertices of these paths
by He = {P 1

e , . . . , P ℓ
e }. In order to create a cycle C∗, it suffices to choose exactly one

Pe ∈ He for each e so that they are all pairwise disjoint. We use Theorem 3.2 to achieve
this. Taking the He as the (2m)-uniform hypergraphs, it is enough to check that for any
subset E′ ⊂ E(C) and any Y ⊆ U of size |Y | ≤ 4m|E′| there is a path Pe ∈ He, for some
e ∈ E′ that completely avoids Y .

The proof relies on two ingredients. First, we will show that most cascades (or, rather,
the associated towers) corresponding to the edges in E′ are disjoint on almost all levels
(Claim 5.8), thus it is impossible for Y to significantly intersect each of them. Second, if
we remove a small fraction of the vertices from each level of a cascade connecting v and
w, then it still contains a path from v to w (Claim 5.9).

The following notion of independent towers will be crucial for our applications of
Lemma 3.10.

Definition 5.6 (Independent towers). Suppose that 1 ≤ s ≤ f ≤ m and that we are
given a collection {(Sj

s−1, Sj
s , . . . , Sj

f )}j∈[t] of t towers2. We say that this collection is

independent if there exists a witness sequence (T j
s , . . . , T j

f ) for every tower (Sj
s−1, . . . , Sj

f )

such that all sets of the form T j
s ∪ {v}, where j ∈ [t] and v ∈ Sj

s−1, are distinct.

Our next claim says that among towers on distinct vertices, there is always a large
subset of independent towers.

Claim 5.7. Let 1 ≤ s ≤ f ≤ m and let t ≥ 0. Let v1, . . . , vt be distinct vertices in L0

and for each j ∈ [t], let Tj = (Sj
s−1, . . . , Sj

f ) be a tower on vj. Then there is a set I ⊆ [t]
of at least t/r indices such that the towers {Tj}j∈I are independent.

Proof. We define a graph GT on the vertex set {T1, . . . , Tt} where Tj and Tj′ for j 6= j′ are

connected by an edge if and only if T j
s ∪{v} = T j′

s ∪{v′} for some v ∈ Sj
s−1 and v′ ∈ Sj′

s−1.
We will show that the maximum degree of GT is at most r − 1. This clearly implies that
GT contains an independent set of size at least t/r (e.g. by choosing its vertices greedily),
which is exactly what we need.

We first show that if Tj and Tj′ are adjacent in GT then vj′ ∈ T j
s . Indeed, if s = 1,

then for each j ∈ [t] we have Sj
0 = {vj} by (T4). Hence Tj and Tj′ can only be adjacent

if T j
1 ∪ {vj′} = T j′

1 ∪ {vj}, but then vj 6= vj′ implies vj′ ∈ T j
1 . On the other hand, if

s > 1 then T j
s ⊆ L0 and Sj

s−1 ⊆ Ls−1 where L0 ∩ Ls−1 = ∅, so Tj and Tj′ can only be

adjacent if T j
s = T j′

s . Once again, (T4) then implies that vj′ ∈ T j′

s = T j
s . But T j

s has
r − 1 elements, so there are at most r − 1 different choices for this vj′ . Thus Tj has at
most r − 1 neighbors in GT .

The next claim shows that in every small collection of independent towers, a significant
fraction of them are almost mutually disjoint on any given level k.

2More precisely, each (Sj
s−1, Sj

s , . . . , S
j

f ) is an ij-tower on some vertex vj ∈ L0, but the precise values for ij

and vj do not matter here. We use this kind of sloppiness throughout the proof.

17



Claim 5.8. The following holds with high probability. For every family {(Sj
s−1, . . . , Sj

f )}j∈[t]

of t independent i-towers, where 1 ≤ s ≤ f ≤ m and t ≤ nε/(µkp) for some k ∈ {s, . . . , f},
there is a set Ik ⊆ [t] of size |Ik| ≥ t/2k such that

∣

∣

∣
Sj

k ∩
⋃

j′∈Ik\{j}
Sj′

k

∣

∣

∣
≤ (80rr)k · n−ε/4µk

for every j ∈ Ik.

Proof. Note that with high probability Lemma 3.10 applies with ε̃ = n−ε/2 and L = Lk

simultaneously for every k ∈ [m]. Thus, we may assume that for every k ∈ [m] and every
family of T ≤ ε̃/p different r-sets X1, . . . , XT ⊆ [n] \ Lk, we have

∣

∣

∣

T
⋃

ℓ=1

N∗(Xℓ, Lk)
∣

∣

∣
∈ (1 ±

√
ε̃)T |Lk|pr = (1 ±

√
ε̃)T · 2rrµ. (10)

We derive Claim 5.8 from this property. For convenience, let ξk = (80rr)kn−ε/4 for
k ∈ [m].

Let {(Sj
s−1, Sj

s , . . . , Sj
f)}j∈[t] be a collection of t independent i-towers as in the state-

ment of the claim. For each j ∈ [t], let (T j
s , . . . , T j

f ) be a corresponding witness sequence

such that all sets of the form T j
s ∪ {v}, where j ∈ [t] and v ∈ Sj

s−1, are distinct (this is
possible because of the independence). We prove the claim by induction on k.

Suppose k = s. For each j ∈ [t] define Zj
k = N(Sj

k−1) ∩ N∗(T j
k , Lk), and set

Zk =
⋃

j∈[t]

Zj
k and Ẑk =

⋃

j 6=j′∈[t]

Zj
k ∩ Zj′

k .

Note that the definition Zj
k is almost the same as the definition of Sj

k, however without

restricting the neighborhood of Sj
k−1 to a specific color. Therefore, we have Sj

k ⊆ Zj
k.

Alternatively, we can define Zj
k as

Zj
k =

⋃

v∈Sj

k−1

N∗(T j
k ∪ {v}, Lk).

By (10), each Zj
k is of size |Zj

k| ∈ (1 ±
√

ε̃)2rrµk (recall that |Sj
k−1| = µk−1). We prove a

somewhat stronger statement than needed, namely that the set Ik ⊆ [t] consisting of all
indices j ∈ [t] such that

∣

∣

∣
Zj

k ∩ Ẑk

∣

∣

∣
=

∣

∣

∣
Zj

k ∩
⋃

j′∈[t]\{j}
Zj′

k

∣

∣

∣
≤ 10

√
ε̃ · 2rrµk < ξkµk,

is of size |Ik| ≥ t/2.
To this end, we first estimate the size of Zk and Ẑk. As the towers are independent,

there are exactly
∑

j∈[t] |Sj
k−1| = tµk−1 < 1/(nε/2p) = ε̃/p sets of the form T j

k ∪ {v}
where j ∈ [t] and v ∈ Sj

k−1 (recall µ = Θ(nrε)). Thus applying (10) again we obtain

|Zk| ∈ (1 ±
√

ε̃)t · 2rrµk, which in turn gives the following estimate on the size of Ẑk.

|Ẑk| ≤
(

∑

j∈[t]

|Zj
k|

)

− |Zk| ≤ 2
√

ε̃t · 2rrµk.

Indeed, here |Ẑk| is the number of elements in Lk that are counted at least twice by the
sum

∑

j∈[t] |Zj
k|, whereas |Zk| is the number of elements counted at least once.
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Putting everything together, we have the following:

(1 −
√

ε̃)t · 2rrµk ≤ |Zk| =
∑

j∈[t]

|Zj
k \ Ẑk| + |Ẑk|

≤
∑

j∈[t]

|Zj
k| −

∑

j∈[t]\Ik

|Zj
k ∩ Ẑk| + |Ẑk|

≤ (1 +
√

ε̃)t · 2rrµk − (t − |Ik|)10
√

ε̃ · 2rrµk + 2
√

ε̃t · 2rrµk

≤ (1 + 3
√

ε̃ − 5(t − |Ik|)2
√

ε̃
t )t · 2rrµk.

This implies |Ik| > t/2, as required.

Next, suppose that k > s and the claim holds for k−1. As t ≤ nε/(µkp) ≤ nε/(µk−1p),
we can apply the induction hypothesis to obtain a family Ik−1 ⊆ [t] of t′ = |Ik−1| ≥ t/2k−1

almost disjoint towers on the (k − 1)’st level. For each j ∈ Ik−1 let

Ŝj
k−1 = Sj

k−1 \
⋃

j′∈Ik−1\{j}
Sj′

k−1.

Then these sets are all disjoint and have size

(1 − ξk−1)µk−1 ≤ |Ŝj
k−1| ≤ µk−1. (11)

Note that Ŝj
k−1 ⊆ Lk−1 with k > 1, so Ŝj

k−1 is also disjoint from T j
k ⊆ L0. More

importantly, these facts imply that all the sets of the form T j
k ∪ {v} for j ∈ Ik−1 and

v ∈ Ŝj
k−1 are distinct. Now we can argue as in the base case.

For each j ∈ Ik−1 define

Zj
k = N(Ŝj

k−1) ∩ N∗(T j
k , Lk) =

⋃

v∈Ŝj

k−1

N∗(T j
k ∪ {v}, Lk)

and let
Zk =

⋃

j∈Ik−1

Zj
k and Ẑk =

⋃

j 6=j′∈Ik−1

Zj
k ∩ Zj′

k .

Observe that, unlike in the base case, we do not have Sj
k ⊆ Zj

k: some vertices in Sj
k might

only have neighbors in Sj
k−1 \ Ŝj

k−1. However, Sj
k−1 \ Ŝj

k−1 is small, so Sj
k \ Zj

k will turn
out to be negligible. We will deal with these vertices at the end.

From |Ŝj
k−1| ≤ µk−1 ≤ ε̃/p and (10) we have

|Zj
k| ≤ (1 +

√
ε̃) · 2rrµk ≤ (1 + ξk−1) · 2rrµk.

As already mentioned, sets of the form T j
k ∪{v} for j ∈ Ik−1 and v ∈ Ŝj

k−1 are all distinct,
thus by (11), there are

∑

j∈Ik−1

|Ŝj
k−1| ≥ (1 − ξk−1)µk−1t′

many of them. Therefore, applying (10) again we get |Zk| ≥ (1 − 2ξk−1)t′ · 2rrµk which,
in turn, gives the following bound on the size of Ẑk.

|Ẑk| ≤
(

∑

j∈Ik−1

|Zj
k|

)

− |Zk| ≤ 3ξk−1t′ · 2rrµk.

We now define Ik ⊆ Ik−1 as the set of all indices j ∈ Ik−1 such that
∣

∣

∣
Zj

k ∩ Ẑk

∣

∣

∣
< 20ξk−1 · 2rrµk = ξk

2 µk.
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Using the above estimates on the size of Zk and Ẑk, we get the following:

(1 − 2ξk−1)t′ · 2rrµk ≤ |Zk| =
∑

j∈Ik−1

|Zj
k \ Ẑk| + |Ẑk|

≤
∑

j∈Ik−1

|Zj
k| −

∑

j∈Ik−1\Ik

|Zj
k ∩ Ẑk| + |Ẑk|

≤ (1 + ξk−1)t′ · 2rrµk − (t′ − |Ik|)20ξk−1 · 2rrµk + 3ξk−1t′ · 2rrµk

≤ (1 + 4ξk−1 − (t′ − |Ik|)20 ξk−1

t′
)t′ · 2rrµk,

which implies |Ik| > t′/2 ≥ t/2k.
So far we have shown that Ik has the desired size, and that for each j ∈ Ik, the

intersection of Sj
k with other sets Sj′

k inside Zj
k contains at most ξkµk/2 vertices. Therefore,

it suffices to prove |Sj
k \ Zj

k| ≤ ξk

2 µk to finish the proof. Note that

Sj
k \ Zj

k ⊆ N(Sj
k−1 \ Ŝj

k−1) ∩ N∗(T j
k , Lk) =

⋃

v∈Sj

k−1
\Ŝj

k−1

N∗(T j
k ∪ {v}, Lk).

As |Sj
k−1 \ Ŝj

k−1| ≤ ξk−1µk−1, from (10) we get

|Sj
k \ Zj

k| ≤ (1 +
√

ε̃)ξk−1 · 2rrµk < ξkµk/2,

as required. This concludes the argument.

Next, we show that cascades are resilient to small changes.

Claim 5.9. There is a constant c > 0 such that the following holds with high proba-
bility. Suppose v, w ∈ L0 are connected by an i-cascade with underlying i-towers Tv =
(Sv

sv−1, . . . , Sv
f ) and Tw = (Sw

sw−1, . . . , Sw
f ), for some 1 ≤ sv, sw ≤ f ≤ m. Then for any

subset Y ⊆ U such that |Su
k ∩ Y | ≤ cµk for every u ∈ {v, w} and k ∈ {su, . . . , f}, the

graph G[({v, w} ∪ U) \ Y ] contains an i-colored v-w path of length at most 2f + 1.

Proof. With high probability, Lemma 3.10 applies with with ε̃ = 1/4 and L = Lk simulta-
neously for every k ∈ [m]. Thus, we may assume that for every k ∈ [m] and every family
of t ≤ ε̃/p different r-sets X1, . . . , Xt ⊆ [n] \ Lk we have

∣

∣

∣

⋃

j∈[t]

N∗(Xj , Lk)
∣

∣

∣
≤ 2t|Lk|pr = 4rrtµ. (12)

Furthermore, by Lemma 3.8, we can assume that for every disjoint X, X ′ ⊆ V (G) of size
|X |, |X ′| ≫ log n/p we have

e(X, X ′) ∈ (1 ± α)|X ||X ′|p, (13)

for α = 1/(8r + 8). We show that these properties suffice to derive the claim.
Consider some u ∈ {v, w}. We first show that there is a subset Bu ⊆ Su

f of size at

most α|Su
f | = αµf , such that for every vertex u′ ∈ Su

f \Bu, there is an i-colored u-u′ path
avoiding Y of length at most f .

To this end, we define the sets Bu
su

, . . . , Bu
f level by level as follows. Let Bu

su
= Y ∩Su

su

and then iteratively set Bk = N(Bk−1, Su
k ) ∪ (Y ∩ Su

k ) for k ∈ {su + 1, . . . , f}. It is easy
to see by induction on k ∈ {su, . . . , f} (and using the definition of an i-tower) that for
every vertex u′ ∈ Su

k \ Bu
k , the graph G[({v} ∪ U) \ Y ] contains an i-colored u-u′ path of

length at most k. We will prove, using induction on k, that

|Bu
k | ≤ (8rr)kcµk for every k ∈ {su, . . . , f}. (14)
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Choosing a c < α/(8rr)f in the assumptions of the claim then ensures that Bu = Bu
f is

of size at most αµf .
The case k = su follows from the assumptions on Y and the definition of Bu

su
, so let

k > su and assume that (14) holds for k − 1. By the definition of Su
k , we have

N(Bu
k−1, Su

k ) ⊆ N(Bu
k−1) ∩ N∗(T u

k , Lk) ⊆
⋃

v∈Bu
k−1

N∗(T u
k ∪ {v}, Lk).

As Bu
k−1 is asymptotically smaller than 1/p (see (7)), we can use (12) to get

|N(Bu
k−1, Su

k )| ≤ 4rr|Bu
k−1|µ ≤ 4rr(8rr)k−1cµk.

The assumption of the claim states |Su
k ∩ Y | ≤ cµk, which implies the desired bound on

Bu
k (with room to spare).

We now use these sets to find a desired path from v to w. The towers Tv and Tw

form an i-cascade connecting v and w, thus by definition, we either have Sv
f = Sw

f , or
f = m and ei(Rv, Rw) ≥ e(Rv, Rw)/r where Rv = Sv

m \ Sw
m and Rw = Sw

m \ Sv
m. In

the former case we are immediately done: since |Bv ∪ Bw| < 2α|Sv
f | there is a vertex

z ∈ Sv
f \ (Bv ∪ Bw) and hence an i-colored v-z-w walk, containing an i-colored path, of

length at most 2f ≤ 2m + 1, disjoint from Y . Similarly, if we are in the latter case and
|Sv

m ∩ Sw
m| > 2αµm, then we are done for the same reason.

Let us therefore assume that we are in the latter case and |Rv|, |Rw| ≥ (1 − 2α)µm.
It is enough to show that there is an edge zvzw ∈ G of color i such that zv ∈ Rv \ Bv

and zw ∈ Rw \ Bw. Indeed, such an edge would connect an i-colored v-zv path and an
i-colored w-zw path that both avoid Y , thus providing a desired path from v to w of
length at most 2m+1. To show that such an edge exists, note that |Rv|, |Rw| ≫ (log n)/p
(see (7)), so (13) gives

ei(Rv, Rw) ≥ e(Rv, Rw)/r ≥ |Rv||Rw|p/2r ≥ (1 − 4α)|Sv
m||Sw

m|p/r.

On the other hand, as Bv is contained in some set B of size α|Sv
m|, it touches at most

e(Bv, Rw) ≤ e(B, Rw) ≤ 2|B||Rw|p ≤ 2α|Sv
m||Sw

m|p.

of these edges (again, using (13)). We similarly get that Bw touches at most 2α|Sv
m||Sw

m|p
such edges, which means that

ei(Rv \ Bv, Rw \ Bw) ≥ (1 − (4 + 4r)α)|Sv
m||Sw

m|p/r > 0

with α = 1/(8r + 8), so at least one edge avoids both Bv and Bw.

We finally have all the necessary tools to prove Claim 5.4.

Proof of Claim 5.4. Suppose that G satisfies the statement in Claim 5.8 and Claim 5.9,
as it does w.h.p, and let c > 0 be a constant given by Claim 5.9. We show that these two
properties are enough to prove Claim 5.4.

Let C be an i-colored cycle in H for some color i ∈ [r]. For every edge e = vv′ of C,
we define a 2m-uniform hypergraph He = (U, Ee) on the vertex set U , where a set A ⊆ U
of size 2m belongs to Ee if G[A ∪ {v, v′}] contains an i-colored v-v′ path. Note that if for
every edge e ∈ E(C) we can find a hyperedge fe ∈ Ee such that all these hyperedges are
pairwise disjoint, then the corresponding paths form an i-colored cycle C∗ in G such that
V (C∗) ∩ L0 = V (C) ∩ L0. It is therefore enough to show that such a family of hyperedges
exists for every monochromatic cycle C in H of length at most K/p.

This will follow from Theorem 3.2, provided that for every E′ ⊆ E(C), we have

τ
(

⋃

e∈E′

Ee

)

> (4m − 1)(|E′| − 1), (15)

21



where τ(E) is the smallest size of a set X ⊆ U intersecting every hyperedge in E .
Consider some E′ ⊆ E(C), and label the endpoints of each edge e ∈ E′ with ve and

we. We first pass to a large subset F ⊆ E′ that has some convenient properties. This is
done in three steps.

First, let E′′ ⊆ E′ be a subset of size |E′|/3 such that the edges in E′′ are pairwise
disjoint (i.e., no two edges in E′′ share an endpoint). This is possible because all the
edges of E′ lie on a cycle. Next, recall from the definition of H that each edge e ∈ E′′

represents an i-cascade between ve and we formed by an i-tower Tve
= (Sve

sve −1, . . . , Sve

fe
)

on ve and another i-tower Twe
= (Swe

swe −1, . . . , Swe

fe
) on we (see Definition 5.2). Note that

fe is the same for both vertices ve and we. As there are m possible values for each of
sv, sw and fe, we can find a subset E′′′ ⊆ E′′ of size at least |E′′|/m3 ≥ |E′|/(3m3)
and levels sv, sw, f ∈ [m] such that sve

= sv, swe
= sw and fe = f for every e ∈ E′′′.

Finally, applying Claim 5.7 twice (once for the the collection {Tve
}e∈E′′′ and once for the

collection {Twe
}e∈E′′′), we find a subset F ⊆ E′′′ of size |E′|/(3m3r2) such that {Tve

}e∈F

and {Twe
}e∈F are both independent collections of towers (but their union might not be).

Let t = |F | ≤ K/p and let e1, . . . , et be the edges in F . Rephrasing (15), we need
to prove that no set Y ⊆ U of size |Y | = 4m|E′| ≤ 12m4r2t covers all the hyperedges
in

⋃

e∈F Ee. That is, there is an edge e = vewe in F and an i-colored path P of length
at most 2m + 1 connecting ve and we such that V (P ) ⊆ ({ve, we} ∪ U) \ Y . Claim 5.9
suggests that it suffices to show that there is an edge e ∈ F whose cascade mostly evades
Y .

Let Y ve

k = Sve

k ∩ Y for every e ∈ F and k ∈ {sv, . . . , f}. We will show that for each
k ∈ {sv, . . . , f} most sets Y ve

k are quite small. More precisely, the set Bk ⊆ F of all edges
e ∈ F such that |Y ve

k | ≥ cµk is of size

|Bk| < t/(2m). (16)

Consider some k ∈ {sv, . . . , f}. First, we show that |Bk| ≤ nε/(µkp). Indeed, if this is
not the case then choose an arbitrary subset J ⊆ Bk of size nε/(µkp) and let Ik ⊆ J be
the subset provided by Claim 5.8 when applied to the towers {Tve

}e∈J . For each e ∈ Ik,
the set Sve

k intersects
⋃

e′∈Ik
S

ve′

k on o(µk) vertices, thus it contains at least cµk/2 unique

elements from Y (i.e. elements which do not appear in any other S
v′

e

k for e′ ∈ Ik). This
implies

|Y | ≥ c
2 µk|Ik| ≥ c

2 µk · nε/(2kµkp) ≫ t,

which is a contradiction. Therefore |Bk| ≤ nε/(µkp), thus we can apply Claim 5.8 to
all the towers {Tve

}e∈Bk
. Let Ik be the obtained set of indices and, again, note that

each Sve

k contains at least cµk/2 unique elements from Y . Assuming |Bk| ≥ t/(2m), the
contradiction follows similarly as in the previous case:

|Y | ≥ c
2 µk|Ik| ≥ c

2 µk · t/(2k · 2m) ≫ t.

Finally, it follows from (16) that there is a subset Iv ⊆ F of size |Iv| > t/2 such that
for all e ∈ Iv and all k ∈ {sv, . . . , f}, we have |Y ve

k | ≤ cµk. By the same argument, a
subset Iw ⊆ F of size |Iw| > t/2 exists for the other endpoints of the edges, as well, such
that |Y we

k | ≤ cµk for every e ∈ Iw and all k ∈ {sw, . . . , f}. In particular, there is an edge
e ∈ Iv ∩ Iw such that Y intersects at most a c-fraction of each level of the cascade on e.
The existence of a desired path now follows from Claim 5.9.

6 Concluding remarks

In this paper we made a step towards the random analog of the theorem of Erdős, Gyárfás
and Pyber [6] on monochromatic cycle covers. Our result leaves a few interesting open
problems:
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• The most interesting open problem is to show that there is a partition of the vertices
of G(n, p) into constantly many monochromatic cycles (or paths), even for some
larger values of p.

• It would be nice to give a more precise estimate on the threshold for the property
that every r-coloring of the edges of G(n, p) admits a vertex cover by a number of
monochromatic cycles depending only on r. In view of the construction of Bal and
DeBiasio that we mentioned in the introduction, it seems natural to guess that the
threshold should be of the order (log n/n)1/r. Note that in the proof of Lemma 2.2
we heavily rely on the fact that there are only constantly many levels in a cascade,
which requires p ≥ n−1/r+ε for some constant ε > 0.

• We did not put much effort into optimizing the number of cycles we cover with in
Theorem 1.1, thus it could most likely be improved. It would be interesting to see
if one could obtain similar bounds to the case G = Kn, e.g., do O(r log r) cycles
suffice?
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