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Abstract
Knutson introduced two families of reverse juggling Markov

chains (single and multispecies) motivated by the study of

random semi-infinite matrices over Fq. We present natural

generalizations of both chains by placing generic weights that

still lead to simple combinatorial expressions for the station-

ary distribution. For permutations, this is a seemingly new

multivariate generalization of the inversion polynomial.
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1 INTRODUCTION

Juggling has been studied from different mathematical perspectives, for example, from combinatorics

[3, 9], probability [1, 2, 4, 8, 11], and algebraic geometry [5]. In recent work, Knutson returns to the

study of juggling inspired by a matrix model [6].

In the matrix model defined by Knutson, we have a random semi-infinite (to the right) matrix

with b rows and entries from F ≡ GF(q) generated as follows. At each time step, a uniformly random

column from Fb is chosen and added to the left of the current matrix. This is easily seen to be a Markov

chain. Knutson studies two projections of this chain. In the first, the set of matrices is stratified by

the columns where the rank increases, when going from left to right. The positions of these columns

are denoted by the configuration n = (n1,… , nb), where n1 < · · · < nb. As in Example 1.1, a ball is

positioned in every such column, which is placed above the matrix. When the matrix is extended with

a new random column to the left, there will be shift of the balls. If the new column is in the linear

span of the leftmost ni columns but not in the linear span of the leftmost ni−1 columns then this will

result in ball number i moving to the front. The Markov chain on matrices then projects to the one on

increasing b-tuples of integers with the following transitions rates.

n →

⎧⎪⎨⎪⎩
(n1 + 1,… , nb + 1) with probability

1

qb ,

(1, n1 + 1,… , n̂i + 1,… , nb + 1) with probability
1

qb−i −
1

qb−1+1
for 1 ≤ i ≤ b,

(1)
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where x̂ means that the element x should be omitted. The first case happens if and only if the new

column is the all zero column. The movement of the balls is the time-reversed version of what has

become known as a juggling Markov chain, called Multivariate Juggling Markov Chain (MJMC) in [2].

Example 1.1 Let b = 4, q = 3. In the example below the new column causes the third ball from the

left to move to the front and all other balls move one step to the right. This happens with probability

1∕3(1 − 1∕3).
• • • •
1 2 0 0 0 2 0 …
0 0 0 1 1 1 0 …
0 1 2 0 2 0 1 …
0 0 0 0 0 0 2 …

−→

• • • •
0 1 2 0 0 0 2 0 …
1 0 0 0 1 1 1 0 …
2 0 1 2 0 2 0 1 …
0 0 0 0 0 0 0 2 …

Knutson showed that the stationary probability distribution of the reverse juggling chain is given

by a simple formula. In Section 3, we generalize this process by setting the jump probability of ball j
to xj, which we call the Infinite Reverse Juggling Markov Chain (IRJMC). We show that this continues

to be a nice solvable model, in the sense that the stationary distribution continues to have a simple

expression. First though, we focus on the window of the first m positions (m > b) of the IRJMC in

Section 2, which we call the Reverse Juggling Markov Chain (RJMC) and prove a formula for the

stationary distribution and a property of ultrafast mixing.

The second projection of the Markov chain on the semi-infinite matrices studied by Knutson, comes

from a finer stratification of the space of matrices. One way to think of the first model is that we want

to reduce the semi-infinite matrix to a matrix of zeros and b 1’s where we are allowed to use any row

operation and rightward column operation. Here, by rightward column operation, we mean that we can

add the content of column i to column j, where i < j. The 1’s will then be in the columns indicated by

the balls (n1,… , nb). For the second projection, we allow only downward row operations and rightward

column operations, and we then record the row, counted from above, where the 1 in that column is

positioned. We now think of the row number as the labelling of the ball. The Markov chain on matrices

now projects onto a chain whose states are labelled balls. For this model, one may prove that the balls

change by a bumping path as follows. A ball is chosen with the same probabilities as in the first chain

as given in (1) and moves to the left. As that ball moves to the left it will bump (replace) a ball with

smaller label with probability 1−1∕q and move on with probability 1∕q. Then the ball (or the bumped

ball) will continue left and for the next ball with a smaller label, it will again either bump it or move on

as above. This process continues until a ball reaches the front. See Example 1.2 for an example of a state

and a transition. For a proof that this gives the right transition probability, see [6, Section 4]. Knutson

generalized this process on labeled balls to one where there are potentially several balls carrying a

particular label. He gave a simple product formula for the stationary distribution of this chain.

Example 1.2 Let b = 4, q = 3. In the example below the new column causes the ball labelled 4 to

start a bumping path including the balls labelled 3 and 1. This happens with probability (1− 1∕3)31∕3

because there are 23 = 8 vectors which have a nonzero component along the vectors (1, 0, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1) and a zero component along (0, 1, 0, 0), out of a total of 34 vectors.

1© 3© 2© 4©
1 0 1 0 0 …
0 0 0 1 0 …
0 1 2 0 0 …
0 0 0 0 1 …

−→

1© 3© 4© 2©
1 1 0 1 0 0 …
0 0 0 0 1 0 …
1 0 1 2 0 0 …
1 0 0 0 0 1 …
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This process turns out to be closely related to the time-reversal of the Multispecies Juggling Markov

Chain (MSJMC), which was studied in [1] starting from a very different motivation. In Section 5, we

study the Infinite Multispecies Reverse Juggling Markov Chain (IMRJMC) which generalises Knut-

son’s second model. This generalization is more intricate than that of the first model. We have two sets

of variables for the transition probabilities, one for jumping and one for bumping. We prove explicit

formulas for the stationary probability distribution, which turns out to have separate factors in these

sets of variables. A key step in the proof is the study of the stationary distribution of the same chain,

where we ignore the empty spaces. We call this the Multispecies Reverse Juggling Markov Chain

(MRJMC) and we study it in Section 4.

Finally, we end with some remarks and suggest open problems in Section 6.

2 REVERSE JUGGLING MARKOV CHAIN

We first define the RJMC. Fix m, b ∈ N such that b ≤ m and an arbitrary probability distribution on

{0, 1,… , b} with P(i) = xi. Let Bm,b be the set of binary words of length m with at most b ones. Let

w = (w1,… ,wm) be a word with 𝓁 ones in the first m − 1 positions. The letter in the last position is

irrelevant for the definition of the transitions, as long as the new word belongs to the state space. Then

the transitions of the RJMC are as follows.

1. With probability x0, go to state (0,w1,… ,wm−1).

2. With probability xi for 1 ≤ i ≤ 𝓁, move the i’th one from the left to the front, replace it by a zero,

and shift everything to the right.

3. With probability x𝓁+1 + · · · + xb, go to state (1,w1,… ,wm−1). (This clearly does not happen if

𝓁 = b.)

Let zi = x0 + · · · + xi for 0 ≤ i ≤ b and z̄i = 1 − zi = xi+1 + · · · + xb for 0 ≤ i ≤ b.

Proposition 2.1 The RJMC is irreducible and aperiodic.

Proof It is clear that one can get from any binary word to (0,… , 0) by repeatedly adding 0 to the

left. For the converse, one adds 0’s and 1’s to the left until one obtains the desired word. This proves

the irreducibility. Since (0,… , 0) goes to itself with probability x0, the chain is aperiodic. ▪

We denote the transition matrix and the stationary distribution of the RJMC by M and 𝜋 respectively

and recall that 𝜋M = 𝜋.

Theorem 2.2 For a configuration w, let k be the number of 1’s in w, and the positions of the 1’s be
given by n1,… , nk. Then the stationary distribution of the chain is given by

𝜋(w) =
k−1∏
i=0

z̄i

k∏
i=0

zni+1−ni−1

i , (2)

where n0 = 0 and nk+1 = m + 1.

Example 2.3 We illustrate Theorem 2.2 by constructing the transition graph with m = 3 and b = 2

in Figure 1.

The following result, which is proved by an easy computation, will be useful in the proof of

Theorem 2.2.
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FIGURE 1 The transition graph of the finite single species reverse juggling chain with m = 3 and b = 2. The transition

probabilities are depicted next to the arrows. The stationary probabilities are shown in red [Color figure can be viewed at

wileyonlinelibrary.com]

Lemma 2.4 Let 𝜋 be defined as in (2). Let v = (0, v1,… , vm−1), with k 1’s in positions n1 < · · · < nk.
Define v′ = (v1,… , vm−1, 0) and v′′ = (v1,… , vm−1, 1). Then

𝜋(v′) + 𝜋(v′′) = 1

z0

𝜋(v) =
k−1∏
i=0

(
z̄iz

si+1−si−1

i

)
zm−sk

k .

Proof of Theorem 2.2 By Proposition 2.1, the stationary distribution is unique. Hence, it suffices to

verify that the probabilities given by (2) satisfy the master equation,∑
v∈Bm,k

P(v → w)𝜋(v) = 𝜋(w). (3)

We will first suppose that the first m−1 positions in w contain k 1’s, where k is strictly less than b.

There are two natural cases. First, suppose w1 = 0. Then the only possibilities for b are (w2,… ,wn, 0)
and (w2,… ,wn, 1) and in both cases P(v → w) = x0. Then the left hand side of (3) is immediately

equal to 𝜋(w) using Lemma 2.4. This completes the proof when w1 = 0.

We now consider the case when w1 = 1, in which case, n1 = 1. Then there are two types of

transitions leading to w, where either a 1 is moved from the first m−1 sites to the front, or where a 1 is

added to the left. Let us consider the former. There are two natural subcases depending on the location

𝓁 of the moving 1 in v.

• 1 ≤ 𝓁 ≤ n2 −2: For each such 𝓁, there are two possibilities for v in (3) depending on whether

the last site is a 0 or 1. The remaining 1’s in b are at positions l, n2−1,… , nk−1. In both cases,

they make a transition to w with probability x1 and adding these using Lemma 2.4 gives us,

x1

k∏
i=1

z̄i−1 z𝓁−1
0

zn2−𝓁−2

1

k∏
i=2

zni+1−ni−1

i ,

http://wileyonlinelibrary.com
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and summing this over the given range for 𝓁 gives

k∏
i=1

z̄i−1 (zn2−2

1
− zn2−2

0
)

k∏
i=2

zni+1−ni−1

i .

• 2 ≤ j ≤ k and nj ≤ 𝓁 ≤ nj+1 − 2: The transition to w occurs here with probability xj. As

above, there are two possibilities for v for each 𝓁 depending on the last site, and adding them

using Lemma 2.4 gives

xj

k∏
i=1

z̄i−1 zn2−2

0

j−2∏
i=1

zni+2−ni+1−1

i z𝓁−nj

j−1
znj+1−𝓁−2

j

k∏
i=j+1

zni+1−ni−1

i .

Summing these contributions over allowed positions of 𝓁 gives

k∏
i=1

z̄i−1 zn2−2

0

j−2∏
i=1

zni+2−ni+1−1

i (znj+1−nj−1

j − znj+1−nj−1

j−1
)

k∏
i=j+1

zni+1−ni−1

i .

Recall that nk+1 = m+ 1 and hence we have the contribution when 𝓁 is the rightmost 1 in the

word.

Finally, summing these contributions over all possible values of 𝓁 telescopes leaving us with

k∏
i=1

z̄i−1

(
zn2−2

1

k∏
i=2

zni+1−ni−1

i − zn2−2

0

k−1∏
i=1

zni+1−ni−1

i

)
.

The final case to consider is the one where a 1 is added to v, this time with probability xk+· · ·+xb = z̄k−1

since v has k − 1 1’s. Again, there are only two possibilities for v depending on the last site. Adding

these contributions using Lemma 2.4 gives

z̄k−1

k−1∏
i=1

z̄i−1 zn2−2

0

k−1∏
i=1

zni+1−ni−1

i .

But adding this to the previous contribution and recalling that n1 = 1 returns us exactly 𝜋(w).
To complete the proof, we should consider the situation when w has b 1’s in the first m − 1

positions. As before, there are two subcases, depending on whether w1 is 1 or not. The only difference

now is that Lemma 2.4 is not applicable when w1 = 0, because we cannot have more than b 1’s in

v. But the master equation is easily verified in this case. The remaining calculations are similar in the

other subcase to the situation when there are less than b 1’s in the first m − 1 positions, and the proof

goes through in the same way. ▪

Theorem 2.2 only shows that 𝜋 is a probability distribution up to normalisation. But it turns out

that something stronger holds.

Theorem 2.5 𝜋 is a probability distribution on Bm,b. In other words,∑
a∈Bm,b

𝜋(a) = (x0 + · · · + xb)m = 1.

It turns out that the RJMC also satisfies a property called ultrafast convergence.
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Theorem 2.6 The RJMC on Bm,b converges to its stationary distribution in at most m steps.

The proof of Theorems 2.5 and 2.6 will follow from the construction of an enriched Markov chain.

The enriched chain then lumps (projects) down onto the original chain. For a formal definition of

lumping see [7, Lemma 2.5]. The strategy here follows closely that of [2, Section 4.2]. In particular,

the case of b = m coincides after “particle-hole” symmetry with the annihilation juggling model. The

next corollary follows because Theorem 2.6 proves that Mm+1 = Mm.

Corollary 2.7 All eigenvalues of M are as follows: the eigenvalue 1 occurs with multiplicity one and
all other eigenvalues are equal to 0.

2.1 Enriched Chain on Words

Let Wm,b consist of words of length m in the symbols {1,… , b + 1}. Using the distribution on

{0,… , b} given by P(⋅), we define a Markov chain on Wm,b by the following transitions. For 𝜏 =
(𝜏1,… , 𝜏m) ∈Wm,b,

P(𝜏 → (t, 𝜏1,… , 𝜏m−1)) = xt−1 for 1 ≤ t ≤ b + 1.

It is easy to see that this chain is irreducible and aperiodic and that the stationary probability

distribution Π of this chain is given by

Π(𝜏1,… , 𝜏m) =
m∏

i=1

x𝜏i−1.

It is immediate that
∑

Π(𝜏) = 1. Moreover, we obtain a Π-distributed word in at most m-steps.

Intuitively we think of 𝜏i as the 1 (from the left) that jumped to the front i time steps ago. To

formally define the lumping onto RJMC, define Si(w) for w ∈ Bm,b and i ≤ b to be the word obtained

by the replacing the i’th 1 from the left in w by 0 if such a 1 exists and w otherwise. Then we claim

that the map 𝜙 ∶ Wm,b → Bm,b defined recursively by

𝜙(𝜏1,… , 𝜏m) =

{
∅ if m = 0,

S𝜏1
(1, 𝜙(𝜏2,… , 𝜏m)) if m ≥ 1,

defines the desired lumping. Using the intuitive understanding of the enriched chain this is not difficult

to prove; the strategy is identical to that of [2, Theorem 4.16] with the words reversed. These facts

prove Theorems 2.5 and 2.6.

3 INFINITE REVERSE JUGGLING MARKOV CHAIN

The IRJMC is the m → ∞ limit of the RJMC in Section 2 and we will continue to use notation from

there. Let, as before, b ∈ N be the number of balls, and P(i) = xi be an arbitrary probability distribution

on {0,… , b}. Consider all semi-infinite binary words with b ones and let w = w1,w2,… be a word.

Then the transitions of the IRJMC are as follows.

1. With probability x0, go to state 0,w1,w2,….

2. With probability xi for 1 ≤ i ≤ b, move the i’th one from the left to the front, replace it by a zero,

and shift everything to the right.
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Let configurations be denoted by increasing b-tuples of integers, n = (n1,… , nb), indexing the

positions of the ones. As in Section 2, let zi = x0 + · · · + xi and z̄i = 1 − zi = xi+1 + · · · + xb for

0 ≤ i ≤ b. Then, an equivalent description of the process is

n →

{
(n1 + 1,… , nb + 1) with probability x0,

(1, n1 + 1,… , n̂i + 1,… , nb + 1) with probability xi for 1 ≤ i ≤ b,

where x̂ means that the element x should be omitted.

Proposition 3.1 The IRJMC is positive recurrent if and only if xb > 0.

Proof When xb > 0, it suffices to show that there are exactly b! ways to get from an arbitrary

configuration (n1,… , nb) to (1,… , b) in b steps, with total probability given by

xb(xb−1 + xb) · · · (x1 + · · · + xb). (4)

But this is clear, since at the first step, any of the b balls can be moved to the first site with total

probability x1 + · · · + xb, following which any of the last b− 1 balls can be moved to the first site with

total probability x2 + · · · + xb, and so on.

Therefore, for any m ≥ b, the probability of starting from and returning to (1,… , b) in m steps is

given by (4). Therefore, if we let M denote the transition matrix, we get that

∞∑
m=b

Mm
(1,…,b),(1,…,b),

diverges, which implies that the chain is positive recurrent. On the other hand, if xb = 0, then the last

ball is at position at least m after m steps for all m. Therefore, all states are transient. ▪

Theorem 3.2 Let n = (n1,… , nb) denote a configuration. Then the stationary probability distribu-
tion 𝜋 of the IRJMC is given by

𝜋(n) = 1

Zb

b−1∏
i=0

zni+1−ni−1

i . (5)

where we set n0 = 0 and Zb is the partition function.

Proof Since the chain is positive recurrent by Proposition 3.1 and aperiodic (there is a nonzero return

probability to the state (1,… , b)), we have a unique stationary distribution. Therefore, it suffices to

verify that 𝜋(n1,… , nb) given by (5) satisfies the master Eq. 3. The proof is very similar to that of

Theorem 2.2 in Section 2, and consequently, we will be sketchy.

If n1 > 1, there is a single transition to n from (n1,… , nb) with probability x0, and it is easy to

verify the master equation. If n1 = 1, we combine the configurations which make a transition to n
into b different groups. For each j ∈ [b − 1] and each 𝓁 ∈ [nj, nj+1 − 2], we get a transition from

(n2 −1,… , nj −1,𝓁, nn+1 −1,… , nb −1) with probability xj. Adding these contributions to the master

equation for a fixed j, we obtain a total contribution of

1

Zb

j−2∏
i=0

zni+2−ni+1−1

i

(
znj+1−nj−1

j − znj+1−nj−1

j−1

) b−1∏
i=j+1

zni+1−ni−1

i .
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Here we have used the fact that xj = zj − zj−1 and (zj − zj−1)
∑r

i=0 zr−i
j zi

j−1
= zr+1

j − zr+1
j−1

. We now add

these terms for 1 ≤ j ≤ b − 1 using a telescoping argument to obtain

1

Zb

b−1∏
i=1

zni+1−ni−1

i − 1

Zb

b−2∏
i=0

zni+2−ni+1−1

i .

The last group of configurations are the ones given by (n2 − 1,… , nb − 1,𝓁) where 𝓁 ∈ [nb,∞), all of

which make a transition with probability xb. Adding this infinite contribution gives

1

Zb

b−2∏
i=0

zni+2−ni+1−1

i ,

which, when added to the previous sum, returns 𝜋(n) and completes the proof. ▪

Theorem 3.3 The partition function of the chain is given by

Zb =
b−1∏
i=0

1

z̄i
.

Proof This is easily proved by induction on b. The case b = 1 can be verified. For fixed (n1,… , nb−1),
the sum of 𝜋(n1,… , nb) over nb is a geometric progression, whose sum gives 1∕z̄b−1. ▪

We obtain Knutson’s result immediately as a special case of Theorems 3.2 and 3.3.

Corollary 3.4 ([6, Theorem 1]) If the jump probabilities xi in the IRJMC are chosen to be

xi =

{
q−b if i = 0,

q−b+i(1 − q−1) if i > 0,
(6)

and we define 𝓁(w) as the number of pairs (i, j) where i < j and wi = 0,wj = 1, then

𝜋(w) = 1

q𝓁(w)

b∏
i=1

(
1 − 1

qi

)
.

Remark 3.5 Theorem 2.2 can also be deduced from Theorems 3.2 and 3.3. In fact, the RJMC of

Section 2 is equivalent to studying the first m positions of the IRJMC.

Remark 3.6 It is natural to ask if there is a variant of the IRJMC with infinite number of balls. We

claim that such a chain will never be recurrent. Assume, for contradiction, that a configuration with

infinitely many balls recurs after T jumps. Let b be the largest label of a ball that jumped during these

T jumps. But then all balls numbered b + 1 and higher will have moved to higher positions. Thus the

new configuration cannot be the same as the one we started with. This argument also suggests that

even if finitely many balls jump at each stage, the chain will not be recurrent. We would need infinite

sets of balls to jump at some transitions.
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4 MULTISPECIES REVERSE JUGGLING MARKOV CHAIN

In this section, we study the finite MRJMC, for which we obtain a simple formula for the stationary

distribution. The results obtained here will be useful in the study of the IMRJMC studied in Section 5.

We note that the MRJMC is not a generalization of RJMC studied in Section 2. Assume we have b
balls with labels from a multiset  with bi elements i for 1 ≤ i ≤ T , with || = b1 +… + bT = b.

Let S() be the set of multipermutations of . The MRJMC has as states multipermutations 𝜏 =
(𝜏1,… , 𝜏b) ∈ S() and is defined using two probability distributions; the jump probabilities s1,… , sb
with

∑
i si = 1 and sb > 0 and the nonbump probabilities 𝛼1,… , 𝛼b−bT .

Transitions in the MRJMC from 𝜏 are as follows. With starting probability sj the ball in position

j starts a bumping path to the left. Assume there are 𝓁 and r balls with smaller labels to the left and

right of 𝜏j respectively. Assume further that 1 ≤ i1 < · · · < i𝓁 < j < i𝓁+1 · · · < i𝓁+r are numbers such

that the balls with labels smaller than 𝜏j are positioned in i1 < · · · < i𝓁+r.

The ball 𝜏j now bumps the ball at position ik, 1 ≤ k ≤ 𝓁 with probability (1−𝛼r+𝓁−k+1)
∏𝓁−k

s=1 𝛼r+s or

is moved first in the permutation, position zero, without bumping any ball with probability
∏𝓁

s=1 𝛼r+s.

Intuitively think of the ball moving left and bumping the first smaller ball with probability 1− 𝛼r+1, if

it does not it will bump the second one with probability 𝛼r+1(1 − 𝛼r+2) so forth. If a ball is bumped at

position ik, then repeat this step with j = ik to create a bumping path. The bumping path always ends

with a ball placed at position zero. Then all balls in positions from zero to j − 1 are moved one step

right and we obtain a new permutation of .

For 𝜏 ∈ S() we define an inversion to be a pair i < j such that 𝜏i > 𝜏j. Let inv(𝜏) be the

number of inversions of 𝜏. Also let the code (or Lehmer code) of 𝜏 be c(𝜏) ≡ c = (c1,… , cb), where

ci ∶= #{k ∶ i < k, 𝜏i > 𝜏k}; see [10, page 30]. Let 𝛼c(𝜏) =
∏b

i=1 𝛼1𝛼2 … 𝛼ci . One way to interpret

the code of a multipermutation is that ci is the number of positions j, such that i < j in 𝜏. Thus, if we

specialise by setting all 𝛼i = 𝛼 for all i, we just get 𝛼c(𝜏) = 𝛼inv(𝜏). In examples, we will often suppress

the parentheses and write a state in one-line permutation form rather than vector form, i.e. 321321

rather than (3,2,1,3,2,1).

Example 4.1 𝛼c(321321) = 𝛼4
1
𝛼3

2
𝛼3𝛼4. As an example of a transition rate we give the following

P(12132131 → 12213311) = x7𝛼2(1− 𝛼3)𝛼3(1− 𝛼4), where the bumps happen in positions 7, 5 and 1.

We illustrate the MRJMC with the following example.

Example 4.2 Consider the case of T = 3 and b = (1, 1, 1). The transition matrix in the

lexicographically ordered basis, {123, 132, 213, 231, 312, 321}, is given by

s3

⎛⎜⎜⎜⎜⎜⎝

(1 − 𝛼1) 2 𝛼1 (1 − 𝛼2) 𝛼1 (1 − 𝛼1) 0 𝛼1𝛼2 0
1 − 𝛼1 0 𝛼1 0 0 0
1 − 𝛼1 0 0 𝛼1 (1 − 𝛼2) 0 𝛼1𝛼2

1 0 0 0 0 0
0 1 − 𝛼1 0 𝛼1 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
+s2

⎛⎜⎜⎜⎜⎜⎝

1 − 𝛼1 0 𝛼1 0 0 0
0 1 − 𝛼2 0 0 𝛼2 0
1 0 0 0 0 0
0 0 0 1 − 𝛼2 0 𝛼2

0 1 0 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠
+ s1

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
,
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where, for the sake of readability, we have separately noted the transition matrix for each jump

probability. The stationary distribution is given by

1

(1 + 𝛼1) (1 + 𝛼1 + 𝛼2𝛼1)
(
1, 𝛼1, 𝛼1, 𝛼

2
1
, 𝛼1𝛼2, 𝛼

2
1
𝛼2

)
.

Remark 4.3 Setting sb = 1 and si = 0 for all other i in the MRJMC gives a Markov chain on the

same graph as the MSJMC studied in [1] but with different transitions.

Proposition 4.4 The MRJMC is irreducible and aperiodic if sb > 0 and 0 < 𝛼i < 1 for all i.

Proof If sb = 1 and all the 𝛼i’s belong to (0, 1), the underlying graph of the MRJMC is ergodic, since

it is the same as that for the MSJMC by Remark 4.3. The MSJMC was shown to be irreducible and

aperiodic in [1]. For more general jump probabilities, the graph has extra edges, and thus the chain

continues to be irreducible and aperiodic. ▪

Theorem 4.5 The stationary distribution 𝜋 of the MRJMC is given by

𝜋(𝜏) = 1

Zb(𝛼1,… , 𝛼b−bT )
𝛼c(𝜏).

Remark 4.6 The numerator of 𝜋(𝜏) refines the inversion number. In other words, if we set 𝛼i = 𝛼 for

each i, 𝜋(𝜏) will be proportional to 𝛼inv(𝜏).

We will prove Theorem 4.5 by verifying the master equation for a given state 𝜏 by using two

refinements. First, let Tt(𝜏) be the set of all states such that there is a transition to 𝜏 with a bumping

path starting in position t. Second, let Tr,t(𝜏) be the set of all states 𝜏′ such that there is a transition to

𝜏 with a bumping path starting in position t and the last jump to position zero was from position r. We

now claim that the following two lemmas hold.

Lemma 4.7 Summing over all incoming transitions to 𝜏 with a bumping path starting from position
t contribute st𝛼c(𝜏) to the master equation, that is∑

𝜏′∈Tt(𝜏)
𝛼c(𝜏′)P(𝜏′ → 𝜏) = st𝛼

c(𝜏).

Lemma 4.8 Summing over all incoming transitions to 𝜏 with a bumping path starting at position t
with the last jump from position r gives

∑
𝜏′∈Tr,t(𝜏)

𝛼c(𝜏′)P(𝜏′ → 𝜏) =
⎧⎪⎨⎪⎩

st𝛼c(𝜏)
(
1 − 𝛼cr+1(𝜏)+1

) ∏
i<r, 𝜏i+1>𝜏1

𝛼ci+1(𝜏)+1 if r < t,

st𝛼c(𝜏)
∏

i<t, 𝜏i+1>𝜏1

𝛼ci+1(𝜏)+1 if r = t.

We will now prove Lemmas 4.7 and 4.8 simultaneously.

Proof of Lemmas 4.7 and 4.8 We will use induction on b. First, if b = 1 the MRJMC has only one

state and the lemmas are trivially true. The logic for the inductive step is the following. For a given

b we will prove that Lemma 4.8 implies Lemma 4.7. Then we will prove that Lemma 4.8 is implied
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by the inductive hypothesis that Lemma 4.7 is true for smaller values of b. It might help to look at

Example 4.9 concurrently.

The first is relatively easy. If we have a transition 𝜏′ → 𝜏, with a bumping sequence starting in

position t in 𝜏 and with a last jump from position r, then, if r < t, the last jump must have been caused

by an element larger than 𝜏1, that is 𝜏r+1 = 𝜏′r > 𝜏1. Thus, the only possible values for r < t are when

𝜏r+1 > 𝜏1. Summing Lemma 4.8 over all those possible values of r from t and lower, it is easy to see

that everything will cancel. To be more precise, for any 1 ≤ x < t,

t∑
r=x

∑
𝜏′∈Tr,t(𝜏)

𝛼c(𝜏′)P(𝜏′ → 𝜏) = st𝛼
c(𝜏)

∏
i<x,𝜏i+1>𝜏1

𝛼ci+1(𝜏)+1

and for each term added on the left another of the factors on the right will disappear.

The second part of the proof is a little more involved. Assume Lemma 4.7 is true for all lengths

smaller than b. Fix a state 𝜏 = (𝜏1,… , 𝜏b) and 2 ≤ r < t ≤ b with 𝜏r > 𝜏1. Let also 𝜙 = (𝜏r+1,… , 𝜏b).
For a state 𝜏′ = (𝜏2,… , 𝜏r, 𝜏1, 𝜏′r+1

,… , 𝜏′b) we let 𝜙′ = (𝜏′r+1
,… , 𝜏′b). Then 𝜏′ ∈ Tr,t(𝜏) if and only

if 𝜙′ ∈ Tt−r(𝜙). Let s′
1
,… , s′b−r be the starting probabilities for the shorter bumping path in which

𝜙′ → 𝜙. It should be clear that

P(𝜏′ → 𝜏) = st

s′t−r
P(𝜙′ → 𝜙)(1 − 𝛼cr(𝜏)+1)

c1(𝜏)−1∏
j=cr(𝜏′)

𝛼j+1

and

𝛼c(𝜏′) = 𝛼c(𝜙′)
r∏

i=1

𝛼1 … 𝛼ci(𝜏′)

where c1(𝜏) = cr(𝜏′) + #{i ∶ 𝜏i < 𝜏1, 2 ≤ i ≤ r} and

ci(𝜏′) =

{
ci+1(𝜏), if 𝜏i+1 ≤ 𝜏1, 1 ≤ i < r
ci+1(𝜏) + 1, if 𝜏i+1 > 𝜏1, 1 ≤ i < r

.

Thus we obtain∑
𝜏′∈Tr,t(𝜏)

𝛼c(𝜏′)P(𝜏′ → 𝜏)

=
∑

𝜙′∈Tt−r(𝜙)
𝛼c(𝜙′)

r∏
i=1

𝛼1 … 𝛼ci(𝜏′)
st

s′t−r
P(𝜙′ → 𝜙)(1 − 𝛼cr(𝜏)+1)

c1(𝜏)−1∏
j=cr(𝜏′)

𝛼j+1

=
r∏

i=1

𝛼1 … 𝛼ci(𝜏)
∑

𝜙′∈Tt−r(𝜙)
𝛼c(𝜙′) st

s′t−r
P(𝜙′ → 𝜙)(1 − 𝛼cr(𝜏)+1)

∏
2≤i≤r,𝜏i>𝜏1

𝛼ci(𝜏)+1,

which by induction from Lemma 4.7 becomes

r∏
i=1

𝛼1 … 𝛼ci(𝜏)st𝛼
c(𝜙)(1 − 𝛼cr(𝜏)+1)

∏
2≤i≤r,𝜏i>𝜏1

𝛼ci(𝜏)+1

= st𝛼
c(𝜏)(1 − 𝛼cr(𝜏)+1)

∏
2≤i≤r,𝜏i>𝜏1

𝛼ci(𝜏)+1.
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We also have to consider the case when t = r ≥ 1. In this situation there is only one incoming

transition to 𝜏 namely from 𝜏′ = (𝜏2,… , 𝜏t, 𝜏1, 𝜏t+1,… , 𝜏b). Here we do not need induction; instead,

we can directly compute the transition probability P(𝜏′ → 𝜏) = st
∏c1(𝜏)−1

j=cr(𝜏′)
𝛼j+1 and by studying the

change in inversions between 𝜏 and 𝜏′ we get the relation,

𝛼c(𝜏′) = 𝛼c(𝜏)
∏

2≤i≤r,𝜏i>𝜏1

𝛼ci(𝜏)+1

c1(𝜏)−1∏
j=cr(𝜏′)

1

𝛼j+1

.

Multiplying these two together we get exactly what is stated in Lemma 4.8, namely

𝛼c(𝜏′)P(𝜏′ → 𝜏) = st𝛼
c(𝜏)

∏
2≤i≤r,𝜏i>𝜏1

𝛼ci(𝜏)+1, (7)

which completes the proof. ▪

Proof of Theorem 4.5 Assuming Lemma 4.7 holds, consider the master equation (3). Summing over-

all 𝜏′ with a transition to 𝜏 means summing the lefthand side of the Lemma 4.7 over t from 1 to b. The

sum then becomes
1

Zb

∑b
t=1 st𝛼c(𝜏) = 1

Zb
𝛼c(𝜏), which is what we wanted to prove. ▪

Example 4.9 Let b = 9, t = 8 and 𝜏 = 213132141. We have that 𝛼c(𝜏) = 𝛼5
1
𝛼4

2
𝛼3

3
𝛼2

4
and we have the

following incoming transitions.

Remark 4.10 It is surprising that, in Theorem 4.5, the stationary distribution of the MRJMC does not

depend on the si’s. This means that at stationarity we may start the reverse juggling restricted to only

the first k positions for any k < b with sk > 0 and we will stay at stationarity even though the balls in

positions k + 1,… , b remain fixed. One might call this phenomenon “partial mixing”. We found that

partial mixing also holds for the MSJMC [1], but it did not hold for some generalizations of the latter.

It would be very interesting to understand better which Markov chains have this property of partial

mixing.
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The partition function of the MRJMC Zb ≡ Zb(𝛼1,… , 𝛼b−bT ) can be computed recursively as

follows.

Theorem 4.11 For T = 2, the partition function is

Zp,q =
∑

0≤ip≤…≤i1≤q
𝛼i1

1
… 𝛼

ip
p . (8)

For T > 2,

Z(b1,…,bT ) =
T∏

i=2

Zb1+···+bi−1,bi(𝛼1,… , 𝛼b1+···+bi−1
). (9)

Proof For T = 2, assume we have a state 𝜏 with the 1’s in positions 1 ≤ jp < jp−1 < · · · < j1 ≤ p+q.

In the product 𝛼c(𝜏) =
∏b

i=1 𝛼1𝛼2 … 𝛼ci we will get one 𝛼k for each 2 to the left of the k’th 1 from the

right, thus 𝛼c(𝜏) =
∏p

k=1
𝛼

jk−(p+1−k)
k . Setting ik = jk − (p + 1 − k) we get an obvious bijection to the

terms in the sum (8).

When T > 2, define the map

𝜙 ∶ S(b1,…,bT ) → S(b1,b2) × S(b1+b2,b3) × · · · × S(b1+···+bT−1,bT )

as follows. Given a multipermutation 𝜏, we construct at T − 1 tuple of multipermutations in letters 1

and 2, where the i’th entry consists of deleting letters greater than i + 1, converting all i’s to 2, and

replacing all letters smaller than i by 1. For example,

𝜙(3142414232) = (12122, 2111121, 1121212111).

It is easy to see that 𝜙 is a bijection. Now, 𝛼c(𝜏) can be refined as

𝛼c(𝜏) =
p∏

j=1

𝛼
#{i|ci(𝜏)≥j}
j =

p∏
j=1

T∏
k=2

𝛼
#{i|𝜏i=k, ci(𝜏)≥j}
j .

The idea is that the weight of 𝜏 can be obtained by computing the weights of the simpler multipermu-

tations. For the example above,

𝛼c(3142414232) = 𝛼6
1
𝛼4

2
𝛼4

3
𝛼3

4
𝛼2

5
= 𝛼c(12122)
⏟⏞⏞⏟⏞⏞⏟

𝛼1

× 𝛼c(2111121)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝛼2
1
𝛼2𝛼3𝛼4𝛼5

× 𝛼c(1121212111)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛼3
1
𝛼3

2
𝛼3

3
𝛼2

4
𝛼5

.

Now, the partition function can be written as

Z(b1,…,bT ) =
∑

𝜏(k)∈S(b1+···+bk−1 ,bk )
for 2 ≤ k ≤ T

T∏
k=2

p∏
j=1

𝛼
#{i|𝜏(k)i =k, ci(𝜏(k))≥j}
j ,

from which it follows that the sums over the 𝜏 (k)’s can be performed separately, leading to the

result. ▪
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It is well-known (see, for example, [10, Proposition 1.7.1]) that the partition function, when spe-

cialised to all 𝛼i = q, becomes the q-multinomial coefficient. A direct application of Theorem 4.11

gives the following product formula for the case of permutations.

Corollary 4.12 For permutations of length T, that is b = (1,… , 1), we get

Z(1,…,1) = (1 + 𝛼1)(1 + 𝛼1 + 𝛼1𝛼2)(1 + 𝛼1 + 𝛼1𝛼2 + 𝛼1𝛼2𝛼3)… (1 + 𝛼1 + · · · + 𝛼1 · · · 𝛼T−1).

5 INFINITE MULTISPECIES REVERSE JUGGLING MARKOV CHAIN

In this section, we consider an infinite variant of the MRJMC defined in Section 4, which we call the

IMRJMC. We will borrow most of the notation here from the MRJMC.

As before, we are given b balls with labels from the set {1,… ,T} such that there are bi balls of

type i.  is the multiset {1b1 ,… ,TbT} with || = b and S() be the set of multipermutations of

. A state is a pair (𝜏,n), where 𝜏 = (𝜏1,… , 𝜏b) ∈ S() and n ∈ Nb a tuple of increasing positive

integers 1 ≤ n1 < · · · < nb. This should be interpreted as a configuration where, for each j, there is a

ball labelled 𝜏j at position nj. Since there is no upper bound on the nj’s

We are given jump probabilities x0, x1,… , xb, and nonbump probabilities 0 < 𝛼i < 1 for 1 ≤ i ≤
b − bT The transition rules of the IMRJMC are very similar in spirit to those of MRJMC, and are

described as follows.

1. With probability x0, everything is moved one step right, that is 𝜏 is unchanged and n → n + 1 =
(n1 + 1,… , nb + 1).

2. With probability xj, the ball in position nj starts a bumping path to the left. Assume there are 𝓁
and r balls with smaller labels to the left and right of 𝜏j respectively. Assume further that 1 ≤ i1 <
· · · < i𝓁 < j < i𝓁+1 · · · < i𝓁+r are numbers such that the balls with labels smaller than 𝜏j are

positioned in ni1 < · · · < ni𝓁+r . The bumping rules and associated probabilities are identical to that

of the MRJMC. So in total n = (n1,… , nb) → (1, n1 + 1,… , nj−1 + 1, nj+1 + 1,… , nb + 1) and 𝜏
is changed as in the MRJMC in Section 4.

As before, let 𝛼c(𝜏) =
∏b

i=1 𝛼1𝛼2 … 𝛼ci and zk =
∑k

i=0 xi. Also, let n0 = 0.

Proposition 5.1 Let 0 < 𝛼i < 1 for all i and xb > 0. Then the IMRJMC is irreducible, aperiodic and
positive recurrent.

Proof Define the configuration

c0 =
(
(1,… , 1
⏟⏟⏟

b1

,… ,T ,… ,T
⏟⏟⏟

bT

), (1,… , b)
)
. (10)

Starting from any configuration (𝜏,n), one can reach c0 in b steps without any bumping by first moving

balls labelled T to the front, followed by those labelled T−1, and so on, until those labelled 1. Similarly,

starting from c0, we can make a series of moves, again without bumping, in the order of 𝜏 starting from

the right, and interspersing these with appropriate rightward moves depending on n so that one reaches

(𝜏,n). This proves irreducibility. Since there is a positive probability of going from the configuration

c0 to itself in one step, the chain is aperiodic.

The proof of positive recurrence is similar in spirit to that of Proposition 3.1. We will derive a

lower bound for the probability of starting from c0 in (10) and returning to it in time t, when t ≥ b.
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To do so, it suffices to bound the probability of starting from an arbitrary configuration c = (𝜏,n) and

reaching c0 in b steps.

There are at least b! ways to get from c to c0, corresponding to choices of the order of balls to be

moved forward. For each such choice, we consider the bumping that sorts the prefix, that is, when the

j’th ball is moved forward, bumping only happens at positions 1,… , j − 1 so that balls in positions

1,… , j are in increasing order. It is easy to see that this can be done in a unique way. We now give a

lower bound for the probability of this move.

Let 𝛼̂ = mini(𝛼i, 1− 𝛼i). Then, for each choice above, the maximum bumping probability for these

series of moves is no less than 𝛼̂
∑

i<j bibj . By summing over all these choices of moves analogous to the

proof of Proposition 3.1, and including the bumping probabilities, we obtain that the probability of

returning to c0 in t moves, for t ≥ b is bounded below by

𝛼̂
∑

i<j bibj

b∏
i=1

(xi + · · · + xb).

It follows that the sum overall t ≥ b diverges, and hence the chain is positive recurrent. ▪

We have the following.

Theorem 5.2 The stationary probability distribution for the IMRJMC is given by

𝜋(𝜏,n) = 1

Z
𝛼c(𝜏)

b∏
k=1

znk−nk−1−1

k−1
,

where Z is the partition function.

Proof We argue that we can quickly reduce the verification of the master equation to the infinite

single species chain and the finite multispecies chain and use Theorems 3.2 and 4.5.

Consider all bumping paths leading into a state (𝜏,n). All bumping paths starting from the same

position j will have the same x values and they can thus be taken outside the sum. The sum then runs

over the same possible bumping paths as in the finite chain in the proof of Theorem 4.5 and thus they

sum to 𝛼c(𝜏).
Summing over all possible ways to come to a state (𝜏,n) with a bumping path starting with a ball

(any label) in position j, nt − 1 < j < nt+1 − 1 is equal to

xt

Z
𝛼c(𝜏)

nt+1−2∑
j=nt

p(n2 − 1,… , nt − 1, j, nt+1 − 1,… , nb − 1),

where p(n1,… , nb) =
∏b

k=1 znk−nk−1−1

k−1
. This is exactly as in the proof of the stationary distribution of

the RJMC in Theorem 3.2, and this completes the proof. ▪

Remark 5.3

1. Setting 𝛼i = 0 for all i makes the IMRJMC reducible. The communicating class containing 𝜏 =
(1,… , 1
⏟⏟⏟

b1

,… ,T ,… ,T
⏟⏟⏟

bT

) is irreducible, however. Since 𝜏 has no inversions, 𝛼c(𝜏) = 1. In this case,

the chain on the tuples n is the IRJMC.



16 AYYER AND LINUSSON

2. Setting x0 = 0 and xi = si for all other i makes the IMRJMC reducible. The communicating class

with n = (1,… , b) is irreducible, however. The chain on the multipermutations 𝜏, is exactly the

same as the MRJMC.

Theorem 5.4 The partition function of the IMRJMC is given by

Z = Z(b1,…,bT )(𝛼1,… , 𝛼b−bT )
b−1∏
i=0

1

z̄i
,

where Z(b1,…,bT )(𝛼1,… , 𝛼b−bT ) is given by Theorem 4.11.

Proof Since the formula for the stationary distribution is a product of a function of the xi’s and of the

𝛼i’s, we can perform the sums on these two separately. Both these sums have already been performed

in Theorem 3.3 and 4.11 respectively. ▪

We obtain Knutson’s result as a corollary of Theorems 5.2 and 5.4.

Corollary 5.5 ([6, Theorem 2]) If the jump probabilities xi’s are chosen as in (6) and the nonbump
probabilities are chosen to be 𝛼i = 1∕q for all i, then we obtain

𝜋(𝜏,n) = 1

q𝓁(𝜏,n)

(
1

1 − q−1

)b

,

where 𝓁(𝜏,n) is the number of pairs (i, j) such that i < j and 𝜏i > 𝜏j plus the sum of ni− i+ i over each i.

In [6], 𝓁(𝜏,n) was defined as the number of inversions of the juggling state where empty positions

were considered to be labelled by infinity. Theorem 5.2 shows that this inversion number can be split

into two parts; one coming with the 𝛼i’s from the multipermutation 𝜏, and the other with the xi’s from

the empty spaces.

6 REMARKS AND OPEN PROBLEMS

This work naturally leads to many open questions. We mention some of these here.

Open problem 6.1 As we remarked at the beginning of Section 4, the MRJMC is not a generalization
of the RJMC. It is natural to ask for a multispecies generalization of the RJMC, but we have not yet
been able to find one.

It is also natural to ask for a generalization of the IRJMC with infinitely many balls. Remark 3.6

suggests that a naive version of such a chain will not be irreducible. A natural infinite generalization

has been found for the forward juggling chain, known as the Unbounded Multivariate Juggling Markov

Chain (UMJMC), in [2].

Open problem 6.2 Is there a generalization of the IRJMC with infinitely many balls?

If we change left and right and reverse the order of the labels, the transition graph of the MRJMC

has the same edges as that of MSJMC in [1]. Even though both model give nice product formulas for

the stationary distribution, the transition probabilities are of very different flavour.
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Open problem 6.3 Find a common generalization of the MRJMC in this paper and the MSJMC
in [1].

The partition function of the MRJMC Zb1,…,bT is a generalisation of the inversion polynomial, which

seems to be new. Even for permutations, we have not found this in the literature.

Open problem 6.4 What are the properties of the corresponding probability distribution and how
does it relate to other well-known distributions on permutations, such as the Mallows distribution
(where the probability of a permutation 𝜎 is proportional to qinv 𝜎).

Since the formula for the stationary distribution of the MRJMC is so simple, it is natural to ask if

these could be extended by choosing more general probabilities. It would be interesting to see how far

the techniques in this work can be extended.

Open problem 6.5 For instance, if we let the 𝛼i’s depend, not only on the relative positions of balls
being bumped, but also on the label of the balls themselves. Could that also lead to a solvable model?
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