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ABSTRACT. We consider random walk on the group of uni-upper triangular matrices
with entries in F2 which forms an important example of a nilpotent group. Peres and
Sly [12] proved tight bounds on the mixing time of this walk up to constants. It is
well known that the single column projection of this chain is the one dimensional East
process. In this article, we complement the Peres-Sly result by proving a cutoff result
for the mixing of finitely many columns in the upper triangular matrix walk at the same
location as the East process of the same dimension. Moreover, we also show that the
spectral gaps of the matrix walk and the East process are equal. The proof of the cutoff
result is based on a recursive argument which uses a local version of a dual process
appearing in [12], various combinatorial consequences of mixing and concentration
results for the movement of the front in the one dimensional East process.

1. INTRODUCTION

Random walks on the group Mn(q) of n × n-upper triangular matrices with ones
along the diagonal and entries from the finite field Fq, q a prime, have received quite
a lot of attention. The random walk, sometimes called the upper triangular matrix
walk, in the case q = 2 is the Markov chain whose generic step consists in choosing
uniformly a row among the first (n − 1) rows and adding to it the next row mod 2.
It is easy to check that this chain is reversible w.r.t. the uniform measure on Mn(2).
A natural variant, called the lazy upper triangular matrix walk, entails to perform the
above addition with probability 1/2. This is equivalent to adding the to-be-added row
only after multiplying by a uniform Bernoulli variable. We refer the interested reader
to [12] for a nice review of the literature related to this walk and other related variants.

In this article, we consider the continuous time version of the upper triangular matrix
walk where each row at rate one is updated by adding the row below it with probability
1/2. Sharp bounds on the spectral gap were proven by Stong [13] implying, in partic-
ular, that the spectral gap λ2(n) is positive uniformly in n. Using an elegant argument,
Peres and Sly [12] proved that the total variation mixing time tmix(n) = Θ(n). From
the above results it follows that limn→∞ λ2(n)×tmix(n) = +∞, a known necessary con-
dition for the occurrence of the so called mixing time cutoff [1], i.e. a sharp transition
in the total variation distance from equilibrium which drops from being close to one to
being close to zero in a very small time window compared to the mixing time scale.

In [11], Y. Peres conjectured that, for many natural classes of reversible Markov
chains, the above condition (sometimes referred to as the product condition) is also
sufficient for the occurrence of cutoff, despite of the fact that, in full generality, this is
known to be false (cf. [9, Chapter 18]). Thus it is a natural and interesting problem to
decide whether the upper triangular matrix walk exhibits cutoff or not.

It has been observed before and was crucially used in [12], in the proof of their
mixing time result, that the marginal process on a given column coincides with the East
process [2, 4, 7] at density 1/2, a well known constrained interacting particle system.
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The East chain is known to exhibit cutoff (cf. [8]), a result which, combined with
the previous observation, suggests that the upper triangular matrix walk in continuous
time might do the same.

In this paper we extend and complement the Peres-Sly result by proving that (i) the
spectral gap of the upper triangular matrix walk is equal to the spectral gap of the East
process on n − 1 vertices; (ii) the marginal chain on finitely many columns exhibits
mixing time cutoff at the mixing time of the column with the largest index, among the
chosen ones.

Note that, even though at stationarity the elements of the matrix are independent
random bits, the dynamics of the walk makes the column evolutions highly correlated
so that the joint mixing of a group of columns is by no means a straightforward con-
sequence of the mixing of only one column (the East process). We also remark that,
perhaps surprisingly, certain numerical experiments suggest that the mixing time of the
full chain is strictly larger (at the linear scale, n) than the mixing time of one column
(see Section 2.4). We conclude by mentioning that recent progress on the temporal
mixing of other finite dimensional statistics in a similar setting was also made in [6].

2. SETUP, MOTIVATIONS AND MAIN RESULTS

2.1. Setting and notation. Throughout this article for any n ∈ N, we will write Xn
for the vector space Fn2 , with the usual addition operation mod 2 denoted by “+” in the
sequel, and standard basis vectors e1, . . . en. Elements of Xn will usually be denoted by
Y,Z etc with coordinates {Y(x)}nx=1 and they will always be thought as column vectors.
Sometimes a vector X will depend on a time parameter t and randomness variable ω.
In that case we will write X(t;ω;x) for its x-coordinate. Row vectors will always be
denoted by Y>,Z> etc and their vector space will be denoted by X>n . Multiplication
between Z> and Y will be denoted by Z> · Y .

We will write [n] for the set {1, 2, . . . , n} and we will use the letter c to denote a
universal numerical constant whose value might change from line to line inside the
same proof. Finally for any random variable ξ with distribution P and any other law ν
we will sometimes write dTV (ξ, ν) for the total variation distance between P and ν.

2.1.1. The Markov chain. Our state space is the set of all upper triangular matrices
with entries in F2:

Mn = {M ∈ Fn×n2 : M(i, j) = 0, for i > j,M(i, i) = 1},

i.e.

M =


1 M(1, 1) M(1, 2) . . .
0 1 . . . . . .
...

... . . . M(n− 1, n)
0 0 . . . 1

 .
When n = 3, this is well known as the Heisenberg group. Let Ei,j be the matrix
which is one at the position (i, j) and zero every where else. OnMn we consider the
continuous time Markov chain (random walk) {M(t)}t≥0= {M (n)(t)}t≥0 (we will drop
the dependence on n in the notation whenever there is no scope of confusion) whose
generator is given by

(Lf)(M) =
1

2

n−1∑
i=1

1∑
a=0

[
f((I + aEi,i+1)M)− f(M)

]
. (2.1)
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Notice that for Y ∈ Xn and x ∈ [n]:

((I + Ei,i+1)Y)(x) = Y(x) + δi,xY(i+ 1),

(Y>(I + Ei,i+1))(x) = Y(x) + δx,i+1Y(i).

Thus the Markov chain can be informally described as follows: every row but the last
one updates itself at rate one by first sampling a fair Bernoulli variable ξ and then by
adding (mod 2) to itself the next row multiplied by ξ. Clearly if ξ = 0 nothing happens,
while if ξ = 1 all the entries of the updating row, with the entry below them equal to
1, change values (1 → 0 or 0 → 1). For some purposes it will be convenient to write
M(t) ≡ [M1(t),M2(t), . . . ,Mn(t)] where Mi(t) ∈ Xn denotes the ith column at time t.
In the sequel we will sometimes refer to the Markov chain as the matrix walk (MW).

Remark 2.1.
(1) It is easy to check that the Markov chain is ergodic and reversible w.r.t. to the

uniform measure π = π(n), onMn. In particular at equilibrium all the entries of
M above the diagonal are i.i.d Bernoulli(1/2) random variables.

(2) The marginal process of every column is also a Markov chain and on the ith col-
umn it coincides with the East process 1 on [i − 1] at density 1/2, a well known
kinetically constrained interacting particle system (cf. [4] and references therein).

2.2. Mixing time and open problems. It is natural to consider the ε-mixing time of
the process {M(t)}t≥0

Tmix(n, ε) = inf
{
t : max

M∈Mn

dTV (M(t), π) 6 ε
}
, ε ∈ (0, 1),

where M(0) = M . If ε = 1/4 we will simply refer to Tmix(n) ≡ Tmix(n, 1/4) as the
mixing time. Using Remark 2.1 we immediately get that

Tmix(n, ε) ≥ max
j=2,...,n

TEast
mix (j, ε), (2.2)

where TEast
mix (j, ε) is the ε-mixing time of the East process at density 1/2 on [j]. For

the latter the following sharp result was recently established by E. Lubetzky and the
authors:

Theorem 2.2 ([8]). For any p ∈ (0, 1) there exists a positive constant v = v(p) such that
the East process on [n] at density p exhibits cutoff at v−1n with an O(

√
n)-window. More

precisely, for any fixed 0 < ε < 1 and large enough n,

TEast
mix (n, ε) = v−1n+O

(
Φ−1(1− ε)

√
n
)
,

where Φ is the c.d.f. of N (0, 1).

By (2.2) it follows that Tmix(n, ε) ≥ v−1
∗ n + O

(
Φ−1(1− ε)

√
n
)

where v∗ ≡ v(1/2).
A comparable upper bound, a much harder task, was proved using a very elegant argu-
ment by Y. Peres and A. Sly:

Theorem 2.3 ([12]). Tmix(n) = Θ(n).

Two natural questions arise at this point:
(1) Is lim supn Tmix(n)/n = v−1

∗ ?

1In the standard definition of the East process on [n] at density p ∈ (0, 1), for every x ∈ [n] with rate
one the spin σ(t;x) ∈ {0, 1}, is replaced by a fresh Bernoulli(p) variable iff x = 1 or x ∈ [2, n] and the
constraint σ(t;x− 1) = 0 is satisfied. It is easy to check that for p = 1/2 and after the change of variables
η(x) = 1− σ(x) the generator of the East process coincides with that of the M(n)(t) process.
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(2) Does Tmix(n, ε) exhibit the cutoff phenomenon similar to the single column
process (i.e. the East process) ?

The main purpose of this article is to prove a positive answer to the above questions
for certain finite dimensional projections (e.g. for the marginal process of the last k
columns, where k is either bounded in n or it grows very slowly). We also provide
certain numerical findings which suggest that perhaps lim supn Tmix(n)/n > v−1

∗ .
Before stating our results more formally we recall that in order to have the cutoff phe-

nomenon the relaxation time Trel(n) of the chain, defined as the inverse spectral gap of
the Markov generator, must satisfy Trel(n) = o(Tmix(n)) as n → ∞ (cf. [9]). That MW
satisfies this condition follows from work of Stong [13] as mentioned previously. How-
ever we prove a stronger comparison result showing that in fact Trel(n) = TEast

rel (n− 1),
where TEast

rel (n− 1) is the relaxation time of the East process on [n− 1] at density 1/2.
The latter was shown to be bounded in n (cf. [2] or [7]).

2.3. Main results. For our arguments it will be convenient to generalize our initial
setting. For 1 6 i1 < i2 < . . . < ik 6 n let

M(n)
[i1,...,ik] = {A ∈ Fn×k2 : A(i, j) = 0, for i > ij , A(ij , ij) = 1},

so that Mn = M(n)
[1,2,...,n]. As before we will simply write M[i1,...,ik] for M(n)

[i1,...,ik] if no
confusion arises. Observe that for any M ∈ Mn the sub-matrix obtained from M by
retaining only the columns i1, i2, . . . , ik belongs toM[i1,...,ik].

Using the above observation, it is not hard to see that the definition of the ran-
dom walk M(t) on Mn naturally extends to a continuous time ergodic reversible
Markov chain onM[i1,i2,...,ik], with reversible measure the uniform measure π[i1,i2,...,ik]

on M[i1,i2,...,ik]. We will denote by Tmix(n; [i1, i2, . . . , ik], ε) and Trel(n; [i1, i2, . . . , ik])
its mixing time and relaxation time respectively. Our two main results read as follows.

Theorem 1. For any 1 6 i1 < i2 < . . . < ik 6 n

Trel(n; [i1, i2, . . . , ik]) = TEast
rel (ik − 1).

In particular the relaxation time of the process {M(t)}t≥0 on Mn coincides with that of
the East process on [n] at density 1/2.

Theorem 2. There exists C > 0 such that, given k and ε ∈ (0, 1), for all large enough n
and all 1 6 i1 < i2 < . . . < ik 6 n such that ik = n,

Tmix(n, ε; [i1, i2, . . . , ik]) 6 n/v∗ + Ck2k
√
n log2(n).

The ε dependence in the statement of the theorem is hidden in the choice of large
enough n. A comparable lower bound Tmix(n, ε) ≥ n/v∗ + O

(
Φ−1(1− ε)

√
n
)

was
stated right after Theorem 2.2.

Remark 2.4. Note that the dependence on k is exponential and hence one can only hope
to push this method of proof to prove sharp mixing, up to k = log(n)/2 (ignoring smaller
order terms) dimensional projections. The theorem holds also for ik = (1 − o(1))n but
then the error term beyond n/v∗ will depend on the detailed form of the error term o(1).

Remark 2.5. Our method can be easily extended to cover the case when the entries of
the matrices belong to the field Fq, with q a prime, and the matrix walk is as follows (cf.
[12]): at rate one, the (i + 1)th-row is multiplied by a uniformly chosen element of Fq
and added to the ith-row where i ∈ [1, 2, . . . , n − 1]. In this setting, for any column, the
projection obtained by denoting each non zero entry by 1, performs an East process with
density (q− 1)/q [12, Section 2.1]. In this case we have the analog of the above theorems
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(i) (ii)

FIGURE 1. (i) The location of the front of an East process (the rightmost
one) for p = 1

2 en-route from 1 to 104 and the straight line approximat-
ing its trajectory under discrete time dynamics where at every discrete
time the east process dynamics is performed at an uniformly chosen site
in [104]. (ii) Average velocity of the front (location/time) along its jour-
ney (on a discrete time interval of order 108: note that the discrete time
dynamics on an interval on length 104 is slower than the continuous
time dynamics by a factor 104). The above figures are scaled taking this
into account.

with the relaxation time TEast
rel (ik − 1) and the velocity v∗ replaced by the corresponding

quantities for the new East process.

2.4. Numerical Results: In [8] it was proved that the front (the rightmost one in the
East process, (see (4.9)) for formal definition) behaves like a random walk with velocity
v∗ and has gaussian concentration. The figure above simulates the front process.

We ran an experiment on Matlab where the MW is run starting from the 1000× 1000
identity matrix. The statistic we keep track of is the rank of the rectangular block
comprised of rows [1, . . . , 333] and columns [747, . . . , 1000]. It is well known that a
rectangular block of size m×n with m < n and independent Ber(1/2) entries has rank
m with probability approximately 1 − 2n−m. Thus our block only has has a chance of
around 2−20 of having rank less than 333 under equilibrium. The above figure shows
the velocity of the front to be in the window [.185, .195] (which implies that the mixing
time in discrete time steps for the last column of the matrix is at most (1/.18)106 taking
into account fluctuations). We ran the MW for (1/.15)106 discrete time steps and found
the rank to be less than 200 for five independent rounds. The numbers are chosen to
ensure that (1/.15)106 is indeed larger than (1/.18)106 taking into account fluctuations.

3. MAIN IDEAS AND ORGANIZATION OF THE ARTICLE

In this section we briefly describe the key ideas behind the proofs of the main results
and how the article is organized. The proof of Theorem 2 is based on a recursive
argument. The case k = 1 (the East process) is the content of [8]. Assuming the
theorem for k we sketch how to prove it for k+ 1. It suffices to consider the matrix A =
M[n−k,n−k+1,...,n], (see 2.3). Note that the column evolutions are highly correlated and
at a high level the approach is to find combinatorial situations which help us decouple
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the columns: for eg: if at any particular time t when the ith row of A is [0, . . . , 0︸ ︷︷ ︸
k times

, 1], i.e.

(
Mn−k(t; i), . . . ,Mn(t; i)

)
= (0, . . . , 0, 1),

the (i − 1)th row is updated by adding the ith row times a Bernoulli(1/2) variable
ξi(t), then forever in the future the random bit ξi(t) only affects the last column and
is independent of the first k columns. We then crucially use the underlying linearity
in the dynamics (see discussions after Remark 4.2) to show that under the assumption
that the following marginals on collection of k columns,

[Mn−k, . . . ,Mn−1], [Mn−k, . . . ,Mn−2Mn], [Mn−k, . . . ,Mn−2,Mn−1 + Mn]

where the addition is mod 2, are well mixed, such patterns occur frequently at various
rows which are not too far apart. Thus, at all the clock rings at such rows at such
times, the last column receives random bits which are independent from the first k
column evolutions (see discussion after (4.5)). In order to use these bits to prove that
indeed the last column mixes independently of the first k columns, we rely on a local
version of the argument appearing in [12]. The heart of this argument is based on the
crucial observation that a natural adjoint process to the upper triangular matrix walk
also has the law of an East process. This fact, coupled with concentration results on
the movement of the front (the rightmost one of the East process in infinite volume)
obtained by refining results appearing in [8], is enough to conclude the proof.

Theorem 1 is proved by determining the asymptotic exponential decay rate of the
total variation distance from equilibrium measure and relating it to the so called ‘per-
sistence function’ of the one dimensional East process. We then use a crucial input from
[5], which relates the persistence function to spectral gap. This is done in Section 5.

In Section 4 we define rigorously the underlying noise space, the primal and the
adjoint processes, and collect various results which are crucially used, in particular
results about combinatorial patterns helping mixing are discussed in Section 4.4 and
concentration results are discussed in Section 4.3. The observation about the adjoint
process relating it to the East process is discussed in Section 4.1.1. The local mixing
results and the complete proof of Theorem 2 appears in Section 6.

4. PRELIMINARY RESULTS

In this section we collect several results that will be used for the proof of the main
results.

4.1. Graphical construction, primal and adjoint maps. To each x ∈ {1, . . . , n − 1}
we associate a rate one Poisson process and, independently, a family of independent
1
2 -Bernoulli random variables {ξx,k : k ∈ N}. The occurrences of the Poisson process
associated to x will be denoted by {tx,k : k ∈ N} and we assume independence as x
varies. That fixes the probability space Ωn. Notice that almost surely all the occurrences
{tx,k} as x varies are different.

On Ωn we construct a Markov chain with state spaceMn according to the following
rules. Starting from M ∈ Mn and given ω ∈ Ωn, at each time t = tx,k, we update the
state of the chain M(t−) to M(t) =

(
I + ξx,kE

x,x+1
)
M(t−), i.e. we add to the xth-row

of M(t−) the (x+ 1)th-row multiplied by the Bernoulli variable ξx,k. It is easy to check
that the above rule defines a Markov chain {M(t;ω)}t≥0 whose generator coincides
with that defined in (2.1).

Given ω ∈ Ωn, a row interval I = [i, i+ 1, . . . , j] ⊂ [n] and a time interval ∆ = [s, t],
0 < s < t, we denote by ωI(∆), the part of ω (i.e. the clock rings and the Bernoulli
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variables) restricted to indices in the interval I and clock rings in the time interval ∆.
More explicitly

ωI(∆) := {(tx,k, ξx,k) : x ∈ I, tx,k ∈ ∆} . (4.1)
If I = [n] we will simply write ω(∆). We will denote by FI(∆) the σ-algebra generated
by the above variables and by τ1 < τ2 < . . . τm the successive rings of ωI(∆). The
position and the Bernoulli variable corresponding to the kth-ring τk will be denoted xk
and ξk respectively. Later on, we will need an extension of this space where the finite
set [n] is replaced by the whole lattice Z. In that case the interval I can be any finite
interval in Z.

Definition 4.1 (Primal and adjoint map). Given a row and time intervals I,∆ and ω ∈
Ωn, we define the primal map ΦI,∆(ω, ·) : Xn 7→ Xn by

ΦI,∆(ω,Y) = (I + ξmE
xm,xm+1) · · · · · (I + ξ1E

x1,x1+1)Y. (4.2)

The adjoint map Φ∗I,∆(ω, ·) : X>n → X>n is given instead by

Φ∗I,∆(ω,Y>) = Y>(I + ξmE
xm,xm+1) · · · · · (I + ξ1E

x1,x1+1). (4.3)

The maps ΦI,∆(ω, ·),Φ∗I,∆(ω, ·) can be naturally extended to act on any matrix M ∈
Mn by setting the ith-column of ΦI,∆(ω,M) equal to ΦI,∆(ω,Mi) and the ith-row of
Φ∗I,∆(ω,M) equal to Φ∗I,∆(ω,R>i ), where R>1 , . . . ,R

>
n are the row vectors of M .

Remark 4.2. Note that the adjoint map is appropriately named since for any Z>,Y,

Z>φI,∆(ω,Y) = φ∗I,∆(ω,Z>) · Y. (4.4)

If I = [n] and ∆ = [0, t] then, for any M ∈ Mn , ΦI,∆(ω,M) = M(t;ω) where
M(t;ω) is the matrix determined by the graphical construction such that M(0;ω) = M .
In particular the MW has the remarkable linearity feature, namely the evolution starting
from M + M ′ ∈ Xn is the sum (in Xn) of the evolutions starting from M and M ′

separately.
The matrix φ∗I,∆(ω,M) coincides instead with the matrix M̂(t;ω) constructed as fol-

lows. Let m = m(ω, t) be the number of rings in ω before t and define the adjoint
randomness ω∗ = ω∗t as the collection of times t∗x,k := t − tx,m+1−k, k 6 m, and
Bernoulli(1/2) variables ξ∗x,k := ξx,m+1−k. Then, starting from M̂(0;ω) = M , at each
time t∗x,k the matrix M̂(t∗x,k;ω

∗) is updated by adding ξ∗x,k × (xm+1−k)
th-column to the

(xm+1−k + 1)th-column. For consistency we think that the ring at time t∗x,k is associated
to the the (xm+1−k + 1)th-column. Clearly, for any i ∈ [n] and any s 6 t, the ith-row of
M̂(s;ω∗) has the first i− 1 entries fixed equal to 0, the ith-one equal to 1 and the other
ones evolving as the East process on [n− i− 1] in the time interval [0, t].

The graphical construction together with the linearity of the MW allows the following
representation of the marginal process on e.g. the last column, a cornerstone for [12]
and also for us (cf. the proof of Proposition 6.1 in Section 6.3).

Fix i ∈ [n − 1] and a set of columns C ⊂ [n]. Without loss of generality we assume
that the last column of C is the nth-one. Given a time interval [t1, t2] let

t1 < τ1 < τ2 < . . . τν < t2 < τν+1 (4.5)

be those rings ti,k in the graphical construction such that ti,k ∈ [t1, t2] and the (i+ 1)th-
entries of the columns in C satisfy some a priori condition (e.g. they are all equal to
zero except the last one). Let ξj ≡ ξi,τj be the Bernoulli variable associated to τj and
let F̂t, t ≥ t2, be the σ-algebra generated by all the variables generating F[1,n]([0, t])
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(see (4.1)) except the variables {ξj}νj=1. Let also αj be the indicator function that
Mi+1,n(τj) = 1. Then

Mn(t;ω) = A0(t;ω) +

ν∑
j=1

αj(ω)ξj(ω)Aj(t, ω), (4.6)

where A0(t;ω) = Mn(t; ω̂) with ω̂ obtained from ω by removing all the rings in (4.5)
at the ith-row between time t1 and t2 and, for any j ∈ [ν] such that αj = 1, Aj(t;ω) =
ΦI,∆j (ω, ei) with I = [1, i−1] and ∆j = (τj , t]. The important feature of {(A0,Aj , αj)}νj=1

is that they do not depend on the Bernoulli variables {ξj}νj=1.
The last, purely deterministic, result exploiting the interplay between the primal and

adjoint processes is as follows (cf. the proof of Proposition 3.2 in [12]).

4.1.1. The adjoint process argument. Given ω ∈ Ωn and t > 0, choose an interval
I = [a, b] ⊂ [n] together with a subset t1 < t2 < · · · < tk of the Poisson times {τi}m(t)

i=1
such that each ti corresponds to an update of some row in I. Define Xj to be the
restriction to I of the vector ΦI,[tj ,t](ω, eb) (i.e. the column formed by the co-ordinates
in I). The vectors {Xj}kj=1 span the whole space Xb−a+1 iff for all non-zero row vector
Y> ∈ X>b−a+1 there exists j ∈ [k] such that Y> · Xj = 1. Using the adjoint map we can
rewrite Y> · Xj as follows.

Let Z>x = Yx for x ∈ I and Z>x = 0 otherwise. Then

Y> · Xj = Z> · ΦI,[tj ,t](ω, eb) = Φ∗I,[tj ,t](ω,Z
>)(b).

Using the connection between Φ∗I,[tj ,t](ω,Z
>) and the East process on the rows (cf. the

discussion after (4.4)), we conclude that the vectors {Xj}kj=1 span the whole space iff
for all row vector Z> which is identically equal to zero outside I there exists j ∈ [k] such
that the (graphical representation of) East process on [n], evolving with the “adjoint”
randomness ω∗ and initial condition Z, at time t− tj is equal to 1 at the vertex b.

4.2. Chernoff bounds for continuous time Markov chains. We give here a slight
generalization of [10, Theorem 3.4] proving Chernoff bounds for the time average of
continuous time Markov chains.

Lemma 4.3. Let {w(t)}t≥0 be a continuous time finite Markov chain with reversible mea-
sure µ. Assume that µ is positive and that the chain has a positive spectral gap γ. Let
A ⊂ [0, t] be of the form A = ∪Ni=1[si, ti], where ti−1 6 si < ti, and set |A| =

∑
i(ti − si).

Then for any δ ∈ (0, 1) and any f with ||f ||∞ 6 1, µ(f) = 0, µ(f2) 6 b2,

max
w0

Pw0

[∣∣∫ t

0
f(w(s))1(s ∈ A)ds

∣∣ ≥ δ|A|] 6 2

µmin
exp

(
−γδ2|A|/(1 + 2b)2

)
, (4.7)

where µmin = minw∈Ω µ(w) and Pw0(·) is the law of the chain starting from w0.

Proof. For any event E in path space maxw0 Pw0(w(·) ∈ E) 6 1
µmin

Pµ(w(·) ∈ E), so that
it suffices to prove that

Pµ
(∫ t

0
ds f(w(s))1(s ∈ A) ≥ δ|A|

)
6 exp

(
−γδ2|A|/(1 + 2b)2

)
. (4.8)

The exponential Chebyshev inequality gives

Pµ
(∫ t

0
ds f(η(s))1(s ∈ A) ≥ δ|A|

)
6 e−λδ|A|Eµ

(
eλ

∫ t
0 ds f(η(s))1(s∈A)

)
, λ > 0.
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Let Hλ be the self-adjoint operator on H = L2(µ) given by Hλ = L + λf , where L is
the generator of the chain. If 〈·, ·〉 denotes the scalar product in H then

Eµ
(
eλ

∫ t
0 ds f(η(s))1(s∈A)

)
= 〈1, es1Le(t1−s1)Hλe(s2−t1)L . . . e(tN−sN )Hλe(t−tN )L1〉.

Since ‖esL‖ = 1 we get that

Eµ
(
eλ

∫ t
0 ds f(η(s))1(s∈A)

)
6 exp (|A|β(λ)) ,

where β(λ) denotes the supremum of the spectrum of Hλ.
We now bound from above β(λ). For any function h ∈ H with 〈h, h〉 = 1 we write

h = α1 + g, so that π(g) = 0 and 〈g, g〉 = 1− α2. Then

〈h,Hλh〉 = 〈g,Lg〉+ λ〈g, fg〉+ 2αλ〈1, fg〉

6 − γ(1− α2) + λ
√

1− α2 + 2bλα
√

1− α2 6
λ2(1 + 2b)2

4γ
,

which implies β(λ) 6 λ2(1+2b)2

4γ . In conclusion

Pµ
(∫ t

0
ds f(w(s))1(s ∈ A) ≥ δ|A|

)
6 e−λδ|A|+

λ2(1+2b)2

4γ
|A| 6 exp

(
−γδ2|A|/(1 + 2b)2

)
,

once we choose λ = 2δγ/(1 + 2b)2. �

4.3. Concentration and mixing time for the East process. As we explained before
the East process coincides with the marginal process of each column M(j)(·). It is
therefore important to develop a detailed analysis of its mixing time TEast

mix . In this
section we collect some refinements of the results of [8, Theorem 1].

We begin by considering the natural extension of the East process on Z which is the
unique Markov process on Γ = {0, 1}Z with (formal) generator2

(LEastf)(η) =
∑
x∈Z

ηx−1 [Ex(f)(η)− f(η) ] ,

where Ex(·) denotes expectation over the variable ηx ∈ {0, 1} with the fair Bernoulli
distribution (see [8] for the formal definitions). In Γ we consider the set Γ∗ of those
configurations such that the variable

X(η) := sup{x : ηx = 1} (4.9)

is finite. In the sequel, for any η ∈ Γ∗ we will refer to X(η) as the front of η.
In order to understand the behavior of the process behind the front it is convenient

to move to an evolving reference frame in which the front is always at the origin.
More precisely let ΓF denote the set of configurations such that X(η) = 0 and let ηF(·)
be the Markov process on ΓF constructed as follows. The process behind the front
evolves as the usual East process. If the East dynamics tries to move (by ±1) the front
way from the origin then the whole configuration is shifted by ∓1 in order to keep
to keep its front at the origin. Blondel [3] showed that the law of ηF(t) as t → +∞
converges to an invariant measure ν on (−∞,−1]∩Z whose marginal on (−∞,−N ]∩Z
approaches exponentially fast (in N) the same marginal of the Bernoulli(1/2) product
measure. In the same limit she also proved that 1

tX(η(t)) converges in probability to

2Notice that, for the reader’s convenience, we adopt the convention that the 1’s are the facilitating
vertices, as it is the case for the upper triangular matrix walk, and not the 0’s as it is customary in the East
model literature.
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v∗, where v∗ was defined right after Theorem 2.2. In [8] Blondel’s result was improved
by establishing a CLT for the variables (X(η(t))− v∗t)/

√
t) as t→ +∞.

Using concentration properties for sums of weakly mixing sequence of random vari-
ables in Appendix 1.1 we sharpen the CLT result of [8] as follows.

Lemma 4.4. There exists universal constants c, C such that for any a > C
√
t log3/2(t),

and η(0) ∈ ΓF,

P(|X(η(t))− v∗t| ≥ a) 6 e−c(
a2

t
)1/3 . (4.10)

Corollary 4.5. For any γ > 0, all ε ≥ 1/nγ and n large enough,

TEast
mix (n, ε) 6 n/v∗ +

√
n log2(n). (4.11)

Proof of the Corollary. A natural coupling argument of [8] (cf. the beginning of Section
4.2. there) proves that, for any η ∈ ΓF and any ε ∈ (0, 1),

dTV (η(t), π) 6 Pω(X(η(t)) < n).

The bound (4.11) is now an immediate consequence of (4.10). �

4.4. Special row patterns and their large deviations. For reason that will appear
clearly in the proof of Theorem 2.2, given a set of k columns of the matrix M(t) it will
be important to have a good control on the statistics at time t of the number of rows
where the entries of the chosen columns exhibit certain special patterns (e.g. they are
all equal to 0 or only the last one is equal to 1, etc). This is the main motivation for
what follows.

Consider a k tuple of random vectors (X1, . . . ,Xk) with joint distribution P and let

N =
n∑
x=1

1 ((X1(x), . . . ,Xk(x)) = (0, . . . , 0, 1)) . (4.12)

Thus N counts the number of coordinates where all but the last vector are zero.

Lemma 4.6. Let πj be the uniform measure on X jn. Then for any positive integer k,

P(|N − n/2k| ≥ n/2k+1) < 6e−n/(9 22k−1)

+ dTV ((X1, . . . ,Xk−1), πk−1)

+ dTV ((X1, . . . ,Xk−2,Xk), πk−1)

+ dTV ((X1, . . . ,Xk−2,Xk−1 + Xk), πk−1)

+ dTV ((X1, . . . ,Xk−2), πk−2).

Proof. For the ease of reading, we first discuss the case k = 2. Let N1,N2,N3 be
defined as the variable N in (4.12) but with other possible patterns of (X1(x),X2(x))
as specified below:

N1 ↔ (1, 0), N2 ↔ (0, 0), N3 ↔ (1, 1). (4.13)

ClearlyN1 +N2 +N3 +N = n so that |N −n/4| 6
∑3

i=1 |N +Ni−n/2|/2. In particular

P(|N − n/4| ≥ n/8) 6
3∑
i=1

P(|N +Ni − n/2| ≥ n/12). (4.14)

The following is a standard consequence of the Azuma- Hoeffding’s inequality and
the definition of total variation distance. For any random vector X ∈ Xn distributed
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according to P and a > 0

P(|
n∑
x=1

X(x)− n/2| ≥ a/2) 6 2e−
a2

2n + dTV (X, π). (4.15)

This implies:

P(|N +N2 − n/2| ≥ a/2) 6 2e−
a2

2n + dTV (X1, π)

P(|N +N3 − n/2| ≥ a/2) 6 2e−
a2

2n + dTV (X2, π)

P(|N +N1 − n/2| ≥ a/2) 6 2e−
a2

2n + dTV (X1 + X2, π).

Choosing a = n/6 and summing the above three inequalities we finally get by (4.14)

P(|N − n/4| ≥ n/8) 6 6e−n/72 +
3∑
i=1

di, (4.16)

where d1, d2, d3 are the total variation distance terms above.
For general k, we define N1,N2,N3 as before according to the following patterns of

the array (X1(x), . . . ,Xk(x)). The first k − 2 elements are equal to zero while the last
two elements (Xk−1)(x),Xk(x)) are as in (4.13). Thus

N ↔ (0, . . . , 0︸ ︷︷ ︸
k−2

, 0, 1), N1 ↔ (0, . . . , 0︸ ︷︷ ︸
k−2

, 1, 0), N2 ↔ (0, . . . , 0︸ ︷︷ ︸
k−2

, 0, 0), N3 ↔ (0, . . . , 0︸ ︷︷ ︸
k−2

, 1, 1).

In this case N +
∑3

i=1Ni is not deterministic; however by triangle inequality we still
get

|N − n/2k| 6 1

2

(
3∑
i=1

|N +Ni − n/2k−1|+ |N +

3∑
i=1

Ni − n/2k−2|

)
.

Using again (4.15) we have:

P(|N +N2 − n/2k−1| ≥ a/2) 6 2e−
a2

2n + dTV ((X1, . . . ,Xk−1), πk−1)

P(|N +N3 − n/2k−1| ≥ a/2) 6 2e−
a2

2n + dTV ((X1, . . . ,Xk−2,Xk), πk−1)

P(|N +N1 − n/2k−1| ≥ a/2) 6 2e−
a2

2n + dTV ((X1, . . . ,Xk−2,Xk−1 + Xk), πk−1)

P(|N +
3∑
i=1

Ni − n/2k−2| ≥ a/2) 6 2e−
a2

2n + dTV ((X1, . . . ,Xk−2), πk−2).

We finally get the thesis as in the k = 2 case by summing the above inequalities com-
puted for a = 1

3
n

2k−1 . �

4.4.1. Application to the matrix walk. Let µ be a probability measure onMn and con-
sider the MW M(t) with initial measure µ and law Pµ(·). Given a set of k columns with
indices i1 < i2 < · · · < ik we denote by µ1, µ2, µ3, µ4 the marginals of µ on

(Mi1 , . . . ,Mik−1), (Mi1 , . . . ,Mik−2
,Mik), (Mi1 , . . . ,Mik−1

+ Mik), (Mi1 , . . . ,Mik−2
),

respectively.

Definition 4.7. Given a time interval ∆ = [t1, t2] and k, n ∈ N, we say that the xth-row
is good for ∆ if∫

∆
1
((

Mi1(t;x), . . . ,Mik(t;x)
)

= (0, . . . , 0, 1)
)
dt ≥ t2 − t1

2k+1
,



12 SHIRSHENDU GANGULY AND FABIO MARTINELLI

otherwise we term it bad for ∆. We will sometimes suppress the reference to ∆ if clear
from the context.

Recall that πj is the uniform measure on X jn. The result that will play a crucial role
in getting a sharp bound on the mixing time of the marginal of the MW on k columns
is as follows.

Lemma 4.8. There exists a universal constant c > 0 such that for any time interval [t1, t2],
any k, n ∈ N and any probability measure µ on X kn

Pµ(all rows are bad for [t1, t2])

6 exp (−c(t2 − t1)) + dTV (µ1, πk−1) + dTV (µ2, πk−1) + dTV (µ3, πk−1) + dTV (µ4, πk−2).

Proof. Fix I = [t1, t2], k, n, µ and recall the notation of Lemma 4.6 and of its proof.
For s ∈ I let N (s), N1(s), N2(s), N3(s) be the random variables defined after (4.16)
computed for the vectors Mi1(s), . . . ,Mik(s) and let for a > 0

Y1(s) = 1(|N (s) +N1(s)− n/2k−1| ≥ a/2)

Y2(s) = 1(|N (s) +N2(s)− n/2k−1| ≥ a/2)

Y3(s) = 1(|N (s) +N3(s)− n/2k−1| ≥ a/2)

Y4(s) = 1(|N1(s) +N2(s) +N3(s) +N (s)− n/2k−2| ≥ a/2).

When µ is the uniform measure π we denote the expectation Eπ(Yi(s)) by pi. Notice
that pi does not depend on s because of reversibility w.r.t. π and that pi 6 2e−a

2/2n

because of (4.15). Let also

Ji =

∫
I
Yi(s)ds, i = 1, . . . , 4,

Using (4.8) together with the fact that the spectral gap of the chain A(·) is positive
uniformly in k, n (cf. Theorem 1 and [12, 13]), it follows that there exists c > 0 such
that, for i = 1, 2, 3 and any bi ∈ (0, 1),

Pµ (|Ji − pit| ≥ bit) 6 exp
(
−ctb2i

)
+ dTV (µi, πk−1),

where t = t2 − t1. On the event that Ji < (pi + bi)t for all i = 1, . . . 4, the fraction of
times s in ∆ such that Yi(s) = 0 for all i = 1, . . . , 4 is at least 1−

∑4
i=1(pi + bi). For all

such times s, a simple analysis shows that |N (s)− n
2k
| 6 a. Therefore∫

∆
N (s) ≥ t(n/2k − a)(1−

4∑
i=1

(pi + bi)).

Hence by definition of N (cf. (4.12)), there exists x ∈ [n] such that∫
∆

1
(

(Mi1(s;x), . . . ,Mik(s;x)) = (0, 0, . . . , 0, 1)
)
ds

≥ t

n
(n/2k − a)(1−

4∑
i=1

(pi + bi)).

Choosing a to be n/(3. 2k) and all the bi = 1
17 , we see that

∑4
i=1(pi + bi) 6 1/4 and

hence x is good for I. �
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5. PROOF OF THEOREM 1

Proof. For notational convenience and without loss of generality we consider only the
full matrix walk (i.e. (i1, . . . , ik) = [n]). Let us denote the spectral gaps of the MW
M(t) = (M1(t), . . . ,Mn(t)) and Mn(t) (the last column which as mentioned before has
the law of the East process with p = 1/2) by λ1(n) and λ2(n) respectively. Notice
that λ2(n) is a non-increasing sequence (cf. [4]). That λ2(n) ≥ λ1(n) follows from
the fact that Mn(t) is a projection chain of M(t). We now prove the other direction by
combining the approach introduced in [12] together with a crucial input from [5].

Choose i = n− 1 and [t1, t2] = [0, t] in (4.6) to write

Mn(t;ω) = A0(t;ω) +
ν∑
j=1

αj(ω)ξj(ω)Aj(t, ω) = A0(t;ω) +
ν∑
j=1

ξj(ω)Aj(t, ω),

where for the last equality we use the fact that, as Mn,n(t) = 1 deterministically, αj =
1 ∀j ∈ [n]. Define the event Cn = Cn(t) that the vectors {Aj(t, ω)} restricted to the
first n− 1 rows span the vector space Xn−1. Using Lemma A.1, on the event Cn, we can
couple Mn(t) to a vector distributed according the equilibrium measure independent of
[M1(t),M2(t), . . . ,Mn−1(t)]. Thus

dTV (M(t), π) 6 dTV ((M1(t), . . . ,Mn−1(t)), π) + P(Ccn),

i.e.

dTV (M (n)(t), π) 6
n∑
i=1

P(Cci ).

The key new input is now the following result.

Lemma 5.1. For each n ≥ 2, limt→∞
1
t log(P(Ccn)) ≥ −λ2(n).

Assuming the lemma and recalling that λ2(i) ≥ λ2(n) for i 6 n, we get immediately
that limt→∞

1
t log(dTV (M(t), π)) 6 − λ2(n). A standard functional analysis argument

now implies λ1(n) ≥ λ2(n). �

Proof of Lemma 5.1. For the stationary East process σ(t) = [σ1(t), σ2(t), . . . σn(t)] on [n],
let τ be the first time there is a legal ring at n, i.e. the clock rings at n and σn−1(τ) = 1.
In [5, Theorem A.1] it was proved that the exponential decay rate of Pπ(τ ≥ t) is
governed by the spectral gap λ2 :

lim
t→∞

logPπ(τ ≥ t)
t

= −λ2.

Recall the notation from (4.6) that 0 < τ1 < τ2 < . . . < τν < t are the ring times for the
n− 1th row. Thus in the “adjoint” randomness ω∗,

0 < t− τν < t− τν−1 < . . . < t− τ1 < t

are the ring times for the nth bit. Now by the discussion of Section 4.1.1, choosing
I = [1, n − 1] it follows that the event Cn occurs iff for any row vector Z> there exists
j ∈ [ν] such that the (graphical representation of) East process on [2, . . . , n], evolving
with the adjoint randomness ω∗ and initial condition Z> (note that the first coordinate
is frozen), at time t− τj is equal to 1 at the vertex n− 1 for some 1 6 j 6 ν, and hence
in the terminology of the East process, the ring at t − τj is legal for the nth bit. Thus
putting the above together along with a shift of coordinate to transfer [2, n] to [n − 1]
we get

P(Cc(n)) 6
∑

Z>∈Xn

PZ>(τ > t) 6 22nPπ(τ > t)
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and the lemma follows. �

6. LOCAL MIXING AND THE PROOF OF THEOREM 2.

In this section we first prove that certain patterns of bits as in Section 4.4 facilitate
some form of local mixing of the matrix walk (cf. Proposition 6.1 below). We then
prove that these patters are likely to occur (cf. Lemma 6.2) and, as a consequence,
we are able to establish a precise recursion relation between the mixing times of the
marginal of the MW on k and k − 1 columns (cf. Lemma 6.3). Putting all together we
will finally deduce Theorem 2.

6.1. Local mixing. We first need some initial setup. Recall the definition given in
Section 2.3 of the spaceM[i1,...,ik] as the set of the columns 1 6 i1 < i2 < . . . < ik 6 n
and let, for any g : M[i1,...,ik] 7→ [−1, 1] and any subset I of entries of the chosen
columns, gI be the π-average of g over the entries in I.

Fix a burn-in time t1 > 0 together with a positive time lag ∆ = o(n) and let t2 =

t1 + κ∆, where κ is a large constant (possibly depending on k 3) to be fixed later on.
Recall Definition 4.7 and let, for any a 6 n − 2∆, Ba ≡ Ba(t1,∆) be the event that
there is a row x ∈ [a+ ∆, a+ 2∆] which is good for the time interval [t1, t2]. Finally let
I ≡ Iik,a,∆ = {ik} × [1, a+ ∆].

In the above setting the local mixing result reads as follows:

Proposition 6.1. There exists a universal constant c > 0 and a choice of κ = κ(k) > 0
such that the following holds. For any g : M[i1,...,ik] → [−1, 1] which does not depend on
the entries {(ik, j) : 1 6 j < a}, any t > t2 and any initial condition M of the matrix
walk: ∣∣E[g(M(t))− gI(M(t))

]∣∣ 6 2[e−c∆ + P(Bca)].

The error term P(Bca) can be bounded from above using Lemma 4.8 provided that
the burn-in time t1 is large enough. Recall the definition of Tmix(n; [i1, . . . , ik], ε) as the
ε-mixing time of the marginal matrix walk on the columns i1, i2, . . . , ik and let

Tmix(n, k, ε) = max
i1,...,ik

Tmix(n; [i1, . . . , ik], ε).

Lemma 6.2. There exists a universal constant c such that, for any ε ∈ (0, 1) and any
a 6 n− 2∆, the following holds. If t1 ≥ Tmix(n, k − 1, ε) then

P(Bca) 6 4ε+ e−c∆.

Before proving the lemma and the proposition we prove Theorem 2.

6.2. Proof of Theorem 2. At the basis of the argument there is the following recursive
relation between the mixing times of k and k − 1 columns.

Lemma 6.3. There exists c > 0 such that the following holds. Fix ε ∈ (0, 1) and let
ε′ = ε/(9

√
n). Then, for any given k ∈ N and n large enough,

Tmix(n, k, ε) 6 Tmix(n, k − 1, ε′) + c.2k
√
n.

Assuming the lemma we proceed as follows. Fix k, n together with ε ∈ (0, 1) and let
ε′ = 9−kn−k/2ε. Using Corollary 4.5 we get

Tmix(n, 1, ε′) 6 n/v∗ +
√
n log2(n)

3The constant κ will be taken to be a large universal constant times 2k for large k.
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for all n large enough depending on ε, k. Now applying Lemma 6.3 k− 1 times starting
from k = 1 gives

Tmix(n, k, ε) 6 n/v∗ +
√
n log2(n) + ck2k

√
n.

�

Proof of Lemma 6.3. Given g : M[i1,...,ik] 7→ R such that ‖g‖∞ 6 1, let g(j) be defined
recursively as follows:

g(0)(·) = g(·), g(j)(·) = g
(j−1)
Ik,j (·), j 6 N,

where N = n/∆ and Ik,j = {ik} × Rj with ∆ = b
√
nc and Rj = ((j − 1)∆, j∆]. Since

g(j) is the π-average of g(j−1) w.r.t. to the entries of the ithk -column in the interval Rj
we get in particular that g(j)(·) = g{ik}×[1,j∆](·) and g(N) is the π-average of g over the
entries on the ithk -column.

A simple telescopic sum together with the triangle inequality gives

|EA [g(M(t))− π(g)] |

6 |EM
[
gN (M(t))− π(g)

]
|+

N−1∑
j=0

|EM
[
g(j)(M(t))− g(j+1)(M(t))

]
|. (6.1)

Notice that gN (·) depends only on the entries in the ith1 , . . . , i
th
k−1-columns so that

|EM
[
gN (M(t))− π(g)

]
| 6 2dTV ((Mi1(t), . . . ,Mik−1

(t)), π),

where, with an abuse of notation, π denotes the uniform measure on the chosen k
columns of the initial matrix M .

Next we observe that for any j 6 N − 1 the function g(j) satisfies the hypothesis of
Proposition 6.1 if we choose a = j∆. Thus, if t = Tmix(n, ε′, k − 1) + κ∆ with κ the
constant appearing in Proposition 6.1, we can appeal to Proposition 6.1 and Lemma
6.2 to get that every term in the sum is bounded from above by 8ε′ + 4e−c∆ for some
universal constant c > 0.

In conclusion

2dTV ((Mi1(t), . . . ,Mik(t)), π) = max
g:Mi1,...,ik

7→R
‖g‖∞ 6 1

|EM [g(M(t))− π(g)] |

6 2dTV ((Mi1(t), . . . ,Mik−1
(t)), π) +N(8ε′ + 4e−c∆)

6 2ε′ + 8
√
n(ε′ + e−c

√
n) 6 ε,

where the last two inequalities follow by the assumption that t > Tmix(n, ε′, k − 1) and
our choice of ∆. �

6.3. Local mixing: proofs. Recall the notation defined at the beginning of the section.

Proof of Proposition 6.1. Fix g : M[i1,...,ik] → [−1, 1] which does not depend on the
entries {(ik, j) : 1 6 j < a} and, for i ∈ [a+ ∆, a+ 2∆], let Gi be the event that i is the
largest good index in [a+ ∆, a+ 2∆] w.r.t. the time interval [t1, t2].

Observe that Gi is measurable with respect to the σ-algebra F[i,n]([0, t2]) and hence
also w.r.t. F[i,n]([0, t]) if t ≥ t2. Let

t1 < τ1 < τ2 < . . . τν < t2 < τν+1 (6.2)
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be the set of random times t such that the clock of the (i − 1)th-row rings and the
ith-entries of the chosen columns are all zero except the last one (i.e. they form the
pattern [0, 0, . . . , 0, 1]).

Let ξj ≡ ξi−1,τj be the Bernoulli variable associated to τj and let F̂t be the σ-algebra
generated by all the variables generating F[2,n]([0, t]) except the variables {ξj}νj=1. Re-
calling (4.6), we have

Mik(t;ω) = A0(t;ω) +
ν∑
j=1

ξj(ω)Aj(t, ω),

where Aj(t;ω) = ΦI,∆j (ω, ei) with I = [1, i − 1] and ∆j = (τj , t]. Notice that the
variables αj appearing in (4.6) are all equal to one because of the definition of the
times τ1, . . . , τν . The fundamental property of this decomposition is that {(A0,Aj)}νj=1

as well as all the other columns (Mi1 , . . . ,Mik−1
) are all measurable with respect to F̂ .

Let now P be the subspace ofXi−a spanned by the restriction of the vectors {Aj(t;ω)}νj=1

to the row interval [a, a + 1, . . . , i − 1] and let Ci = Gi ∩ {ω : P = Xi−a}. Clearly the
events Ci are disjoint. Let also I0 = {ik} × [1, a+ ∆].

Claim 6.4.

|E [g(M(t))− gI0(M(t))]| 6 2
[
1−

a+2∆∑
i=a+∆

P(Ci)
]
. (6.3)

Proof of the Claim. Observe that, conditionally on F̂t, on the event Ci all the entries
Mik(t;x), x ∈ [a, i− 1]}, are i.i.d Bernoulli(1/2) (cf. Lemma A.1). Thus, using the fact
that g does not depend on the entries Mik(x), x < a, and letting Ii = {ik} × [1, i− 1],
we get

E[g(M(t))1(Ci)|F̂t] = gIi(M(t))1(Ci), (6.4)

E[gI0(M(t))1(Ci)|F̂t] = gIi(M(t))1(Ci).
In conclusion

|E[g(M(t))− gI0(M(t))]|

= |E
[[
g(M(t))− gI0(M(t))

] [ a+2∆∑
i=a+∆

1(Ci) + (1−
a+2∆∑
i=a+∆

1(Ci))
]]
|

= |E[g(M(t))− gI0(M(t))][1−
a+2∆∑
i=a+∆

1(Ci)] |

6 2(1−
a+2∆∑
i=a+∆

P(Ci)). (6.5)

�

The last step in the proof of Proposition 6.1 is an upper bound on the r.h.s. of (6.5).

Lemma 6.5. There exists n0 = n0(k) such that, for all n ≥ no and all i ∈ [a+∆, a+2∆],

P(Ci|Gi) ≥ 1− e−c∆,
where c > 0 is a universal constant. In particular

1−
a+2∆∑
i=a+∆

P(Ci) 6 1− (1− e−c∆)(
a+2∆∑
i=a+∆

P(Gi)) 6 e−c∆ + P(Bca).
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Clearly the lemma finishes the proof of Proposition 6.1. �

Proof of Lemma 6.5. Fix i ∈ [a+∆, a+2∆] together with ω ∈ Gi and recall (6.2). Using
the adjoint process argument described in Section 4.1.1, ω ∈ Ci if for any row vector
Z> ∈ X>n such that Z>(x) = 0 for all x /∈ [a+ ∆, i− 1] there exist j ∈ [ν] such that the
East process on [n], evolving with the adjoint randomness ω∗ = ω∗t (cf. the discussion
after Remark 4.4) and starting from Z>, at time t − τj is equal to one at the vertex
i− 1. It is crucial for what follows that, for any given s ∈ [t1, t2], the event Ei−1(s;Z>)
that the East process using ω∗ and starting from Z>, at time t− s is equal to one at the
vertex i − 1 involves only the randomness ξx,k, tx,k with x ∈ [1, i − 2] and k such that
tx,k ∈ [s, t].

Let also Ti(ω) ⊂ [t1, t2] be the measurable subset of all times s ∈ [t1, t2] such that
the restriction of the ith-row of M(s;ω) to the columns i1, . . . , ik form the pattern(
0, 0, . . . , 0, 1

)
. Notice that Ti(·) is measurable w.r.t. F[i,n]([0, t2]) and that τj ∈ Ti ∀j ∈

[ν]. Moreover Ti is the union of intervals and, for ω ∈ Gi, its Lebesgue measure |Ti(ω)|
satisfies (cf. Definition 4.7)

|Ti(ω)| ≥ (t2 − t1)/2k+1 ≥ κ∆/2k+1.

Finally let Ri−1(ω) = {ti−1,k}∞k=1 be the rings of the Poisson clock of the (i − 1)th-row.
A simple union bound over the at most 2∆ possible choices of the row vector Z> proves
that the lemma follows if we can show that

max
Z> as above

P(Ei−1(s;Z>) fails ∀s ∈ Ti ∩Ri−1 | Gi) 6 e−c
′∆,

where the constant c′ can be made as large as we want (in particular larger than log 2)
by choosing the constant κ in t2 = t1 + κ∆ large enough.

Using the independence between the event Ei−1(s;Z>) and the σ-algebraF[i,n]([t1, t2]),
the fact that Ti is measurable w.r.t. F[i,n]([t1, t2]) and (4.7) of Theorem 4.3 applied to
the East process, we obtain

1(Gi)P
(
|{s ∈ [t1, t2] : Ei−1(s;Z>) holds } ∩ Ti| 6 |Ti|/4 | F[i,n]([t1, t2])

)
6 1(Gi)P

(∣∣∣ ∫ t2

t1

ds
(
1(Ei−1(s;Z>))− 1

2

)
1(s ∈ Ti)

∣∣∣ ≥ |Ti|/2 ∣∣ F[i,n]([t1, t2])
)

6 2∆e−c(t2−t1)/2k+1
= 2∆e−cκ∆/2k+1

,

for some numerical constant c > 0 related to the spectral gap of the East process.
Finally, using again the independence of Ri from F[1,i−2]([0, t]) and F[i,n]([0, t]) we

get that

P({s : Ei−1(s;Z>) holds}∩Ti∩Ri| = ∅ |F[1,i−2]∪[i,n]([0, t])) 6 e
−|{s: Ei−1(s;Z>) holds}∩Ti|.

In conclusion, for any Z> as above ,

P(Ei−1(s;Z>) fails ∀s ∈ Ti ∩Ri−1 | Gi) 6 2∆e−cκ∆/2k+1
+ e−κ∆/2k+3

and the proof is finished by taking κ to be a large enough constant times 2k. �



18 SHIRSHENDU GANGULY AND FABIO MARTINELLI

Proof of Lemma 6.2. Using the definition of t1 we have

dTV
((

Mi1(t1), . . . ,Mik−1
(t1)
)
, π
)
6 ε

dTV
((

Mi1(t1), . . . ,Mik−2
(t1)
)
, π
)
6 ε

dTV
((

Mi1(t1), . . . ,Mik−2
(t1),Mik(t1)

)
, π
)
6 ε

dTV
((

Mi1(t1), . . . ,Mik−1
(t1) + Mik(t1)

)
, π
)
6 ε.

Lemma 4.8 and the definition of t2 now imply that

P(Bc) 6 e−c(t2−t1) + 4ε 6 e−c∆ + 4ε.

�

APPENDIX A.

We collect here some result and proofs that were omitted from the main text. We
begin with a simple lemma on the distribution of random linear combinations in Xn
that we state here without proof.

Lemma A.1. For any n, k ∈ N, given a set of vectors V(1), . . . ,V(k) ∈ Xn, and k inde-
pendent Bernoulli(1/2) variables {ξ1, . . . , ξk}, the random vector

∑k
i=1 aivi is distributed

uniformly in Xn iff V(1), . . . ,V(k) span Xn.

1.1. Proof of Lemma 4.4. We first recall one of the main technical results from [8]
saying that, for any η ∈ ΓF, the increments in the position of the front ((4.9) ) (the vari-
ables X below) behave asymptotically as a stationary sequence of weakly dependent
random variables with exponential moments. In the sequel ν denotes the invariant
measure of the process as seen from the front (cf. Section 4.3).

Define ξn := X(η(n))−X(η(n− 1)), n ≥ 1, so that

X(η(t)) =

Nt∑
n=1

ξn + [X(η(t))−X(η(Nt))] , Nt = btc. (A.1)

Lemma A.2 ([8, Corollary 3.2]). There exists α ∈ (0, 1) and γ > 0 such that the following
holds. Let f : R 7→ [0,∞) be such that e−|x|f2(x) ∈ L1(R). Then

Cf ≡ sup
η∈ΓF

Eη
[
f(ξ1)2

]
<∞, (A.2)

and

sup
η∈ΓF

|Eη [f(ξn)]− Eν [f(ξ1)] | = O(e−γn
α
) ∀n ≥ 1, (A.3)

where the constant in the r.h.s. of (A.3) depend on f only through the constant Cf .

The proof of Lemma 4.4 will follow by constructing the appropriate Doob’s martin-
gale and using martingale concentration by bounding the martingale difference. For
any probably space (Ω,F ,P) let {X1, X2, . . . , Xn}, be random variables taking values
in a set S. Consider any function φ : Sn → R and a filtration

{Ω, ∅} = F0 ⊂ F1 ⊂ . . .Fk = F

The Doob’s martingale is given by Mi = E(φ(X)|Fi), where X = (X1, . . . , Xn). We
define the martingale difference

Vi(φ) = Mi −Mi−1,



UPPER TRIANGULAR MATRIX WALK 19

and let Di(φ) = ||Vi(φ)||∞. Then by the classic Azuma-Hoeffding martingale concen-
tration

P(|φ(X)− E(φ(X)| > r) 6 2e
− r2

2
∑k
i=1

D2
i .

To use the above, in our setting let k = n, φ(X) =
∑n

i=1Xi and let Fi = FZ([0, i]) (cf.
(4.1)) and k = n. Ideally we would want to take Xi = ξi. However these variables are
not quite bounded but, using (A.2), they have exponential tails. Thus we choose

Xi = min(max(ξi,K),−K),

(the value of K would be specified later). We now bound the martingale differences.
Note that by (A.3) for any j ≥ i+ 1 choosing f(x) = min(max(x,K),−K),

E(Xj |Fi) = O(K e−(j−i)α) + Eν(f(ξ1)),

E(Xj |Fi−1) = O(K e−(j−i+1)α) + Eν(f(ξ1)).

Thus

|Mi −Mi−1| 6 |Xi|+ C K
n∑
i=1

e−γi
α

6 CK.

Thus putting everything together we get,

P(|φ(X)− E(φ(X))| > r) 6 2e
− r2

(CK)2 .

All that is left is to take care of the truncation. Let ξ = (ξ1, . . . , ξn). Using (A.2)

|E(φ(X))− E(φ(ξ))| = O(ne−cK).

Thus we get

P(|φ(ξ)− E(φ(ξ))| > r) 6 ne−K + 2e−
r′2

2K2n

where r′ = r − O(nKe−cK). When r > C
√
n log3/2(n) for some large constant C we

choose K3 = r2/n and see that this choice yields for some constant c > 0,

P(|φ(ξ)− E(φ(ξ))| > r) 6 e−c(
r2

n
)1/3 .

Thus we see for any n,

P(|X(w(tn))− vtn| > r) 6 e−c(
r2

n
)1/3 .

For a general and large enough, tn 6 t < tn+1 and r > C
√
n log3/2(n),

P(|X(w(t))− vt| > r) 6 P(|X(w(tn))− vtn| > r/2) + P(|X(w(t))−X(w(tn))| ≥ r/4),

6 e−c(
r2

n
)1/3 + e−cr,

6 e−c(
r2

n
)1/3 .

�
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